JP2010207803A - Compound oxide catalyst - Google Patents

Compound oxide catalyst Download PDF

Info

Publication number
JP2010207803A
JP2010207803A JP2010026495A JP2010026495A JP2010207803A JP 2010207803 A JP2010207803 A JP 2010207803A JP 2010026495 A JP2010026495 A JP 2010026495A JP 2010026495 A JP2010026495 A JP 2010026495A JP 2010207803 A JP2010207803 A JP 2010207803A
Authority
JP
Japan
Prior art keywords
catalyst
pore volume
less
pores
isobutylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010026495A
Other languages
Japanese (ja)
Inventor
Kohei Yamada
耕平 山田
Tomomasa Tatsumi
奉正 辰已
Masahide Kondo
正英 近藤
Hiroyuki Naito
啓幸 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010026495A priority Critical patent/JP2010207803A/en
Publication of JP2010207803A publication Critical patent/JP2010207803A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for producing methacrolein and methacrylic acid in high yield by using at least one raw material selected from isobutylene, TBA and MTBE. <P>SOLUTION: A compound oxide catalyst has specific composition and is used when at least one raw material selected from the isobutylene, TBA and MTBE is oxidized by a vapor phase catalytic oxidation method using molecular oxygen to produce methacrolein and methacrylic acid. The compound oxide catalyst has 0.1-1 ml/g total pore volume and such a pore size distribution that the pore volume of pores having the pore diameter of ≥0.1 μm and <1 μm is 45-68% of the total pore volume, the pore volume of pores having the pore diameter of ≥1 μm and <5 μm is 10-40% of the total pore volume, and the pore volume of pores having the pore diameter of ≥5 μm and <10 μm is ≤5% of the total pore volume. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、イソブチレン、第三級ブチルアルコール(以下、TBAともいう)及びメチル第三級ブチルエーテル(以下、MTBEともいう)から選ばれる少なくとも1種の原料を分子状酸素により気相接触酸化して、メタクロレイン及びメタクリル酸を合成する際に用いられる複合酸化物触媒及びその製造方法に関する。   In the present invention, at least one raw material selected from isobutylene, tertiary butyl alcohol (hereinafter also referred to as TBA) and methyl tertiary butyl ether (hereinafter also referred to as MTBE) is subjected to gas phase catalytic oxidation with molecular oxygen. The present invention relates to a composite oxide catalyst used when synthesizing methacrolein and methacrylic acid and a method for producing the same.

従来、イソブチレン、TBA又はMTBEを分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を製造する際に用いる触媒及びその製造方法については数多くの提案がなされている。   Conventionally, many proposals have been made on a catalyst used for producing methacrolein and methacrylic acid by gas phase catalytic oxidation of isobutylene, TBA or MTBE with molecular oxygen to produce methacrolein and methacrylic acid.

また、固体触媒において、触媒の微細構造が触媒性能に大きな影響を与えることは良く知られている。例えば細孔径1〜10μmの範囲の細孔により占められる細孔容積の割合が、細孔径0.1〜1μm未満の範囲の細孔により占められる細孔容積の割合よりも大きい触媒が気相酸化反応に有用であることが述べられている(特許文献1)。   In solid catalysts, it is well known that the fine structure of the catalyst greatly affects the catalyst performance. For example, a catalyst in which the proportion of the pore volume occupied by pores having a pore diameter in the range of 1 to 10 μm is larger than the proportion of the pore volume occupied by pores having a pore diameter in the range of less than 0.1 to 1 μm is vapor phase oxidation. It is stated that it is useful for the reaction (Patent Document 1).

また、機械的強度に関するものとして、打錠成形方法により孔径が0.01〜1μmの細孔の細孔容積が全細孔容積の95%以上である触媒の製造方法(特許文献2)、細孔容積の割合が細孔径0.03μm未満において5vol%以下、0.03〜0.1μmの範囲において25vol%以下、0.1〜1μmの範囲において70vol%以上及び1〜10μmの範囲において10vol%以下である触媒の製造方法(特許文献3)が提案されている。   Further, as for mechanical strength, a method for producing a catalyst in which the pore volume of pores having a pore diameter of 0.01 to 1 μm is 95% or more of the total pore volume by a tableting method (Patent Document 2), fine The ratio of the pore volume is 5 vol% or less when the pore diameter is less than 0.03 μm, 25 vol% or less in the range of 0.03 to 0.1 μm, 70 vol% or more in the range of 0.1 to 1 μm, and 10 vol% in the range of 1 to 10 μm. The following catalyst production method (Patent Document 3) has been proposed.

しかしながら、上記方法で得られた触媒成形体では触媒成形体の機械的強度は改良されるが、目的とするメタクロレイン及びメタクリル酸の収率は未だ十分ではなく、より高い収率を得ることができる触媒ならびにその製造方法の開発が望まれている。   However, although the mechanical strength of the catalyst molded body is improved in the catalyst molded body obtained by the above method, the yields of the target methacrolein and methacrylic acid are not yet sufficient, and a higher yield can be obtained. Development of a catalyst that can be produced and a method for producing the same are desired.

特許第2742413号公報Japanese Patent No. 2742413 特許第2789135号公報Japanese Patent No. 2789135 特表2007−505740号公報Special table 2007-505740 gazette

本発明は、イソブチレン、TBA及びMTBEから選ばれる少なくとも1種の原料を用いて、メタクロレイン及びメタクリル酸を高収率に製造できる触媒及び、その触媒の製造方法の提供を目的とする。   An object of the present invention is to provide a catalyst capable of producing methacrolein and methacrylic acid in high yield using at least one raw material selected from isobutylene, TBA and MTBE, and a method for producing the catalyst.

本発明に係る複合酸化物触媒は、イソブチレン、TBA及びMTBEから選ばれる少なくとも1種の原料を分子状酸素により気相接触酸化して、メタクロレイン及びメタクリル酸を製造する際に用いられる複合酸化物触媒において、
前記複合酸化物触媒が下記式(1)で表される組成を有し、
全細孔容積が0.1ml/g以上、1ml/g以下の範囲に有り、
細孔直径が0.1μm以上、1μm未満の細孔により占められる細孔容積が前記全細孔容積の45%以上、68%以下であり、
細孔直径が1μm以上、5μm未満の細孔により占められる細孔容積が前記全細孔容積の10%以上、40%以下であり、
細孔直径が5μm以上、10μm未満の細孔により占められる細孔容積が前記全細孔容積の5%以下である細孔径分布を有することを特徴とする。
The composite oxide catalyst according to the present invention is a composite oxide used when producing methacrolein and methacrylic acid by subjecting at least one raw material selected from isobutylene, TBA and MTBE to gas phase catalytic oxidation with molecular oxygen. In the catalyst,
The composite oxide catalyst has a composition represented by the following formula (1),
The total pore volume is in the range of 0.1 ml / g to 1 ml / g,
The pore volume occupied by pores having a pore diameter of 0.1 μm or more and less than 1 μm is 45% or more and 68% or less of the total pore volume,
The pore volume occupied by pores having a pore diameter of 1 μm or more and less than 5 μm is 10% or more and 40% or less of the total pore volume,
It is characterized by having a pore diameter distribution in which the pore volume occupied by pores having a pore diameter of 5 μm or more and less than 10 μm is 5% or less of the total pore volume.

MoaBibFecdefgSihi (1)
(式中、Mo、Bi、Fe、Si及びOはそれぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルから選ばれる少なくとも1種の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛から選ばれる少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンから選ばれる少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは各元素の原子比率を表し、a=12のときb=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2及びh=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。)。
Mo a Bi b Fe c M d X e Y f Z g Si h O i (1)
(In the formula, Mo, Bi, Fe, Si and O respectively represent molybdenum, bismuth, iron, silicon and oxygen. M represents at least one element selected from cobalt and nickel. X represents chromium, lead and manganese. Represents at least one element selected from calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc, and Y represents at least selected from phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium. Z represents at least one element selected from lithium, sodium, potassium, rubidium, cesium and thallium, a, b, c, d, e, f, g, h and i are each Represents the atomic ratio of the elements. When a = 12, b = 0.01-3, c = 0.01-5, d = 1-12, e = 0-8, f 0 to 5, g = a 0.001 and h = 0 to 20, i is an oxygen atom ratio required for satisfying the valency of each component.).

本発明に係るメタクロレイン及びメタクリル酸の製造方法は、イソブチレン、TBA及びMTBEから選ばれる少なくとも1種の原料を分子状酸素により気相接触酸化して、メタクロレイン及びメタクリル酸を製造する方法において、
前記気相接触酸化の触媒として、前記複合酸化物触媒を用いることを特徴とする。
The method for producing methacrolein and methacrylic acid according to the present invention is a method for producing methacrolein and methacrylic acid by subjecting at least one raw material selected from isobutylene, TBA and MTBE to gas phase catalytic oxidation with molecular oxygen.
The composite oxide catalyst is used as the catalyst for the gas phase catalytic oxidation.

本発明によれば、反応原料を分子状酸素で気相接触酸化してメタクロレイン及びメタクリル酸を高収率で製造できる触媒、その触媒の製造方法、並びにメタクロレイン及びメタクリル酸の製造方法を提供することができる。   According to the present invention, there is provided a catalyst capable of producing methacrolein and methacrylic acid in high yield by gas phase catalytic oxidation of the reaction raw material with molecular oxygen, a method for producing the catalyst, and a method for producing methacrolein and methacrylic acid. can do.

(複合酸化物触媒)
本発明に係る複合酸化物触媒は、イソブチレン、TBA及びMTBEから選ばれる少なくとも1種の原料を分子状酸素により気相接触酸化して、メタクロレイン及びメタクリル酸を製造する際に用いられる複合酸化物触媒において、
前記複合酸化物触媒が前記式(1)で表される組成を有し、
全細孔容積が0.1ml/g以上、1ml/g以下の範囲に有り、
細孔直径が0.1μm以上、1μm未満の細孔により占められる細孔容積が前記全細孔容積の45%以上、68%以下であり、
細孔直径が1μm以上、5μm未満の細孔により占められる細孔容積が前記全細孔容積の10%以上、40%以下であり、
細孔直径が5μm以上、10μm未満の細孔により占められる細孔容積が前記全細孔容積の5%以下である細孔径分布を有することを特徴とする。
(Composite oxide catalyst)
The composite oxide catalyst according to the present invention is a composite oxide used when producing methacrolein and methacrylic acid by subjecting at least one raw material selected from isobutylene, TBA and MTBE to gas phase catalytic oxidation with molecular oxygen. In the catalyst,
The composite oxide catalyst has a composition represented by the formula (1),
The total pore volume is in the range of 0.1 ml / g to 1 ml / g,
The pore volume occupied by pores having a pore diameter of 0.1 μm or more and less than 1 μm is 45% or more and 68% or less of the total pore volume,
The pore volume occupied by pores having a pore diameter of 1 μm or more and less than 5 μm is 10% or more and 40% or less of the total pore volume,
It is characterized by having a pore diameter distribution in which the pore volume occupied by pores having a pore diameter of 5 μm or more and less than 10 μm is 5% or less of the total pore volume.

この特定の細孔容積、細孔径分布を有することにより、メタクロレイン及びメタクリル酸の収率が向上するメカニズムについては明らかではない。しかし、このような細孔容積、細孔径分布を持つ触媒の細孔構造が、メタクロレイン及びメタクリル酸の気相接触酸化反応により有効であると推測している。   The mechanism by which the yield of methacrolein and methacrylic acid is improved by having this specific pore volume and pore size distribution is not clear. However, it is presumed that the pore structure of the catalyst having such pore volume and pore size distribution is effective by the gas phase catalytic oxidation reaction of methacrolein and methacrylic acid.

本発明に係る複合酸化物触媒の全細孔容積は、0.1ml/g以上、1ml/g以下であり、好ましくは、0.3ml/g以上、0.8ml/g以下である。   The total pore volume of the composite oxide catalyst according to the present invention is 0.1 ml / g or more and 1 ml / g or less, preferably 0.3 ml / g or more and 0.8 ml / g or less.

また、細孔径分布は、細孔直径が0.1μm以上、1μm未満の細孔により占められる細孔容積が前記全細孔容積の45%以上、68%以下である。好ましくは、47%以上、65%以下である。   In the pore size distribution, the pore volume occupied by pores having a pore diameter of 0.1 μm or more and less than 1 μm is 45% or more and 68% or less of the total pore volume. Preferably, it is 47% or more and 65% or less.

また、細孔直径が1μm以上、5μm未満の細孔により占められる細孔容積が前記全細孔容積の10%以上、40%以下である。好ましくは20%以上、40%以下である。   The pore volume occupied by pores having a pore diameter of 1 μm or more and less than 5 μm is 10% or more and 40% or less of the total pore volume. Preferably they are 20% or more and 40% or less.

また、細孔直径が5μm以上、10μm未満の細孔により占められる細孔容積が前記全細孔容積の5%以下である。好ましくは2%以下である。   The pore volume occupied by pores having a pore diameter of 5 μm or more and less than 10 μm is 5% or less of the total pore volume. Preferably it is 2% or less.

これらの条件を満たす場合、活性、選択性共に高い触媒が得られる。通常、孔径が大きい細孔は細孔容積への寄与は大きい。しかし、活性及び有効反応生成物への選択性に寄与するためには大きい孔径の細孔だけでは不十分であり、0.1μm以上、1μm未満に分布する細孔が多く共存することにより触媒性能が向上する。   When these conditions are satisfied, a catalyst having high activity and selectivity can be obtained. In general, pores having a large pore size have a large contribution to the pore volume. However, in order to contribute to selectivity for active and effective reaction products, pores with large pore diameters are not sufficient, and catalyst performance is due to many coexisting pores distributed between 0.1 μm and 1 μm. Will improve.

なお、本発明における複合酸化物触媒の細孔容積及び細孔径分布は、水銀圧入式ポロシメーター(商品名:「AutoPore IV 9500」、micromeritics社製)を用い、平均昇圧速度0.01〜0.3MPa/秒で昇圧し、細孔直径0.006〜300μmの範囲について測定された触媒成形体単位質量あたりの細孔容積及び細孔径分布である。   In addition, the pore volume and pore diameter distribution of the composite oxide catalyst in the present invention were measured using an mercury intrusion porosimeter (trade name: “AutoPore IV 9500”, manufactured by micromeritics) with an average pressure increase rate of 0.01 to 0.3 MPa. 1 is a pore volume and a pore diameter distribution per unit mass of a catalyst molded article measured with respect to a pore diameter of 0.006 to 300 μm.

本発明に係る複合酸化物触媒の組成は、下記式(1)で表される。   The composition of the composite oxide catalyst according to the present invention is represented by the following formula (1).

MoaBibFecdefgSihi (1)
前記式(1)において、Mo、Bi、Fe、Si及びOはそれぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルから選ばれる少なくとも1種の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛から選ばれる少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンから選ばれる少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは各元素の原子比率を表し、a=12のときb=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2及びh=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。
Mo a Bi b Fe c M d X e Y f Z g Si h O i (1)
In the formula (1), Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively. M represents at least one element selected from cobalt and nickel. X represents at least one element selected from chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc. Y represents at least one element selected from phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium. Z represents at least one element selected from lithium, sodium, potassium, rubidium, cesium and thallium. a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element. When a = 12, b = 0.01-3, c = 0.01-5, d = 1. -12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, and h = 0 to 20, i is an oxygen atomic ratio necessary for satisfying the valence of each component. is there.

なお、本発明において複合酸化物触媒の組成は各元素の原料仕込み量から算出される値である。   In the present invention, the composition of the composite oxide catalyst is a value calculated from the raw material charge amount of each element.

(複合酸化物触媒の製造方法)
本発明に係る複合酸化物触媒を製造する方法としては、前記複合酸化物触媒の触媒成分を含む溶液又はスラリーを乾燥した後に焼成し、平均粒子径55μm以上、150μm以下の触媒粉体を調製し、該触媒粉体を成形する方法が好ましい。以下、この製造方法について詳しく説明するが、本発明の触媒はここで説明する製造方法によって得られたものに限定されるものではない。
(Production method of composite oxide catalyst)
As a method for producing the composite oxide catalyst according to the present invention, a solution or slurry containing the catalyst component of the composite oxide catalyst is dried and then calcined to prepare a catalyst powder having an average particle size of 55 μm or more and 150 μm or less. A method of forming the catalyst powder is preferred. Hereinafter, although this manufacturing method is demonstrated in detail, the catalyst of this invention is not limited to what was obtained by the manufacturing method demonstrated here.

前記複合酸化物触媒の触媒成分の出発原料としては、各元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物等を使用することができる。モリブデン原料としては、例えばパラモリブデン酸アンモニウム、三酸化モリブデン等が挙げられる。ビスマス原料としては、例えば、三酸化ビスマス、硝酸ビスマス、炭酸ビスマス、水酸化ビスマス等が使用できる。鉄原料としては、例えば、硝酸第二鉄、塩化第二鉄等が使用できる。   As starting materials for the catalyst component of the composite oxide catalyst, oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides, and the like of each element can be used. Examples of the molybdenum raw material include ammonium paramolybdate and molybdenum trioxide. Examples of the bismuth raw material that can be used include bismuth trioxide, bismuth nitrate, bismuth carbonate, and bismuth hydroxide. As the iron raw material, for example, ferric nitrate, ferric chloride and the like can be used.

触媒成分の原料は、各元素について1種でもよく、2種以上を併用してもよい。また、硝酸ビスマス等の水に不溶な原料は、予め硝酸等の酸に溶かして用いてもよい。   The raw material of the catalyst component may be one type for each element, or two or more types may be used in combination. Further, a raw material insoluble in water such as bismuth nitrate may be used by dissolving in an acid such as nitric acid in advance.

触媒成分を含む溶液又はスラリーを調製する方法としては、触媒成分の著しい偏在を伴わない範囲で、沈殿法、酸化物混合法等の公知の方法を適用することができる。   As a method for preparing a solution or slurry containing a catalyst component, a known method such as a precipitation method or an oxide mixing method can be applied as long as the catalyst component is not significantly unevenly distributed.

触媒成分を含む溶液又はスラリーの20℃における粘度は、100mPa・s以上であることが好ましく、200mPa・s以上であることがより好ましく、300mPa・s以上であることがさらに好ましい。また該粘度は2000mPa・s以下であることが好ましい。該粘度が100mPa・s未満では、触媒成形体内部に細孔径5μm以上の細孔が増加しやすく、また、粘度が高いほど触媒成形体内部に細孔径1μm未満の細孔が増加しやすいが、2000mPa・sを超える場合、溶液又はスラリーのハンドリング性が著しく低下する。なお、上記の触媒成分を含む溶液又はスラリーの粘度は、B型粘度計を用いて測定した値である。   The viscosity at 20 ° C. of the solution or slurry containing the catalyst component is preferably 100 mPa · s or more, more preferably 200 mPa · s or more, and further preferably 300 mPa · s or more. The viscosity is preferably 2000 mPa · s or less. If the viscosity is less than 100 mPa · s, pores having a pore diameter of 5 μm or more are likely to increase inside the catalyst molded body, and pores having a pore diameter of less than 1 μm are likely to increase inside the catalyst molded body, When it exceeds 2000 mPa · s, the handleability of the solution or slurry is significantly lowered. In addition, the viscosity of the solution or slurry containing the catalyst component is a value measured using a B-type viscometer.

触媒成分を含む溶液又はスラリーの乾燥方法としては、種々の方法を用いることが可能であり、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等が挙げられる。乾燥に使用する乾燥機の機種や乾燥時の温度等は特に限定されず、乾燥条件を適宜変えることで目的に応じた触媒前駆体の乾燥物を得ることができる。中でも、後述するように、乾燥物の平均粒子径を制御し易いことから、噴霧乾燥法を用いることが好ましい。   As a method for drying a solution or slurry containing a catalyst component, various methods can be used, and examples thereof include an evaporation to dryness method, a spray drying method, a drum drying method, and an airflow drying method. The model of the dryer used for drying, the temperature at the time of drying and the like are not particularly limited, and a dried catalyst precursor according to the purpose can be obtained by appropriately changing the drying conditions. Among these, as will be described later, it is preferable to use the spray drying method because the average particle diameter of the dried product can be easily controlled.

触媒成分を含む溶液又はスラリーを乾燥した後の粉体は、触媒成分の出発原料等に由来する硝酸塩等の塩を含んでいる場合がある。塩が残存していると触媒成形体の機械的強度が低下する場合があるため、乾燥後、塩を分解するために焼成する。塩分解のための焼成条件としては、公知の焼成条件を適用できる。焼成温度は、空気雰囲気下、約200〜600℃で行われることが好ましい。焼成時間は、目的とする触媒成形体に応じて適宜選択される。当該焼成により、触媒粉体が得られる。   The powder after the solution or slurry containing the catalyst component is dried may contain a salt such as nitrate derived from the starting material of the catalyst component. If the salt remains, the mechanical strength of the catalyst molded body may be reduced. Therefore, after drying, the catalyst is fired to decompose the salt. Known firing conditions can be applied as firing conditions for salt decomposition. The baking temperature is preferably about 200 to 600 ° C. in an air atmosphere. The calcination time is appropriately selected according to the target catalyst molded body. A catalyst powder is obtained by the calcination.

前記触媒粉体の平均粒子径は、55μm以上が好ましく、70μm以上がより好ましい。触媒粉体の平均粒子径を大きくすることにより、触媒成形体内部に細孔径1μm以下の細孔が多く形成され、目的とするメタクロレイン及びメタクリル酸の選択率が向上する傾向がある。また、前記触媒粉体の平均粒子径は、150μm以下が好ましく、130μm以下がより好ましい。触媒粉体の平均粒子径を小さくすることにより、単位体積当たりの触媒粉体同士の接触点が増加するため、触媒成形体の機械的強度が向上する傾向がある。なお、触媒粉体の平均粒子径は、触媒成分を含む溶液又はスラリーの乾燥条件、焼成条件等を適宜選択することにより、前記範囲内に制御することができる。なお、成形前の触媒粉体の平均粒子径は、粒子径分布測定装置(商品名:「SALD−7000」、株式会社島津製作所製)を用いて測定した。   The average particle diameter of the catalyst powder is preferably 55 μm or more, and more preferably 70 μm or more. By increasing the average particle diameter of the catalyst powder, many pores having a pore diameter of 1 μm or less are formed inside the catalyst molded body, and the selectivity of the target methacrolein and methacrylic acid tends to be improved. The average particle size of the catalyst powder is preferably 150 μm or less, and more preferably 130 μm or less. By reducing the average particle diameter of the catalyst powder, the contact points between the catalyst powders per unit volume increase, and the mechanical strength of the catalyst compact tends to be improved. The average particle size of the catalyst powder can be controlled within the above range by appropriately selecting the drying conditions, firing conditions, etc. of the solution or slurry containing the catalyst component. The average particle size of the catalyst powder before molding was measured using a particle size distribution measuring device (trade name: “SALD-7000”, manufactured by Shimadzu Corporation).

得られた触媒粉体は、次いで成形され、触媒成形体となる。成形方法は特に限定はなく、打錠成型機、押出成形機、転動造粒機等の一般粉体用成形機を用いることができるが、押出成形機を用いるのが、本発明の触媒を効率的かつ簡便に製造することができる傾向にあり好ましい。また、本発明の触媒は、球状、リング状、円柱状、星型状等の任意の形状に成形することができる。   The obtained catalyst powder is then molded into a catalyst molded body. There is no particular limitation on the molding method, and a general powder molding machine such as a tableting molding machine, an extrusion molding machine, a rolling granulator, etc. can be used. This is preferred because it tends to be efficient and easy to produce. In addition, the catalyst of the present invention can be formed into an arbitrary shape such as a spherical shape, a ring shape, a cylindrical shape, or a star shape.

触媒成形体を製造する際には、公知の添加剤、例えば、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース等の有機化合物を添加しても良い。さらにグラファイトやケイソウ土等の無機化合物、ガラス繊維、セラミックファイバーや炭素繊維等の無機ファイバーを添加してもよい。   When manufacturing a catalyst molded body, you may add well-known additives, for example, organic compounds, such as polyvinyl alcohol, carboxymethylcellulose, and hydroxypropyl methylcellulose. Further, inorganic compounds such as graphite and diatomaceous earth, inorganic fibers such as glass fiber, ceramic fiber and carbon fiber may be added.

上記のようにして得られた触媒成形体は再度焼成しても構わない。焼成は通常200〜600℃の温度範囲で、1〜3時間行われる。   The catalyst molded body obtained as described above may be fired again. Firing is usually performed in a temperature range of 200 to 600 ° C. for 1 to 3 hours.

(メタクロレイン及びメタクリル酸の製造方法)
本発明の方法により製造された触媒の存在下、イソブチレン、TBA及びMTBEから選ばれる少なくとも1種を原料として、分子状酸素による気相接触酸化反応を行うことにより、メタクロレイン及びメタクリル酸を高収率で製造することができる。
(Method for producing methacrolein and methacrylic acid)
In the presence of the catalyst produced by the method of the present invention, high yields of methacrolein and methacrylic acid are obtained by conducting a gas phase catalytic oxidation reaction with molecular oxygen using at least one selected from isobutylene, TBA and MTBE as a raw material. Can be manufactured at a rate.

原料のイソブチレン、TBA及びMTBEから選ばれる少なくとも1種対分子状酸素のモル比は、1:0.5〜3の範囲が好ましい。原料と分子状酸素とを含む原料ガスは、不活性ガスで希釈して用いることが経済的である。原料ガス中の原料の濃度は、2〜40容量%が好ましい。分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気も用いることができる。また、原料ガスに水蒸気を加えてもよい。反応圧力は常圧から数気圧までの範囲が好ましい。反応温度は200〜450℃の範囲で選ぶことができるが、特に250〜400℃の範囲が好ましい。反応器中の触媒をシリカ、アルミナ、シリカ−アルミナ、シリコンカーバイト、セラミックボールやステンレス鋼等の不活性物質で希釈してもよい。   The molar ratio of at least one selected from raw material isobutylene, TBA and MTBE to molecular oxygen is preferably in the range of 1: 0.5-3. It is economical to use a raw material gas containing a raw material and molecular oxygen diluted with an inert gas. The concentration of the raw material in the raw material gas is preferably 2 to 40% by volume. Although it is economical to use air as the molecular oxygen source, air enriched with pure oxygen can also be used if necessary. Further, water vapor may be added to the raw material gas. The reaction pressure is preferably in the range from normal pressure to several atmospheres. The reaction temperature can be selected in the range of 200 to 450 ° C, but the range of 250 to 400 ° C is particularly preferable. The catalyst in the reactor may be diluted with an inert substance such as silica, alumina, silica-alumina, silicon carbide, ceramic balls or stainless steel.

以下、実施例を用いて本発明の方法による触媒の製造例及びその触媒を用いた反応例を具体的に説明する。以下において、「部」は質量部を示しており、原料ガス及び生成物の分析はガスクロマトグラフィーにより行った。   Hereinafter, the manufacture example of the catalyst by the method of this invention and the reaction example using the catalyst are demonstrated concretely using an Example. In the following, “part” indicates part by mass, and analysis of the raw material gas and the product was performed by gas chromatography.

また、実施例及び比較例中の原料(イソブチレン)の反応率、生成する不飽和アルデヒド(メタクロレイン)及び不飽和カルボン酸(メタクリル酸)の選択率、生成する不飽和アルデヒド及び不飽和カルボン酸の合計収率(以下、単に合計収率と称す)は次式により算出した。
反応率(%)=(A/B)×100
メタクロレイン(MAL)の選択率(%)=(C/A)×100
メタクリル酸(MAA)の選択率(%)=(D/A)×100
合計収率(%)={(C+D)/B}×100。
Moreover, the reaction rate of the raw material (isobutylene) in an Example and a comparative example, the selectivity of the unsaturated aldehyde (methacrolein) and unsaturated carboxylic acid (methacrylic acid) to produce | generate, the unsaturated aldehyde and unsaturated carboxylic acid to produce | generate. The total yield (hereinafter simply referred to as total yield) was calculated according to the following formula.
Reaction rate (%) = (A / B) × 100
Selectivity of methacrolein (MAL) (%) = (C / A) × 100
Methacrylic acid (MAA) selectivity (%) = (D / A) × 100
Total yield (%) = {(C + D) / B} × 100.

ここで、Aは反応したイソブチレンのモル数、Bは供給したイソブチレンのモル数、Cは生成したメタクロレイン(MAL)のモル数、及びDは生成したメタクリル酸(MAA)のモル数である。   Here, A is the number of moles of reacted isobutylene, B is the number of moles of supplied isobutylene, C is the number of moles of methacrolein (MAL), and D is the number of moles of methacrylic acid (MAA).

触媒の細孔容積及び細孔径分布は、水銀圧入式ポロシメーター(商品名:「AutoPore IV 9500」、micromeritics社製)を用いて測定した。また、成形前の触媒粉体の平均粒子径は、粒子径分布測定装置(商品名:「SALD−7000」、株式会社島津製作所製)を用いて測定した。スラリー粘度はB型粘度計を用いて20℃で測定した。   The pore volume and pore size distribution of the catalyst were measured using a mercury intrusion porosimeter (trade name: “AutoPore IV 9500”, manufactured by micromeritics). The average particle size of the catalyst powder before molding was measured using a particle size distribution measuring device (trade name: “SALD-7000”, manufactured by Shimadzu Corporation). The slurry viscosity was measured at 20 ° C. using a B-type viscometer.

(実施例1)
純水2000部に、パラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム12.4部、硝酸セシウム23.0部、三酸化アンチモン27.4部及び三酸化ビスマス33.0部を加え、加熱、撹拌した。更に、硝酸第二鉄209.8部、硝酸ニッケル75.5部、硝酸コバルト453.3部、硝酸鉛31.3部及び85%リン酸5.6部を順次加え、加熱、撹拌し、水性のスラリーとした。さらに102℃で4時間濃縮を行った。このとき、スラリー粘度は1220mPa・sであった。その後、該水性のスラリーを、回転円板型遠心アトマイザーを備えたスプレー乾燥機を用いて噴霧乾燥し、平均粒子径120μmの球状の乾燥粒子とした。このとき、スプレー乾燥機のアトマイザーの回転数は7,000rpm、スプレー乾燥機の入口温度は170℃、出口温度は120℃であった。次いで、この乾燥粒子を300℃で1時間、510℃で3時間焼成を行い、触媒粉体とした。
Example 1
To 2000 parts of pure water, 500 parts of ammonium paramolybdate, 12.4 parts of ammonium paratungstate, 23.0 parts of cesium nitrate, 27.4 parts of antimony trioxide and 33.0 parts of bismuth trioxide are added and heated and stirred. did. Further, 209.8 parts of ferric nitrate, 75.5 parts of nickel nitrate, 453.3 parts of cobalt nitrate, 31.3 parts of lead nitrate and 5.6 parts of 85% phosphoric acid were added in that order, and the mixture was heated and stirred. Slurry. Further, concentration was performed at 102 ° C. for 4 hours. At this time, the slurry viscosity was 1220 mPa · s. Thereafter, the aqueous slurry was spray-dried using a spray dryer equipped with a rotating disk centrifugal atomizer to obtain spherical dry particles having an average particle size of 120 μm. At this time, the rotation speed of the atomizer of the spray dryer was 7,000 rpm, the inlet temperature of the spray dryer was 170 ° C., and the outlet temperature was 120 ° C. Next, the dried particles were calcined at 300 ° C. for 1 hour and at 510 ° C. for 3 hours to obtain catalyst powder.

このようにして得られた触媒粉体100部に対して2質量%水溶液としたときの20℃における粘度が10,000mPa・sのヒドロキシプロピルメチルセルロース5部を加え、乾式混合した。   To 100 parts of the catalyst powder thus obtained, 5 parts of hydroxypropylmethylcellulose having a viscosity of 10,000 mPa · s at 20 ° C. when made into a 2% by mass aqueous solution was added and dry-mixed.

ここに純水45部を混合し、双腕型の撹拌羽根をもつバッチ式の混練機を用いて混練した後、押出成形機にて、外径5mm、内径2mm、及び長さ5mmのリング状物を成形した。次いで、得られた成形物を、熱風乾燥機を用いて110℃で乾燥し、更に400℃で3時間焼成を行い、触媒成形体を得た。   45 parts of pure water was mixed here and kneaded using a batch-type kneader having a double-armed stirring blade, and then in an extruder, a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm. The object was molded. Subsequently, the obtained molded product was dried at 110 ° C. using a hot air dryer, and further calcined at 400 ° C. for 3 hours to obtain a catalyst molded body.

得られた触媒成形体の酸素以外の元素の組成は、Mo120.2Bi0.6Fe2.2Sb0.8Ni1.1Co6.6Pb0.40.2Cs0.5であった。 The composition of the element other than oxygen in the obtained catalyst molded body was Mo 12 W 0.2 Bi 0.6 Fe 2.2 Sb 0.8 Ni 1.1 Co 6.6 Pb 0.4 P 0.2 Cs 0.5 .

この触媒成形体をステンレス鋼製反応管に充填し、イソブチレン5%、酸素12%、水蒸気10%及び窒素73%(各々、容量%)の混合ガスを用い、常圧下、接触時間3.6秒、反応温度340℃で反応させた。   The catalyst compact was filled into a stainless steel reaction tube, and a contact time of 3.6 seconds under normal pressure using a mixed gas of 5% isobutylene, 12% oxygen, 10% water vapor and 73% nitrogen (each volume%). The reaction was carried out at a reaction temperature of 340 ° C.

得られた触媒粉体の平均粒子径、触媒成形体の細孔容積と各細孔径の範囲に対する細孔容積の割合を表1に示す。また、得られた触媒成形体を用いてイソブチレンの酸化反応を実施した結果を表2に示す。   Table 1 shows the average particle diameter of the obtained catalyst powder, the pore volume of the molded catalyst, and the ratio of the pore volume to each pore diameter range. Table 2 shows the results of the oxidation reaction of isobutylene using the obtained catalyst molded body.

(実施例2)
実施例1において、濃縮時間を3時間とし、得られた水性スラリー粘度は850mPa・sであり、乾燥させる際のアトマイザー回転数を8,000rpmとし、得られた平均粒子径90μmの触媒粉体を用い、混練機を用いて混練する際に純水54部を混合した。それ以外は実施例1と同様にして触媒成形体を作製し、イソブチレンを反応させた。得られた触媒成形体を実施例1と同様の条件で物性測定した結果を表1に示す。また、得られた触媒成形体を用いて酸化反応を実施した結果を表2に示す。
(Example 2)
In Example 1, the concentration time was 3 hours, the viscosity of the obtained aqueous slurry was 850 mPa · s, the atomizer rotation speed when drying was 8,000 rpm, and the obtained catalyst powder having an average particle diameter of 90 μm was obtained. Used, 54 parts of pure water was mixed when kneading using a kneader. Except that, a catalyst molded body was produced in the same manner as in Example 1 and reacted with isobutylene. Table 1 shows the results of measuring physical properties of the obtained molded catalyst under the same conditions as in Example 1. In addition, Table 2 shows the results of carrying out the oxidation reaction using the obtained catalyst molded body.

(実施例3)
実施例2において、混練する際に純水50部を混合した以外は、実施例2と同様にして触媒成形体を作製し、イソブチレンを反応させた。得られた触媒成形体を実施例1と同様の条件で物性測定した結果を表1に示す。また、得られた触媒成形体を用いて酸化反応を実施した結果を表2に示す。
Example 3
In Example 2, a catalyst molded body was produced in the same manner as in Example 2 except that 50 parts of pure water was mixed during kneading, and isobutylene was reacted. Table 1 shows the results of measuring physical properties of the obtained molded catalyst under the same conditions as in Example 1. In addition, Table 2 shows the results of carrying out the oxidation reaction using the obtained catalyst molded body.

(実施例4)
実施例2において、濃縮時間を1.5時間とし、得られた水性スラリー粘度が328mPa・sである以外は、実施例2と同様にして触媒成形体を作製し、イソブチレンを反応させた。得られた触媒成形体を実施例1と同様の条件で物性測定した結果を表1に示す。また、得られた触媒成形体を用いて酸化反応を実施した結果を表2に示す。
Example 4
In Example 2, a catalyst molded body was produced in the same manner as in Example 2 except that the concentration time was 1.5 hours and the obtained aqueous slurry viscosity was 328 mPa · s, and then reacted with isobutylene. Table 1 shows the results of measuring physical properties of the obtained molded catalyst under the same conditions as in Example 1. In addition, Table 2 shows the results of carrying out the oxidation reaction using the obtained catalyst molded body.

(実施例5)
実施例4において、混練する際に純水50部を混合した以外は、実施例4と同様にして触媒成形体を作製し、イソブチレンを反応させた。得られた触媒成形体を実施例1と同様の条件で物性測定した結果を表1に示す。また、得られた触媒成形体を用いて酸化反応を実施した結果を表2に示す。
(Example 5)
In Example 4, except that 50 parts of pure water was mixed at the time of kneading, a catalyst molded body was prepared and reacted with isobutylene in the same manner as in Example 4. Table 1 shows the results of measuring physical properties of the obtained molded catalyst under the same conditions as in Example 1. Table 2 shows the results of the oxidation reaction using the obtained catalyst molded body.

(比較例1)
実施例1において、濃縮時間を0.5時間とし、得られた水性スラリー粘度は152mPa・sであり、水性のスラリーを乾燥させる際のアトマイザー回転数を12,000rpmとし、得られた平均粒子径40μmの触媒粉体を用い、混練機を用いて混練する際に純水44部を混合した。それ以外は実施例1と同様にして触媒成形体を作製し、イソブチレンを反応させた。得られた触媒成形体を実施例1と同様の条件で物性測定した結果を表1に示す。また、得られた触媒成形体を用いて酸化反応を実施した結果を表2に示す。
(Comparative Example 1)
In Example 1, the concentration time was 0.5 hours, the resulting aqueous slurry viscosity was 152 mPa · s, the atomizer rotation number when drying the aqueous slurry was 12,000 rpm, and the average particle diameter obtained Using 40 μm catalyst powder, 44 parts of pure water was mixed when kneading using a kneader. Except that, a catalyst molded body was produced in the same manner as in Example 1 and reacted with isobutylene. Table 1 shows the results of measuring physical properties of the obtained molded catalyst under the same conditions as in Example 1. In addition, Table 2 shows the results of carrying out the oxidation reaction using the obtained catalyst molded body.

(比較例2)
実施例1において、濃縮を行わず、得られた水性スラリー粘度は81mPa・sであり、水性のスラリーを乾燥させる際のアトマイザー回転数を14,000rpmとし、得られた平均粒子径25μmの触媒粉体を用い、混練機を用いて混練する際に純水42部を混合した。それ以外は実施例1と同様にして触媒成形体を作製し、イソブチレンを反応させた。得られた触媒成形体を実施例1と同様の条件で物性測定した結果を表1に示す。また、得られた触媒成形体を用いて酸化反応を実施した結果を表2に示す。
(Comparative Example 2)
In Example 1, concentration was not performed, and the resulting aqueous slurry viscosity was 81 mPa · s, the atomizer rotation speed when drying the aqueous slurry was 14,000 rpm, and the obtained catalyst powder having an average particle diameter of 25 μm The body was used, and 42 parts of pure water was mixed when kneading using a kneader. Except that, a catalyst molded body was produced in the same manner as in Example 1 and reacted with isobutylene. Table 1 shows the results of measuring physical properties of the obtained molded catalyst under the same conditions as in Example 1. In addition, Table 2 shows the results of carrying out the oxidation reaction using the obtained catalyst molded body.

(比較例3)
実施例1において、得られた触媒粉体100部に対してグラファイト2部を添加混合し、打錠成型機により外径5mm、内径2mm、及び長さ5mmのリング状物を成形した。次いで、得られた成形物を、熱風乾燥機を用いて110℃で乾燥し、更に400℃で3時間焼成を行い、触媒成形体を得た。
(Comparative Example 3)
In Example 1, 2 parts of graphite was added to and mixed with 100 parts of the obtained catalyst powder, and a ring-shaped product having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm was formed using a tableting molding machine. Subsequently, the obtained molded product was dried at 110 ° C. using a hot air dryer, and further calcined at 400 ° C. for 3 hours to obtain a catalyst molded body.

得られた触媒成形体の酸素以外の元素の組成は、Mo120.2Bi0.6Fe2.2Sb0.8Ni1.1Co6.6Pb0.40.2Cs0.5であった。 The composition of the element other than oxygen in the obtained catalyst molded body was Mo 12 W 0.2 Bi 0.6 Fe 2.2 Sb 0.8 Ni 1.1 Co 6.6 Pb 0.4 P 0.2 Cs 0.5 .

該触媒成形体を用いて実施例1と同様にしてイソブチレンを反応させた。得られた触媒成形体を実施例1と同様の条件で物性測定した結果を表1に示す。また、得られた触媒成形体を用いて酸化反応を実施した結果を表2に示す。   Isobutylene was reacted in the same manner as in Example 1 using the catalyst molded body. Table 1 shows the results of measuring physical properties of the obtained molded catalyst under the same conditions as in Example 1. In addition, Table 2 shows the results of carrying out the oxidation reaction using the obtained catalyst molded body.

(実施例6)
純水2000部に、パラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム123.2部、硝酸セシウム9.2部及び三酸化ビスマス55.0部を加え、加熱、撹拌した。更に、硝酸第二鉄238.4部、硝酸ニッケル274.5部、硝酸コバルト377.8部、硝酸マグネシウム60.5部及び20質量%濃度のシリカゾル95.7部を順次加え、加熱、撹拌し、水性のスラリーとした。さらに102℃で4時間濃縮を行った。このとき、スラリー粘度は1015mPa・sであった。その水性のスラリーを実施例1と同様の方法で処理し、触媒成形体を得た。
(Example 6)
To 2000 parts of pure water, 500 parts of ammonium paramolybdate, 123.2 parts of ammonium paratungstate, 9.2 parts of cesium nitrate and 55.0 parts of bismuth trioxide were added and heated and stirred. Further, 238.4 parts of ferric nitrate, 274.5 parts of nickel nitrate, 377.8 parts of cobalt nitrate, 60.5 parts of magnesium nitrate, and 95.7 parts of silica sol having a concentration of 20% by mass were added successively, and the mixture was heated and stirred. An aqueous slurry was obtained. Further, concentration was performed at 102 ° C. for 4 hours. At this time, the slurry viscosity was 1015 mPa · s. The aqueous slurry was treated in the same manner as in Example 1 to obtain a catalyst molded body.

得られた触媒成形体の酸素以外の元素の組成は、Mo122.0Bi1.0Fe2.5Ni4.0Co5.5Mg1.0Cs0.2Si1.35であった。 The composition of the element other than oxygen in the obtained catalyst molded body was Mo 12 W 2.0 Bi 1.0 Fe 2.5 Ni 4.0 Co 5.5 Mg 1.0 Cs 0.2 Si 1.35 .

該触媒成形体を用いて実施例1と同様にしてイソブチレンを反応させた。得られた触媒成形体を実施例1と同様の条件で物性測定した結果を表1に示す。また、得られた触媒成形体を用いて酸化反応を実施した結果を表2に示す。   Isobutylene was reacted in the same manner as in Example 1 using the catalyst molded body. Table 1 shows the results of measuring physical properties of the obtained molded catalyst under the same conditions as in Example 1. In addition, Table 2 shows the results of carrying out the oxidation reaction using the obtained catalyst molded body.

(比較例4)
実施例6において、濃縮時間を0.5時間とし、得られた水性スラリー粘度は95mPa・sであり、水性のスラリーを乾燥させる際のアトマイザー回転数を12,000rpmとした。得られた平均粒子径40μmの触媒粉体を用い、混練機を用いて混練する際に純水44部を混合した。それ以外は実施例1と同様にして触媒成形体を作製し、イソブチレンを反応させた。得られた触媒成形体を実施例1と同様の条件で物性測定した結果を表1に示す。また、得られた触媒成形体を用いて酸化反応を実施した結果を表2に示す。
(Comparative Example 4)
In Example 6, the concentration time was 0.5 hours, the viscosity of the obtained aqueous slurry was 95 mPa · s, and the atomizer rotational speed when drying the aqueous slurry was 12,000 rpm. The obtained catalyst powder having an average particle diameter of 40 μm was mixed with 44 parts of pure water when kneading using a kneader. Except that, a catalyst molded body was produced in the same manner as in Example 1 and reacted with isobutylene. Table 1 shows the results of measuring physical properties of the obtained molded catalyst under the same conditions as in Example 1. In addition, Table 2 shows the results of carrying out the oxidation reaction using the obtained catalyst molded body.

(実施例7)
原料をイソブチレンからTBAに変更した以外は実施例1と同様に反応評価を行った。結果を表2に示す。
(Example 7)
The reaction was evaluated in the same manner as in Example 1 except that the raw material was changed from isobutylene to TBA. The results are shown in Table 2.

(比較例5)
原料をイソブチレンからTBAに変更した以外は比較例1と同様に反応評価を行った。結果を表2に示す。
(Comparative Example 5)
The reaction was evaluated in the same manner as in Comparative Example 1 except that the raw material was changed from isobutylene to TBA. The results are shown in Table 2.

Figure 2010207803
Figure 2010207803

Figure 2010207803
Figure 2010207803

Claims (2)

イソブチレン、tert−ブチルアルコール及びメチル−tert−ブチルエーテルから選ばれる少なくとも1種の原料を分子状酸素により気相接触酸化して、メタクロレイン及びメタクリル酸を製造する際に用いられる複合酸化物触媒において、
前記複合酸化物触媒が下記式(1)で表される組成を有し、
全細孔容積が0.1ml/g以上、1ml/g以下の範囲に有り、
細孔直径が0.1μm以上、1μm未満の細孔により占められる細孔容積が前記全細孔容積の45%以上、68%以下であり、
細孔直径が1μm以上、5μm未満の細孔により占められる細孔容積が前記全細孔容積の10%以上、40%以下であり、
細孔直径が5μm以上、10μm未満の細孔により占められる細孔容積が前記全細孔容積の5%以下である細孔径分布を有することを特徴とする複合酸化物触媒。
MoaBibFecdefgSihi (1)
(式中、Mo、Bi、Fe、Si及びOはそれぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルから選ばれる少なくとも1種の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛から選ばれる少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンから選ばれる少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは各元素の原子比率を表し、a=12のときb=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2及びh=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。)
In the composite oxide catalyst used when producing methacrolein and methacrylic acid by subjecting at least one raw material selected from isobutylene, tert-butyl alcohol and methyl-tert-butyl ether to gas phase catalytic oxidation with molecular oxygen,
The composite oxide catalyst has a composition represented by the following formula (1),
The total pore volume is in the range of 0.1 ml / g to 1 ml / g,
The pore volume occupied by pores having a pore diameter of 0.1 μm or more and less than 1 μm is 45% or more and 68% or less of the total pore volume,
The pore volume occupied by pores having a pore diameter of 1 μm or more and less than 5 μm is 10% or more and 40% or less of the total pore volume,
A composite oxide catalyst characterized by having a pore size distribution in which a pore volume occupied by pores having a pore diameter of 5 μm or more and less than 10 μm is 5% or less of the total pore volume.
Mo a Bi b Fe c M d X e Y f Z g Si h O i (1)
(In the formula, Mo, Bi, Fe, Si and O respectively represent molybdenum, bismuth, iron, silicon and oxygen. M represents at least one element selected from cobalt and nickel. X represents chromium, lead and manganese. Represents at least one element selected from calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc, and Y represents at least selected from phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium. Z represents at least one element selected from lithium, sodium, potassium, rubidium, cesium and thallium, a, b, c, d, e, f, g, h and i are each Represents the atomic ratio of the elements. When a = 12, b = 0.01-3, c = 0.01-5, d = 1-12, e = 0-8, f 0 to 5, g = a 0.001 and h = 0 to 20, i is an oxygen atom ratio required for satisfying the valency of each component.)
イソブチレン、tert−ブチルアルコール及びメチル−tert−ブチルエーテルから選ばれる少なくとも1種の原料を分子状酸素により気相接触酸化して、メタクロレイン及びメタクリル酸を製造する方法において、
前記気相接触酸化の触媒として、請求項1に記載の複合酸化物触媒を用いることを特徴とするメタクロレイン及びメタクリル酸の製造方法。
In a method for producing methacrolein and methacrylic acid by subjecting at least one raw material selected from isobutylene, tert-butyl alcohol and methyl-tert-butyl ether to gas phase catalytic oxidation with molecular oxygen,
A method for producing methacrolein and methacrylic acid, wherein the composite oxide catalyst according to claim 1 is used as the catalyst for gas phase catalytic oxidation.
JP2010026495A 2009-02-13 2010-02-09 Compound oxide catalyst Pending JP2010207803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026495A JP2010207803A (en) 2009-02-13 2010-02-09 Compound oxide catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009031314 2009-02-13
JP2010026495A JP2010207803A (en) 2009-02-13 2010-02-09 Compound oxide catalyst

Publications (1)

Publication Number Publication Date
JP2010207803A true JP2010207803A (en) 2010-09-24

Family

ID=42968575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026495A Pending JP2010207803A (en) 2009-02-13 2010-02-09 Compound oxide catalyst

Country Status (1)

Country Link
JP (1) JP2010207803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246384A (en) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2018521851A (en) * 2015-07-20 2018-08-09 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Method for producing mixed metal oxide catalyst containing molybdenum and bismuth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246384A (en) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2018521851A (en) * 2015-07-20 2018-08-09 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Method for producing mixed metal oxide catalyst containing molybdenum and bismuth

Similar Documents

Publication Publication Date Title
JP5678476B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP6674441B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP4806259B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP4179780B2 (en) Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by this method, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using this catalyst
JP2008284416A (en) Method for manufacturing metal oxide catalyst
JP4846114B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using catalyst produced by the production method
JP4515769B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing the same
JP2010207803A (en) Compound oxide catalyst
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP5828260B2 (en) Catalyst production method
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JPWO2020196853A1 (en) A catalyst molded body, a catalyst molded body for producing methacrolein and / or methacrylic acid, and a method for producing methacrolein and / or methacrylic acid.
JP2007130519A (en) Manufacturing method of extruded catalyst, and manufacturing method of unsaturated aldehyde and unsaturated carboxylic acid
JP5090796B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2011115681A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP4947756B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4875480B2 (en) Method for producing metal-containing catalyst
JP5462300B2 (en) Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP2009213970A (en) Method for manufacturing catalyst for synthesizing unsaturated carboxylic acid
CN106881128B (en) Heteropolyacid salt catalyst, preparation method and application thereof
JP2004160342A (en) Catalyst and method for producing acrylic acid
JP4464734B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid, catalyst for synthesis of unsaturated carboxylic acid, and method for synthesis of unsaturated carboxylic acid
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron
JP5070089B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same