JPWO2020196853A1 - A catalyst molded body, a catalyst molded body for producing methacrolein and / or methacrylic acid, and a method for producing methacrolein and / or methacrylic acid. - Google Patents
A catalyst molded body, a catalyst molded body for producing methacrolein and / or methacrylic acid, and a method for producing methacrolein and / or methacrylic acid. Download PDFInfo
- Publication number
- JPWO2020196853A1 JPWO2020196853A1 JP2021509649A JP2021509649A JPWO2020196853A1 JP WO2020196853 A1 JPWO2020196853 A1 JP WO2020196853A1 JP 2021509649 A JP2021509649 A JP 2021509649A JP 2021509649 A JP2021509649 A JP 2021509649A JP WO2020196853 A1 JPWO2020196853 A1 JP WO2020196853A1
- Authority
- JP
- Japan
- Prior art keywords
- catalyst molded
- molded product
- catalyst
- molded body
- methacrylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 201
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 title claims abstract description 57
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 28
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 27
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 claims description 18
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 17
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 15
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims description 14
- 239000011733 molybdenum Substances 0.000 claims description 14
- 238000012856 packing Methods 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052797 bismuth Inorganic materials 0.000 claims description 12
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052792 caesium Inorganic materials 0.000 claims description 6
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 229910001882 dioxygen Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 239000010937 tungsten Substances 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 239000011591 potassium Substances 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 229910052701 rubidium Inorganic materials 0.000 claims description 5
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 239000011133 lead Substances 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 229910052711 selenium Inorganic materials 0.000 claims description 4
- 239000011669 selenium Substances 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 68
- 239000002994 raw material Substances 0.000 abstract description 35
- 238000011049 filling Methods 0.000 abstract description 12
- 239000000843 powder Substances 0.000 description 38
- 238000000034 method Methods 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000011230 binding agent Substances 0.000 description 16
- 238000000465 moulding Methods 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- 238000002156 mixing Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- 229920000609 methyl cellulose Polymers 0.000 description 13
- 239000001923 methylcellulose Substances 0.000 description 13
- 235000010981 methylcellulose Nutrition 0.000 description 13
- 238000001035 drying Methods 0.000 description 12
- 238000001125 extrusion Methods 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- 238000010304 firing Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
- B01J27/19—Molybdenum
- B01J27/192—Molybdenum with bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/31—Density
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/27—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
- C07C45/32—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
- C07C45/33—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
- C07C45/34—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
- C07C45/35—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C47/00—Compounds having —CHO groups
- C07C47/20—Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
- C07C47/21—Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C47/22—Acryaldehyde; Methacryaldehyde
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
長期に渡り安定的に、高い原料化合物の反応率、及び高い選択率を維持したままメタクロレイン及び/又はメタクリル酸の製造が可能となる触媒並びにメタクロレイン及び/又はメタクリル酸の製造方法を提供することを目的とする。触媒成形体の密度(g/cm3)をX、触媒成形体の充填嵩密度(g/cm3)をY、触媒成形体の代表長さ(cm)をZとする場合、下記式(1)及び(2)を満たす、触媒成形体。0.700(g/cm3)2≦(X×Y)≦1.200(g/cm3)2・・・式(1)0.050g/cm2≦(X×Z)≦0.130g/cm2・・・式(2)Provided are a catalyst capable of producing methacrolein and / or methacrylic acid while maintaining a high reaction rate of a high raw material compound and a high selectivity for a long period of time, and a method for producing methacrolein and / or methacrylic acid. The purpose is. When the density (g / cm3) of the catalyst molded body is X, the filling bulk density (g / cm3) of the catalyst molded body is Y, and the representative length (cm) of the catalyst molded body is Z, the following formula (1) and A catalyst molded body that satisfies (2). 0.700 (g / cm3) 2 ≦ (X × Y) ≦ 1.200 (g / cm3) 2 ・ ・ ・ Equation (1) 0.050 g / cm2 ≦ (X × Z) ≦ 0.130 g / cm2 ・.・ ・ Equation (2)
Description
本発明は、触媒成形体、メタクロレイン及び/又はメタクリル酸製造用の触媒成形体、並びに、メタクロレイン及び/又はメタクリル酸の製造方法に関する。 The present invention relates to a catalyst molded body, a catalyst molded body for producing methacrolein and / or methacrylic acid, and a method for producing methacrolein and / or methacrylic acid.
従来から、触媒の存在下で、イソブチレン、tert−ブチルアルコール、メチル−tert−ブチルエーテル等を分子状酸素により気相接触酸化させることにより、メタクロレイン及び/又はメタクリル酸が製造することが知られており、該触媒として様々な組成や形状を有する触媒が提案されており、さらには多様の触媒製造方法が提案されている。 Conventionally, it has been known that methacrolein and / or methacrylic acid is produced by gas-phase catalytic oxidation of isobutylene, tert-butyl alcohol, methyl-tert-butyl ether and the like with molecular oxygen in the presence of a catalyst. As the catalyst, catalysts having various compositions and shapes have been proposed, and further, various catalyst manufacturing methods have been proposed.
例えば、特許文献1には、少なくともモリブデン、ビスマス、及び鉄を含み、β−1,3−グルカン及び液体を加えて混練りした押出成形した触媒が提案されている。特許文献2には、中空円筒形触媒成形体であり、該円筒形の内径及び外径比を特定の値とする触媒成形体が提案されている。特許文献3には、累積細孔容積及びマクロ細孔の容積、比表面積と充填嵩密度を調整した触媒が提案されている。また、特許文献4及び5には、触媒調製時に特定の工程を追加することが提案されている。 For example, Patent Document 1 proposes an extruded catalyst containing at least molybdenum, bismuth, and iron, to which β-1,3-glucan and a liquid are added and kneaded. Patent Document 2 proposes a hollow cylindrical catalyst molded body, wherein the inner diameter and outer diameter ratio of the cylindrical shape are set to specific values. Patent Document 3 proposes a catalyst in which the cumulative pore volume, the macropore volume, the specific surface area, and the filling bulk density are adjusted. Further, Patent Documents 4 and 5 propose to add a specific step at the time of catalyst preparation.
しかしながら、本発明者らの検討によると、特許文献1〜5に記載された触媒を用いて気相酸化反応によりメタクロレイン及び/又はメタクリル酸を製造した場合、原料化合物の反応率、並びに、メタクロレイン及び/又はメタクリル酸の選択率が十分でない可能性があることが判明した。 However, according to the studies by the present inventors, when methacrolein and / or methacrylic acid is produced by a gas phase oxidation reaction using the catalysts described in Patent Documents 1 to 5, the reaction rate of the raw material compound and the methacrolein are obtained. It has been found that the selectivity of rain and / or methacrylic acid may not be sufficient.
本発明は、前記課題に鑑み鋭意検討の結果、本発明者らは特定の触媒成形体を用いることにより、高い原料化合物の反応率を維持したまた、メタクロレイン及び/又はメタクリル酸を高い選択率で得られることを見出し、本発明を達成するに至った。すなわち、本発明の要旨は下記の通りである。 As a result of diligent studies in view of the above problems, the present inventions maintained a high reaction rate of the raw material compound by using a specific catalyst molded product, and also had a high selectivity for methacrolein and / or methacrylic acid. We have found that it can be obtained in the above, and have achieved the present invention. That is, the gist of the present invention is as follows.
[1]触媒成形体の密度(g/cm3)をX、触媒成形体の充填嵩密度(g/cm3)をY、触媒成形体の代表長さ(cm)をZとする場合、下記式(1)及び(2)を満たす、触媒成形体。
0.700(g/cm3)2≦(X×Y)≦1.200(g/cm3)2 ・・・式(1)
0.050g/cm2≦(X×Z)≦0.130g/cm2・・・式(2)
[2]前記Xが、1.300g/cm3以上、1.800g/cm3以下である、[1]に記載の触媒成形体。
[3]前記Yが、0.500g/cm3以上、0.800g/cm3以下である、[1]又は[2]に記載の触媒成形体。
[4]前記Zが、0.030cm以上、0.100cm以下である、[1]〜[3]のいずれかに記載の触媒成形体。
[5]前記触媒成形体がモリブデン、ビスマス及び鉄を必須成分とする、[1]〜[4]のいずれかに記載の触媒成形体。
[6]前記触媒成形体が下記式(A)で表される組成を有する、[1]〜[5]のいずれかに記載の触媒成形体。
MoaBibFecMdXeYfZgSihOi (A)
(式(A)中、Mo、Bi、Fe、Si及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルからなる群から選択される少なくとも1種の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛からなる群から選択される少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群から選択される少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは、各元素の原子比率を表し、a=12のとき、b=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2、h=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。)
[7]メタクロレイン及び/又はメタクリル酸製造用の触媒成形体である、[1]〜[6]のいずれかに記載の触媒成形体。
[8]イソブチレン、tert−ブチルアルコール及びメチル−tert−ブチルエーテルから選択される1以上の化合物からメタクロレイン及び/又はメタクリル酸を製造する触媒成形体である、[1]〜[7]のいずれかに記載の触媒成形体。
[9][1]〜[8]のいずれかに記載の触媒成形体の存在下で、イソブチレン、tert−ブチルアルコール及びメチル−tert−ブチルエーテルからなる群から選択される1以上の化合物を、分子状酸素により気相接触酸化する、メタクロレイン及び/又はメタクリル酸の製造方法。[1] When the density (g / cm 3 ) of the catalyst molded body is X, the filling bulk density (g / cm 3 ) of the catalyst molded body is Y, and the representative length (cm) of the catalyst molded body is Z, the following A catalyst molded body satisfying the formulas (1) and (2).
0.700 (g / cm 3 ) 2 ≤ (X × Y) ≤ 1.200 (g / cm 3 ) 2 ... Equation (1)
0.050 g / cm 2 ≤ (X × Z) ≤ 0.130 g / cm 2 ... Equation (2)
[2] The catalyst molded product according to [1], wherein X is 1.300 g / cm 3 or more and 1.800 g / cm 3 or less.
[3] The catalyst molded product according to [1] or [2], wherein the Y is 0.500 g / cm 3 or more and 0.800 g / cm 3 or less.
[4] The catalyst molded product according to any one of [1] to [3], wherein the Z is 0.030 cm or more and 0.100 cm or less.
[5] The catalyst molded product according to any one of [1] to [4], wherein the catalyst molded product contains molybdenum, bismuth and iron as essential components.
[6] The catalyst molded product according to any one of [1] to [5], wherein the catalyst molded product has a composition represented by the following formula (A).
Mo a Bi b F c M d X e Y f Z g Si h O i (A)
(In formula (A), Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively. M represents at least one element selected from the group consisting of cobalt and nickel. X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc. Y represents phosphorus, boron, sulfur, selenium, tellurium. , At least one element selected from the group consisting of cerium, tungsten, antimony and titanium; Z indicates at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and tarium. . A, b, c, d, e, f, g, h and i represent the atomic ratio of each element, and when a = 12, b = 0.01-3, c = 0.01-5, d = 1-12, e = 0-8, f = 0-5, g = 0.001-2, h = 0-20, and i is oxygen required to satisfy the valence of each component. Atomic ratio.)
[7] The catalyst molded product according to any one of [1] to [6], which is a catalyst molded product for producing methacrolein and / or methacrylic acid.
[8] Any of [1] to [7], which is a catalyst molded product for producing methacrolein and / or methacrylic acid from one or more compounds selected from isobutylene, tert-butyl alcohol and methyl-tert-butyl ether. The catalyst molded body according to.
[9] One or more compounds selected from the group consisting of isobutylene, tert-butyl alcohol and methyl-tert-butyl ether in the presence of the catalyst molded product according to any one of [1] to [8]. A method for producing methacrolein and / or methacrylic acid, which is catalytically oxidized by gas phase oxygen.
本発明によれば、高い原料化合物の反応率を維持したまま、メタクロレイン及び/又はメタクリル酸を高い選択率で製造することができる。 According to the present invention, methacrolein and / or methacrylic acid can be produced with a high selectivity while maintaining a high reaction rate of the raw material compound.
以下、本発明の一実施形態について詳細に説明するが、以下に説明する実施形態は、本発明の一実施形態の一例(代表例)であり、本発明は以下の実施形態に限定されるものではない。以下、本発明の一実施形態に係る触媒成形体を用いてメタクロレイン及び/又はメタクリル酸を製造する形態について説明する。なお、本発明において触媒成形体とは、触媒成分を成形して得られた触媒を意味するものとする。 Hereinafter, one embodiment of the present invention will be described in detail, but the embodiment described below is an example (representative example) of one embodiment of the present invention, and the present invention is limited to the following embodiments. is not it. Hereinafter, a mode for producing methacrolein and / or methacrylic acid using the catalyst molded product according to the embodiment of the present invention will be described. In the present invention, the catalyst molded body means a catalyst obtained by molding a catalyst component.
<触媒成形体>
本実施形態に係る触媒成形体は、触媒成形体の密度(g/cm3)をX、触媒成形体の充填嵩密度(g/cm3)をY、触媒成形体の代表長さ(cm)をZとする場合、下記式(1)及び(2)を満たす触媒成形体である。<Catalyst molded product>
In the catalyst molded body according to the present embodiment, the density of the catalyst molded body (g / cm 3 ) is X, the packing bulk density of the catalyst molded body (g / cm 3 ) is Y, and the representative length (cm) of the catalyst molded body. Is Z, it is a catalyst molded body satisfying the following formulas (1) and (2).
0.700(g/cm3)2≦(X×Y)≦1.200(g/cm3)2 ・・・式(1)0.700 (g / cm 3 ) 2 ≤ (X × Y) ≤ 1.200 (g / cm 3 ) 2 ... Equation (1)
0.050g/cm2≦(X×Z)≦0.130g/cm2・・・式(2)0.050 g / cm 2 ≤ (X × Z) ≤ 0.130 g / cm 2 ... Equation (2)
なお、本発明において、触媒成形体の密度X、触媒成形体の充填嵩密度Y及び触媒成形体の代表長さZは、後述の実施例に記載の方法により算出される値を意味するものとする。 In the present invention, the density X of the catalyst molded body, the filling bulk density Y of the catalyst molded body, and the representative length Z of the catalyst molded body mean values calculated by the method described in Examples described later. do.
触媒成形体が上記式(1)及び(2)を満たすことにより、メタクロレイン及び/又はメタクリル酸を、高い原料反応率を維持したまま、高い選択率で製造することができる。このメカニズムは明らかではないが、上記式(1)及び(2)を満たす触媒成形体は、触媒成形体の密度及び形状が適切に制御された触媒成形体が適切に充填されることになるために、メタクロレイン及び/又はメタクリル酸を高い原料反応率及び高い選択率で製造することができるものと考えられる。 When the catalyst molded product satisfies the above formulas (1) and (2), methacrolein and / or methacrylic acid can be produced with a high selectivity while maintaining a high raw material reaction rate. Although this mechanism is not clear, the catalyst molded product satisfying the above formulas (1) and (2) is appropriately filled with the catalyst molded product in which the density and shape of the catalyst molded product are appropriately controlled. In addition, it is considered that methacrolein and / or methacrylic acid can be produced with a high raw material reaction rate and a high selectivity.
上記式(1)の中でも、(X×Y)の値は、原料化合物の反応率向上、及び目的生成物の選択率向上の観点から、0.750(g/cm3)2以上であることが好ましく、0.790以上であることがより好ましく、0.800(g/cm3)2以上であることがさらに好ましく、一方、メタクロレイン及び/又はメタクリル酸の選択率向上のために、1.170以下であることが好ましく、1.150(g/cm3)2以下であることがより好ましく、1.100(g/cm3)2以下であることがさらに好ましい。In the above formula (1), the value of (X × Y) is 0.750 (g / cm 3 ) 2 or more from the viewpoint of improving the reaction rate of the raw material compound and improving the selectivity of the target product. Is more preferable, 0.790 or more is more preferable, 0.800 (g / cm 3 ) 2 or more is further preferable, and 1 for improving the selectivity of methacrolein and / or methacrolein. preferably .170 or less, more preferably 1.150 (g / cm 3) 2 or less, further preferably 1.100 (g / cm 3) 2 or less.
上記式(2)の中でも、(X×Z)の値は、原料化合物の反応率向上、及び目的生成物の選択率向上の観点から、0.055g/cm2以上であることが好ましく、0.060g/cm2以上であることがさらに好ましく、0.065g/cm2以上であることが特に好ましく、0.070g/cm2以上であることが最も好ましく、一方、メタクロレイン及び/又はメタクリル酸の選択率向上のために、0.125g/cm2以下であることが好ましく、0.120g/cm2以下であることがさらに好ましい。 In the above formula (2), the value of (X × Z) is preferably 0.055 g / cm 2 or more, preferably 0, from the viewpoint of improving the reaction rate of the raw material compound and improving the selectivity of the target product. .060 g / cm 2 or more is more preferable, 0.065 g / cm 2 or more is particularly preferable, 0.070 g / cm 2 or more is most preferable, while methacrolein and / or methacrylic acid. In order to improve the selectivity of 0.125 g / cm 2 or less, it is preferably 0.120 g / cm 2 or less, and more preferably 0.120 g / cm 2 or less.
触媒成形体の密度Xは、触媒成形体が上記式(1)及び(2)を満たす限りにおいて、特段の制限はないが、原料化合物の反応率向上、及び目的生成物の選択率向上の観点から、1.300g/cm3以上であることが好ましく、1.350g/cm3以上であることがさらに好ましく、1.400g/cm3以上であることが特に好ましく、一方、メタクロレイン及び/又はメタクリル酸の選択率向上のために、1.800g/cm3以下であることが好ましく、1.750g/cm3以下であることが更に好ましく、1.700g/cm3以下であることが特に好ましい。The density X of the catalyst molded product is not particularly limited as long as the catalyst molded product satisfies the above formulas (1) and (2), but from the viewpoint of improving the reaction rate of the raw material compound and improving the selectivity of the target product. from is preferably 1.300 g / cm 3 or more, more preferably 1.350 g / cm 3 or more, particularly preferably at 1.400 g / cm 3 or more, whereas, methacrolein and / or for selectivity to methacrylic acid increase, it is preferably 1.800 g / cm 3 or less, still more preferably 1.750g / cm 3 or less, particularly preferably 1.700 g / cm 3 or less ..
触媒成形体の充填嵩密度Yは、触媒成形体が上記式(1)を満たす限りにおいて、特段の制限はないが、原料化合物の反応率向上、及び目的生成物の選択率向上の観点から、0.500g/cm3以上であることが好ましく、0.550g/cm3以上であることがさらに好ましく、0.600g/cm3以上であることが特に好ましく、一方、メタクロレイン及び/又はメタクリル酸の選択率向上のために、0.800g/cm3以下であることが好ましく、0.750g/cm3以下であることが更に好ましく、0.700g/cm3以下であることが特に好ましい。The filling bulk density Y of the catalyst molded body is not particularly limited as long as the catalyst molded body satisfies the above formula (1), but from the viewpoint of improving the reaction rate of the raw material compound and improving the selectivity of the target product. is preferably 0.500 g / cm 3 or more, more preferably 0.550 g / cm 3 or more, particularly preferably at 0.600 g / cm 3 or more, whereas, methacrolein and / or methacrylic acid for the selectivity improvement is preferably 0.800 g / cm 3 or less, still more preferably 0.750 g / cm 3 or less, particularly preferably 0.700 g / cm 3 or less.
触媒成形体の代表長さZは、触媒成形体が上記式(2)を満たす限りにおいて、特段の制限はないが、原料化合物の反応率向上、及び目的生成物の選択率向上の観点から、0.030cm以上であることが好ましく、0.035cm以上であることがさらに好ましく、0.040cm以上であることが特に好ましく、0.050cm以上であることが最も好ましく、一方、メタクロレイン及び/又はメタクリル酸の選択率向上のために、0.100cm以下であることが好ましく、0.095cm以下であることが更に好ましく、0.090cm以下であることが特に好ましい。 The representative length Z of the catalyst molded product is not particularly limited as long as the catalyst molded product satisfies the above formula (2), but from the viewpoint of improving the reaction rate of the raw material compound and improving the selectivity of the target product. It is preferably 0.030 cm or more, more preferably 0.035 cm or more, particularly preferably 0.040 cm or more, most preferably 0.050 cm or more, while methacrolein and / or. In order to improve the selectivity of methacrolein, it is preferably 0.100 cm or less, more preferably 0.095 cm or less, and particularly preferably 0.090 cm or less.
触媒成形体の体積は、特段の制限はないが、原料化合物の反応率向上、及び目的生成物の選択率向上の観点から、0.050cm3以上であることが好ましく、0.060cm3以上であることがさらに好ましく、0.070cm3以上であることが特に好ましく、一方、メタクロレイン及び/又はメタクリル酸の選択率向上のために、1.000cm3以下であることが好ましく、0.800cm3以下であることがより好ましく、0.500cm3以下であることがさらに好ましく、0.300cm3以下であることが特に好ましい。なお、本発明において触媒成形体の体積とは、例えば、触媒成形体が中空筒状のような場合、空間部分を除いた体積を意味する。The volume of the shaped catalyst body is not particular limitation, enhancing the reaction rate of the starting compound, and in view of the selectivity of the improvement of the desired product, it is preferably 0.050 cm 3 or more, in 0.060Cm 3 or more more preferably in, particularly preferably at 0.070Cm 3 or more, whereas, for methacrolein and / or selectivity improvement of methacrylic acid, is preferably 1.000Cm 3 or less, 0.800Cm 3 more preferably less, still more preferably no greater than 0.500 cm 3 or less, and particularly preferably 0.300Cm 3 or less. In the present invention, the volume of the catalyst molded body means, for example, the volume excluding the space portion when the catalyst molded body has a hollow tubular shape.
触媒成形体の外表面積は、特段の制限はないが、高い原料反応率を維持しつつ高い選択率でメタクロレイン及び/又はメタクリル酸を製造するために、0.500cm2以上であることが好ましく、0.700cm2以上であることがさらに好ましく、0.800cm2以上であることが特に好ましく、一方、5.000cm2以下であることが好ましく、4.000cm2以下であることが更に好ましく、3.000cm2以下であることが特に好ましい。なお、触媒成形体の外表面積は幾何学的な表面積を指す。The outer surface area of the catalyst molded product is not particularly limited, but is preferably 0.500 cm 2 or more in order to produce methacrolein and / or methacrylic acid with a high selectivity while maintaining a high raw material reaction rate. , still more preferably 0.700Cm 2 or more, particularly preferably at 0.800Cm 2 or more, whereas, it is preferably 5.000Cm 2 or less, still more preferably 4.000Cm 2 or less, It is particularly preferable that it is 3.000 cm 2 or less. The outer surface area of the catalyst molded product refers to the geometric surface area.
触媒成形体の質量は、特段の制限はないが、原料化合物の反応率向上、及び目的生成物の選択率向上の観点から0.050g以上であることが好ましく、0.080g以上であることがさらに好ましく、0.100g以上であることが特に好ましく、一方、メタクロレイン及び/又はメタクリル酸の選択率向上のために、0.300g以下であることが好ましく、0.280g以下であることが更に好ましく、0.250g以下であることが特に好ましい。 The mass of the catalyst molded product is not particularly limited, but is preferably 0.050 g or more, preferably 0.080 g or more, from the viewpoint of improving the reaction rate of the raw material compound and improving the selectivity of the target product. Further, it is particularly preferably 0.100 g or more, and on the other hand, in order to improve the selectivity of methacrolein and / or methacrylic acid, it is preferably 0.300 g or less, and further preferably 0.280 g or less. It is preferably 0.250 g or less, and particularly preferably 0.250 g or less.
触媒成形体の形状は、特に限定されないが、例えば、球状、円筒状、リング状、星型状等とすることができる。なかでも、リング状であることが好ましい。 The shape of the catalyst molded product is not particularly limited, but may be, for example, spherical, cylindrical, ring-shaped, star-shaped, or the like. Of these, a ring shape is preferable.
また、触媒成形体は、担体に担持されていてもよい。この場合、担体としてはシリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア、シリコンカーバイト等を用いることができる。これらは一種のみを用いてもよく、二種以上を併用してもよい。なお、担体を使用する場合、上記のなかでもシリカを使用することが好ましい。なお、本発明において、触媒成分を担持するために担体を使用する場合、担体も含めて触媒成形体と称すものとする。 Further, the catalyst molded product may be supported on a carrier. In this case, silica, alumina, silica-alumina, magnesia, titania, silicon carbide and the like can be used as the carrier. These may be used alone or in combination of two or more. When using a carrier, it is preferable to use silica among the above. In the present invention, when a carrier is used to support a catalyst component, the carrier is also referred to as a catalyst molded product.
触媒成形体の平均径は、特段の制限はないが、触媒反応時の圧損の上昇を抑制し、メタクロレイン及び/又はメタクリル酸を長期に渡り安定して製造するために、リング状または円筒状、球状の形状を有する場合、その外径は0.10cm以上であることが好ましく、0.15cm以上であることがさらに好ましく、0.20cm以上であることが特に好ましく、一方、メタクロレイン及び/又はメタクリル酸の選択率向上のために、1.00cm以下であることが好ましく、0.90cm以下であることが更に好ましく、0.80cm以下であることが特に好ましい。 The average diameter of the catalyst compact is not particularly limited, but is ring-shaped or cylindrical in order to suppress an increase in pressure loss during the catalytic reaction and to stably produce methacrolein and / or methacrylic acid for a long period of time. When having a spherical shape, its outer diameter is preferably 0.10 cm or more, more preferably 0.15 cm or more, particularly preferably 0.20 cm or more, while methacrolein and /. Alternatively, in order to improve the selectivity of methacrylic acid, it is preferably 1.00 cm or less, more preferably 0.90 cm or less, and particularly preferably 0.80 cm or less.
触媒成形体の平均細孔容積は、特段の制限はないが、メタクロレイン及び/又はメタクリル酸の選択率向上のために、0.100cm3/g以上であることが好ましく、0.200cm3/g以上であることがさらに好ましく、0.300cm3/g以上であることが特に好ましく、一方、触媒成形体に十分な強度を持たせメタクロレイン及び/又はメタクリル酸を長期に渡り安定して製造するために、1.000cm3/g以下であることが好ましく、0.900cm3/g以下であることが更に好ましく、0.800cm3/g以下であることが特に好ましい。なお、触媒成形体の平均細孔容積は水銀圧入測定装置等で測定することができる。The average pore volume of the shaped catalyst body is not particular limitation, for methacrolein and / or selectivity improvement of methacrylic acid, is preferably 0.100cm 3 / g or more, 0.200 cm 3 / It is more preferably g or more, and particularly preferably 0.300 cm 3 / g or more. to, is preferably 1.000cm 3 / g or less, further preferably 0.900cm 3 / g or less, and particularly preferably not more than 0.800cm 3 / g. The average pore volume of the catalyst molded product can be measured with a mercury intrusion measuring device or the like.
触媒成形体を構成する触媒成分は、特段の制限はないが、イソブチレン、tert−ブチルアルコール、メチル−tert−ブチルエーテル等からメタクロレイン及び/又はメタクリル酸の製造が可能となるような触媒組成であることが好ましい。具体的には、触媒成形体は複数の触媒成分を含む複合酸化物であることが好ましい。具体的には、触媒成形体は、触媒成分として、モリブデン、ビスマス及び鉄を含むことが好ましい。以下に、モリブデン、ビスマス及び鉄を必須成分とする触媒成形体の好ましい形態について説明する。 The catalyst component constituting the catalyst molded product is not particularly limited, but has a catalyst composition capable of producing methacrolein and / or methacrylic acid from isobutylene, tert-butyl alcohol, methyl-tert-butyl ether and the like. Is preferable. Specifically, the catalyst molded product is preferably a composite oxide containing a plurality of catalyst components. Specifically, the catalyst molded product preferably contains molybdenum, bismuth and iron as catalyst components. Hereinafter, preferred forms of the catalyst molded product containing molybdenum, bismuth and iron as essential components will be described.
モリブデンに対するビスマスの原子比は特段の制限はないが、メタクロレイン及び/又はメタクリル酸の選択率向上のために、モリブデン12原子に対するビスマスの原子比は0.01以上であることが好ましく、0.10以上であることがさらに好ましく、0.20以上であることが特に好ましく、一方、3.00以下であることが好ましく、2.00以下であることがさらに好ましく、1.50以下であることが特に好ましい。 The atomic ratio of bismuth to molybdenum is not particularly limited, but the atomic ratio of bismuth to 12 molybdenum atoms is preferably 0.01 or more in order to improve the selectivity of methacrolein and / or methacrylic acid. It is more preferably 10 or more, particularly preferably 0.20 or more, while it is preferably 3.00 or less, further preferably 2.00 or less, and more preferably 1.50 or less. Is particularly preferable.
モリブデンに対する鉄の原子比は特段の制限はないが、メタクロレイン及び/又はメタクリル酸の選択率向上のために、モリブデン12原子に対する鉄の原子比は0.01以上であることが好ましく、0.10以上であることがさらに好ましく、0.50以上であることが特に好ましく、一方、5.00以下であることが好ましく、4.00以下であることがさらに好ましく、3.00以下であることが特に好ましい。 The atomic ratio of iron to molybdenum is not particularly limited, but the atomic ratio of iron to 12 atoms of molybdenum is preferably 0.01 or more in order to improve the selectivity of methacrolein and / or methacrylic acid. It is more preferably 10 or more, particularly preferably 0.50 or more, while it is preferably 5.00 or less, further preferably 4.00 or less, and even 3.00 or less. Is particularly preferable.
また、触媒成形体は上記以外の元素を含有していてもよい。このような元素として特段の制限はないが、コバルト、ニッケル、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル、亜鉛、リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン、チタン、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、又はタリウムが挙げられる。 Further, the catalyst molded product may contain an element other than the above. There are no particular restrictions on such elements, but cobalt, nickel, chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum, zinc, phosphorus, boron, sulfur, selenium, tellurium, cerium, Examples include tungsten, antimony, titanium, lithium, sodium, potassium, rubidium, cesium, or thallium.
なかでも、触媒成形体は、コバルト及びニッケルからなる群から選択される少なくとも1種の元素と、リチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素と、を含有することが好ましい。 Among them, the catalyst molded body contains at least one element selected from the group consisting of cobalt and nickel, and at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. Is preferably contained.
上記のなかでも、触媒成形体は下記式(A)で表される組成を有することが特に好ましい。 Among the above, it is particularly preferable that the catalyst molded product has a composition represented by the following formula (A).
MoaBibFecMdXeYfZgSihOi (A)
(式(A)中、Mo、Bi、Fe、Si及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルからなる群から選択される少なくとも1種の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛からなる群から選択される少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群から選択される少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは、各元素の原子比率を表し、a=12のとき、b=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2、h=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。)なお、該触媒の組成は各元素の原料仕込み量から算出した値である。Mo a Bi b F c M d X e Y f Z g Si h O i (A)
(In formula (A), Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively. M represents at least one element selected from the group consisting of cobalt and nickel. X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc. Y represents phosphorus, boron, sulfur, selenium, tellurium. , At least one element selected from the group consisting of cerium, tungsten, antimony and titanium; Z indicates at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and tarium. . A, b, c, d, e, f, g, h and i represent the atomic ratio of each element, and when a = 12, b = 0.01-3, c = 0.01-5, d = 1-12, e = 0-8, f = 0-5, g = 0.001-2, h = 0-20, and i is oxygen required to satisfy the valence of each component. Atomic ratio.) The composition of the catalyst is a value calculated from the amount of raw materials charged for each element.
なお、上記式(A)中のM、X、Y及びZは、それぞれ複数の元素で構成されていてもよい。また、M、X、Y及びZは、それぞれ複数の元素で構成されている場合、d、e、f及びgはそれぞれ、モリブデン12原子に対する各元素の合計原子比を表すものとする。 It should be noted that M, X, Y and Z in the above formula (A) may each be composed of a plurality of elements. When M, X, Y and Z are each composed of a plurality of elements, d, e, f and g each represent the total atomic ratio of each element to 12 atoms of molybdenum.
式(A)中、Mはコバルト及びニッケルを含むことが好ましい。 In formula (A), M preferably contains cobalt and nickel.
式(A)中、Xは鉛であることが好ましい。 In formula (A), X is preferably lead.
式(A)中、Yはリン、アンチモン、及びタングステンからなる群から選択される少なくとも1種を含むことが好ましく、少なくともタングステンを含むことが特に好ましい。 In the formula (A), Y preferably contains at least one selected from the group consisting of phosphorus, antimony, and tungsten, and particularly preferably contains at least tungsten.
式(A)中、Zはセシウムであることが好ましい。 In the formula (A), Z is preferably cesium.
式(A)中、bは0.10以上であることがより好ましく、0.20以上であることがさらに好ましく、一方、2.00以下であることが好ましく、1.50以下であることがさらに好ましい。 In the formula (A), b is more preferably 0.10 or more, further preferably 0.20 or more, while preferably 2.00 or less, and preferably 1.50 or less. More preferred.
式(A)中、cは0.10以上であることがより好ましく、0.50以上であることがさらに好ましく、一方、4.00以下であることが好ましく、3.00以下であることがさらに好ましい。 In the formula (A), c is more preferably 0.10 or more, further preferably 0.50 or more, while preferably 4.00 or less, and preferably 3.00 or less. More preferred.
式(A)中、dは2.00以上であることがより好ましく、3.00以上であることがさらに好ましく、一方、11.00以下であることが好ましく、10.00以下であることがさらに好ましい。 In the formula (A), d is more preferably 2.00 or more, further preferably 3.00 or more, while preferably 11.00 or less, and preferably 10.00 or less. More preferred.
式(A)中、eは0.01以上であることがより好ましく、0.10以上であることがさらに好ましく、一方、5.00以下であることがより好ましく、2.00以下であることがさらに好ましく、1.00以下であることが特に好ましい。 In the formula (A), e is more preferably 0.01 or more, further preferably 0.10 or more, while more preferably 5.00 or less, and 2.00 or less. Is more preferable, and 1.00 or less is particularly preferable.
式(A)中、fは0.10以上であることがより好ましく、0.50以上であることがさらに好ましく、一方、4.0以下であることが好ましく、3.0以下であることがさらに好ましい。 In the formula (A), f is more preferably 0.10 or more, further preferably 0.50 or more, while preferably 4.0 or less, and preferably 3.0 or less. More preferred.
式(A)中、gは0.01以上であることがより好ましく、0.10以上であることがさらに好ましく、一方、1.50以下であることが好ましく、1.00以下であることがさらに好ましい。 In the formula (A), g is more preferably 0.01 or more, further preferably 0.10 or more, while it is preferably 1.50 or less, and preferably 1.00 or less. More preferred.
触媒成形体がシリカ担体を含有する場合、式(A)中、hは0.10以上であることがより好ましく、0.50以上であることがさらに好ましく、一方、15.0以下であることが好ましく、12.00以下であることがさらに好ましい。 When the catalyst molded product contains a silica carrier, h is more preferably 0.10 or more, further preferably 0.50 or more, and 15.0 or less in the formula (A). Is preferable, and it is more preferably 12.00 or less.
<触媒成形体の製造方法>
以下、本発明において使用する触媒成形体の製造方法について説明する。<Manufacturing method of catalyst molded product>
Hereinafter, a method for producing a catalyst molded product used in the present invention will be described.
本発明に係る触媒成形体の製造方法は特に限定されず、公知の種々の方法を適用できる。例えば、モリブデン、ビスマス及び鉄等の触媒成分を含む水性スラリーを製造・乾燥し、必要に応じて粉砕して成形した後、熱処理して触媒成形体を得る方法が挙げられる。 The method for producing the catalyst molded product according to the present invention is not particularly limited, and various known methods can be applied. For example, a method of producing and drying an aqueous slurry containing catalyst components such as molybdenum, bismuth and iron, crushing and molding as necessary, and then heat-treating to obtain a catalyst molded product can be mentioned.
このような水性スラリーを製造する方法は特に限定されず、公知の、共沈法、酸化物混合法等の種々の方法を用いることができる。以下、代表例として共沈法における触媒成形体の製造例を示す。 The method for producing such an aqueous slurry is not particularly limited, and various known methods such as a coprecipitation method and an oxide mixing method can be used. Hereinafter, as a representative example, a production example of a catalyst molded product by the coprecipitation method will be shown.
前記水性スラリーを製造するために用いられる触媒成分の原料は特に限定されず、触媒成分を構成する各元素の酸化物、塩化物、水酸化物、硫酸塩、硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、又はそれらの混合物を用いることができる。例えば、モリブデンの原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン等を用いることができる。ビスマスの原料としては酸化ビスマス、硝酸ビスマス等を用いることができる。鉄の原料としては硝酸第二鉄、酸化第二鉄等を用いることができる。これらは一種のみを用いてもよく、二種以上を併用してもよい。他の元素についても公知の化合物を使用することができる。なお、各原料の比率は、所望の触媒組成が得られるように適宜調整すればよい。 The raw material of the catalyst component used for producing the aqueous slurry is not particularly limited, and the oxide, chloride, hydroxide, sulfate, nitrate, carbonate, acetate, and ammonium of each element constituting the catalyst component are not particularly limited. Salts or mixtures thereof can be used. For example, as a raw material for molybdenum, ammonium paramolybdate, molybdenum trioxide, or the like can be used. As a raw material for bismuth, bismuth oxide, bismuth nitrate and the like can be used. As a raw material for iron, ferric nitrate, ferric oxide and the like can be used. These may be used alone or in combination of two or more. Known compounds can be used for other elements as well. The ratio of each raw material may be appropriately adjusted so that a desired catalyst composition can be obtained.
また、二種以上の原料を用いる場合、撹拌しながら各原料を混合して水性スラリーを製造することが好ましい。撹拌しながら混合を行うことにより、再現性良く調製することができる。 When two or more kinds of raw materials are used, it is preferable to mix the raw materials with stirring to produce an aqueous slurry. By mixing while stirring, it is possible to prepare with good reproducibility.
撹拌の方法については特に限定されず、回転翼攪拌機、高速回転剪断攪拌機(ホモジナイザー)等の回転式撹拌装置、振り子式の直線運動型攪拌機、容器ごと撹拌する振とう機、超音波等を用いた振動型攪拌機等の公知の撹拌装置が挙げられるが、撹拌装置としては強度を容易に調節することができ、工業上簡便であることから、回転翼攪拌機、高速回転剪断攪拌機(ホモジナイザー)等の回転式撹拌装置を用いることが好ましい。回転式撹拌装置における撹拌翼または回転刃の回転速度は、液の飛散等の不都合が起きない程度に、容器、撹拌翼、邪魔板等の形状、液量等を勘案して適宜調整すればよい。 The stirring method is not particularly limited, and a rotary blade stirrer, a rotary stirrer such as a high-speed rotary shear stirrer (homogenizer), a pendulum type linear motion stirrer, a shaker that stirs the entire container, ultrasonic waves, etc. are used. A known stirring device such as a vibration type stirring device can be mentioned, but since the strength of the stirring device can be easily adjusted and it is industrially simple, the rotation of a rotary blade stirrer, a high-speed rotary shearing stirrer (homogenizer), etc. It is preferable to use a formula stirrer. The rotation speed of the stirring blade or rotary blade in the rotary stirring device may be appropriately adjusted in consideration of the shape, amount, etc. of the container, stirring blade, baffle plate, etc. to the extent that inconvenience such as liquid scattering does not occur. ..
また、各原料を混合した後は、加熱処理を行うことが好ましい。 Further, it is preferable to perform heat treatment after mixing each raw material.
加熱処理の条件としては、特段の制限はないが、処理温度は70℃以上であることが好ましく、80℃以上であることがさらに好ましく、一方、180℃以下であることが好ましく、150℃以下であることが特に好ましい。また、加熱時間は10分間以上であることが好ましく、一方、加熱処理時間についての上限は特にないが、5時間以下であることが好ましい。加熱処理を行うことにより、高性能な触媒を再現性良く調製することができる。 The conditions for the heat treatment are not particularly limited, but the treatment temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, while preferably 180 ° C. or lower, and 150 ° C. or lower. Is particularly preferable. The heating time is preferably 10 minutes or more, while the upper limit of the heat treatment time is not particularly limited, but is preferably 5 hours or less. By performing the heat treatment, a high-performance catalyst can be prepared with good reproducibility.
得られた水性スラリーを基に後述の成形により触媒成形体を製造することができるが、成形前に水性スラリーを乾燥させて乾燥粉体の状態にして成形を行うことが好ましい。水性スラリーを乾燥する方法は特に限定されず、例えば、スプレー乾燥機を用いて乾燥する方法、スラリードライヤーを用いて乾燥する方法、ドラムドライヤーを用いて乾燥する方法、蒸発乾固して得られた塊状の乾燥物を粉砕する方法等が挙げられる。乾燥条件は、例えば、スプレー乾燥機を用いて乾燥する場合、入口温度は100〜500℃が好ましく、110〜300℃がより好ましい。また、出口温度は100〜300℃が好ましく、105〜200℃がより好ましい。前記条件で乾燥を行うことで、一定の嵩密度の乾燥物を再現性良く得ることができ、本発明における要件を満たす触媒成形体を再現性良く製造することができる。 A catalyst molded product can be produced based on the obtained aqueous slurry by molding described later, but it is preferable to dry the aqueous slurry to form a dry powder before molding. The method for drying the aqueous slurry is not particularly limited, and for example, it is obtained by a method of drying using a spray dryer, a method of drying using a slurry dryer, a method of drying using a drum dryer, and a method of evaporating to dryness. Examples thereof include a method of crushing a lumpy dried product. As for the drying conditions, for example, when drying using a spray dryer, the inlet temperature is preferably 100 to 500 ° C, more preferably 110 to 300 ° C. The outlet temperature is preferably 100 to 300 ° C, more preferably 105 to 200 ° C. By drying under the above conditions, a dried product having a certain bulk density can be obtained with good reproducibility, and a catalyst molded product satisfying the requirements of the present invention can be manufactured with good reproducibility.
このようにして得られた乾燥粉体は触媒原料等に由来する硝酸等の塩を含んでいる場合がある。そのため、このような塩を脱離するために乾燥粉体を焼成することが好ましいが、乾燥粉体を成形した後に焼成すると塩が分解して触媒成形体の強度が低下する場合がある。このため、乾燥粉体を成形する前に焼成を行うことが好ましい。また、塩を脱離する目的で、乾燥粉体の一次焼成を行い、後述する成形を行った後に最終的な触媒活性点構造を形成するための二次焼成を行ってもよい。また、一次焼成と二次焼成を行い、その後に成形を実施してもよい。 The dry powder thus obtained may contain a salt such as nitric acid derived from a catalyst raw material or the like. Therefore, it is preferable to bake the dry powder in order to desorb such salt, but if the dry powder is molded and then fired, the salt may be decomposed and the strength of the catalyst molded body may be lowered. Therefore, it is preferable to perform firing before molding the dry powder. Further, for the purpose of desorbing the salt, the dry powder may be primary fired, and after the molding described later, the secondary firing for forming the final catalytically active point structure may be performed. Further, the primary firing and the secondary firing may be performed, and then the molding may be performed.
各焼成温度は200〜600℃が好ましく、300〜550℃であることがより好ましい。この範囲の温度で焼成を行うことにより高性能な触媒成形体が得られる傾向がある。また、所定の温度に到達してから熱処理を持続する時間については特に限定はないが、生産性高く高性能な触媒成形体を製造するために、0.5〜15時間の範囲で行うことが好ましく、1〜10時間の範囲で行うことがより好ましく、1.5〜8時間の範囲で行うことがより好ましい。 Each firing temperature is preferably 200 to 600 ° C, more preferably 300 to 550 ° C. By firing at a temperature in this range, a high-performance catalyst molded product tends to be obtained. The time for sustaining the heat treatment after reaching a predetermined temperature is not particularly limited, but it may be performed in the range of 0.5 to 15 hours in order to produce a highly productive and high-performance catalyst molded body. It is preferably carried out in the range of 1 to 10 hours, more preferably in the range of 1.5 to 8 hours.
また、成形を行う直前の乾燥粉体の嵩密度は、0.500(g/ml)〜1.500(g/ml)であることが好ましい。この値の範囲の乾燥粉体を用いることで、上述に記載した充填嵩密度を有する触媒成形体を再現性良く製造することができる。
前記乾燥粉体の嵩密度は、乾燥を行う際の温度や時間を制御することで適宜調整することができる。一般に乾燥時の温度が高く乾燥時間が長い程、乾燥粉体の嵩密度は大きくなり、温度が低く乾燥時間が短い程、嵩密度が小さくなる傾向がある。The bulk density of the dry powder immediately before molding is preferably 0.500 (g / ml) to 1.500 (g / ml). By using the dry powder in the range of this value, the catalyst molded product having the filling bulk density described above can be produced with good reproducibility.
The bulk density of the dried powder can be appropriately adjusted by controlling the temperature and time at the time of drying. Generally, the higher the drying temperature and the longer the drying time, the larger the bulk density of the dried powder, and the lower the temperature and the shorter the drying time, the smaller the bulk density tends to be.
また、本発明において、触媒成形体が式(1)及び(2)を満たすようにするには、触媒成形体の、質量、嵩密度、外表面積及び体積を調整する必要があるが、これらは成形時の条件を公知の方法により適宜調整すればよい。 Further, in the present invention, in order for the catalyst molded body to satisfy the formulas (1) and (2), it is necessary to adjust the mass, bulk density, outer surface area and volume of the catalyst molded body. The conditions at the time of molding may be appropriately adjusted by a known method.
焼成前又は焼成後の乾燥粉体の成形方法は特に限定されず、打錠成形、押出し成形、担体への担持等の種々の成形方法を用いることができる。
また、成形に際しては、成形物の比表面積、細孔容積及び細孔分布を制御したり、機械的強度を高めたり、成形時のハンドリング性を高めたりする目的で、グラファイトやケイソウ土等の無機化合物、ガラス繊維、セラミックファイバーや炭素繊維等の無機ファイバー、メチルセルロース、エチルセルロース、カルボキシルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等の有機バインダーを添加してもよい。これらは一種のみを用いてもよく、二種以上を併用してもよい。
有機バインダーを使用する場合の使用量は、粒子の種類や大きさ、液体の種類等により適宜選択されるが、通常は粒子100質量部に対して0.05〜15質量部であり、好ましくは0.1〜10質量部である。有機バインダーの添加量が多くなるほど、成形性が向上する傾向があり、少なくなるほど、成形後の熱処理等の後処理が簡単になる傾向がある。The method for forming the dry powder before or after firing is not particularly limited, and various molding methods such as tableting molding, extrusion molding, and support on a carrier can be used.
In addition, during molding, inorganic substances such as graphite and silica soil are used for the purpose of controlling the specific surface area, pore volume and pore distribution of the molded product, increasing the mechanical strength, and improving the handleability during molding. Compounds, glass fibers, inorganic fibers such as ceramic fibers and carbon fibers, and organic binders such as methyl cellulose, ethyl cellulose, carboxylmethyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose and hydroxypropylmethyl cellulose may be added. These may be used alone or in combination of two or more.
When an organic binder is used, the amount to be used is appropriately selected depending on the type and size of the particles, the type of liquid, etc., but is usually 0.05 to 15 parts by mass with respect to 100 parts by mass of the particles, and is preferable. 0.1 to 10 parts by mass. The larger the amount of the organic binder added, the better the moldability, and the smaller the amount, the easier the post-treatment such as heat treatment after molding.
なお、式(1)を満たす触媒成形体を製造するには、触媒の密度及び充填性を制御する必要がある。触媒の密度は例えば、湿式押出成形の場合は乾燥粉に加える液体の量や、混練物を押出成形する際の圧力で調整することができるが、乾燥粉に加える液体の量のみで制御した場合、触媒の充填性が悪化することがあるため混練物の押出圧力を併せて制御することが好ましい。押出成形する際の圧力は、押出機のダイス開口率や、そこから排出される混練物の排出速度で調整できる。打錠成形であれば乾燥粉の密度や圧縮圧力で調整することができる。触媒の充填性は例えば、触媒の密度に加え、成形時に加える添加材などで調整することができる。
なお、本発明において、押出機のダイス開口率は以下のように定義される。
押出機のダイス開口率(%)=(ダイスの開口部の総面積/押出機のシリンダー断面積)×100
また、式(2)を満たす触媒成形体を製造するには、触媒の密度及び形状を制御する必要がある。触媒の形状は成形する際のダイスの形状などで調整することができる。In order to produce a catalyst molded product satisfying the formula (1), it is necessary to control the density and filling property of the catalyst. For example, in the case of wet extrusion molding, the density of the catalyst can be adjusted by the amount of liquid added to the dry powder or the pressure when the kneaded product is extruded, but when controlled only by the amount of liquid added to the dry powder. Since the filling property of the catalyst may deteriorate, it is preferable to control the extrusion pressure of the kneaded product together. The pressure during extrusion molding can be adjusted by the die opening ratio of the extruder and the discharge rate of the kneaded material discharged from the die opening ratio. In the case of tableting, the density and compression pressure of the dry powder can be adjusted. The filling property of the catalyst can be adjusted, for example, by adding an additive at the time of molding in addition to the density of the catalyst.
In the present invention, the die opening ratio of the extruder is defined as follows.
Extruder die opening ratio (%) = (total area of die opening / extruder cylinder cross-sectional area) x 100
Further, in order to produce a catalyst molded product satisfying the formula (2), it is necessary to control the density and shape of the catalyst. The shape of the catalyst can be adjusted by the shape of the die at the time of molding and the like.
<メタクロレイン及び/又はメタクリル酸の製造方法>
本実施形態に係る触媒は、メタクロレイン及び/又はメタクリル酸の製造において有効である。具体的には、本実施形態に係る触媒の存在下に、反応原料であるイソブチレン、tert−ブチルアルコール、メチル−tert−ブチルエーテル等を分子状酸素により気相接触酸化することにより、メタクロレイン及び/又はメタクリル酸を製造することができる。なお、当該反応は、通常、固定床反応で行う。また、触媒は1種を使用してもよいし、2種以上を併用してもよい。また、必要に応じて触媒をシリカ、アルミナ、シリカ-アルミナ、シリコンカーバイト、チタニア、マグネシア、セラミックボールやステンレス鋼等の不活性担体を用いて希釈して使用してもよい。さらに、組成や活性の異なる触媒を混合して使用してもよい。この場合も、不活性担体を用いて希釈してもよい。<Method for producing methacrolein and / or methacrylic acid>
The catalyst according to this embodiment is effective in producing methacrolein and / or methacrylic acid. Specifically, in the presence of the catalyst according to the present embodiment, isobutylene, tert-butyl alcohol, methyl-tert-butyl ether and the like, which are reaction raw materials, are subjected to gas-phase catalytic oxidation with molecular oxygen to cause methacrolein and /. Alternatively, methacrylic acid can be produced. The reaction is usually carried out by a fixed bed reaction. Further, one type of catalyst may be used, or two or more types may be used in combination. Further, if necessary, the catalyst may be diluted with an inert carrier such as silica, alumina, silica-alumina, silicon carbide, titania, magnesia, ceramic balls or stainless steel. Further, catalysts having different compositions and activities may be mixed and used. In this case as well, it may be diluted with an inert carrier.
前記固定床反応器としては、熱媒循環による管型の反応器を用いることが好ましい。反応管は1本のみ備えた単管式を用いてもよいが、工業的には複数の反応管を備えた多管式反応器を使用することが好ましい。この場合、該反応器は除熱設備を有していることが好ましい。反応管の長さは数cmから数m程度まで、製造する量に応じて適宜選択することができる。 As the fixed bed reactor, it is preferable to use a tube-type reactor by heat medium circulation. A single-tube reactor equipped with only one reaction tube may be used, but industrially, it is preferable to use a multi-tube reactor equipped with a plurality of reaction tubes. In this case, it is preferable that the reactor has heat removal equipment. The length of the reaction tube can be appropriately selected from several cm to several m depending on the amount to be produced.
原料ガス中の反応原料であるイソブチレン、tert−ブチルアルコール、メチル−tert−ブチルエーテルの合計濃度は、特段の制限はないが、1〜20容量%とするのが好ましい。 The total concentration of isobutylene, tert-butyl alcohol, and methyl-tert-butyl ether, which are reaction raw materials in the raw material gas, is not particularly limited, but is preferably 1 to 20% by volume.
原料ガスは反応原料と分子状酸素以外に水蒸気を含んでいることが好ましい。原料ガス中の水蒸気の濃度は、1〜45容量%が好ましい。水蒸気は、また、窒素、二酸化炭素等の不活性ガスで希釈して用いることが好ましい。 The raw material gas preferably contains water vapor in addition to the reaction raw material and molecular oxygen. The concentration of water vapor in the raw material gas is preferably 1 to 45% by volume. The water vapor is also preferably diluted with an inert gas such as nitrogen or carbon dioxide before use.
酸素分子に対する、原料であるイソブチレン、tert−ブチルアルコール、メチル−tert−ブチルエーテルの合計のモル比は、特段の制限はないが、50モル%以上であることが好ましく、一方、300モル%以下であることが好ましい。なお、分子状酸素は純酸素ガスでもよいが、工業的には、空気であることが好ましい。反応中の反応圧力は特段の制限はなく、常圧ないし数気圧まで用いられる。また、反応温度は250〜450℃の範囲が好ましい。 The total molar ratio of the raw materials isobutylene, tert-butyl alcohol, and methyl-tert-butyl ether to the oxygen molecule is not particularly limited, but is preferably 50 mol% or more, while it is 300 mol% or less. It is preferable to have. The molecular oxygen may be pure oxygen gas, but industrially, it is preferably air. The reaction pressure during the reaction is not particularly limited and is used up to normal pressure or several atmospheres. The reaction temperature is preferably in the range of 250 to 450 ° C.
当該反応は管型の固定床反応器により行うことが好ましいが、使用する反応管の管径は、触媒成形体を均一に充填しメタクロレイン及び/又はメタクリル酸を長期に渡り安定して製造するために、5mm以上であることが好ましく、10mm以上であることがさらに好ましく、一方、反応によって生じる熱を効率的に除去しメタクロレイン及び/又はメタクリル酸を安定して製造するために、100mm以下であることが好ましく、80mm以下であることが特に好ましい。 The reaction is preferably carried out by a tube-type fixed bed reactor, but the tube diameter of the reaction tube to be used is such that the catalyst molded body is uniformly filled to stably produce methacrolein and / or methacrylic acid for a long period of time. Therefore, it is preferably 5 mm or more, more preferably 10 mm or more, and 100 mm or less in order to efficiently remove the heat generated by the reaction and stably produce methacrolein and / or methacrylic acid. It is preferably 80 mm or less, and particularly preferably 80 mm or less.
反応管に供給する原料の触媒への接触時間は、十分な転化率を得るために、0.1秒以上であることが好ましく、1.0秒以上であることがさらに好ましく、一方、高い選択率を得るために、10.0秒以下であることが好ましく、8.0秒以下であることがさらに好ましい。 The contact time of the raw material supplied to the reaction tube with the catalyst is preferably 0.1 seconds or longer, more preferably 1.0 seconds or longer, and on the other hand, a high selection in order to obtain a sufficient conversion rate. In order to obtain the rate, it is preferably 10.0 seconds or less, and more preferably 8.0 seconds or less.
以下、実施例を用いて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。なお、本発明において、イソブチレンの反応率、生成したメタクロレインおよびメタクリル酸の選択率はそれぞれ以下のように定義される。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In the present invention, the reaction rate of isobutylene and the selectivity of methacrolein and methacrylic acid produced are defined as follows.
イソブチレンの反応率(%)=(反応したイソブチレンのモル数/供給したイソブチレンのモル数)×100 Reaction rate of isobutylene (%) = (number of moles of reacted isobutylene / number of moles of supplied isobutylene) × 100
メタクロレインの選択率(%)=(生成したメタクロレインのモル数/反応したイソブチレンのモル数)×100 Methacrolein selectivity (%) = (number of moles of metachlorine produced / number of moles of reacted isobutylene) x 100
メタクリル酸の選択率(%)=(生成したメタクリル酸のモル数/反応したイソブチレンのモル数)×100 Methacrylic acid selectivity (%) = (number of moles of methacrylic acid produced / number of moles of reacted isobutylene) x 100
また、触媒成形体の密度X(g/cm3)、触媒成形体の充填嵩密度Y(g/cm3)、及び触媒成形体の代表長さZ(cm)は、それぞれ下記式により算出した。The density X (g / cm 3 ) of the catalyst molded body, the filling bulk density Y (g / cm 3 ) of the catalyst molded body, and the representative length Z (cm) of the catalyst molded body were calculated by the following formulas, respectively. ..
触媒成形体の密度X(g/cm3)=触媒成形体の質量(g)÷触媒成形体の体積(cm3)
なお、触媒成形体が幾何学形状の中空部分を有する場合、触媒成形体の体積に、該中空部分は含まないものとした。Density of catalyst molded body X (g / cm 3 ) = Mass of catalyst molded body (g) ÷ Volume of catalyst molded body (cm 3 )
When the catalyst molded body has a hollow portion having a geometric shape, the volume of the catalyst molded body does not include the hollow portion.
触媒成形体の充填嵩密度Y(g/cm3)は、JIS−K 7365に準拠する方法により触媒成形体を100mlメスシリンダーに充填した際の触媒成形体の総質量から算出した。具体的には下記式により算出した。The filling bulk density Y (g / cm 3 ) of the catalyst molded body was calculated from the total mass of the catalyst molded body when the catalyst molded body was filled in a 100 ml graduated cylinder by a method according to JIS-K 7365. Specifically, it was calculated by the following formula.
充填嵩密度Y(g/cm3)=充填した際の触媒成形体の総質量(g)÷100(ml)Filling bulk density Y (g / cm 3 ) = total mass of catalyst compact when filled (g) ÷ 100 (ml)
触媒成形体の代表長さZ(cm)=触媒成形体の体積(cm3)÷触媒成形体の外表面積(cm2)Representative length Z (cm) of catalyst molded body = volume of catalyst molded body (cm 3 ) ÷ outer surface area of catalyst molded body (cm 2 )
[実施例1]
純水600質量部に、パラモリブデン酸アンモニウム300質量部を溶解した。続いて、この溶液を攪拌しながらパラタングステン酸アンモニウム7.44質量部、硝酸セシウム13.8質量部、三酸化アンチモン16.4質量部及び三酸化ビスマス19.8質量部を加え、50℃に加温した(A液)。これとは別に、純水600質量部に、硝酸第二鉄125.9質量部、硝酸ニッケル45.3質量部、硝酸コバルト272.0質量部、硝酸鉛18.8質量部及び85%リン酸3.4質量部を順次加えて溶解し、30℃に加温した(B液)。攪拌下で、A液にB液を加えて、水性スラリーを得て、これを90℃で2時間加熱して反応を進めて、その後、103℃まで昇温して、2時間加熱した。
こうして得られた触媒成分の原料化合物を含有するスラリーを、スプレードライヤーを用いて入口温度180℃、出口温度120℃の条件下で乾燥させ、平均粒径60μmの球状の乾燥粉末を得た。得られた乾燥粉末を300℃で1時間焼成した後、515℃で3時間焼成を行い、触媒焼成粉末を得た。得られた触媒焼成粉末の嵩密度は1.00(g/cm3)であった。[Example 1]
300 parts by mass of ammonium paramolybdate was dissolved in 600 parts by mass of pure water. Subsequently, while stirring this solution, 7.44 parts by mass of ammonium paratungstate, 13.8 parts by mass of cesium nitrate, 16.4 parts by mass of antimony trioxide and 19.8 parts by mass of bismuth trioxide were added, and the temperature was increased to 50 ° C. It was heated (solution A). Separately, 600 parts by mass of pure water, 125.9 parts by mass of ferric nitrate, 45.3 parts by mass of nickel nitrate, 272.0 parts by mass of cobalt nitrate, 18.8 parts by mass of lead nitrate and 85% phosphoric acid. 3.4 parts by mass was added in sequence to dissolve the mixture, and the mixture was heated to 30 ° C. (Liquid B). Under stirring, solution B was added to solution A to obtain an aqueous slurry, which was heated at 90 ° C. for 2 hours to proceed with the reaction, and then heated to 103 ° C. and heated for 2 hours.
The slurry containing the raw material compound of the catalyst component thus obtained was dried using a spray dryer under the conditions of an inlet temperature of 180 ° C. and an outlet temperature of 120 ° C. to obtain a spherical dry powder having an average particle size of 60 μm. The obtained dry powder was calcined at 300 ° C. for 1 hour and then calcined at 515 ° C. for 3 hours to obtain a catalyst calcined powder. The bulk density of the obtained catalyst calcined powder was 1.00 (g / cm 3 ).
得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水166質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.2%のピストン式押出し成形機を用いて、外径0.64cm、内径0.25cm、長さ0.50cmのリング状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体1を得た。 After well mixing 400 parts by mass of the obtained catalyst calcined powder and 12 parts by mass of methyl cellulose powder which is an organic binder component, 166 parts by mass of pure water was added and kneaded with a kneader until it became a clay-like substance. Next, the obtained amorphous kneaded product was formed into a ring shape having an outer diameter of 0.64 cm, an inner diameter of 0.25 cm, and a length of 0.50 cm using a piston type extrusion molding machine having a die opening ratio of 1.2%. .. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 1.
得られた触媒成形体1の密度Xは1.322(g/cm3)、充填嵩密度Yは0.692(g/cm3)、代表長さZは0.070(cm)であり、(X×Y)の値は0.915(g/cm3)2、(X×Z)の値は0.093(g/cm2)であった。また、酸素および触媒反応温度条件下で留去される有機バインダー成分を除いた組成は、Mo12Bi0.6Fe2.2Co6.6Ni1.1Pb0.4P0.2W0.2Sb0.8Cs0.5であった。なお、該触媒成形体1の組成は各元素の原料仕込み量から算出した値である。The density X of the obtained catalyst molded body 1 is 1.322 (g / cm 3 ), the packing bulk density Y is 0.692 (g / cm 3 ), and the representative length Z is 0.070 (cm). The value of (X × Y) was 0.915 (g / cm 3 ) 2 , and the value of (X × Z) was 0.093 (g / cm 2 ). The composition excluding the organic binder component distilled off under the conditions of oxygen and the catalytic reaction temperature was Mo 12 Bi 0.6 Fe 2.2 Co 6.6 Ni 1.1 Pb 0.4 P 0.2 W 0.2 Sb 0.8 Cs 0.5 . The composition of the catalyst molded product 1 is a value calculated from the amount of raw materials charged for each element.
(メタクロレイン及びメタクリル酸の製造)
得られた触媒成形体1を10g、内径20mm、高さ500mmのステンレス製反応管に充填し、イソブチレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%の原料ガスを用い、常圧下、接触時間3.6秒、反応温度340℃で反応させた。その反応結果は、イソブチレンの反応率94.7% 、メタクロレインの選択率85.4%、メタクリル酸の選択率3.6%であった。また、200時間の連続反応において反応率や選択率は安定しており低下することはなかった。(Manufacturing of methacrolein and methacrylic acid)
The obtained catalyst molded body 1 was filled in a stainless steel reaction tube having an inner diameter of 20 mm and a height of 500 mm in an amount of 10 g, and a raw material gas having 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of steam and 73% by volume of nitrogen was used. The reaction was carried out under normal pressure with a contact time of 3.6 seconds and a reaction temperature of 340 ° C. The reaction results were an isobutylene reaction rate of 94.7%, a methacrolein selectivity of 85.4%, and a methacrylic acid selectivity of 3.6%. In addition, the reaction rate and selectivity were stable and did not decrease in the continuous reaction for 200 hours.
[実施例2]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水156質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.1%のピストン式押出し成形機を用いて外径0.63cm、内径0.30cm、長さ0.50cmのリング状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体2を得た。[Example 2]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of the methylcellulose powder which is an organic binder component, 156 parts by mass of pure water was added and made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a ring shape having an outer diameter of 0.63 cm, an inner diameter of 0.30 cm, and a length of 0.50 cm using a piston type extrusion molding machine having a die opening ratio of 1.1%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 2.
得られた触媒成形体2の密度Xは1.463(g/cm3)、充填嵩密度Yは0.713(g/cm3)、代表長さZは0.062(cm)であり、(X×Y)の値は1.043(g/cm3)2、(X×Z)の値は0.092(g/cm2)であった。
得られた触媒成形体成形体2を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。また、200時間の連続反応において反応率や選択率は安定しており低下することはなかった。The density X of the obtained catalyst molded body 2 is 1.463 (g / cm 3 ), the packing bulk density Y is 0.713 (g / cm 3 ), and the representative length Z is 0.062 (cm). The value of (X × Y) was 1.043 (g / cm 3 ) 2 , and the value of (X × Z) was 0.092 (g / cm 2 ).
Using the obtained catalyst molded product 2, the production of methacrolein and methacrylic acid was carried out in the same manner as in Example 1. The reaction results are shown in Table 1. In addition, the reaction rate and selectivity were stable and did not decrease in the continuous reaction for 200 hours.
[実施例3]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水168質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.2%のピストン式押出し成形機を用いて外径0.65cm、内径0.22cm、長さ0.50cmのリング状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体3を得た。 [Example 3]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of the methylcellulose powder which is an organic binder component, 168 parts by mass of pure water was added and made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a ring shape having an outer diameter of 0.65 cm, an inner diameter of 0.22 cm, and a length of 0.50 cm using a piston type extrusion molding machine having a die opening ratio of 1.2%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 3.
得られた触媒成形体3の密度Xは1.323(g/cm3)、充填嵩密度Yは0.734(g/cm3)、代表長さZは0.070(cm)であり、(X×Y)の値は0.971(g/cm3)2、(X×Z)の値は0.092(g/cm2)であった。得られた触媒成形体3を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。また、200時間の連続反応において反応率や選択率は安定しており低下することはなかった。The density X of the obtained catalyst molded body 3 is 1.323 (g / cm 3 ), the packing bulk density Y is 0.734 (g / cm 3 ), and the representative length Z is 0.070 (cm). The value of (X × Y) was 0.971 (g / cm 3 ) 2 , and the value of (X × Z) was 0.092 (g / cm 2 ). Using the obtained catalyst molded product 3, methacrolein and methacrylic acid were produced in the same manner as in Example 1. The reaction results are shown in Table 1. In addition, the reaction rate and selectivity were stable and did not decrease in the continuous reaction for 200 hours.
[比較例1]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水156質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.4%のピストン式押出し成形機を用いて外径0.64cm、長さ0.50cmの円柱状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体4を得た。[Comparative Example 1]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of the methylcellulose powder which is an organic binder component, 156 parts by mass of pure water was added and made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a cylinder having an outer diameter of 0.64 cm and a length of 0.50 cm using a piston type extruder having a die opening ratio of 1.4%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 4.
得られた触媒成形体4の密度Xは1.409(g/cm3)、充填嵩密度Yは0.882(g/cm3)、代表長さZは0.098(cm)であり、(X×Y)の値は1.242(g/cm3)2、(X×Z)の値は0.137(g/cm2)であった。
得られた触媒成形体成形体4を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。The density X of the obtained catalyst molded body 4 is 1.409 (g / cm 3 ), the packing bulk density Y is 0.882 (g / cm 3 ), and the representative length Z is 0.098 (cm). The value of (X × Y) was 1.242 (g / cm 3 ) 2 , and the value of (X × Z) was 0.137 (g / cm 2 ).
Using the obtained catalyst molded product 4, the production of methacrolein and methacrylic acid was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.
[比較例2]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水156質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.4%のピストン式押出し成形機を用いて外径0.64cm、長さ0.40cmの円柱状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体5を得た。得られた触媒成形体5の密度Xは1.406(g/cm3)、充填嵩密度Yは0.888(g/cm3)、代表長さZは0.089(cm)であり、(X×Y)の値は1.249(g/cm3)2、(X×Z)の値は0.125(g/cm2)であった。[Comparative Example 2]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of the methylcellulose powder which is an organic binder component, 156 parts by mass of pure water was added and made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a cylinder having an outer diameter of 0.64 cm and a length of 0.40 cm using a piston type extruder having a die opening ratio of 1.4%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 5. The density X of the obtained catalyst molded body 5 is 1.406 (g / cm 3 ), the packing bulk density Y is 0.888 (g / cm 3 ), and the representative length Z is 0.089 (cm). The value of (X × Y) was 1.249 (g / cm 3 ) 2 , and the value of (X × Z) was 0.125 (g / cm 2 ).
得られた触媒成形体成形体5を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。 Using the obtained catalyst molded product 5, the production of methacrolein and methacrylic acid was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.
[比較例3]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水164質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.4%のピストン式押出し成形機を用いて外径0.64cm、長さ0.50cmの円柱状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体6を得た。[Comparative Example 3]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of the methylcellulose powder which is an organic binder component, 164 parts by mass of pure water was added and made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a cylinder having an outer diameter of 0.64 cm and a length of 0.50 cm using a piston type extruder having a die opening ratio of 1.4%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 6.
得られた触媒成形体6の密度Xは1.351(g/cm3)、充填嵩密度Yは0.824(g/cm3)、代表長さZは0.098(cm)であり、(X×Y)の値は1.113(g/cm3)2、(X×Z)の値は0.132(g/cm2)であった。
得られた触媒成形体成形体6を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。The density X of the obtained catalyst molded body 6 is 1.351 (g / cm 3 ), the packing bulk density Y is 0.824 (g / cm 3 ), and the representative length Z is 0.098 (cm). The value of (X × Y) was 1.113 (g / cm 3 ) 2 , and the value of (X × Z) was 0.132 (g / cm 2 ).
Using the obtained catalyst molded product 6, the production of methacrolein and methacrylic acid was carried out in the same manner as in Example 1. The reaction results are shown in Table 1.
[実施例4]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水178質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.1%のピストン式押出し成形機を用いて外径0.63cm、内径0.30cm、長さ0.50cmのリング状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体7を得た。
得られた触媒成形体7の密度Xは1.306(g/cm3)、充填嵩密度Yは0.612(g/cm3)、代表長さZは0.062(cm)であり、(X×Y)の値は0.799(g/cm3)2、(X×Z)の値は0.081(g/cm2)であった。
得られた触媒成形体成形体7を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。また、200時間の連続反応において反応率や選択率は安定しており低下することはなかった。[Example 4]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of methyl cellulose powder which is an organic binder component, 178 parts by mass of pure water is added and the clay-like substance is made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a ring shape having an outer diameter of 0.63 cm, an inner diameter of 0.30 cm, and a length of 0.50 cm using a piston type extrusion molding machine having a die opening ratio of 1.1%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 7.
The density X of the obtained catalyst molded body 7 is 1.306 (g / cm 3 ), the packing bulk density Y is 0.612 (g / cm 3 ), and the representative length Z is 0.062 (cm). The value of (X × Y) was 0.799 (g / cm 3 ) 2 , and the value of (X × Z) was 0.081 (g / cm 2 ).
Using the obtained catalyst molded product 7, the production of methacrolein and methacrylic acid was carried out in the same manner as in Example 1. The reaction results are shown in Table 1. In addition, the reaction rate and selectivity were stable and did not decrease in the continuous reaction for 200 hours.
[実施例5]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水148質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.1%のピストン式押出し成形機を用いて外径0.63cm、内径0.30cm、長さ0.50cmのリング状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体8を得た。
得られた触媒成形体8の密度Xは1.514(g/cm3)、充填嵩密度Yは0.750(g/cm3)、代表長さZは0.062(cm)であり、(X×Y)の値は1.135(g/cm3)2、(X×Z)の値は0.094(g/cm2)であった。
得られた触媒成形体成形体8を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。また、200時間の連続反応において反応率や選択率は安定しており低下することはなかった。[Example 5]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of methyl cellulose powder which is an organic binder component, 148 parts by mass of pure water is added and the clay-like substance is made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a ring shape having an outer diameter of 0.63 cm, an inner diameter of 0.30 cm, and a length of 0.50 cm using a piston type extrusion molding machine having a die opening ratio of 1.1%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 8.
The density X of the obtained catalyst molded body 8 is 1.514 (g / cm 3 ), the packing bulk density Y is 0.750 (g / cm 3 ), and the representative length Z is 0.062 (cm). The value of (X × Y) was 1.135 (g / cm 3 ) 2 , and the value of (X × Z) was 0.094 (g / cm 2 ).
Using the obtained catalyst molded product 8, the production of methacrolein and methacrylic acid was carried out in the same manner as in Example 1. The reaction results are shown in Table 1. In addition, the reaction rate and selectivity were stable and did not decrease in the continuous reaction for 200 hours.
[実施例6]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水164質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.4%のピストン式押出し成形機を用いて外径0.63cm、内径0.10cm、長さ0.50cmのリング状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体9を得た。
得られた触媒成形体9の密度Xは1.351(g/cm3)、充填嵩密度Yは0.775(g/cm3)、代表長さZは0.087(cm)であり、(X×Y)の値は1.047(g/cm3)2、(X×Z)の値は0.117(g/cm2)であった。
得られた触媒成形体成形体9を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。また、200時間の連続反応において反応率や選択率は安定しており低下することはなかった。[Example 6]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of the methylcellulose powder which is an organic binder component, 164 parts by mass of pure water was added and made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a ring shape having an outer diameter of 0.63 cm, an inner diameter of 0.10 cm, and a length of 0.50 cm using a piston type extrusion molding machine having a die opening ratio of 1.4%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 9.
The density X of the obtained catalyst molded body 9 is 1.351 (g / cm 3 ), the packing bulk density Y is 0.775 (g / cm 3 ), and the representative length Z is 0.087 (cm). The value of (X × Y) was 1.047 (g / cm 3 ) 2 , and the value of (X × Z) was 0.117 (g / cm 2 ).
Using the obtained catalyst molded product 9, the production of methacrolein and methacrylic acid was carried out in the same manner as in Example 1. The reaction results are shown in Table 1. In addition, the reaction rate and selectivity were stable and did not decrease in the continuous reaction for 200 hours.
[実施例7]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水158質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.4%のピストン式押出し成形機を用いて外径0.63cm、内径0.10cm、長さ0.50cmのリング状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体10を得た。
得られた触媒成形体10の密度Xは1.413(g/cm3)、充填嵩密度Yは0.815(g/cm3)、代表長さZは0.087(cm)であり、(X×Y)の値は1.152(g/cm3)2、(X×Z)の値は0.122(g/cm2)であった。
得られた触媒成形体成形体10を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。また、200時間の連続反応において反応率や選択率は安定しており低下することはなかった。[Example 7]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of the methylcellulose powder which is an organic binder component, 158 parts by mass of pure water was added and made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a ring shape having an outer diameter of 0.63 cm, an inner diameter of 0.10 cm, and a length of 0.50 cm using a piston type extrusion molding machine having a die opening ratio of 1.4%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 10.
The density X of the obtained catalyst molded body 10 is 1.413 (g / cm 3 ), the packing bulk density Y is 0.815 (g / cm 3 ), and the representative length Z is 0.087 (cm). The value of (X × Y) was 1.152 (g / cm 3 ) 2 , and the value of (X × Z) was 0.122 (g / cm 2 ).
Using the obtained catalyst molded product 10, the production of methacrolein and methacrylic acid was carried out in the same manner as in Example 1. The reaction results are shown in Table 1. In addition, the reaction rate and selectivity were stable and did not decrease in the continuous reaction for 200 hours.
[比較例4]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水192質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.1%のピストン式押出し成形機を用いて外径0.63cm、内径0.30cm、長さ0.50cmのリング状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体9を得た。
得られた触媒成形体9の密度Xは1.216(g/cm3)、充填嵩密度Yは0.552(g/cm3)、代表長さZは0.062(cm)であり、(X×Y)の値は0.671(g/cm3)2、(X×Z)の値は0.075(g/cm2)であった。
得られた触媒成形体成形体11を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。また、200時間の連続反応において反応率や選択率は安定しており低下することはなかった。[Comparative Example 4]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of the methylcellulose powder which is an organic binder component, 192 parts by mass of pure water was added and made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a ring shape having an outer diameter of 0.63 cm, an inner diameter of 0.30 cm, and a length of 0.50 cm using a piston type extrusion molding machine having a die opening ratio of 1.1%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 9.
The density X of the obtained catalyst molded body 9 is 1.216 (g / cm 3 ), the packing bulk density Y is 0.552 (g / cm 3 ), and the representative length Z is 0.062 (cm). The value of (X × Y) was 0.671 (g / cm 3 ) 2 , and the value of (X × Z) was 0.075 (g / cm 2 ).
Using the obtained catalyst molded body 11, the production of methacrolein and methacrylic acid was carried out in the same manner as in Example 1. The reaction results are shown in Table 1. In addition, the reaction rate and selectivity were stable and did not decrease in the continuous reaction for 200 hours.
[比較例5]
実施例1と同様の方法によって得られた触媒焼成粉末400質量部と有機バインダー成分であるメチルセルロース粉末12質量部とをよく混合した後、純水170質量部を加え、混練機で粘土状物質になるまで混練した。次いで得られた不定形の混練物を、ダイス開口率1.7%のピストン式押出し成形機を用いて外径0.66cm、長さ0.55cmの円柱状に成形した。混練物の排出速度は250mm/sに調整した。得られた成形品を110℃で熱風乾燥機を用いて乾燥し触媒成形体10を得た。
得られた触媒成形体10の密度Xは1.278(g/cm3)、充填嵩密度Yは0.791(g/cm3)、代表長さZは0.103(cm)であり、(X×Y)の値は1.011(g/cm3)2、(X×Z)の値は0.132(g/cm2)であった。
得られた触媒成形体成形体12を用いて、実施例1と同様の方法でメタクロレイン及びメタクリル酸の製造を実施した。反応結果について表1に示す。また、200時間の連続反応において反応率や選択率は安定しており低下することはなかった。[Comparative Example 5]
After well mixing 400 parts by mass of the catalyst calcined powder obtained by the same method as in Example 1 and 12 parts by mass of methyl cellulose powder which is an organic binder component, 170 parts by mass of pure water is added and the clay-like substance is made into a clay-like substance by a kneader. Kneaded until it became. Next, the obtained amorphous kneaded product was formed into a cylinder having an outer diameter of 0.66 cm and a length of 0.55 cm using a piston type extruder having a die opening ratio of 1.7%. The discharge rate of the kneaded material was adjusted to 250 mm / s. The obtained molded product was dried at 110 ° C. using a hot air dryer to obtain a catalyst molded product 10.
The density X of the obtained catalyst molded body 10 is 1.278 (g / cm 3 ), the packing bulk density Y is 0.791 (g / cm 3 ), and the representative length Z is 0.103 (cm). The value of (X × Y) was 1.011 (g / cm 3 ) 2 , and the value of (X × Z) was 0.132 (g / cm 2 ).
Using the obtained catalyst molded product 12, the production of methacrolein and methacrylic acid was carried out in the same manner as in Example 1. The reaction results are shown in Table 1. In addition, the reaction rate and selectivity were stable and did not decrease in the continuous reaction for 200 hours.
以上の結果から、上記式(1)及び(2)を満たすことにより、高い原料化合物の反応率を維持したたま、高い選択率でメタクロレイン及び/又はメタクリル酸の製造が可能となることが分かる。 From the above results, it can be seen that by satisfying the above formulas (1) and (2), methacrolein and / or methacrylic acid can be produced with a high selectivity while maintaining a high reaction rate of the raw material compound. ..
Claims (9)
0.700(g/cm3)2≦(X×Y)≦1.200(g/cm3)2 ・・・式(1)
0.050g/cm2≦(X×Z)≦0.130g/cm2・・・式(2)When the density of the catalyst molded body (g / cm 3 ) is X, the packing bulk density of the catalyst molded body (g / cm 3 ) is Y, and the representative length (cm) of the catalyst molded body is Z, the following formula (1) ) And (2) are satisfied.
0.700 (g / cm 3 ) 2 ≤ (X × Y) ≤ 1.200 (g / cm 3 ) 2 ... Equation (1)
0.050 g / cm 2 ≤ (X × Z) ≤ 0.130 g / cm 2 ... Equation (2)
MoaBibFecMdXeYfZgSihOi (A)
(式(A)中、Mo、Bi、Fe、Si及びOは、それぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルからなる群から選択される少なくとも1種の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛からなる群から選択される少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群から選択される少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは、各元素の原子比率を表し、a=12のとき、b=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2、h=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。)The catalyst molded product according to any one of claims 1 to 5, wherein the catalyst molded product has a composition represented by the following formula (A).
Mo a Bi b F c M d X e Y f Z g Si h O i (A)
(In formula (A), Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively. M represents at least one element selected from the group consisting of cobalt and nickel. X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc. Y represents phosphorus, boron, sulfur, selenium, tellurium. , At least one element selected from the group consisting of cerium, tungsten, antimony and titanium; Z indicates at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and tarium. . A, b, c, d, e, f, g, h and i represent the atomic ratio of each element, and when a = 12, b = 0.01-3, c = 0.01-5, d = 1-12, e = 0-8, f = 0-5, g = 0.001-2, h = 0-20, and i is oxygen required to satisfy the valence of each component. Atomic ratio.)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019059974 | 2019-03-27 | ||
JP2019059974 | 2019-03-27 | ||
PCT/JP2020/014138 WO2020196853A1 (en) | 2019-03-27 | 2020-03-27 | Catalyst molded article, catalyst molded article for producing methacrolein and/or methacrylic acid, and method for producing methacrolein and/or methacrylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020196853A1 true JPWO2020196853A1 (en) | 2021-12-02 |
JP7156506B2 JP7156506B2 (en) | 2022-10-19 |
Family
ID=72610219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021509649A Active JP7156506B2 (en) | 2019-03-27 | 2020-03-27 | Molded catalyst, molded catalyst for producing methacrolein and/or methacrylic acid, and method for producing methacrolein and/or methacrylic acid |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7156506B2 (en) |
KR (1) | KR102609794B1 (en) |
CN (1) | CN113710362B (en) |
SG (1) | SG11202109993UA (en) |
WO (1) | WO2020196853A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022202756A1 (en) * | 2021-03-24 | 2022-09-29 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03109946A (en) * | 1989-09-13 | 1991-05-09 | Degussa Ag | Catalyst for preparing unsaturated aldehyde from olefin and method of manufacturing said catalyst |
JP2008155126A (en) * | 2006-12-22 | 2008-07-10 | Mitsubishi Rayon Co Ltd | Method for producing metal component-containing catalyst |
WO2012141076A1 (en) * | 2011-04-11 | 2012-10-18 | 三菱レイヨン株式会社 | Method for preparing catalyst for production of methacrylic acid |
JP2013192988A (en) * | 2012-03-16 | 2013-09-30 | Mitsubishi Rayon Co Ltd | Catalyst for producing methacrylic acid, and method for producing the same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5310786A (en) * | 1987-01-08 | 1994-05-10 | Hoechst Aktiengesellschaft | Reversibly precipitable, water-soluble polymer conjugates |
BE1007879A3 (en) * | 1994-01-05 | 1995-11-07 | Blue Chips Holding | Polymer resin viscosity adjustable for filing on palladium catalyst substrate, method of preparation and use. |
JPH0957105A (en) | 1995-08-24 | 1997-03-04 | Mitsubishi Rayon Co Ltd | Production of catalyst for synthesizing methacrolein and methacrylic acid |
JP4846114B2 (en) | 2001-03-27 | 2011-12-28 | 三菱レイヨン株式会社 | Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using catalyst produced by the production method |
US7875347B2 (en) * | 2003-12-29 | 2011-01-25 | General Electric Company | Composite coatings for groundwall insulation, method of manufacture thereof and articles derived therefrom |
BRPI0500609A (en) * | 2004-03-10 | 2007-07-10 | Rohm & Haas | processes for preparing one or more modified catalysts, and for cryotriting one or more metal oxide catalysts |
JP5295815B2 (en) | 2009-02-18 | 2013-09-18 | 住友化学株式会社 | Production catalyst for methacrolein and methacrylic acid |
JP2013527803A (en) * | 2010-05-10 | 2013-07-04 | アドバンスト・キャタリスト・テクノロジーズ・リミテッド・ライアビリティ・カンパニー | Highly selective catalysts for nanostructured catalyst pellets, catalyst surface treatment and ethylene epoxidation |
WO2015067659A1 (en) * | 2013-11-11 | 2015-05-14 | Basf Se | Mechanically stable hollow-cylindrical moulded catalyst body for the gas phase oxidation of an alkene in order to obtain an unsaturated aldehyde and/or an unsaturated carboxylic acid |
-
2020
- 2020-03-27 CN CN202080025276.9A patent/CN113710362B/en active Active
- 2020-03-27 SG SG11202109993U patent/SG11202109993UA/en unknown
- 2020-03-27 KR KR1020217033863A patent/KR102609794B1/en active IP Right Grant
- 2020-03-27 JP JP2021509649A patent/JP7156506B2/en active Active
- 2020-03-27 WO PCT/JP2020/014138 patent/WO2020196853A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03109946A (en) * | 1989-09-13 | 1991-05-09 | Degussa Ag | Catalyst for preparing unsaturated aldehyde from olefin and method of manufacturing said catalyst |
JP2008155126A (en) * | 2006-12-22 | 2008-07-10 | Mitsubishi Rayon Co Ltd | Method for producing metal component-containing catalyst |
WO2012141076A1 (en) * | 2011-04-11 | 2012-10-18 | 三菱レイヨン株式会社 | Method for preparing catalyst for production of methacrylic acid |
JP2013192988A (en) * | 2012-03-16 | 2013-09-30 | Mitsubishi Rayon Co Ltd | Catalyst for producing methacrylic acid, and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP7156506B2 (en) | 2022-10-19 |
KR20210137209A (en) | 2021-11-17 |
CN113710362A (en) | 2021-11-26 |
SG11202109993UA (en) | 2021-10-28 |
WO2020196853A1 (en) | 2020-10-01 |
CN113710362B (en) | 2023-09-01 |
KR102609794B1 (en) | 2023-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5845337B2 (en) | Method for producing acrylic acid using a fixed bed multitubular reactor | |
JP5678476B2 (en) | Process for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP6229497B2 (en) | Method for producing methacrolein and methacrylic acid | |
JP4179780B2 (en) | Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by this method, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using this catalyst | |
JP4863436B2 (en) | Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JP5845338B2 (en) | Method for producing acrolein and acrylic acid using fixed bed multitubular reactor | |
JP7156506B2 (en) | Molded catalyst, molded catalyst for producing methacrolein and/or methacrylic acid, and method for producing methacrolein and/or methacrylic acid | |
JP4515769B2 (en) | Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing the same | |
JP4225530B2 (en) | Process for producing methacrolein and methacrylic acid synthesis catalyst | |
JP3268900B2 (en) | Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JP2005058909A (en) | Production method for catalyst for synthesizing methacrylic acid | |
JP4947756B2 (en) | Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP2010207803A (en) | Compound oxide catalyst | |
JP2007130519A (en) | Manufacturing method of extruded catalyst, and manufacturing method of unsaturated aldehyde and unsaturated carboxylic acid | |
JP5462300B2 (en) | Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid | |
JP7480671B2 (en) | Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids | |
JP7480672B2 (en) | Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids | |
JP7468292B2 (en) | Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids | |
JP7468291B2 (en) | Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids | |
JP2008149263A (en) | Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron | |
JP4301484B2 (en) | Method for producing methacrylic acid | |
JP2003251188A (en) | Catalyst for synthesizing methacrylic acid and manufacturing method for methacrylic acid | |
JP5394457B2 (en) | Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP2023140995A (en) | Catalyst, manufacturing method of (meth)acrolein and (meth)acrylic acid therewith | |
JPH06170239A (en) | Catalytic formed body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and its use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220919 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7156506 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |