JP2013000734A - Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid - Google Patents
Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid Download PDFInfo
- Publication number
- JP2013000734A JP2013000734A JP2011138216A JP2011138216A JP2013000734A JP 2013000734 A JP2013000734 A JP 2013000734A JP 2011138216 A JP2011138216 A JP 2011138216A JP 2011138216 A JP2011138216 A JP 2011138216A JP 2013000734 A JP2013000734 A JP 2013000734A
- Authority
- JP
- Japan
- Prior art keywords
- aqueous slurry
- catalyst
- molybdenum
- methacrylic acid
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 183
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 29
- 239000002002 slurry Substances 0.000 claims abstract description 226
- 239000010949 copper Substances 0.000 claims abstract description 133
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 129
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 128
- 239000011733 molybdenum Substances 0.000 claims abstract description 128
- 150000001875 compounds Chemical class 0.000 claims abstract description 110
- 229910052802 copper Inorganic materials 0.000 claims abstract description 95
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 94
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000011964 heteropoly acid Substances 0.000 claims abstract description 43
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 27
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000002156 mixing Methods 0.000 claims abstract description 26
- 239000011574 phosphorus Substances 0.000 claims abstract description 26
- 238000001035 drying Methods 0.000 claims abstract description 24
- 230000003197 catalytic effect Effects 0.000 claims abstract description 15
- YPJKMVATUPSWOH-UHFFFAOYSA-N nitrooxidanyl Chemical compound [O][N+]([O-])=O YPJKMVATUPSWOH-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052792 caesium Inorganic materials 0.000 claims description 36
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 36
- 238000011282 treatment Methods 0.000 claims description 24
- 229910052720 vanadium Inorganic materials 0.000 claims description 24
- 229910052787 antimony Inorganic materials 0.000 claims description 21
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 21
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 claims description 19
- 238000010298 pulverizing process Methods 0.000 claims description 17
- 238000011069 regeneration method Methods 0.000 claims description 17
- 229910002651 NO3 Inorganic materials 0.000 claims description 13
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 claims description 12
- 239000000470 constituent Substances 0.000 claims description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 claims description 8
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 239000001282 iso-butane Substances 0.000 claims description 6
- 239000007791 liquid phase Substances 0.000 claims description 6
- 239000012071 phase Substances 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910052716 thallium Inorganic materials 0.000 claims description 4
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 4
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 1
- 238000010304 firing Methods 0.000 abstract description 16
- 239000007789 gas Substances 0.000 description 44
- 238000002360 preparation method Methods 0.000 description 26
- 238000010438 heat treatment Methods 0.000 description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 22
- 230000001590 oxidative effect Effects 0.000 description 20
- 239000002994 raw material Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 239000007787 solid Substances 0.000 description 15
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 10
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 230000008929 regeneration Effects 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- 238000001354 calcination Methods 0.000 description 7
- SXTLQDJHRPXDSB-UHFFFAOYSA-N copper;dinitrate;trihydrate Chemical compound O.O.O.[Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O SXTLQDJHRPXDSB-UHFFFAOYSA-N 0.000 description 7
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000011268 mixed slurry Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 150000008043 acidic salts Chemical class 0.000 description 4
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 150000002823 nitrates Chemical class 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 235000011007 phosphoric acid Nutrition 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- -1 oxo acid salt Chemical class 0.000 description 3
- 229960003975 potassium Drugs 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 239000012378 ammonium molybdate tetrahydrate Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- FIXLYHHVMHXSCP-UHFFFAOYSA-H azane;dihydroxy(dioxo)molybdenum;trioxomolybdenum;tetrahydrate Chemical compound N.N.N.N.N.N.O.O.O.O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O FIXLYHHVMHXSCP-UHFFFAOYSA-H 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 150000004715 keto acids Chemical class 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910003208 (NH4)6Mo7O24·4H2O Inorganic materials 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910021550 Vanadium Chloride Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- VPONMBLTGNYMND-UHFFFAOYSA-N azane copper(1+) Chemical compound N.N.N.N.[Cu+] VPONMBLTGNYMND-UHFFFAOYSA-N 0.000 description 1
- ZMCUDHNSHCRDBT-UHFFFAOYSA-M caesium bicarbonate Chemical compound [Cs+].OC([O-])=O ZMCUDHNSHCRDBT-UHFFFAOYSA-M 0.000 description 1
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical compound [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- 229910001942 caesium oxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000002036 drum drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- ALTWGIIQPLQAAM-UHFFFAOYSA-N metavanadate Chemical compound [O-][V](=O)=O ALTWGIIQPLQAAM-UHFFFAOYSA-N 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- PDKHNCYLMVRIFV-UHFFFAOYSA-H molybdenum;hexachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Mo] PDKHNCYLMVRIFV-UHFFFAOYSA-H 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- FYWSTUCDSVYLPV-UHFFFAOYSA-N nitrooxythallium Chemical compound [Tl+].[O-][N+]([O-])=O FYWSTUCDSVYLPV-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- RPESBQCJGHJMTK-UHFFFAOYSA-I pentachlorovanadium Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[V+5] RPESBQCJGHJMTK-UHFFFAOYSA-I 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- WPFGFHJALYCVMO-UHFFFAOYSA-L rubidium carbonate Chemical compound [Rb+].[Rb+].[O-]C([O-])=O WPFGFHJALYCVMO-UHFFFAOYSA-L 0.000 description 1
- 229910000026 rubidium carbonate Inorganic materials 0.000 description 1
- 229940102127 rubidium chloride Drugs 0.000 description 1
- RTHYXYOJKHGZJT-UHFFFAOYSA-N rubidium nitrate Inorganic materials [Rb+].[O-][N+]([O-])=O RTHYXYOJKHGZJT-UHFFFAOYSA-N 0.000 description 1
- 229910001952 rubidium oxide Inorganic materials 0.000 description 1
- CWBWCLMMHLCMAM-UHFFFAOYSA-M rubidium(1+);hydroxide Chemical compound [OH-].[Rb+].[Rb+] CWBWCLMMHLCMAM-UHFFFAOYSA-M 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- KHAUBYTYGDOYRU-IRXASZMISA-N trospectomycin Chemical compound CN[C@H]([C@H]1O2)[C@@H](O)[C@@H](NC)[C@H](O)[C@H]1O[C@H]1[C@]2(O)C(=O)C[C@@H](CCCC)O1 KHAUBYTYGDOYRU-IRXASZMISA-N 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- WQEVDHBJGNOKKO-UHFFFAOYSA-K vanadic acid Chemical compound O[V](O)(O)=O WQEVDHBJGNOKKO-UHFFFAOYSA-K 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/02—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
- B01J27/19—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/195—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
- B01J27/198—Vanadium
- B01J27/199—Vanadium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
- B01J27/25—Nitrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/28—Regeneration or reactivation
- B01J27/285—Regeneration or reactivation of catalysts comprising compounds of phosphorus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/48—Liquid treating or treating in liquid phase, e.g. dissolved or suspended
- B01J38/60—Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/48—Liquid treating or treating in liquid phase, e.g. dissolved or suspended
- B01J38/64—Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts
- B01J38/66—Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts using ammonia or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/48—Liquid treating or treating in liquid phase, e.g. dissolved or suspended
- B01J38/68—Liquid treating or treating in liquid phase, e.g. dissolved or suspended including substantial dissolution or chemical precipitation of a catalyst component in the ultimate reconstitution of the catalyst
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/347—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
- C07C51/377—Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/50—Use of additives, e.g. for stabilisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、リンと、モリブデンと、銅とを含むヘテロポリ酸化合物からなる使用済みの触媒に再生処理を施し、メタクリル酸製造用触媒を再生する方法と、この方法により得られた再生触媒を用いてメタクリル酸を製造する方法とに関する。 The present invention uses a method of regenerating a used catalyst comprising a heteropolyacid compound containing phosphorus, molybdenum and copper to regenerate a catalyst for producing methacrylic acid, and a regenerated catalyst obtained by this method. And a method for producing methacrylic acid.
リンと、モリブデンと、銅とを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒は、例えばメタクロレイン等を原料とする気相接触酸化反応に長時間使用すると、熱負荷等により触媒活性が低下することが知られている。 A catalyst for producing methacrylic acid composed of a heteropolyacid compound containing phosphorus, molybdenum, and copper, when used for a long time in a gas phase catalytic oxidation reaction using, for example, methacrolein or the like, the catalytic activity decreases due to heat load or the like. It is known.
かかる使用済触媒の再生方法として、これまでに、使用済触媒に硝酸根及びアンモニウム根を混合して得られる水性スラリーを乾燥した後、焼成し、モリブデンに対する銅の原子比(Cu/Mo)が0.3/12であるヘテロポリ酸化合物からなる再生触媒を得る方法(特許文献1〜6参照)が提案されている。 As a method for regenerating such a spent catalyst, an aqueous slurry obtained by mixing a nitrate radical and an ammonium root with a spent catalyst has been dried and then calcined to obtain an atomic ratio of copper to molybdenum (Cu / Mo). A method for obtaining a regenerated catalyst comprising a heteropolyacid compound of 0.3 / 12 (see Patent Documents 1 to 6) has been proposed.
しかしながら、従来の再生方法で再生された再生触媒は、触媒活性及び触媒寿命の点で必ずしも満足のいくものではなかった。 However, the regenerated catalyst regenerated by the conventional regeneration method is not always satisfactory in terms of catalyst activity and catalyst life.
そこで、本発明の目的は、メタクリル酸の製造に使用された使用済触媒の触媒活性及び触媒寿命を良好に回復させることができるメタクリル酸製造用触媒の再生方法、及びこの方法により得られた再生触媒を用いて、長期間にわたり高い収率でメタクリル酸を製造する方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for regenerating a catalyst for methacrylic acid production that can satisfactorily recover the catalytic activity and catalyst life of a used catalyst used in the production of methacrylic acid, and the regeneration obtained by this method. An object of the present invention is to provide a method for producing methacrylic acid with a high yield over a long period of time using a catalyst.
本発明者らは、前記課題を解決すべく鋭意検討を行った結果、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
すなわち、本発明は、以下の構成からなる。
[1]リンと、モリブデンと、銅とを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の再生方法であって、下記工程(1)〜(3)を含み、再生された触媒を構成するヘテロポリ酸化合物におけるモリブデンに対する銅の原子比(Cu/Mo)が0.05/12〜0.25/12であることを特徴とするメタクリル酸製造用触媒の再生方法。
工程(1):メタクリル酸の製造に使用された使用済触媒、硝酸根、アンモニウム根及び水を混合し、モリブデンに対する銅の原子比(Cu/Mo)が0.10/12〜0.50/12となるように調整した水性スラリーAを得る工程
工程(2):前記ヘテロポリ酸化合物の構成元素を含む化合物のうち少なくともモリブデンを含む化合物と、水とを混合し、モリブデンに対する銅の原子比(Cu/Mo)が0/12〜0.25/12となるように調整した水性スラリーBを得る工程
工程(3):工程(1)で得られた水性スラリーAと工程(2)で得られた水性スラリーBとを混合して得られた水性スラリーCを、乾燥、焼成する工程
[2]前記ヘテロポリ酸化合物が、さらに、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素Xを含み、再生された触媒を構成するヘテロポリ酸化合物におけるモリブデンに対する元素Xの原子比(X/Mo)が0.5/12〜2/12であり、工程(1)における水性スラリーAに含まれるモリブデンに対する元素Xの原子比(X/Mo)が2/12〜4/12であり、かつ工程(2)における水性スラリーBに含まれるモリブデンに対する元素Xの原子比(X/Mo)が0/12〜0.5/12である前記[1]に記載のメタクリル酸製造用触媒の再生方法。
[3]工程(3)における水性スラリーCが、工程(1)で得られた水性スラリーAと、工程(2)で得られた水性スラリーBと、銅を含む化合物とを混合して得られたものである前記[1]又は[2]に記載のメタクリル酸製造用触媒の再生方法。
[4]前記水性スラリーCに含まれるモリブデンに対する銅の原子比(Cu/Mo)が0.05/12〜0.25/12となる範囲で、前記水性スラリーAと、前記水性スラリーBと、前記銅を含む化合物とを混合する前記[3]に記載のメタクリル酸製造用触媒の再生方法。
[5]工程(1)で得られる水性スラリーA及び工程(3)における水性スラリーCから選ばれる少なくとも一方が湿式粉砕処理されたものである前記[1]〜[4]のいずれかに記載のメタクリル酸製造用触媒の再生方法。
[6]工程(3)における水性スラリーCが100℃以上で熱処理されたものである前記[1]〜[5]のいずれかに記載のメタクリル酸製造用触媒の再生方法。
[7]工程(1)で得られる水性スラリーAは、硝酸根1モルに対し0.1〜3.0モルのアンモニウム根を含む前記[1]〜[6]のいずれかに記載のメタクリル酸製造用触媒の再生方法。
[8]工程(1)で得られる水性スラリーAの液相のpHが8以下である前記[1]〜[7]のいずれかに記載のメタクリル酸製造用触媒の再生方法。
[9]前記ヘテロポリ酸化合物が、さらに、バナジウムと、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素とを含む前記[1]〜[8]のいずれかに記載のメタクリル酸製造用触媒の再生方法。
[10]前記[1]〜[9]のいずれかに記載の再生方法によりメタクリル酸製造用触媒を再生し、この再生された触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸からなる群より選ばれる化合物を気相接触酸化反応に付すことを特徴とするメタクリル酸の製造方法。
That is, this invention consists of the following structures.
[1] A method for regenerating a catalyst for methacrylic acid production comprising a heteropolyacid compound containing phosphorus, molybdenum, and copper, comprising the following steps (1) to (3) and forming a regenerated catalyst A method for regenerating a catalyst for methacrylic acid production, wherein the atomic ratio of copper to molybdenum (Cu / Mo) in the acid compound is 0.05 / 12 to 0.25 / 12.
Step (1): The spent catalyst used for the production of methacrylic acid, nitrate radical, ammonium radical and water are mixed, and the atomic ratio of copper to molybdenum (Cu / Mo) is 0.10 / 12 to 0.50 / Step of obtaining aqueous slurry A adjusted to be 12 Step (2): A compound containing at least molybdenum among compounds containing constituent elements of the heteropolyacid compound and water are mixed, and an atomic ratio of copper to molybdenum ( Step of obtaining aqueous slurry B adjusted so that (Cu / Mo) is 0/12 to 0.25 / 12 Step (3): Obtained in step (2) with aqueous slurry A obtained in step (1) A step of drying and firing the aqueous slurry C obtained by mixing the aqueous slurry B. [2] The heteropolyacid compound further comprising potassium, rubidium, cesium and thallium And the atomic ratio (X / Mo) of element X to molybdenum in the heteropolyacid compound constituting the regenerated catalyst is at least 0.5 / 12 to 2/12. The atomic ratio (X / Mo) of element X to molybdenum contained in aqueous slurry A in 1) is 2/12 to 4/12, and the atom of element X to molybdenum contained in aqueous slurry B in step (2) The method for regenerating a catalyst for methacrylic acid production according to the above [1], wherein the ratio (X / Mo) is 0/12 to 0.5 / 12.
[3] The aqueous slurry C in the step (3) is obtained by mixing the aqueous slurry A obtained in the step (1), the aqueous slurry B obtained in the step (2), and a compound containing copper. The method for regenerating a catalyst for methacrylic acid production according to [1] or [2] above.
[4] In the range where the atomic ratio (Cu / Mo) of copper to molybdenum contained in the aqueous slurry C is 0.05 / 12 to 0.25 / 12, the aqueous slurry A, the aqueous slurry B, The method for regenerating a catalyst for methacrylic acid production according to [3], wherein the compound containing copper is mixed.
[5] At least one selected from the aqueous slurry A obtained in the step (1) and the aqueous slurry C in the step (3) is subjected to a wet pulverization treatment, and is described in any one of the above [1] to [4]. A method for regenerating a catalyst for producing methacrylic acid.
[6] The method for regenerating a catalyst for methacrylic acid production according to any one of [1] to [5], wherein the aqueous slurry C in the step (3) is heat-treated at 100 ° C. or higher.
[7] Methacrylic acid according to any one of [1] to [6], wherein the aqueous slurry A obtained in the step (1) contains 0.1 to 3.0 moles of ammonium roots per 1 mole of nitrate roots. A method for regenerating a catalyst for production.
[8] The method for regenerating a catalyst for methacrylic acid production according to any one of [1] to [7], wherein the pH of the liquid phase of the aqueous slurry A obtained in the step (1) is 8 or less.
[9] The [1] to [1], wherein the heteropolyacid compound further contains vanadium and at least one element selected from the group consisting of arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum, and cerium. [8] The method for regenerating a catalyst for producing methacrylic acid according to any one of [8].
[10] A catalyst for producing methacrylic acid is regenerated by the regeneration method according to any one of [1] to [9], and from the presence of the regenerated catalyst, methacrolein, isobutyraldehyde, isobutane and isobutyric acid. A method for producing methacrylic acid, which comprises subjecting a compound selected from the group consisting of gas phase catalytic oxidation reaction.
本発明によれば、メタクリル酸の製造に使用された使用済触媒の触媒活性及び触媒寿命を良好に回復させることができる。また、この方法により再生された再生触媒を用いれば、高い収率で長時間にわたりメタクリル酸を製造することができる。 ADVANTAGE OF THE INVENTION According to this invention, the catalyst activity and catalyst lifetime of the used catalyst used for manufacture of methacrylic acid can be recovered | restored favorably. Moreover, if the regenerated catalyst regenerated by this method is used, methacrylic acid can be produced with a high yield over a long period of time.
以下、本発明を詳細に説明する。本発明のメタクリル酸製造用触媒の再生方法は、メタクリル酸の製造に使用された使用済のメタクリル酸製造用触媒に再生処理を施し、特定の再生触媒を得る方法である。 Hereinafter, the present invention will be described in detail. The method for regenerating a catalyst for producing methacrylic acid according to the present invention is a method for obtaining a specific regenerated catalyst by subjecting a used catalyst for producing methacrylic acid used for the production of methacrylic acid to a regeneration treatment.
本発明の再生方法に適用できるメタクリル酸製造用触媒(以下「対象触媒」と称することもある)は、リンと、モリブデンと、銅とを含むヘテロポリ酸化合物からなるものであり、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。中でも、ヘテロポリ酸の酸性塩(部分中和塩)からなるものが好ましく、さらに好ましくはケギン型ヘテロポリ酸の酸性塩からなるものである。 A catalyst for producing methacrylic acid (hereinafter sometimes referred to as “target catalyst”) applicable to the regeneration method of the present invention is a heteropolyacid compound containing phosphorus, molybdenum, and copper, and is a free heteropolyacid. It may be composed of or a salt of a heteropolyacid. Especially, what consists of an acidic salt (partially neutralized salt) of heteropolyacid is preferable, More preferably, it consists of an acidic salt of Keggin type heteropolyacid.
前記ヘテロポリ酸化合物は、さらに、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素Xを含有することが好ましく、前記元素Xと、バナジウムと、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素(以下「元素Y」と称することもある)とを含有することがより好ましい。 The heteropolyacid compound preferably further contains at least one element X selected from the group consisting of potassium, rubidium, cesium and thallium. The element X, vanadium, copper, arsenic, antimony, boron, More preferably, it contains at least one element selected from the group consisting of silver, bismuth, iron, cobalt, lanthanum and cerium (hereinafter also referred to as “element Y”).
前記メタクリル酸製造用触媒(対象触媒)を構成する前記ヘテロポリ酸化合物の組成は、メタクリル酸の製造に使用される前の新品触媒において、下記式(i)の通りであることが好ましい。
PaMobCucVdXeYfOx (i)
(式(i)中、P、Mo、Cu及びVはそれぞれリン、モリブデン、銅、バナジウムを表し、Xはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素Xを示し、Yはヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素(元素Y)を示し、Oは酸素を表し、b=12としたとき、0<a≦3、0<c≦3、0≦d≦3、0≦e≦3、0≦f≦3であり、xは各元素の酸化状態により定まる値である。尚、X及びYのそれぞれが、2種以上の元素である場合には、2種以上の元素の合計比率が、b=12としたとき、0<e≦3、0<f≦3となればよい。)
The composition of the heteropolyacid compound constituting the catalyst for producing methacrylic acid (target catalyst) is preferably as shown in the following formula (i) in the new catalyst before being used for producing methacrylic acid.
P a Mo b Cu c V d X e Y f O x (i)
(In the formula (i), P, Mo, Cu and V represent phosphorus, molybdenum, copper and vanadium, respectively, X represents at least one element X selected from the group consisting of potassium, rubidium, cesium and thallium, Y represents at least one element (element Y) selected from the group consisting of arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium, O represents oxygen, and b = 12. 0 <a ≦ 3, 0 <c ≦ 3, 0 ≦ d ≦ 3, 0 ≦ e ≦ 3, 0 ≦ f ≦ 3, and x is a value determined by the oxidation state of each element. In the case where each of these is two or more elements, the total ratio of the two or more elements may be 0 <e ≦ 3 and 0 <f ≦ 3 when b = 12.
特に、前記新品触媒を構成する前記ヘテロポリ酸化合物の組成は、メタクリル酸の収率及び触媒寿命の観点から、モリブデンに対する銅の原子比(Cu/Mo)が0.01/12〜0.50/12であることが好ましい。また、メタクリル酸の収率及び触媒寿命の観点から、前記新品触媒を構成する前記ヘテロポリ酸化合物に元素Xが含まれることが好ましく、その場合、モリブデンに対する元素Xの原子比(X/Mo)は0.5/12〜2/12であることが好ましい。 In particular, the composition of the heteropolyacid compound constituting the new catalyst is such that the atomic ratio of copper to molybdenum (Cu / Mo) is 0.01 / 12 to 0.50 / from the viewpoint of methacrylic acid yield and catalyst life. 12 is preferable. In addition, from the viewpoint of the yield of methacrylic acid and the catalyst life, the heteropolyacid compound constituting the new catalyst preferably contains the element X. In this case, the atomic ratio (X / Mo) of the element X to molybdenum is It is preferably 0.5 / 12 to 2/12.
前記新品触媒は、例えば、ヘテロポリ酸化合物を構成する上述した各元素を含む化合物(例えば、各元素のオキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、重炭酸塩、水酸化物、ハロゲン化物、アンミン錯体等)を混合し、所望の形状に成形した後、焼成するなど、従来公知の方法で製造されたものであればよい。
前記各元素を含む化合物は、例えば、リンを含む化合物としては、リン酸、リン酸塩等が用いられ、モリブデンを含む化合物としては、モリブデン酸、モリブデン酸アンモニウム等のモリブデン酸塩、酸化モリブデン、塩化モリブデン等が用いられ、銅を含む化合物としては、酸化銅、硝酸銅、テトラアンミン銅二硝酸塩、炭酸銅、水酸化銅、塩化銅等が用いられ、バナジウムを含む化合物としては、バナジン酸、バナジン酸アンモニウム(メタバナジン酸アンモニウム)等のバナジン酸塩(メタバナジン酸塩)、酸化バナジウム、塩化バナジウム等が用いられ、元素Xを含む化合物としては、酸化カリウム、酸化ルビジウム、酸化セシウム等の酸化物;硝酸カリウム、硝酸ルビジウム、硝酸セシウム、硝酸タリウム等の硝酸塩;炭酸カリウム、炭酸ルビジウム、炭酸セシウムなどの炭酸塩;炭酸水素カリウム、炭酸水素セシウム等の重炭酸塩;水酸化カリウム、水酸化ルビジウム、水酸化セシウム等の水酸化物;塩化カリウム、塩化ルビジウム、フッ化セシウム、塩化セシウム、臭化セシウム、ヨウ化セシウム等のハロゲン化物等が用いられる。また、前記元素Yを含む化合物としては、オキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられる。
The new catalyst is, for example, a compound containing each of the above-described elements constituting a heteropolyacid compound (for example, an oxo acid, oxo acid salt, oxide, nitrate, carbonate, bicarbonate, hydroxide, halogen, or halogen of each element). Compound, an ammine complex, etc.) may be mixed, formed into a desired shape, and then fired.
Examples of the compound containing each element include phosphoric acid and phosphate as the compound containing phosphorus, and examples of the compound containing molybdenum include molybdate such as molybdic acid and ammonium molybdate, molybdenum oxide, Molybdenum chloride or the like is used, and as the compound containing copper, copper oxide, copper nitrate, tetraammine copper dinitrate, copper carbonate, copper hydroxide, copper chloride, etc. are used, and as the compound containing vanadium, vanadic acid, vanadine Vanadate (metavanadate) such as ammonium nitrate (ammonium metavanadate), vanadium oxide, vanadium chloride, etc. are used, and compounds containing element X include oxides such as potassium oxide, rubidium oxide, cesium oxide; potassium nitrate , Nitrates such as rubidium nitrate, cesium nitrate, thallium nitrate; Carbonates such as rubidium carbonate and cesium carbonate; bicarbonates such as potassium hydrogen carbonate and cesium hydrogen carbonate; hydroxides such as potassium hydroxide, rubidium hydroxide and cesium hydroxide; potassium chloride, rubidium chloride and cesium fluoride , Halides such as cesium chloride, cesium bromide, and cesium iodide. Examples of the compound containing the element Y include oxo acids, oxo acid salts, oxides, nitrates, carbonates, hydroxides, halides, and the like.
一般に、上述した好ましい触媒組成に設定された新品触媒は、メタクリル酸の製造に使用されると、熱負荷等により触媒活性が低下してしまうことがある。本発明の再生方法では、このように触媒活性の低下した使用済触媒を再生処理の対象とし、二種類の水性スラリーを混合し、乾燥、焼成することにより、モリブデンに対する銅の原子比(Cu/Mo)が0.05/12〜0.25/12になるようにするものである。再生触媒におけるCu/Mo比が0.05/12〜0.25/12であれば、良好な転化率及び選択率で長時間にわたりメタクリル酸を製造することができる。さらに、本発明の再生方法では、再生触媒におけるモリブデンに対する元素Xの原子比(X/Mo)が、0.5/12〜2/12となるようにするのが、触媒活性及び触媒寿命の観点から好ましい。 In general, when a new catalyst set to the preferred catalyst composition described above is used for the production of methacrylic acid, the catalytic activity may be reduced due to heat load or the like. In the regeneration method of the present invention, the spent catalyst having reduced catalytic activity is subjected to regeneration treatment, and two kinds of aqueous slurry are mixed, dried and fired, whereby the atomic ratio of copper to molybdenum (Cu / Mo) is set to 0.05 / 12 to 0.25 / 12. If the Cu / Mo ratio in the regenerated catalyst is 0.05 / 12 to 0.25 / 12, methacrylic acid can be produced over a long period of time with a good conversion and selectivity. Furthermore, in the regeneration method of the present invention, the atomic ratio of element X to molybdenum (X / Mo) in the regenerated catalyst is set to 0.5 / 12 to 2/12 in view of catalyst activity and catalyst life. To preferred.
本発明の再生方法では、上記工程(1)〜(3)を経て、再生触媒が得られる。
工程(1)においては、使用済触媒、硝酸根、アンモニウム根及び水を混合し、さらに、得られるスラリー中のモリブデンに対する銅の原子比(Cu/Mo)が0.10/12〜0.50/12、好ましくは0.20/12〜0.40/12となるように調整して、水性スラリーAを得る。さらに、得られる再生触媒における触媒活性を効果的に回復させる点で、水性スラリーAにおけるモリブデンに対する元素Xの原子比(X/Mo)が2/12〜4/12、好ましくは、2.5/12〜3.5/12となるように調整することが好ましい。ここで、硝酸根及びアンモニウム根を混合することにより、得られる再生触媒を用いたメタクリル酸の製造における転化率や選択率を向上させることができる。
In the regeneration method of the present invention, a regenerated catalyst is obtained through the above steps (1) to (3).
In step (1), the spent catalyst, nitrate radical, ammonium radical and water are mixed, and the atomic ratio of copper to molybdenum (Cu / Mo) in the resulting slurry is 0.10 / 12 to 0.50. / 12, preferably 0.20 / 12 to 0.40 / 12 to obtain an aqueous slurry A. Furthermore, the atomic ratio (X / Mo) of element X to molybdenum in the aqueous slurry A is 2/12 to 4/12, preferably 2.5 / It is preferable to adjust so that it may become 12-3.5 / 12. Here, the conversion rate and selectivity in the production of methacrylic acid using the obtained regenerated catalyst can be improved by mixing the nitrate group and the ammonium group.
硝酸根を混合するには、硝酸根供給源として、例えば、前記対象触媒を構成する元素を含む硝酸塩のほか、硝酸、硝酸アンモニウム等の硝酸塩等を用いればよく、他方、アンモニウム根を混合するには、アンモニウム根供給源として、例えば、前記対象触媒を構成する元素を含むアンモニウム塩のほか、アンモニア;硝酸アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、酢酸アンモニウム等のアンモニウム塩等を用いればよい。
好ましくは、硝酸根の供給源またはアンモニウム根の供給源として、前記対象触媒を構成する元素を含む硝酸塩やアンモニウム塩を用いるのがよく、さらに、硝酸根とアンモニウム根との比率を後述の範囲に調整するために、硝酸、アンモニア、硝酸アンモニウムを用いるのがよい。
In order to mix nitrate radicals, for example, nitrates including the elements constituting the target catalyst as well as nitrates such as nitric acid and ammonium nitrate may be used as the nitrate root supply source. As the ammonium root supply source, for example, ammonia; ammonium salts including elements constituting the target catalyst, ammonia; ammonium salts such as ammonium nitrate, ammonium carbonate, ammonium hydrogen carbonate, and ammonium acetate may be used.
Preferably, a nitrate or ammonium salt containing an element constituting the target catalyst is used as a nitrate root supply source or an ammonium root supply source, and the ratio of the nitrate root to the ammonium root is within the range described below. In order to adjust, it is preferable to use nitric acid, ammonia, or ammonium nitrate.
工程(1)で得られる水性スラリーAにおいて、前記硝酸根と前記アンモニウム根との比率は、得られる再生触媒における触媒活性を効果的に回復させる点で、硝酸根1モルに対してアンモニウム根が0.1〜3.0モルであることが好ましく、より好ましくは、硝酸根1モルに対してアンモニウム根が0.5〜2.5モルであるのがよい。 In the aqueous slurry A obtained in the step (1), the ratio of the nitrate root to the ammonium root is such that the ammonium root is 1 mole of the nitrate root in terms of effectively recovering the catalytic activity of the obtained regenerated catalyst. It is preferable that it is 0.1-3.0 mol, More preferably, it is good that an ammonium radical is 0.5-2.5 mol with respect to 1 mol of nitrate radicals.
水性スラリーAを調製する際には、その中に存在するモリブデンに対する銅の原子比(Cu/Mo)が前述した範囲(水性スラリーAにおけるCu/Mo比)になるように調整することが必要である。具体的には、原子比の調整は、銅を含む化合物(銅含有化合物)とモリブデンを含む化合物(モリブデン含有化合物)の少なくとも一方を加えることにより行えばよい。その混合量は、使用済触媒の触媒組成(構成成分の種類や量)に基づき、銅含有化合物及び/又はモリブデン含有化合物を加えた後の水性スラリーAにおけるモリブデンに対する銅の原子比(Cu/Mo)が前述した範囲になるように決定すればよい。メタクリル酸製造用触媒は、メタクリル酸の製造に長時間使用することによる熱負荷等によってモリブデンが飛散、消失してしまうために、新品触媒と使用済触媒とではその触媒組成が異なることがあるため、再生に供する前の使用済触媒の触媒組成(構成成分の種類や量)を、蛍光X線分析や誘導結合プラズマ(ICP)発光分析等により分析するのが好ましい。再生に供する前の使用済触媒におけるCu/Mo比が前述した水性スラリーAにおけるCu/Mo比の範囲内である場合には、銅含有化合物とモリブデン含有化合物の両方を加えなくてもよいし、水性スラリーAにおけるCu/Mo比が前述した範囲内に保たれる限り銅含有化合物及び/又はモリブデン含有化合物を加えてもよい。 When preparing the aqueous slurry A, it is necessary to adjust so that the atomic ratio (Cu / Mo) of copper to molybdenum existing in the slurry is in the above-described range (Cu / Mo ratio in the aqueous slurry A). is there. Specifically, the atomic ratio may be adjusted by adding at least one of a compound containing copper (copper-containing compound) and a compound containing molybdenum (molybdenum-containing compound). The mixing amount is based on the catalyst composition of the spent catalyst (type and amount of constituent components), and the atomic ratio of copper to molybdenum (Cu / Mo) in the aqueous slurry A after adding the copper-containing compound and / or the molybdenum-containing compound. ) May be determined to be within the above-described range. Since the catalyst for methacrylic acid production causes the molybdenum to scatter and disappear due to the heat load caused by the long-term use in the production of methacrylic acid, the catalyst composition may be different between the new catalyst and the used catalyst. It is preferable to analyze the catalyst composition (type and amount of constituent components) of the used catalyst before being subjected to regeneration by fluorescent X-ray analysis, inductively coupled plasma (ICP) emission analysis, or the like. When the Cu / Mo ratio in the used catalyst before being subjected to regeneration is within the range of the Cu / Mo ratio in the aqueous slurry A described above, it is not necessary to add both the copper-containing compound and the molybdenum-containing compound, A copper-containing compound and / or a molybdenum-containing compound may be added as long as the Cu / Mo ratio in the aqueous slurry A is maintained within the above-described range.
水性スラリーAを調製する際には、その中に存在するモリブデンに対する元素Xの原子比(X/Mo)が前述した範囲(水性スラリーAにおけるX/Mo比)になるように調整することが好ましい。具体的には、原子比の調整は、元素Xを含む化合物(元素X含有化合物)とモリブデン含有化合物の少なくとも一方を加えることにより行えばよい。その混合量は、再生に供する前の使用済触媒の前記分析により得られた触媒組成に基づき、元素X含有化合物及び/又はモリブデン含有化合物を加えた後の組成におけるモリブデンに対する元素Xの原子比(X/Mo)が前述した範囲になるように決定すればよい。再生に供する前の使用済触媒におけるX/Mo比が前述した水性スラリーAにおけるX/Mo比の範囲内である場合には、元素X含有化合物とモリブデン含有化合物の両方を加えなくてもよいし、水性スラリーAにおけるCu/Mo比及びX/Mo比が前述した範囲内に保たれる限り元素X含有化合物及び/又はモリブデン含有化合物を加えてもよい。 When preparing the aqueous slurry A, it is preferable to adjust so that the atomic ratio (X / Mo) of the element X to molybdenum present in the aqueous slurry A is in the above-described range (X / Mo ratio in the aqueous slurry A). . Specifically, the atomic ratio may be adjusted by adding at least one of a compound containing element X (element X-containing compound) and a molybdenum-containing compound. The mixing amount is based on the catalyst composition obtained by the analysis of the spent catalyst before being subjected to regeneration, and the atomic ratio of element X to molybdenum in the composition after adding the element X-containing compound and / or the molybdenum-containing compound ( What is necessary is just to determine so that X / Mo) may be in the range mentioned above. When the X / Mo ratio in the used catalyst before being subjected to regeneration is within the range of the X / Mo ratio in the aqueous slurry A described above, it is not necessary to add both the element X-containing compound and the molybdenum-containing compound. The element X-containing compound and / or the molybdenum-containing compound may be added as long as the Cu / Mo ratio and the X / Mo ratio in the aqueous slurry A are maintained within the ranges described above.
水性スラリーAの調製において混合するモリブデン含有化合物や銅含有化合物としては、上述した新品触媒の製造に用いることのできるモリブデンを含む化合物や銅を含む化合物の中から、1種もしくは2種以上を適宜選択すればよい。 As the molybdenum-containing compound and the copper-containing compound to be mixed in the preparation of the aqueous slurry A, one or two or more kinds are appropriately selected from the molybdenum-containing compound and the copper-containing compound that can be used for the production of the above-mentioned new catalyst. Just choose.
尚、水性スラリーAを調製する際には、使用済触媒の触媒組成に基づき、必要に応じて、モリブデンや銅以外の触媒構成元素を含む化合物を加えることもできる。モリブデンや銅以外の触媒構成元素を含む化合物としては、上述した新品触媒の製造に用いることのできる各元素を含む化合物の中から、1種もしくは2種以上を適宜選択すればよい。 In preparing the aqueous slurry A, a compound containing a catalyst constituent element other than molybdenum and copper can be added as needed based on the catalyst composition of the used catalyst. As the compound containing a catalyst constituent element other than molybdenum or copper, one or more kinds may be appropriately selected from the compounds containing each element that can be used for the production of the new catalyst described above.
水性スラリーAの調製において混合する水としては、通常イオン交換水が用いられる。水の混合量は、得られる水性スラリーA中のモリブデン量(使用済触媒に含まれるモリブデンと添加するモリブデン含有化合物に含まれるモリブデンとの合計)1重量部に対し、通常1〜20重量部である。 As water to be mixed in the preparation of the aqueous slurry A, ion exchange water is usually used. The amount of water mixed is usually 1 to 20 parts by weight with respect to 1 part by weight of molybdenum in the resulting aqueous slurry A (total of molybdenum contained in the used catalyst and molybdenum contained in the molybdenum-containing compound to be added). is there.
水性スラリーAを調製する際には、上述した各成分の混合順序は特に制限されるものではなく、適宜設定すればよい。 When preparing the aqueous slurry A, the mixing order of the components described above is not particularly limited, and may be set as appropriate.
水性スラリーAを調製する際には、使用済触媒をそのまま混合に供してもよいし、これにあらかじめ前処理として熱処理を施してもよい。 When preparing the aqueous slurry A, the spent catalyst may be used for mixing as it is, or may be subjected to heat treatment as a pretreatment in advance.
使用済触媒の前処理として行う前記熱処理の処理温度は、特に制限されないが、好ましくは350〜600℃である。熱処理の処理時間は、特に制限されないが、通常0.1〜24時間であり、好ましくは0.5〜10時間である。また、使用済触媒の前処理として行う前記熱処理は、酸素含有ガス等の酸化性ガスの雰囲気下で行ってもよいし、窒素等の非酸化性ガスの雰囲気下で行ってもよい。 The treatment temperature of the heat treatment performed as a pretreatment of the spent catalyst is not particularly limited, but is preferably 350 to 600 ° C. The treatment time for heat treatment is not particularly limited, but is usually 0.1 to 24 hours, preferably 0.5 to 10 hours. Further, the heat treatment performed as a pretreatment of the used catalyst may be performed in an atmosphere of an oxidizing gas such as an oxygen-containing gas, or may be performed in an atmosphere of a non-oxidizing gas such as nitrogen.
また、水性スラリーAの調製に供する使用済触媒が成形体である場合、そのまま用いてもよいが、必要に応じて、あらかじめ従来公知の方法で破砕処理を施すこともできる。尚、水性スラリーAの調製に供する使用済触媒に、破砕処理と前処理として行う前記熱処理との両方を施す場合、両処理の順序は特に制限されないが、通常は破砕処理を行った後に熱処理が施される。 Moreover, when the used catalyst used for preparation of the aqueous slurry A is a molded body, it may be used as it is. However, if necessary, it can be preliminarily subjected to crushing treatment by a conventionally known method. In addition, when performing both the crushing treatment and the heat treatment performed as a pretreatment to the spent catalyst used for the preparation of the aqueous slurry A, the order of both treatments is not particularly limited, but usually the heat treatment is performed after the crushing treatment. Applied.
工程(1)で得られる水性スラリーAにおいて、その液相のpHは8以下であることが好ましい。水性スラリーAの液相のpHが8を超えると、触媒活性が充分に回復しないおそれがある。 In the aqueous slurry A obtained in the step (1), the pH of the liquid phase is preferably 8 or less. If the pH of the liquid phase of the aqueous slurry A exceeds 8, the catalytic activity may not be sufficiently recovered.
工程(2)においては、対象触媒を構成するヘテロポリ酸化合物の構成元素を含む化合物のうち少なくともモリブデンを含む化合物と、水とを、得られるスラリー中のモリブデンに対する銅の原子比(Cu/Mo)が0/12〜0.25/12となるように調整して混合し、水性スラリーBを得る。 In the step (2), a compound containing at least molybdenum among the compounds containing the constituent elements of the heteropolyacid compound constituting the target catalyst and water, and the atomic ratio of copper to molybdenum in the resulting slurry (Cu / Mo) Is adjusted to be 0/12 to 0.25 / 12 and mixed to obtain an aqueous slurry B.
水性スラリーBの調製においては、ヘテロポリ酸化合物の原料化合物として、少なくともモリブデン含有化合物を用い、このモリブデン含有化合物に対して、モリブデンに対する銅の原子比(Cu/Mo)が前述した範囲(水性スラリーBにおけるCu/Mo比)になるように銅含有化合物を用いる。よって、モリブデンに対する銅の原子比(Cu/Mo)を0/12に設定する場合には、銅含有化合物は混合する必要はない。 In the preparation of the aqueous slurry B, at least a molybdenum-containing compound is used as a raw material compound of the heteropolyacid compound, and the atomic ratio of copper to molybdenum (Cu / Mo) with respect to the molybdenum-containing compound is within the above-described range (aqueous slurry B). The copper-containing compound is used so that the Cu / Mo ratio) is obtained. Therefore, when the atomic ratio of copper to molybdenum (Cu / Mo) is set to 0/12, the copper-containing compound need not be mixed.
水性スラリーBの調製において混合するモリブデン含有化合物や銅含有化合物としては、上述した対象触媒の製造に用いることのできるモリブデンを含む化合物や銅を含む化合物の中から、1種もしくは2種以上を適宜選択すればよい。 As the molybdenum-containing compound and the copper-containing compound to be mixed in the preparation of the aqueous slurry B, one or two or more kinds are appropriately selected from the molybdenum-containing compound and the copper-containing compound that can be used for the production of the target catalyst described above. Just choose.
尚、水性スラリーBを調製する際には、必要に応じて、モリブデンや銅以外の触媒構成元素を含む化合物を加えることもできる。モリブデンや銅以外の触媒構成元素を含む化合物としては、上述した対象触媒の製造に用いることのできる各元素を含む化合物の中から、1種もしくは2種以上を適宜選択すればよく、中でも、元素Xを含む化合物を加えるのが好ましい。水性スラリーBにおけるモリブデンに対する元素Xの原子比(X/Mo)は、好ましくは0/12〜0.5/12、より好ましくは0/12〜0.3/12となるように調整することが好ましい。 In addition, when preparing aqueous slurry B, the compound containing catalyst structural elements other than molybdenum and copper can also be added as needed. As the compound containing a catalyst constituent element other than molybdenum or copper, one or more kinds may be appropriately selected from the compounds containing each element that can be used for the production of the target catalyst described above. It is preferred to add a compound containing X. The atomic ratio (X / Mo) of element X to molybdenum in aqueous slurry B is preferably adjusted to be 0/12 to 0.5 / 12, more preferably 0/12 to 0.3 / 12. preferable.
水性スラリーBの調製において混合する水としては、通常イオン交換水が用いられる。水の混合量は、得られる水性スラリーB中のモリブデン量1重量部に対し、通常1〜20重量部である。 As water to be mixed in the preparation of the aqueous slurry B, ion-exchanged water is usually used. The mixing amount of water is usually 1 to 20 parts by weight with respect to 1 part by weight of molybdenum in the obtained aqueous slurry B.
水性スラリーBを調製する際には、上述した各成分の混合順序は特に制限されるものではなく、適宜設定すればよい。 When preparing the aqueous slurry B, the mixing order of the components described above is not particularly limited, and may be set as appropriate.
工程(3)においては、工程(1)で得られた水性スラリーAと工程(2)で得られた水性スラリーBとを混合し、水性スラリーCを得る。水性スラリーAと水性スラリーBとの混合割合は、特に制限されないが、水性スラリーC中に含まれるモリブデン及び銅の量を考慮して、最終的に得られる再生触媒を構成するヘテロポリ酸化合物におけるモリブデンに対する銅の原子比(Cu/Mo)が0.05/12〜0.25/12となるように調整すればよい。具体的には、例えば、水性スラリーC中に含まれるモリブデンに対する銅の原子比(Cu/Mo)が0.05/12〜0.25/12となるように、水性スラリーAと水性スラリーBとの混合割合を調整し、得られた水性スラリーCを乾燥、焼成することにより、最終的に得られる再生触媒を構成するヘテロポリ酸化合物におけるCu/Mo比を0.05/12〜0.25/12とすることができる。 In step (3), aqueous slurry A obtained in step (1) and aqueous slurry B obtained in step (2) are mixed to obtain aqueous slurry C. The mixing ratio of the aqueous slurry A and the aqueous slurry B is not particularly limited, but considering the amount of molybdenum and copper contained in the aqueous slurry C, molybdenum in the heteropolyacid compound constituting the finally obtained regenerated catalyst. The atomic ratio of copper to Cu (Cu / Mo) may be adjusted to be 0.05 / 12 to 0.25 / 12. Specifically, for example, the aqueous slurry A and the aqueous slurry B so that the atomic ratio of copper to molybdenum (Cu / Mo) in the aqueous slurry C is 0.05 / 12 to 0.25 / 12. The Cu / Mo ratio in the heteropolyacid compound constituting the regenerated catalyst finally obtained is adjusted to 0.05 / 12 to 0.25 / by adjusting the mixing ratio of the above and drying and calcining the obtained aqueous slurry C. Twelve.
水性スラリーCを調製する際の混合順序、温度、攪拌条件などは、特に制限されるものではなく、適宜設定すればよい。 The mixing order, temperature, stirring conditions and the like when preparing the aqueous slurry C are not particularly limited, and may be set as appropriate.
水性スラリーCの調製において、水性スラリーAと水性スラリーBとを混合する際や、後述する熱処理の際または該熱処理後には、必要に応じて、対象触媒の触媒構成元素を含む化合物や水を混合することができ、中でも、銅を含む化合物を混合するのが好ましい。水性スラリーC調製時に銅を含む化合物を混合することにより、触媒活性を効果的に回復させることができる。その場合、触媒構成元素を含む化合物を水に懸濁させた状態で加えることが好ましい。それらの混合割合は、最終的に得られる再生触媒を構成するヘテロポリ酸化合物において、その組成が前記式(i)を満たし、かつモリブデンに対する銅の原子比(Cu/Mo)が0.15/12〜0.25/12となるよう適宜設定すればよい。具体的には、例えば、水性スラリーAと、水性スラリーBと、銅を含む化合物とを混合して水性スラリーCを得る場合、水性スラリーCに含まれるモリブデンに対する銅の原子比(Cu/Mo)が0.05/12〜0.25/12となる範囲で、水性スラリーAと、水性スラリーBと、銅を含む化合物との混合割合を調整し、得られた水性スラリーCを乾燥、焼成することにより、最終的に得られる再生触媒を構成するヘテロポリ酸化合物におけるCu/Mo比を0.05/12〜0.25/12とすることができる。 In the preparation of the aqueous slurry C, when the aqueous slurry A and the aqueous slurry B are mixed, during the heat treatment described later or after the heat treatment, a compound containing the catalyst constituent element of the target catalyst or water is mixed as necessary. Among them, it is preferable to mix a compound containing copper. By mixing a compound containing copper when preparing the aqueous slurry C, the catalytic activity can be effectively recovered. In that case, it is preferable to add the compound containing a catalyst constituent element in a state suspended in water. The mixing ratio is such that the composition of the heteropolyacid compound constituting the finally obtained regenerated catalyst satisfies the formula (i) and the atomic ratio of copper to molybdenum (Cu / Mo) is 0.15 / 12. What is necessary is just to set suitably so that it may be set to -0.25 / 12. Specifically, for example, when the aqueous slurry A, the aqueous slurry B, and the compound containing copper are mixed to obtain the aqueous slurry C, the atomic ratio of copper to molybdenum contained in the aqueous slurry C (Cu / Mo) Is within a range of 0.05 / 12 to 0.25 / 12, the mixing ratio of the aqueous slurry A, the aqueous slurry B, and the compound containing copper is adjusted, and the resulting aqueous slurry C is dried and fired. Thereby, the Cu / Mo ratio in the heteropolyacid compound constituting the finally obtained regenerated catalyst can be set to 0.05 / 12 to 0.25 / 12.
水性スラリーCを調製する際には、さらに、水性スラリーC中に含まれるモリブデン及び元素Xの量を考慮して、最終的に得られる再生触媒を構成するヘテロポリ酸化合物におけるモリブデンに対する元素Xの原子比(X/Mo)が0.5/12〜2/12となるように調整することが好ましい。具体的には、例えば、水性スラリーCに含まれるモリブデンに対する銅の原子比(Cu/Mo)が0.05/12〜0.25/12となる範囲で、水性スラリーC中に含まれるモリブデンに対する元素Xの原子比(X/Mo)が0.5/12〜2/12となるように、水性スラリーAと水性スラリーBとの混合割合を調整し、得られた水性スラリーCを乾燥、焼成することにより、最終的に得られる再生触媒を構成するヘテロポリ酸化合物におけるCu/Mo比を0.05/12〜0.25/12とし、かつX/Mo比を0.5/12〜2/12とすることができる。この際、Cu/Mo比及びX/Mo比がかかる範囲を満たすために、水性スラリーCに必要に応じて元素Xを含む化合物(元素X含有化合物)とモリブデン含有化合物の少なくとも一方を加えてもよい。 When preparing the aqueous slurry C, further considering the amounts of molybdenum and element X contained in the aqueous slurry C, the atom of the element X relative to molybdenum in the heteropolyacid compound constituting the finally obtained regenerated catalyst It is preferable to adjust the ratio (X / Mo) to be 0.5 / 12 to 2/12. Specifically, for example, the atomic ratio (Cu / Mo) of copper to molybdenum contained in the aqueous slurry C is within a range of 0.05 / 12 to 0.25 / 12, relative to molybdenum contained in the aqueous slurry C. The mixing ratio of the aqueous slurry A and the aqueous slurry B is adjusted so that the atomic ratio (X / Mo) of the element X is 0.5 / 12 to 2/12, and the obtained aqueous slurry C is dried and fired. By doing this, the Cu / Mo ratio in the heteropolyacid compound constituting the finally obtained regenerated catalyst is set to 0.05 / 12 to 0.25 / 12, and the X / Mo ratio is set to 0.5 / 12 to 2 /. Twelve. At this time, even if at least one of a compound containing element X (element X-containing compound) and a molybdenum-containing compound is added to the aqueous slurry C as necessary, the Cu / Mo ratio and the X / Mo ratio are satisfied. Good.
水性スラリーCの調製において水を新たに混合する場合、混合する水としては、通常イオン交換水が用いられる。 When water is newly mixed in the preparation of the aqueous slurry C, ion-exchanged water is usually used as the water to be mixed.
工程(3)において、水性スラリーCは、次いで乾燥に付される。乾燥する際の乾燥方法は、特に制限されるものではなく、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法など、この分野で通常用いられる方法を採用することができる。また、乾燥条件については、混合スラリー中の水分含量が充分に低減されるよう適宜設定すればよく、特に制限されないが、その温度は、通常300℃未満である。 In step (3), the aqueous slurry C is then subjected to drying. The drying method at the time of drying is not particularly limited, and for example, a method usually used in this field such as an evaporation to dryness method, a spray drying method, a drum drying method, and an airflow drying method can be employed. The drying conditions may be appropriately set so that the water content in the mixed slurry is sufficiently reduced, and is not particularly limited, but the temperature is usually less than 300 ° C.
水性スラリーCは、上述した乾燥に付す前に、100℃以上での熱処理が施されることが高収率で長期間にわたり安定してメタクリル酸が得られるという点で好ましい。熱処理は、例えば、密閉容器内で100℃以上の温度に加熱して熟成させることにより行われる。水性スラリーCにこのような熱処理が施されることにより、触媒活性を効果的に回復させることができる。熱処理における加熱温度の上限は、200℃以下であるのが好ましく、150℃以下であるのがより好ましい。熱処理における加熱時間は、充分な活性回復効果を得るうえでは、通常0.1時間以上、好ましくは2時間以上であり、生産性の観点からは、20時間以下であるのがよい。水性スラリーAと、水性スラリーBと、銅を含む化合物とを混合して水性スラリーCを調製する場合、該水性スラリーCを100℃以上での熱処理が施されたものとするには、例えば、(A)水性スラリーAと、水性スラリーBと、銅を含む化合物との混合スラリーに100℃以上での熱処理を施す方法、(B)水性スラリーAと、水性スラリーBとの混合スラリーに100℃以上での熱処理を施した後、銅を含む化合物を混合し、得られた混合スラリーに100℃以上での熱処理を施す方法等により熱処理を施せばよい。 The aqueous slurry C is preferably subjected to a heat treatment at 100 ° C. or higher before being subjected to the drying described above, in that methacrylic acid can be stably obtained over a long period of time with a high yield. The heat treatment is performed, for example, by heating to 100 ° C. or higher in an airtight container and aging. By performing such heat treatment on the aqueous slurry C, the catalytic activity can be effectively recovered. The upper limit of the heating temperature in the heat treatment is preferably 200 ° C. or less, and more preferably 150 ° C. or less. In order to obtain a sufficient activity recovery effect, the heating time in the heat treatment is usually 0.1 hours or longer, preferably 2 hours or longer, and 20 hours or shorter from the viewpoint of productivity. When preparing the aqueous slurry C by mixing the aqueous slurry A, the aqueous slurry B, and the compound containing copper, in order to make the aqueous slurry C heat treated at 100 ° C. or higher, for example, (A) A method of subjecting a mixed slurry of an aqueous slurry A, an aqueous slurry B, and a compound containing copper to a heat treatment at 100 ° C. or higher, (B) a mixed slurry of the aqueous slurry A and the aqueous slurry B at 100 ° C. After performing the heat treatment as described above, a compound containing copper is mixed, and the obtained mixed slurry may be heat treated by a method of performing a heat treatment at 100 ° C. or higher.
前記乾燥後に得られた乾燥物には、後述する前焼成もしくは焼成に付す前に、必要に応じて、所望の形状(リング状、ペレット状、球状、円柱状等)に成形する成形処理を施すことができる。成形処理は、例えば、打錠成形や押出成形など、この分野で通常用いられる方法により行えばよい。成形処理に際しては、必要に応じて、前記乾燥物に、水、成形助剤、気孔剤等を加えることができる。成形助剤としては、例えば、セラミックファイバーやグラスファイバーのほか、硝酸アンモニウム等が挙げられる。特に、硝酸アンモニウムは、成形助剤としての機能を有するほか、気孔剤としての機能も有する。 The dried product obtained after the drying is subjected to a molding process to form a desired shape (ring shape, pellet shape, spherical shape, cylindrical shape, etc.) as necessary before being subjected to pre-baking or baking described later. be able to. The molding process may be performed by a method usually used in this field, such as tableting molding or extrusion molding. In the molding treatment, water, a molding aid, a pore agent and the like can be added to the dried product as necessary. Examples of the molding aid include ammonium nitrate as well as ceramic fiber and glass fiber. In particular, ammonium nitrate has not only a function as a molding aid but also a function as a pore agent.
前記成形処理で得られた成形体(以下、乾燥物という場合もある)には、引き続き、調温調湿処理を施すことが好ましい。焼成もしくは前焼成に付す前に調温調湿処理を施すことにより、均一で、より安定な再生触媒を得ることができる。調温調湿処理は、具体的には、40〜100℃、相対湿度10〜60%の雰囲気下に、成形体を0.5〜10時間程度曝すことにより行われる。該処理は、例えば、調温、調湿された槽内にて行ってもよいし、調温、調湿されたガスを成形体に吹き付けることにより行ってもよい。また、該処理を行う際の雰囲気ガスとしては、通常、空気が用いられるが、窒素等の不活性ガスを用いてもよい。 It is preferable that the molded body obtained by the molding process (hereinafter sometimes referred to as a dried product) is subsequently subjected to a temperature control and humidity control process. A uniform and more stable regenerated catalyst can be obtained by subjecting the temperature and humidity control treatment to calcination or pre-calcination. Specifically, the temperature control and humidity control treatment is performed by exposing the molded body for about 0.5 to 10 hours in an atmosphere of 40 to 100 ° C. and a relative humidity of 10 to 60%. The treatment may be performed, for example, in a temperature-controlled and humidity-controlled tank or by spraying a temperature-controlled and humidity-controlled gas on the molded body. In addition, air is usually used as the atmospheric gas for the treatment, but an inert gas such as nitrogen may be used.
前記乾燥後に得られた乾燥物には、後述する焼成に先立ち、前焼成として、酸化性ガス又は非酸化性ガスの雰囲気下に、180〜300℃程度の温度で保持する処理を施すことが好ましい。 Prior to firing described below, the dried product obtained after drying is preferably subjected to a treatment of holding at a temperature of about 180 to 300 ° C. in an atmosphere of oxidizing gas or non-oxidizing gas as pre-baking. .
工程(3)においては、前記乾燥後に得られた乾燥物は、次いで焼成に付される。焼成は、この分野で通常用いられる方法により行うことができ、特に制限はされない。例えば、酸素等の酸化性ガスの雰囲気下で行ってもよいし、窒素等の非酸化性ガスの雰囲気下で行ってもよく、焼成温度は通常300℃以上で行われる。中でも、触媒寿命を良好に回復させる上では、酸化性ガス又は非酸化性ガスの雰囲気下で多段焼成するのが好ましく、酸化性ガスの雰囲気下で第一段焼成を行い、次いで非酸化性ガスの雰囲気下で第二段焼成を行う、二段階の焼成方法を採用するのがより好ましい。 In the step (3), the dried product obtained after the drying is then subjected to calcination. Firing can be performed by a method usually used in this field, and is not particularly limited. For example, it may be performed in an atmosphere of an oxidizing gas such as oxygen, or may be performed in an atmosphere of a non-oxidizing gas such as nitrogen, and the firing temperature is usually 300 ° C. or higher. Among them, in order to recover the catalyst life satisfactorily, it is preferable to perform multi-stage firing in an atmosphere of an oxidizing gas or a non-oxidizing gas. It is more preferable to employ a two-stage firing method in which the second-stage firing is performed in an atmosphere of
焼成に用いられる酸化性ガスは、酸化性物質を含むガスであり、例えば、酸素含有ガスが挙げられる。酸素含有ガスを用いる場合、その酸素濃度は、通常1〜30容量%程度とすればよく、酸素源としては、通常、空気や純酸素が用いられ、必要に応じて不活性ガスで希釈される。また、前記酸化性ガスには、必要に応じて水分を存在させてもよいが、その濃度は通常10容量%以下である。酸化性ガスとしては、中でも、空気が好ましい。酸化性ガス雰囲気下で行う焼成は、通常、このような酸化性ガスの気流下で行われる。また、酸化性ガス雰囲気下で行う焼成の温度は、通常360〜410℃であり、好ましくは380〜400℃である。 The oxidizing gas used for firing is a gas containing an oxidizing substance, and examples thereof include an oxygen-containing gas. In the case of using an oxygen-containing gas, the oxygen concentration is usually about 1 to 30% by volume. As the oxygen source, air or pure oxygen is usually used, and diluted with an inert gas as necessary. . The oxidizing gas may contain moisture as required, but the concentration is usually 10% by volume or less. Of these, air is preferable as the oxidizing gas. Firing performed in an oxidizing gas atmosphere is usually performed under such an oxidizing gas stream. Moreover, the temperature of baking performed in oxidizing gas atmosphere is 360-410 degreeC normally, Preferably it is 380-400 degreeC.
焼成に用いられる非酸化性ガスは、実質的に酸素の如き酸化性物質を含有しないガスであり、例えば、窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガスが挙げられる。また、前記非酸化性ガスには、必要に応じて水分を存在させてもよいが、その濃度は通常10容量%以下である。非酸化性ガスとしては、中でも、窒素が好ましい。非酸化性ガス雰囲気下で行う焼成は、通常、このような非酸化性ガスの気流下で行われる。また、非酸化性ガス雰囲気下で行う焼成の温度は、通常420〜500℃であり、好ましくは420〜450℃である。 The non-oxidizing gas used for the firing is a gas that does not substantially contain an oxidizing substance such as oxygen, and examples thereof include inert gases such as nitrogen, carbon dioxide, helium, and argon. The non-oxidizing gas may contain moisture as required, but the concentration is usually 10% by volume or less. Of these, nitrogen is preferable as the non-oxidizing gas. Firing performed in a non-oxidizing gas atmosphere is usually performed under such a non-oxidizing gas stream. Moreover, the temperature of baking performed in non-oxidizing gas atmosphere is 420-500 degreeC normally, Preferably it is 420-450 degreeC.
本発明のメタクリル酸製造用触媒の再生方法においては、上記した水性スラリーA及び水性スラリーCから選ばれる少なくとも一方を湿式粉砕処理が施されたものとすることが、触媒活性及び触媒寿命を効果的に回復させる点で好ましい。 In the method for regenerating a catalyst for methacrylic acid production according to the present invention, it is effective that at least one selected from the aqueous slurry A and the aqueous slurry C is subjected to a wet pulverization treatment, so that the catalyst activity and the catalyst life are effective. It is preferable in terms of recovery.
湿式粉砕処理は、スラリー中の固形分を粉砕する処理であり、通常、湿式粉砕機を用いて行われる。湿式粉砕機としては、例えば、ボールミル、振動ボールミル、ロッドミル、媒体撹拌型ミル、振動ロッドミル、ジェットミル等が挙げられる。前記湿式粉砕処理において、粒径は、5.0μm以下まで粉砕されることが好ましく、2.0μm以下まで粉砕されることがさらに好ましい。尚、本発明における粒径は、水性スラリー中の固形分の平均粒径であり、例えば、レーザー回折/散乱式粒度分布測定装置を用いて体積基準のメジアン径を測定することにより求めることができる。 The wet pulverization process is a process of pulverizing the solid content in the slurry, and is usually performed using a wet pulverizer. Examples of the wet pulverizer include a ball mill, a vibrating ball mill, a rod mill, a medium stirring mill, a vibrating rod mill, and a jet mill. In the wet pulverization treatment, the particle size is preferably pulverized to 5.0 μm or less, more preferably 2.0 μm or less. The particle size in the present invention is an average particle size of solid content in the aqueous slurry, and can be determined by measuring a volume-based median diameter using, for example, a laser diffraction / scattering type particle size distribution measuring device. .
湿式粉砕処理前の水性スラリー中の固形分濃度は、高い粉砕効率が得られるという点で、20〜60重量%が好ましい。かかる範囲を満たすために、該スラリーの濃縮や希釈を行ってもよく、その際の濃縮条件や希釈条件については、特に制限はない。 The solid content concentration in the aqueous slurry before the wet pulverization treatment is preferably 20 to 60% by weight in that high pulverization efficiency is obtained. In order to satisfy such a range, the slurry may be concentrated or diluted, and there are no particular restrictions on the concentration and dilution conditions at that time.
湿式粉砕処理は、水性スラリーA及び水性スラリーCから選ばれる少なくとも一方の調製時に施され、中でも触媒寿命の回復度合いの点から、水性スラリーAのみ、または水性スラリーA及び水性スラリーCを湿式粉砕処理されたものとするのが好ましい。水性スラリーAのみが湿式粉砕処理されたものとするには、例えば、工程(1)〜(3)において、湿式粉砕処理が施された水性スラリーAを水性スラリーBとの混合に供して得られた水性スラリーCを乾燥、焼成すればよい。水性スラリーA及び水性スラリーCが湿式粉砕処理されたものとするには、例えば、工程(1)〜(3)において、湿式粉砕処理が施された水性スラリーAを水性スラリーBとの混合に供して、得られた混合スラリーに湿式粉砕処理を施して水性スラリーCを得、得られた水性スラリーを乾燥、焼成すればよい。 The wet pulverization treatment is performed at the time of preparation of at least one selected from the aqueous slurry A and the aqueous slurry C. Above all, the aqueous slurry A alone or the aqueous slurry A and the aqueous slurry C is wet pulverized from the viewpoint of the degree of recovery of the catalyst life. It is preferred that In order to make only the aqueous slurry A subjected to the wet pulverization treatment, for example, the aqueous slurry A subjected to the wet pulverization treatment in the steps (1) to (3) is used for mixing with the aqueous slurry B. The aqueous slurry C may be dried and fired. In order to make the aqueous slurry A and the aqueous slurry C subjected to the wet pulverization treatment, for example, the aqueous slurry A subjected to the wet pulverization treatment in the steps (1) to (3) is used for mixing with the aqueous slurry B. Then, the obtained mixed slurry is subjected to wet pulverization to obtain an aqueous slurry C, and the obtained aqueous slurry may be dried and fired.
尚、水性スラリーCを前記100℃以上での熱処理が施されたものとする場合は、該熱処理の前に湿式粉砕処理を行ってもよいし、該熱処理の後に湿式粉砕処理を行ってもよいが、該熱処理の後に湿式粉砕処理を行うのが好ましい。 When the aqueous slurry C is subjected to heat treatment at 100 ° C. or higher, wet pulverization may be performed before the heat treatment, or wet pulverization may be performed after the heat treatment. However, it is preferable to perform wet pulverization after the heat treatment.
かくして、高い触媒活性及び触媒寿命を有する再生触媒を得ることができる。この再生触媒は、対象触媒と同様、ヘテロポリ酸化合物からなるものであり、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。中でも、ヘテロポリ酸の酸性塩からなるものが好ましく、さらにケギン型ヘテロポリ酸の酸性塩からなるものがより好ましい。また、再生された触媒を構成するヘテロポリ酸化合物においては、モリブデンに対する銅の原子比(Cu/Mo)が0.05/12〜0.25/12であり、Cu/Mo比が0.15/12〜0.25/12であるのが好ましい。加えて、再生された触媒を構成するヘテロポリ酸化合物においては、前記式(i)を満たす組成を有するのがよく、モリブデンに対する元素Xの原子比(X/Mo)が0.5/12〜2/12であるのが好ましい。 Thus, a regenerated catalyst having high catalyst activity and catalyst life can be obtained. Similar to the target catalyst, this regenerated catalyst is made of a heteropolyacid compound, may be made of a free heteropolyacid, or may be made of a salt of a heteropolyacid. Especially, what consists of an acidic salt of heteropolyacid is preferable, and what consists of acidic salt of a Keggin type heteropolyacid is more preferable. In the heteropolyacid compound constituting the regenerated catalyst, the atomic ratio of copper to molybdenum (Cu / Mo) is 0.05 / 12 to 0.25 / 12, and the Cu / Mo ratio is 0.15 / It is preferably 12 to 0.25 / 12. In addition, the heteropolyacid compound constituting the regenerated catalyst preferably has a composition satisfying the formula (i), and the atomic ratio of element X to molybdenum (X / Mo) is 0.5 / 12 to 2 / 12 is preferable.
尚、本発明のメタクリル酸製造用触媒の再生方法は、メタクリル酸の製造に使用して得られた使用済触媒を再生対象とするものであるが、例えば、触媒の製造過程で生じるロス粉や、所望の性能を有していない触媒など、メタクリル酸の製造に未使用の触媒を再生対象として本発明の再生方法を実施することもでき、そのような場合にも、使用済触媒を再生した場合と同様に、良好な効果が得られる。 The method for regenerating a catalyst for producing methacrylic acid according to the present invention is intended for regeneration of a used catalyst obtained by producing methacrylic acid. The regeneration method of the present invention can also be carried out on a catalyst that is not used in the production of methacrylic acid, such as a catalyst that does not have the desired performance. In such a case, the spent catalyst is regenerated. As in the case, good effects can be obtained.
本発明のメタクリル酸の製造方法は、前記した本発明の再生方法により再生されたメタクリル酸製造用触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸からなる群より選ばれる化合物(以下「メタクリル酸原料」と称することもある)を気相接触酸化反応に付すものである。このように本発明の再生触媒を用いることにより、良好な転化率及び選択率を長時間維持しつつメタクリル酸を製造することができる。 The method for producing methacrylic acid of the present invention is a compound selected from the group consisting of methacrolein, isobutyraldehyde, isobutane and isobutyric acid in the presence of the catalyst for methacrylic acid production regenerated by the above-described regeneration method of the present invention (hereinafter referred to as “a methacrylic acid”). (Sometimes referred to as “methacrylic acid raw material”) is subjected to a gas phase catalytic oxidation reaction. Thus, by using the regenerated catalyst of the present invention, methacrylic acid can be produced while maintaining good conversion and selectivity for a long time.
メタクリル酸の製造は、通常、固定床多管式反応器にメタクリル酸製造用触媒を充填し、これに前記メタクリル酸原料と酸素とを含む原料ガスを供給することにより行われるが、これに限定されるものではなく、流動床や移動床などの反応形式を採用することもできる。酸素源としては、通常、空気や純酸素が用いられる。また、原料ガス中には、前記メタクリル酸原料及び酸素以外の成分として、窒素、二酸化炭素、一酸化炭素、水蒸気等が含まれていてもよい。 The production of methacrylic acid is usually carried out by filling a fixed-bed multitubular reactor with a catalyst for producing methacrylic acid and supplying a raw material gas containing the methacrylic acid raw material and oxygen to the reactor. However, it is also possible to adopt a reaction mode such as a fluidized bed or a moving bed. Usually, air or pure oxygen is used as the oxygen source. Further, the raw material gas may contain nitrogen, carbon dioxide, carbon monoxide, water vapor and the like as components other than the methacrylic acid raw material and oxygen.
前記原料ガスに含まれるメタクリル酸原料は、必ずしも高純度の精製品である必要はなく、例えば、メタクロレインとしては、イソブチレンやt−ブチルアルコールの気相接触酸化反応により得られたメタクロレインを含む反応生成ガスを高純度のメタクロレインに精製することなく用いることもできる。なお、前記原料ガスに含まれるメタクリル酸原料は、1種のみであってもよいし、2種以上であってもよい。 The methacrylic acid raw material contained in the raw material gas is not necessarily a high-purity purified product. For example, methacrolein includes methacrolein obtained by a gas phase catalytic oxidation reaction of isobutylene or t-butyl alcohol. The reaction product gas can also be used without being purified to high purity methacrolein. In addition, the methacrylic acid raw material contained in the said raw material gas may be only 1 type, and 2 or more types may be sufficient as it.
メタクリル酸の製造における反応条件は、原料ガスに含まれるメタクリル酸原料の種類等に応じて適宜設定すればよい。例えば、前記メタクリル酸原料としてメタクロレインを用いる場合、通常、原料ガス中のメタクロレイン濃度は1〜10容量%、水蒸気濃度は1〜30容量%、メタクロレインに対する酸素のモル比は1〜5、空間速度は500〜5000h-1(標準状態基準)、反応温度は250〜350℃、反応圧力は0.1〜0.3MPa、である条件下で反応が行われる。他方、前記メタクリル酸原料としてイソブタンを用いる場合、通常、原料ガス中のイソブタン濃度は1〜85容量%、水蒸気濃度は3〜30容量%、イソブタンに対する酸素のモル比は0.05〜4、空間速度は400〜5000h-1(標準状態基準)、反応温度は250〜400℃、反応圧力は0.1〜1MPa、である条件下で反応が行われる。また、前記メタクリル酸原料としてイソブチルアルデヒドやイソ酪酸を用いる場合には、通常、メタクロレインを原料として用いる場合とほぼ同様の反応条件が採用される。尚、空間速度は、反応器内を通過する1時間当りの原料ガス供給量(L/h)を、反応器内の触媒容量(L)で除することにより求めることができる。 What is necessary is just to set suitably the reaction conditions in manufacture of methacrylic acid according to the kind etc. of the methacrylic acid raw material contained in raw material gas. For example, when using methacrolein as the methacrylic acid raw material, the concentration of methacrolein in the raw material gas is usually 1 to 10% by volume, the water vapor concentration is 1 to 30% by volume, and the molar ratio of oxygen to methacrolein is 1 to 5, The reaction is carried out under conditions where the space velocity is 500 to 5000 h −1 (standard condition standard), the reaction temperature is 250 to 350 ° C., and the reaction pressure is 0.1 to 0.3 MPa. On the other hand, when isobutane is used as the methacrylic acid raw material, the isobutane concentration in the raw material gas is usually 1 to 85% by volume, the water vapor concentration is 3 to 30% by volume, the molar ratio of oxygen to isobutane is 0.05 to 4, and the space The reaction is carried out under conditions where the speed is 400 to 5000 h −1 (standard condition standard), the reaction temperature is 250 to 400 ° C., and the reaction pressure is 0.1 to 1 MPa. In addition, when isobutyraldehyde or isobutyric acid is used as the methacrylic acid raw material, generally the same reaction conditions as when methacrolein is used as the raw material are employed. The space velocity can be obtained by dividing the feed gas supply amount (L / h) per hour passing through the reactor by the catalyst capacity (L) in the reactor.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。
尚、以下で使用した空気は3.5容量%の水分を含むもの(大気相当)であり、以下で使用した窒素は実質的に水分を含まないものである。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not restrict | limited to these.
The air used below contains 3.5% by volume of water (equivalent to the atmosphere), and the nitrogen used below contains substantially no water.
以下の各例において得られた触媒の組成分析、触媒性能の評価は、下記のようにして行った。 The composition analysis of the catalyst obtained in each of the following examples and the evaluation of the catalyst performance were performed as follows.
<触媒組成(構成元素比)>
蛍光X線分析装置((株)リガク製「ZSX Primus II」)を用い、触媒を蛍光X線分析することにより求めた。
<Catalyst composition (ratio of constituent elements)>
Using a fluorescent X-ray analyzer (“ZSX Primus II” manufactured by Rigaku Corporation), the catalyst was determined by fluorescent X-ray analysis.
<粒径>
レーザー回折/散乱式粒度分布測定装置((株)堀場製作所製「LA−920」)を用いてスラリー中の固形分の平均粒径(体積基準のメジアン径)を測定した。なお、分散媒には水を使用し、相対屈折率は1.80(水に対する値)で測定を行った。
<Particle size>
The average particle diameter (volume-based median diameter) of the solid content in the slurry was measured using a laser diffraction / scattering particle size distribution analyzer (“LA-920” manufactured by Horiba, Ltd.). In addition, water was used as the dispersion medium, and the relative refractive index was measured at 1.80 (value with respect to water).
<触媒の活性試験>
触媒9gを内径16mmのガラス製マイクロリアクターに充填し、炉温(マイクロリアクターを加熱するための炉の温度)を355℃まで昇温した。次いで、メタクロレイン、空気、スチーム及び窒素を混合して調製した原料ガス(組成:メタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%、窒素67容量%)を空間速度670h−1でマイクロリアクター内に供給して1時間反応を行い、触媒を強制劣化させた。次いで、炉温を280℃にして、この劣化触媒に、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して反応を開始した。炉温280℃での反応開始から1時間経過時の出口ガス(反応後のガス)をサンプリングし、ガスクロマログラフィーにより分析して、下記式に基づき、メタクロレイン転化率(%)、メタクリル酸選択率(%)及び収率(%)を求めた。
メタクロレイン転化率(%)=〔反応したメタクロレインのモル数÷供給したメタクロレインのモル数〕×100
メタクリル酸選択率(%)=〔生成したメタクリル酸のモル数÷反応したメタクロレインのモル数〕×100
収率(%)=〔転化率(%)×選択率(%)〕÷100
<Catalyst activity test>
9 g of the catalyst was filled in a glass microreactor having an inner diameter of 16 mm, and the furnace temperature (temperature of the furnace for heating the microreactor) was raised to 355 ° C. Next, a raw material gas prepared by mixing methacrolein, air, steam and nitrogen (composition: methacrolein 4 vol%, molecular oxygen 12 vol%, water vapor 17 vol%, nitrogen 67 vol%) with a space velocity of 670 h −1. The mixture was fed into the microreactor and reacted for 1 hour to forcibly deteriorate the catalyst. Subsequently, the furnace temperature was set to 280 ° C., and a raw material gas having the same composition as that described above was supplied to the deteriorated catalyst at the same space velocity as described above to initiate the reaction. Sampling the outlet gas (reaction gas) after 1 hour from the start of the reaction at the furnace temperature of 280 ° C, analyzing by gas chromatography, and selecting methacrolein conversion rate (%) and methacrylic acid based on the following formula The rate (%) and yield (%) were determined.
Conversion rate of methacrolein (%) = [number of moles of reacted methacrolein ÷ number of moles of methacrolein supplied] × 100
Methacrylic acid selectivity (%) = [number of moles of methacrylic acid produced / number of moles of reacted methacrolein] × 100
Yield (%) = [conversion (%) × selectivity (%)] ÷ 100
参考例1
<新品触媒の調製>
40℃に加熱したイオン交換水224kgに、硝酸セシウム[CsNO3]38.2kg、75重量%オルトリン酸27.4kg、及び70重量%硝酸25.2kgを溶解させ、これをα液とした。一方、40℃に加熱したイオン交換水330kgに、モリブデン酸アンモニウム4水和物[(NH4)6Mo7O24・4H2O]297kgを溶解させた後、メタバナジン酸アンモニウム[NH4VO3]8.19kgを懸濁させ、これをβ液とした。
Reference example 1
<Preparation of new catalyst>
Cesium nitrate [CsNO 3 ] 38.2 kg, 75 wt% orthophosphoric acid 27.4 kg, and 70 wt% nitric acid 25.2 kg were dissolved in 224 kg of ion-exchanged water heated to 40 ° C. to prepare α liquid. On the other hand, after 297 kg of ammonium molybdate tetrahydrate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] was dissolved in 330 kg of ion-exchanged water heated to 40 ° C., ammonium metavanadate [NH 4 VO 3 ] 8.19 kg was suspended and this was made into beta solution.
α液とβ液の温度を40℃に保持しながら、攪拌下、β液にα液を滴下した後、密閉容器中で120℃にて5.8時間攪拌した。次いで、三酸化アンチモン[Sb2O3]10.2kg及び硝酸銅3水和物[Cu(NO3)2・3H2O]10.2kgを、イオン交換水23kg中に懸濁させた状態で添加し、その後、密閉容器中で120℃にて5時間攪拌した。こうして得られたスラリー中の固形分の粒径は1.9μmであった。得られたスラリーをスプレードライヤーにて噴霧乾燥し、得られた乾燥粉末100重量部に対して、セラミックファイバー4重量部、硝酸アンモニウム13重量部、及びイオン交換水9.7重量部を加えて混練した後、直径5mm、高さ6mmの円柱状に押出成形した。得られた成形体を、温度90℃、相対湿度30%にて3時間乾燥させた後、窒素気流中にて435℃で3時間、続いて空気気流中にて390℃で3時間、保持することにより焼成し、その後、成形体を取り出して、これを新品触媒とした。 While maintaining the temperature of the α liquid and the β liquid at 40 ° C., the α liquid was added dropwise to the β liquid with stirring, and then stirred at 120 ° C. for 5.8 hours in a sealed container. Next, 10.2 kg of antimony trioxide [Sb 2 O 3 ] and 10.2 kg of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] were suspended in 23 kg of ion-exchanged water. After that, the mixture was stirred in a sealed container at 120 ° C. for 5 hours. The particle size of the solid content in the slurry thus obtained was 1.9 μm. The obtained slurry was spray-dried with a spray dryer, and 4 parts by weight of ceramic fiber, 13 parts by weight of ammonium nitrate, and 9.7 parts by weight of ion-exchanged water were added to and kneaded with 100 parts by weight of the obtained dry powder. Thereafter, it was extruded into a cylindrical shape having a diameter of 5 mm and a height of 6 mm. The obtained molded body was dried at a temperature of 90 ° C. and a relative humidity of 30% for 3 hours, and then held in a nitrogen stream at 435 ° C. for 3 hours, and then kept in an air stream at 390 ° C. for 3 hours. After that, the molded body was taken out and used as a new catalyst.
得られた新品触媒は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムをそれぞれ1.5、12、0.50、0.5、0.30及び1.4の原子比で含むヘテロポリ酸化合物からなるものであった。この新品触媒の活性試験の結果を表1に示す。 The new catalyst obtained is from a heteropolyacid compound containing phosphorus, molybdenum, vanadium, antimony, copper and cesium in atomic ratios of 1.5, 12, 0.50, 0.5, 0.30 and 1.4, respectively. It was. The results of the activity test of this new catalyst are shown in Table 1.
参考例2
<使用済触媒の調製>
参考例1で得た新品触媒を所定時間、メタクロレインの接触気相酸化反応に付して、使用済触媒を得た。
得られた使用済触媒を構成するヘテロポリ酸化合物の酸素を除く金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.3、9.9、0.49、0.5、0.29及び1.4であった。この使用済触媒の活性試験の結果を表1に示す。
Reference example 2
<Preparation of spent catalyst>
The new catalyst obtained in Reference Example 1 was subjected to methacrolein catalytic gas phase oxidation reaction for a predetermined time to obtain a used catalyst.
The atomic ratio of the metal elements excluding oxygen in the heteropolyacid compound constituting the obtained spent catalyst was 1.3, 9.9, 0.49, 0.8 for phosphorus, molybdenum, vanadium, antimony, copper, and cesium, respectively. 5, 0.29 and 1.4. The results of the activity test of this spent catalyst are shown in Table 1.
実施例1
〔工程(1):水性スラリーA1の調製〕
参考例2で得られた使用済触媒200gをイオン交換水376gに加え攪拌した。次に、新品触媒に対する使用済触媒の不足成分を補うため、モリブデン源として三酸化モリブデン[MoO3]30.6gと、リン源として75重量%オルトリン酸2.4gと、バナジウム源としてメタバナジン酸アンモニウム0.2gとを添加し、さらに、硝酸アンモニウム[NH4NO3]32.6gをイオン交換水108gに溶解させた水溶液を加えた後、70℃に昇温して同温度で1時間保持した。次いで、25重量%アンモニア水47.1gを添加し、70℃にて1時間保持した後、密閉容器中120℃にて5時間攪拌した。攪拌後、40℃まで冷却し、硝酸セシウム35.7gをイオン交換水107gに溶解させた40℃の水溶液を加え、水性スラリーA1を得た。得られた水性スラリーA1中の固形分の粒径は14.3μm、硝酸根に対するアンモニウム根のモル比は1.9であり、水性スラリーA1の液相のpHは6.1であった。また、水性スラリーA1に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.29及び3.2であり、モリブデンに対する銅の原子比は0.29/12、モリブデンに対するセシウムの原子比は3.2/12であった。
Example 1
[Step (1): Preparation of aqueous slurry A1]
200 g of the used catalyst obtained in Reference Example 2 was added to 376 g of ion-exchanged water and stirred. Next, 30.6 g of molybdenum trioxide [MoO 3 ] as a molybdenum source, 2.4 g of 75 wt% orthophosphoric acid as a phosphorus source, and ammonium metavanadate as a vanadium source to compensate for the deficient components of the used catalyst relative to the new catalyst After adding 0.2 g, an aqueous solution in which 32.6 g of ammonium nitrate [NH 4 NO 3 ] was dissolved in 108 g of ion-exchanged water was added, and the temperature was raised to 70 ° C. and kept at the same temperature for 1 hour. Next, 47.1 g of 25 wt% aqueous ammonia was added and held at 70 ° C. for 1 hour, and then stirred at 120 ° C. for 5 hours in a sealed container. After stirring, the mixture was cooled to 40 ° C. and an aqueous solution at 40 ° C. in which 35.7 g of cesium nitrate was dissolved in 107 g of ion-exchanged water was added to obtain an aqueous slurry A1. The obtained aqueous slurry A1 had a solids particle size of 14.3 μm, a molar ratio of ammonium radicals to nitrate radicals of 1.9, and the pH of the liquid phase of the aqueous slurry A1 was 6.1. The atomic ratio of the metal elements contained in the aqueous slurry A1 is 1.5, 12, 0.50, 0.5, 0.29, and 3.2 for phosphorus, molybdenum, vanadium, antimony, copper, and cesium, respectively. Yes, the atomic ratio of copper to molybdenum was 0.29 / 12, and the atomic ratio of cesium to molybdenum was 3.2 / 12.
〔水性スラリーA2の調製〕
上記水性スラリーA1の全量にイオン交換水を加えて希釈し、950gのスラリー(固形分濃度:29重量%)を得た。得られたスラリーを直径15mmのアルミナ製ボール1870gとともにアルミナ製容器に入れ、回転式ボールミルを用いて53回転/分の速度で容器を連続的に回転させることで16時間粉砕を行い、水性スラリーA2を得た。水性スラリーA2中の固形分の粒径は1.3μm、硝酸根に対するアンモニウム根の比は1.9であり、水性スラリーA2の液相のpHは6.4であった。また、水性スラリーA2に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.29及び3.2であり、モリブデンに対する銅の原子比は0.29/12、モリブデンに対するセシウムの原子比は3.2/12であった。
[Preparation of aqueous slurry A2]
Ion exchange water was added to the total amount of the aqueous slurry A1 and diluted to obtain 950 g of a slurry (solid content concentration: 29% by weight). The obtained slurry was put into an alumina container together with 1870 g of an alumina ball having a diameter of 15 mm, and pulverized for 16 hours by continuously rotating the container at a speed of 53 rotations / minute using a rotary ball mill. Got. The particle size of the solid content in the aqueous slurry A2 was 1.3 μm, the ratio of ammonium root to nitrate root was 1.9, and the pH of the liquid phase of the aqueous slurry A2 was 6.4. The atomic ratio of the metal elements contained in the aqueous slurry A2 is 1.5, 12, 0.50, 0.5, 0.29, and 3.2 for phosphorus, molybdenum, vanadium, antimony, copper, and cesium, respectively. Yes, the atomic ratio of copper to molybdenum was 0.29 / 12, and the atomic ratio of cesium to molybdenum was 3.2 / 12.
〔工程(2):水性スラリーB1の調製〕
40℃に加熱したイオン交換水105gに、75重量%オルトリン酸12.9g、及び67.5重量%硝酸12.3gを溶解し、これをa液とした。一方、40℃に加熱したイオン交換水165gに、モリブデン酸アンモニウム4水和物139gを溶解した後、メタバナジン酸アンモニウム3.85gを懸濁させ、これをb液とした。攪拌下、a液にb液を滴下して、ヘテロポリ酸化合物を含む水性スラリーB1を得た。この水性スラリーB1に含まれる金属元素の原子比は、リン、モリブデン及びバナジウムがそれぞれ、1.5、12、0.50であり(アンチモン、銅、セシウムはいずれも0である)、モリブデンに対する銅の原子比、及びモリブデンに対するセシウムの原子比はいずれも0/12であった。
[Step (2): Preparation of aqueous slurry B1]
In 105 g of ion-exchanged water heated to 40 ° C., 12.9 g of 75 wt% orthophosphoric acid and 12.3 g of 67.5 wt% nitric acid were dissolved, and this was designated as solution a. On the other hand, after 139 g of ammonium molybdate tetrahydrate was dissolved in 165 g of ion-exchanged water heated to 40 ° C., 3.85 g of ammonium metavanadate was suspended to obtain a liquid b. Under stirring, the liquid b was added dropwise to the liquid a to obtain an aqueous slurry B1 containing a heteropolyacid compound. The atomic ratio of the metal elements contained in this aqueous slurry B1 is 1.5, 12, and 0.50 for phosphorus, molybdenum, and vanadium, respectively (antimony, copper, and cesium are all 0), and the copper to molybdenum And the atomic ratio of cesium to molybdenum were both 0/12.
〔工程(3):水性スラリーC1の調製〕
上記水性スラリーA2を475g分取し、上記水性スラリーB1の全量を混合後、密閉容器中で120℃にて5時間攪拌し、次いで、三酸化アンチモン4.80g及び硝酸銅3水和物1.59gを、イオン交換水3.67gに懸濁させた状態で添加し、その後、密閉容器中で120℃にて5時間攪拌し、水性スラリーC1を得た。水性スラリーC1中の固形分の粒径は1.4μmであった。また、水性スラリーC1に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.19及び1.4であり、モリブデンに対する銅の原子比は0.19/12、モリブデンに対するセシウムの原子比は1.4/12であった。
[Step (3): Preparation of aqueous slurry C1]
475 g of the aqueous slurry A2 was taken, mixed with the whole amount of the aqueous slurry B1, and then stirred at 120 ° C. for 5 hours in a sealed container. Then, 4.80 g of antimony trioxide and copper nitrate trihydrate 1. 59 g was added in a state suspended in 3.67 g of ion-exchanged water, and then stirred at 120 ° C. for 5 hours in an airtight container to obtain an aqueous slurry C1. The particle size of the solid content in the aqueous slurry C1 was 1.4 μm. The atomic ratio of the metal elements contained in the aqueous slurry C1 is 1.5, 12, 0.50, 0.5, 0.19 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. Yes, the atomic ratio of copper to molybdenum was 0.19 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12.
〔水性スラリーC1の乾燥及び焼成〕
得られた水性スラリーC1を135℃にて乾燥し、得られた乾燥物100重量部に対し、セラミックファイバー2重量部、硝酸アンモニウム13重量部、イオン交換水7重量部を加えて混練し、直径5mm、高さ6mmの円柱状に押出成形した。得られた成形体を、温度90℃、相対湿度30%で3時間乾燥させた後、空気気流中にて220℃で22時間、続いて250℃で1時間保持し、次いで空気気流中にて390℃で4時間、続いて窒素気流中にて435℃で4時間、保持することで焼成し、その後成形体を取り出して、再生触媒(R1)を得た。この再生触媒(R1)に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.19及び1.4であり、モリブデンに対する銅の原子比は0.19/12、モリブデンに対するセシウムの原子比は1.4/12であった。この再生触媒(R1)の活性試験の結果を表1に示す。
[Drying and calcination of aqueous slurry C1]
The obtained aqueous slurry C1 was dried at 135 ° C., 2 parts by weight of ceramic fiber, 13 parts by weight of ammonium nitrate, and 7 parts by weight of ion-exchanged water were added to 100 parts by weight of the obtained dried product and kneaded, and the diameter was 5 mm. Extruded into a columnar shape with a height of 6 mm. The obtained molded body was dried at a temperature of 90 ° C. and a relative humidity of 30% for 3 hours, then held in an air stream at 220 ° C. for 22 hours, then at 250 ° C. for 1 hour, then in an air stream It was calcined by holding at 390 ° C. for 4 hours and then at 435 ° C. for 4 hours in a nitrogen stream, and then the molded body was taken out to obtain a regenerated catalyst (R1). The atomic ratio of the metal elements contained in the regenerated catalyst (R1) is 1.5, 12, 0.50, 0.5, 0.19 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. The atomic ratio of copper to molybdenum was 0.19 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12. The results of the activity test of this regenerated catalyst (R1) are shown in Table 1.
実施例2
〔工程(1)、(2):水性スラリーA2及びB1の調製〕
実施例1と同様の操作を行い、水性スラリーA2及びB1を得た。
Example 2
[Steps (1) and (2): Preparation of aqueous slurries A2 and B1]
The same operations as in Example 1 were performed to obtain aqueous slurries A2 and B1.
〔工程(3):水性スラリーC2の調製〕
上記水性スラリーA2を475g分取し、上記水性スラリーB1の全量を混合後、密閉容器中で120℃にて5時間攪拌し、次いで、三酸化アンチモン4.80g及び硝酸銅3水和物3.18gを、イオン交換水7.34gに懸濁させた状態で添加し、その後、密閉容器中で120℃にて5時間攪拌し、水性スラリーC2を得た。水性スラリーC2中の固形分の粒径は1.4μmであった。また、水性スラリーC2に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.24及び1.4であり、モリブデンに対する銅の原子比は0.24/12、モリブデンに対するセシウムの原子比は1.4/12であった。
[Step (3): Preparation of aqueous slurry C2]
475 g of the aqueous slurry A2 was collected, mixed with the whole amount of the aqueous slurry B1, and then stirred in a sealed container at 120 ° C. for 5 hours, and then 4.80 g of antimony trioxide and copper nitrate trihydrate 3. 18 g was added while suspended in 7.34 g of ion-exchanged water, and then stirred at 120 ° C. for 5 hours in a sealed container to obtain an aqueous slurry C2. The particle size of the solid content in the aqueous slurry C2 was 1.4 μm. The atomic ratio of the metal elements contained in the aqueous slurry C2 is 1.5, 12, 0.50, 0.5, 0.24, and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper, and cesium, respectively. Yes, the atomic ratio of copper to molybdenum was 0.24 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12.
〔水性スラリーC2の乾燥及び焼成〕
得られた水性スラリーC2について、実施例1〔水性スラリーC1の乾燥及び焼成〕と同様の操作を行い、再生触媒(R2)を得た。この再生触媒(R2)に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.24及び1.4であり、モリブデンに対する銅の原子比は0.24/12、モリブデンに対するセシウムの原子比は1.4/12であった。この再生触媒(R2)の活性試験の結果を表1に示す。
[Drying and firing of aqueous slurry C2]
For the obtained aqueous slurry C2, the same operation as in Example 1 [Drying and calcination of aqueous slurry C1] was performed to obtain a regenerated catalyst (R2). The atomic ratio of the metal elements contained in the regenerated catalyst (R2) is 1.5, 12, 0.50, 0.5, 0.24 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. The atomic ratio of copper to molybdenum was 0.24 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12. The results of the activity test of this regenerated catalyst (R2) are shown in Table 1.
実施例3
〔工程(1)、(2):水性スラリーA2及びB1の調製〕
実施例1と同様の操作を行い、水性スラリーA2及びB1を得た。
Example 3
[Steps (1) and (2): Preparation of aqueous slurries A2 and B1]
The same operations as in Example 1 were performed to obtain aqueous slurries A2 and B1.
〔工程(3):水性スラリーC3の調製〕
上記水性スラリーA2を475g分取し、上記水性スラリーB1の全量を混合後、密閉容器中で120℃にて5時間攪拌し、次いで、三酸化アンチモン4.80g及び硝酸銅3水和物0.80gを、イオン交換水1.83gに懸濁させた状態で添加し、その後、密閉容器中で120℃にて5時間攪拌し、水性スラリーC3を得た。水性スラリーC3中の固形分の粒径は1.4μmであった。また、水性スラリーC3に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.16及び1.4であり、モリブデンに対する銅の原子比は0.16/12、モリブデンに対するセシウムの原子比は1.4/12であった。
[Step (3): Preparation of aqueous slurry C3]
475 g of the aqueous slurry A2 was collected, mixed with the entire amount of the aqueous slurry B1, and then stirred at 120 ° C. for 5 hours in a sealed container. Then, 4.80 g of antimony trioxide and copper nitrate trihydrate were mixed in an amount of 0.1%. 80 g was added in a state suspended in 1.83 g of ion exchange water, and then stirred at 120 ° C. for 5 hours in an airtight container to obtain an aqueous slurry C3. The particle size of the solid content in the aqueous slurry C3 was 1.4 μm. The atomic ratio of the metal elements contained in the aqueous slurry C3 is 1.5, 12, 0.50, 0.5, 0.16 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. Yes, the atomic ratio of copper to molybdenum was 0.16 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12.
〔水性スラリーC3の乾燥及び焼成〕
得られた水性スラリーC3について、実施例1〔水性スラリーC1の乾燥及び焼成〕と同様の操作を行い、再生触媒(R3)を得た。この再生触媒(R3)に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.16及び1.4であり、モリブデンに対する銅の原子比は0.16/12、モリブデンに対するセシウムの原子比は1.4/12であった。この再生触媒(R3)の活性試験の結果を表1に示す。
[Drying and calcination of aqueous slurry C3]
About the obtained aqueous | water-based slurry C3, operation similar to Example 1 [Drying and baking of the aqueous | water-based slurry C1] was performed, and the regenerated catalyst (R3) was obtained. The atomic ratio of the metal elements contained in this regenerated catalyst (R3) is 1.5, 12, 0.50, 0.5, 0.16 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. The atomic ratio of copper to molybdenum was 0.16 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12. The results of the activity test of this regenerated catalyst (R3) are shown in Table 1.
実施例4
〔工程(1)、(2):水性スラリーA1及びB1の調製〕
実施例1と同様の操作を行い、水性スラリーA1及びB1を得た。
Example 4
[Steps (1) and (2): Preparation of aqueous slurries A1 and B1]
The same operations as in Example 1 were performed to obtain aqueous slurries A1 and B1.
〔工程(3):水性スラリーC4の調製〕
上記水性スラリーA1の全量にイオン交換水を加えて希釈し、950gのスラリー(固形分濃度:29重量%)を得た。得られたスラリーを475g分取し、上記水性スラリーB1の全量を混合後、密閉容器中で120℃にて5時間攪拌し、次いで、三酸化アンチモン4.80g及び硝酸銅3水和物1.59gを、イオン交換水3.67gに懸濁させた状態で添加し、その後、密閉容器中で120℃にて5時間攪拌し、水性スラリーC4を得た。水性スラリーC4中の固形分の粒径は11.4μmであった。また、水性スラリーC4に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.19及び1.4であり、モリブデンに対する銅の原子比は0.19/12、モリブデンに対するセシウムの原子比は1.4/12であった。
[Step (3): Preparation of aqueous slurry C4]
Ion exchange water was added to the total amount of the aqueous slurry A1 and diluted to obtain 950 g of a slurry (solid content concentration: 29% by weight). 475 g of the resulting slurry was collected, mixed with the whole amount of the aqueous slurry B1, and then stirred at 120 ° C. for 5 hours in a sealed container. Then, 4.80 g of antimony trioxide and copper nitrate trihydrate 1. 59 g was added in a state suspended in 3.67 g of ion-exchanged water, and then stirred at 120 ° C. for 5 hours in an airtight container to obtain an aqueous slurry C4. The particle size of the solid content in the aqueous slurry C4 was 11.4 μm. The atomic ratio of the metal elements contained in the aqueous slurry C4 is 1.5, 12, 0.50, 0.5, 0.19 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. Yes, the atomic ratio of copper to molybdenum was 0.19 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12.
〔水性スラリーC4の乾燥及び焼成〕
得られた水性スラリーC4について、実施例1〔水性スラリーC1の乾燥及び焼成〕と同様の操作を行い、再生触媒(R4)を得た。この再生触媒(R4)に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.19及び1.4であり、モリブデンに対する銅の原子比は0.19/12、モリブデンに対するセシウムの原子比は1.4/12であった。この再生触媒(R4)の活性試験の結果を表1に示す。
[Drying and firing of aqueous slurry C4]
About the obtained aqueous | water-based slurry C4, operation similar to Example 1 [Drying and baking of the aqueous | water-based slurry C1] was performed, and the regenerated catalyst (R4) was obtained. The atomic ratio of the metal elements contained in the regenerated catalyst (R4) is 1.5, 12, 0.50, 0.5, 0.19 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. The atomic ratio of copper to molybdenum was 0.19 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12. The results of the activity test of this regenerated catalyst (R4) are shown in Table 1.
実施例5
〔工程(1)、(2):水性スラリーA2及びB1の調製〕
実施例1と同様の操作を行い、水性スラリーA2及びB1を得た。
Example 5
[Steps (1) and (2): Preparation of aqueous slurries A2 and B1]
The same operations as in Example 1 were performed to obtain aqueous slurries A2 and B1.
〔工程(3):水性スラリーC5の調製〕
上記水性スラリーA2を475g分取し、上記水性スラリーB1の全量を混合後、三酸化アンチモン4.80g及び硝酸銅3水和物1.59gを、イオン交換水3.67gに懸濁させた状態で添加し、その後、密閉容器中で120℃にて5時間攪拌し、水性スラリーC5を得た。水性スラリーC5中の固形分の粒径は1.3μmであった。また、水性スラリーC5に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.19及び1.4であり、モリブデンに対する銅の原子比は0.19/12、モリブデンに対するセシウムの原子比は1.4/12であった。
[Step (3): Preparation of aqueous slurry C5]
475 g of the aqueous slurry A2 was collected, and after mixing the entire amount of the aqueous slurry B1, 4.80 g of antimony trioxide and 1.59 g of copper nitrate trihydrate were suspended in 3.67 g of ion-exchanged water. And then stirred in a sealed container at 120 ° C. for 5 hours to obtain an aqueous slurry C5. The particle size of the solid content in the aqueous slurry C5 was 1.3 μm. The atomic ratio of the metal elements contained in the aqueous slurry C5 is 1.5, 12, 0.50, 0.5, 0.19 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. Yes, the atomic ratio of copper to molybdenum was 0.19 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12.
〔水性スラリーC5の乾燥及び焼成〕
得られた水性スラリーC5について、実施例1〔水性スラリーC1の乾燥及び焼成〕と同様の操作を行い、再生触媒(R5)を得た。この再生触媒(R5)に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.19及び1.4であり、モリブデンに対する銅の原子比は0.19/12、モリブデンに対するセシウムの原子比は1.4/12であった。この再生触媒(R5)の活性試験の結果を表1に示す。
[Drying and firing of aqueous slurry C5]
About the obtained aqueous | water-based slurry C5, operation similar to Example 1 [Drying and baking of aqueous slurry C1] was performed, and the regenerated catalyst (R5) was obtained. The atomic ratio of the metal elements contained in this regenerated catalyst (R5) is 1.5, 12, 0.50, 0.5, 0.19 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. The atomic ratio of copper to molybdenum was 0.19 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12. The results of the activity test of this regenerated catalyst (R5) are shown in Table 1.
比較例1
〔工程(1)、(2):水性スラリーA2及びB1の調製〕
実施例1と同様の操作を行い、水性スラリーA2及びB1を得た。
Comparative Example 1
[Steps (1) and (2): Preparation of aqueous slurries A2 and B1]
The same operations as in Example 1 were performed to obtain aqueous slurries A2 and B1.
〔工程(3):水性スラリーC6の調製〕
上記水性スラリーA2を475g分取し、上記水性スラリーB1の全量を混合後、密閉容器中で120℃にて5時間攪拌し、次いで、三酸化アンチモン4.80g及び硝酸銅3水和物4.77gを、イオン交換水11.0gに懸濁させた状態で添加し、その後、密閉容器中で120℃にて5時間攪拌し、水性スラリーC6を得た。水性スラリーC6中の固形分の粒径は1.5μmであった。また、水性スラリーC6に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.29及び1.4であり、モリブデンに対する銅の原子比は0.29/12、モリブデンに対するセシウムの原子比は1.4/12であった。
[Step (3): Preparation of aqueous slurry C6]
A portion of 475 g of the aqueous slurry A2 was taken and mixed with the total amount of the aqueous slurry B1, and then stirred at 120 ° C. for 5 hours in a sealed container, and then 4.80 g of antimony trioxide and copper nitrate trihydrate 4. 77 g was added in a state suspended in 11.0 g of ion-exchanged water, and then stirred at 120 ° C. for 5 hours in a sealed container to obtain an aqueous slurry C6. The particle size of the solid content in the aqueous slurry C6 was 1.5 μm. The atomic ratio of the metal elements contained in the aqueous slurry C6 is 1.5, 12, 0.50, 0.5, 0.29, and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper, and cesium, respectively. Yes, the atomic ratio of copper to molybdenum was 0.29 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12.
〔水性スラリーC6の乾燥及び焼成〕
得られた水性スラリーC6について、実施例1〔水性スラリーC1の乾燥及び焼成〕と同様の操作を行い、再生触媒(R6)を得た。この再生触媒(R6)に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムがそれぞれ1.5、12、0.50、0.5、0.29及び1.4であり、モリブデンに対する銅の原子比は0.29/12、モリブデンに対するセシウムの原子比は1.4/12であった。この再生触媒(R6)の活性試験の結果を表1に示す。
[Drying and firing of aqueous slurry C6]
About the obtained aqueous slurry C6, operation similar to Example 1 [Drying and baking of aqueous slurry C1] was performed, and the regenerated catalyst (R6) was obtained. The atomic ratio of the metal element contained in this regenerated catalyst (R6) is 1.5, 12, 0.50, 0.5, 0.29 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. The atomic ratio of copper to molybdenum was 0.29 / 12, and the atomic ratio of cesium to molybdenum was 1.4 / 12. The results of the activity test of this regenerated catalyst (R6) are shown in Table 1.
表1に示すように、実施例1〜5で得られた触媒は、比較例1で得られた触媒と比較して、強制劣化後も高い収率でメタクリル酸が得られており、長期間にわたり良好な収率でメタクリル酸を製造し得ることがわかる。 As shown in Table 1, methacrylic acid was obtained in a high yield even after forced deterioration, compared with the catalyst obtained in Examples 1-5, compared with the catalyst obtained in Comparative Example 1. It can be seen that methacrylic acid can be produced in good yields over a wide range.
Claims (10)
工程(1):メタクリル酸の製造に使用された使用済触媒、硝酸根、アンモニウム根及び水を混合し、モリブデンに対する銅の原子比(Cu/Mo)が0.10/12〜0.50/12となるように調整した水性スラリーAを得る工程
工程(2):前記ヘテロポリ酸化合物の構成元素を含む化合物のうち少なくともモリブデンを含む化合物と、水とを混合し、モリブデンに対する銅の原子比(Cu/Mo)が0/12〜0.25/12となるように調整した水性スラリーBを得る工程
工程(3):工程(1)で得られた水性スラリーAと工程(2)で得られた水性スラリーBとを混合して得られた水性スラリーCを、乾燥、焼成する工程 A method for regenerating a catalyst for methacrylic acid production comprising a heteropolyacid compound comprising phosphorus, molybdenum, and copper, comprising the following steps (1) to (3), wherein the regenerated catalyst comprises: A method for regenerating a catalyst for producing methacrylic acid, wherein an atomic ratio of copper to molybdenum (Cu / Mo) is 0.05 / 12 to 0.25 / 12.
Step (1): The spent catalyst used for the production of methacrylic acid, nitrate radical, ammonium radical and water are mixed, and the atomic ratio of copper to molybdenum (Cu / Mo) is 0.10 / 12 to 0.50 / Step of obtaining aqueous slurry A adjusted to be 12 Step (2): A compound containing at least molybdenum among compounds containing constituent elements of the heteropolyacid compound and water are mixed, and an atomic ratio of copper to molybdenum ( Step of obtaining aqueous slurry B adjusted so that (Cu / Mo) is 0/12 to 0.25 / 12 Step (3): Obtained in step (2) with aqueous slurry A obtained in step (1) Drying and baking the aqueous slurry C obtained by mixing the aqueous slurry B
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011138216A JP2013000734A (en) | 2011-06-22 | 2011-06-22 | Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid |
SG2012045928A SG186571A1 (en) | 2011-06-22 | 2012-06-20 | Method for regenerating catalyst for production of methacrylic acid and process for preparing methacrylic acid |
DE102012012317A DE102012012317A1 (en) | 2011-06-22 | 2012-06-20 | Regenerating catalyst useful for preparing methacrylic acid, comprises obtaining first aqueous slurry and second aqueous slurry, and mixing aqueous slurries with each other to obtain third aqueous slurry, and drying and calcining it |
KR1020120066512A KR20130000348A (en) | 2011-06-22 | 2012-06-21 | Method for regenerating catalyst for production of methacrylic acid and process for preparing methacrylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011138216A JP2013000734A (en) | 2011-06-22 | 2011-06-22 | Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013000734A true JP2013000734A (en) | 2013-01-07 |
Family
ID=47321461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011138216A Withdrawn JP2013000734A (en) | 2011-06-22 | 2011-06-22 | Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2013000734A (en) |
KR (1) | KR20130000348A (en) |
DE (1) | DE102012012317A1 (en) |
SG (1) | SG186571A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014226614A (en) * | 2013-05-23 | 2014-12-08 | 住友化学株式会社 | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid |
CN113262806A (en) * | 2020-01-30 | 2021-08-17 | 住友化学株式会社 | Method for producing heteropoly acid compound, and method for producing methacrylic acid |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4715699B2 (en) | 2006-09-27 | 2011-07-06 | 住友化学株式会社 | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid |
JP4715707B2 (en) | 2006-10-03 | 2011-07-06 | 住友化学株式会社 | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid |
JP4715712B2 (en) | 2006-10-13 | 2011-07-06 | 住友化学株式会社 | A method for regenerating a catalyst for producing methacrylic acid and a method for producing methacrylic acid. |
JP4957627B2 (en) | 2008-04-09 | 2012-06-20 | 住友化学株式会社 | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid |
JP4957628B2 (en) | 2008-04-09 | 2012-06-20 | 住友化学株式会社 | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid |
JP5335490B2 (en) | 2009-03-09 | 2013-11-06 | 住友化学株式会社 | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid |
JP4768849B2 (en) | 2009-12-25 | 2011-09-07 | 株式会社東芝 | Electronic equipment and modules |
-
2011
- 2011-06-22 JP JP2011138216A patent/JP2013000734A/en not_active Withdrawn
-
2012
- 2012-06-20 SG SG2012045928A patent/SG186571A1/en unknown
- 2012-06-20 DE DE102012012317A patent/DE102012012317A1/en not_active Withdrawn
- 2012-06-21 KR KR1020120066512A patent/KR20130000348A/en not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014226614A (en) * | 2013-05-23 | 2014-12-08 | 住友化学株式会社 | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid |
CN113262806A (en) * | 2020-01-30 | 2021-08-17 | 住友化学株式会社 | Method for producing heteropoly acid compound, and method for producing methacrylic acid |
JP2021120333A (en) * | 2020-01-30 | 2021-08-19 | 住友化学株式会社 | Method of producing heteropolyacid compound, heteropolyacid compound, and method of producing methacrylic acid |
JP7356923B2 (en) | 2020-01-30 | 2023-10-05 | 住友化学株式会社 | Method for producing heteropolyacid compound, method for producing heteropolyacid compound and methacrylic acid |
CN113262806B (en) * | 2020-01-30 | 2024-03-26 | 住友化学株式会社 | Method for producing heteropolyacid compound, and method for producing methacrylic acid |
Also Published As
Publication number | Publication date |
---|---|
KR20130000348A (en) | 2013-01-02 |
DE102012012317A1 (en) | 2012-12-27 |
SG186571A1 (en) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4957628B2 (en) | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid | |
JP5919870B2 (en) | Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst | |
JP4957627B2 (en) | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid | |
JP5335490B2 (en) | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid | |
JP4900449B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP2014226614A (en) | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid | |
JP4848813B2 (en) | A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid. | |
JP2008093595A (en) | Method of regenerating catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid | |
EP2781260A1 (en) | Catalyst for production of methacrylic acid and method for producing methacrylic acid using same | |
JP4715699B2 (en) | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid | |
JP5793345B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP5214500B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP4715707B2 (en) | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid | |
JP4595769B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP2013000734A (en) | Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP4996735B2 (en) | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid | |
JP2012245433A (en) | Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid | |
JP5024183B2 (en) | Method for producing shaped catalyst comprising heteropolyacid compound | |
JP4207531B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP2012196608A (en) | Method for regenerating methacrylic acid producing catalyst and method for producing methacrylic acid | |
JP2013086008A (en) | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid | |
JP5214499B2 (en) | Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid | |
JP2013091016A (en) | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid | |
JP2012192329A (en) | Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP3797146B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140902 |