JP2011246384A - Method for producing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Method for producing unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP2011246384A
JP2011246384A JP2010120464A JP2010120464A JP2011246384A JP 2011246384 A JP2011246384 A JP 2011246384A JP 2010120464 A JP2010120464 A JP 2010120464A JP 2010120464 A JP2010120464 A JP 2010120464A JP 2011246384 A JP2011246384 A JP 2011246384A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
raw material
carboxylic acid
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010120464A
Other languages
Japanese (ja)
Other versions
JP5678476B2 (en
Inventor
Kohei Yamada
耕平 山田
Tomomasa Tatsumi
奉正 辰已
Ken Oyauchi
健 大谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010120464A priority Critical patent/JP5678476B2/en
Publication of JP2011246384A publication Critical patent/JP2011246384A/en
Application granted granted Critical
Publication of JP5678476B2 publication Critical patent/JP5678476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for lowering temperature of a hot spot and obtaining high selectivity and a high yield of unsaturated aldehyde and unsaturated carboxylic acid.SOLUTION: In the method for producing unsaturated aldehyde and unsaturated carboxylic acid, using a fixed bed tubular reactor filled with a catalyst, vapor phase catalytic oxidation of a raw material, which is at least one selected from the group consisting of propylene, isobutylene, TBA and MTBE, is carried out by molecular oxygen or molecular oxygen-containing gas, and the unsaturated aldehyde or the unsaturated carboxylic acid corresponding to the raw material is produced. The catalyst is a composite oxide containing at least molybdenum, bismuth and iron. A plurality of reaction zones are arranged by dividing the inside of a reaction tube in the fixed bed tubular reactor in the tube axis direction. Each of the reaction zones is filled with the catalyst so that a ratio of the pore volume within the pore diameter range of 0.1-2 μm to the pore volume within the pore diameter range of 0.1-100 μm of the catalyst is increased from the raw material inlet side to the outlet side of the reaction tube.

Description

本発明は、不飽和アルデヒド及び不飽和カルボン酸の製造方法に関する。詳しくは、触媒を充填した固定床管式反応器を用いて、プロピレン、イソブチレン、第三級ブチルアルコール(以下、TBAともいう)及びメチル第3級ブチルエーテル(以下、MTBEもという)から選ばれる少なくとも一種の化合物を原料とし、分子状酸素又は分子状酸素含有ガスにより気相接触酸化することにより、不飽和アルデヒド及び不飽和カルボン酸を製造する方法に関する。   The present invention relates to a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid. Specifically, at least selected from propylene, isobutylene, tertiary butyl alcohol (hereinafter also referred to as TBA) and methyl tertiary butyl ether (hereinafter also referred to as MTBE) using a fixed bed tubular reactor packed with a catalyst. The present invention relates to a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid by gas phase catalytic oxidation using molecular oxygen or a molecular oxygen-containing gas as a raw material.

従来、触媒を充填した固定床多管式反応器を用いて、プロピレン、イソブチレン、TBA及びMTBEから選ばれる少なくとも一種の化合物を原料とし、分子状酸素又は分子状酸素含有ガスにより気相接触酸化することにより、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法に関しては数多くの提案がなされている。   Conventionally, using a fixed bed multitubular reactor packed with a catalyst, gas phase catalytic oxidation is performed with molecular oxygen or a molecular oxygen-containing gas using at least one compound selected from propylene, isobutylene, TBA and MTBE as a raw material. Thus, many proposals have been made regarding methods for producing the corresponding unsaturated aldehyde and unsaturated carboxylic acid.

前記酸化反応は、通常、固定床多管式反応器を用いて行われるが、大きな発熱を伴う反応であるため、過度の酸化反応による収率の低下と、触媒劣化が加速されることによる触媒寿命の低下の問題がある。ホットスポット部の温度を低く抑え、生産性と触媒寿命を改善するためにいくつかの提案がなされている。   The oxidation reaction is usually carried out using a fixed bed multi-tubular reactor. However, since the reaction involves a large exotherm, the yield is reduced due to excessive oxidation reaction and the catalyst is deteriorated due to acceleration of catalyst deterioration. There is a problem of reduced life. Several proposals have been made to keep the hot spot temperature low and improve productivity and catalyst life.

例えば、アルカリ土類金属の種類及び/又は量を変更して調製した活性の異なる複数個の触媒を原料ガス入口部から出口部に向かって活性がより高くなるように充填する方法が開示されている(特許文献1)。また、触媒成形体中の不活性成分の含有量を変更するとともに、触媒成形体の占有容積、アルカリ金属の種類及び/又は量、及び焼成温度の少なくとも一つを変更して活性を調整した、活性の異なる複数種の触媒成形体を各反応管の反応ガス入口側から出口側に向かって活性がより高くなるように充填する方法が開示されている(特許文献2)。   For example, a method is disclosed in which a plurality of catalysts having different activities prepared by changing the type and / or amount of alkaline earth metal are charged so that the activity becomes higher from the raw material gas inlet to the outlet. (Patent Document 1). In addition, the content of the inactive component in the catalyst molded body was changed, and the activity was adjusted by changing at least one of the occupied volume of the catalyst molded body, the type and / or amount of alkali metal, and the calcination temperature, A method of filling a plurality of types of catalyst molded bodies having different activities so as to increase the activity from the reaction gas inlet side to the outlet side of each reaction tube is disclosed (Patent Document 2).

更には、固定床多管型反応器における各反応管の内部を管軸方向に分割することにより複数個の反応帯を設け、触媒の真密度に対する触媒の見掛け密度の比が異なる触媒を充填する方法が開示されている(特許文献3)。また、触媒充填層を複数の反応帯に区分し、反応帯間で触媒の孔径がそれぞれ異なるように触媒を充填する方法が開示されている(特許文献4)。また、複数の反応帯の少なくとも2つにおいて占有容積が異なり、複数の反応帯の少なくとも1つにおいて不活性物質成形体を混合する充填方法が開示されている(特許文献5)。   Furthermore, a plurality of reaction zones are provided by dividing the inside of each reaction tube in the fixed bed multi-tubular reactor in the tube axis direction, and a catalyst having a different ratio of the apparent density of the catalyst to the true density of the catalyst is filled. A method is disclosed (Patent Document 3). In addition, a method is disclosed in which the catalyst packed bed is divided into a plurality of reaction zones, and the catalyst is filled so that the pore sizes of the catalysts differ between the reaction zones (Patent Document 4). Further, a filling method is disclosed in which the occupied volume is different in at least two of the plurality of reaction zones, and the inert substance molded body is mixed in at least one of the plurality of reaction zones (Patent Document 5).

特開平10−72389号公報Japanese Patent Laid-Open No. 10-72389 特開2001−328951号公報JP 2001-328951 A 特開2004−2209号公報JP 2004-2209 A 特開2004−2323号公報JP 2004-2323 A 特開2005−320315号公報JP 2005-320315 A

前述した従来公知のいずれの提案も、ホットスポット部の温度を低く抑えることに着目した提案である。しかしながら、固定床多管式反応器を用いた酸化反応を実施する場合、触媒層におけるホットスポット部の発生を完全になくすことはできず、ホットスポット部に位置する触媒の劣化度合いが他の部分に位置する触媒の劣化度合いに比較して相対的に大きいという問題は解決できていない。特に、モリブデン系の触媒を使用する場合や高い原料ガス濃度で反応を行う場合には、この問題は顕著となる。   Any of the above-described conventionally known proposals is a proposal focusing on keeping the temperature of the hot spot portion low. However, when carrying out an oxidation reaction using a fixed bed multitubular reactor, it is not possible to completely eliminate the occurrence of hot spot portions in the catalyst layer, and the degree of deterioration of the catalyst located in the hot spot portion is different from that of other portions. The problem of being relatively large compared to the degree of deterioration of the catalyst located in the region cannot be solved. In particular, this problem becomes significant when a molybdenum-based catalyst is used or when the reaction is performed at a high source gas concentration.

また、プロピレン、イソブチレン、TBA及びMTBEから選ばれる少なくとも一種の化合物を接触気相酸化してそれぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する反応においては、高温のホットスポット部の発生により並列反応、逐次反応等の望ましくない副反応が起こりやすく、目的生成物の選択率、収率が低下する。この副反応は触媒の好ましくない酸化還元状態への移行、細孔閉塞等を引き起こし、触媒寿命を短くする原因ともなる。   Further, in the reaction of producing at least one compound selected from propylene, isobutylene, TBA and MTBE by catalytic gas phase oxidation to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid, respectively, due to the occurrence of a hot spot portion at a high temperature. Undesirable side reactions such as parallel reaction and sequential reaction are likely to occur, and the selectivity and yield of the target product are lowered. This side reaction causes an undesired transition of the catalyst to a redox state, clogging of pores, and the like, and shortens the catalyst life.

そこで本発明は、固定床管式反応器を用いて、プロピレン、イソブチレン、TBA及びMTBEからなる群から選択される少なくとも一種の化合物を原料とし、分子状酸素又は分子状酸素含有ガスにより気相接触酸化することにより、原料に対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法において、ホットスポット部の温度を低下させ、高い不飽和アルデヒド及び不飽和カルボン酸の選択率、収率を得ることが可能な方法を提供することを目的とする。   Therefore, the present invention uses a fixed bed tubular reactor, using at least one compound selected from the group consisting of propylene, isobutylene, TBA, and MTBE as a raw material, and vapor phase contact with molecular oxygen or a molecular oxygen-containing gas. In the method of producing an unsaturated aldehyde and unsaturated carboxylic acid corresponding to the raw material by oxidation, the temperature of the hot spot part is lowered to obtain a high selectivity and yield of the unsaturated aldehyde and unsaturated carboxylic acid. The purpose is to provide a method capable of

本発明に係る不飽和アルデヒド及び不飽和カルボン酸の製造方法は、触媒を充填した固定床管式反応器を用いて、プロピレン、イソブチレン、第三級ブチルアルコール及びメチル第三級ブチルエーテルからなる群から選択される少なくとも一種の化合物を原料とし、分子状酸素又は分子状酸素含有ガスにより気相接触酸化することにより、原料に対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法において、前記触媒が、モリブデン、ビスマス及び鉄を少なくとも含む複合酸化物であり、前記固定床管式反応器内の反応管の内部を管軸方向に分割することにより、複数個の反応帯を設け、前記反応管の原料入口側から出口側に向けて、前記触媒の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比が大きくなるように、前記反応管内の各反応帯に前記触媒が充填されている方法である。   The method for producing an unsaturated aldehyde and an unsaturated carboxylic acid according to the present invention uses a fixed bed tubular reactor packed with a catalyst, from the group consisting of propylene, isobutylene, tertiary butyl alcohol and methyl tertiary butyl ether. In the method for producing an unsaturated aldehyde and an unsaturated carboxylic acid corresponding to a raw material by performing gas phase catalytic oxidation with molecular oxygen or a molecular oxygen-containing gas using at least one selected compound as a raw material, the catalyst comprises: A composite oxide containing at least molybdenum, bismuth and iron, and dividing the inside of the reaction tube in the fixed bed tubular reactor in the tube axis direction to provide a plurality of reaction zones, From the raw material inlet side to the outlet side, the catalyst has a pore diameter in the range of 0.1 to 2 μm with respect to the pore volume in the range of 0.1 to 100 μm. In this method, each reaction zone in the reaction tube is filled with the catalyst so that the ratio of the pore volumes becomes large.

本発明に係る方法によれば、固定床管式反応器を用いて、プロピレン、イソブチレン、TBA及びMTBEからなる群から選択される少なくとも一種の化合物を原料とし、分子状酸素又は分子状酸素含有ガスにより気相接触酸化することにより、原料に対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法において、ホットスポット部の温度を低下させ、高い不飽和アルデヒド及び不飽和カルボン酸の選択率、収率を得ることができる。   According to the method of the present invention, molecular oxygen or molecular oxygen-containing gas is obtained using at least one compound selected from the group consisting of propylene, isobutylene, TBA, and MTBE as a raw material using a fixed bed tubular reactor. In the method for producing an unsaturated aldehyde and unsaturated carboxylic acid corresponding to the raw material by gas phase catalytic oxidation, the temperature of the hot spot is lowered, and the selectivity and yield of the high unsaturated aldehyde and unsaturated carboxylic acid are reduced. Rate can be obtained.

本発明に係る不飽和アルデヒド及び不飽和カルボン酸の製造方法は、触媒を充填した固定床管式反応器を用いて、プロピレン、イソブチレン、第三級ブチルアルコール及びメチル第三級ブチルエーテルからなる群から選択される少なくとも一種の化合物を原料とし、分子状酸素又は分子状酸素含有ガスにより気相接触酸化することにより、原料に対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法において、前記触媒が、モリブデン、ビスマス及び鉄を少なくとも含む複合酸化物であり、前記固定床管式反応器内の反応管の内部を管軸方向に分割することにより、複数個の反応帯を設け、前記反応管の原料入口側から出口側に向けて、前記触媒の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比が大きくなるように、前記反応管内の各反応帯に前記触媒が充填されている。   The method for producing an unsaturated aldehyde and an unsaturated carboxylic acid according to the present invention uses a fixed bed tubular reactor packed with a catalyst, from the group consisting of propylene, isobutylene, tertiary butyl alcohol and methyl tertiary butyl ether. In the method for producing an unsaturated aldehyde and an unsaturated carboxylic acid corresponding to a raw material by performing gas phase catalytic oxidation with molecular oxygen or a molecular oxygen-containing gas using at least one selected compound as a raw material, the catalyst comprises: A composite oxide containing at least molybdenum, bismuth and iron, and dividing the inside of the reaction tube in the fixed bed tubular reactor in the tube axis direction to provide a plurality of reaction zones, From the raw material inlet side to the outlet side, the catalyst has a pore diameter in the range of 0.1 to 2 μm with respect to the pore volume in the range of 0.1 to 100 μm. Each reaction zone in the reaction tube is filled with the catalyst so that the ratio of the pore volumes becomes large.

従来、本発明に係る方法において行われる気相接触酸化のような発熱反応においては、使用する触媒内部の細孔構造を制御することでホットスポット部の温度低下を試みる検討はなされていなかった。本発明では、触媒内部の細孔構造を制御することでホットスポット部の温度を低下させ、さらには目的生成物の選択率、収率を向上させる方法を見出した。具体的には、細孔構造の異なる複数種の触媒を用い、反応管の管軸方向に複数個に分割された反応帯に、原料入口側から出口側に向けて、触媒の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比が順次大きくなるように触媒を配置する。即ち、原料入口側に前記細孔容積比が最も低い触媒を充填した反応帯を設け、出口側に前記細孔容積比が最も高い触媒を充填した反応帯を設け、その間の反応帯は原料入口から出口側に向けて、順次前記細孔容積比が大きくなる触媒を充填した反応帯とする。これによりホットスポット部の温度を低下させることができ、反応が安全かつ効率的に行われ、触媒の寿命を損なうことなく生産性の向上が達成できる。   Conventionally, in an exothermic reaction such as gas phase catalytic oxidation performed in the method according to the present invention, no attempt has been made to try to lower the temperature of the hot spot part by controlling the pore structure inside the catalyst used. In the present invention, the inventors have found a method for lowering the temperature of the hot spot portion by controlling the pore structure inside the catalyst, and further improving the selectivity and yield of the target product. Specifically, a plurality of types of catalysts having different pore structures are used, and a catalyst zone having a pore diameter of 0. 0 is formed in a reaction zone divided into a plurality in the axial direction of the reaction tube from the raw material inlet side to the outlet side. The catalyst is arranged so that the ratio of the pore volume in the range of 0.1 to 2 μm to the pore volume in the range of 1 to 100 μm is sequentially increased. That is, a reaction zone filled with the catalyst having the lowest pore volume ratio is provided on the raw material inlet side, and a reaction zone filled with the catalyst having the highest pore volume ratio is provided on the outlet side. The reaction zone is filled with a catalyst in which the pore volume ratio increases sequentially from the outlet toward the outlet. Thereby, the temperature of a hot spot part can be lowered | hung, reaction is performed safely and efficiently, and the improvement of productivity can be achieved without impairing the lifetime of a catalyst.

(触媒、触媒の製造方法)
本発明で使用する触媒は、モリブデン、ビスマス及び鉄を少なくとも含む複合酸化物である。特に、前記触媒は下記式(I)で表される組成を有することが好ましい。
(Catalyst, production method of catalyst)
The catalyst used in the present invention is a composite oxide containing at least molybdenum, bismuth and iron. In particular, the catalyst preferably has a composition represented by the following formula (I).

MoaBibFecdefgSihi (I)
前記式(I)において、Mo、Bi、Fe、Si及びOはそれぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示す。Mはコバルト及びニッケルから選ばれる少なくとも1種の元素を示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛から選ばれる少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンから選ばれる少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、g、h及びiは各元素の原子比率を表し、a=12のときb=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2及びh=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。なお、前記式(I)に示される組成は各元素の原料の仕込み量から算出した値とする。
Mo a Bi b Fe c M d X e Y f Z g Si h O i (I)
In the formula (I), Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively. M represents at least one element selected from cobalt and nickel. X represents at least one element selected from chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc. Y represents at least one element selected from phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium. Z represents at least one element selected from lithium, sodium, potassium, rubidium, cesium and thallium. a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element. When a = 12, b = 0.01-3, c = 0.01-5, d = 1. -12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, and h = 0 to 20, i is an oxygen atomic ratio necessary for satisfying the valence of each component. is there. The composition represented by the formula (I) is a value calculated from the amount of raw material charged for each element.

本発明に係る触媒の製造方法としては特に限定されないが、例えば触媒成分を含む溶液又はスラリーを調製し、該溶液又はスラリーを乾燥、焼成し、成形することにより製造することができる。   Although it does not specifically limit as a manufacturing method of the catalyst which concerns on this invention, For example, it can manufacture by preparing the solution or slurry containing a catalyst component, drying, baking, and shape | molding this solution or slurry.

触媒成分の出発原料としては、各元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物等を使用することができる。モリブデン原料としては、例えばパラモリブデン酸アンモニウム、三酸化モリブデン等が挙げられる。ビスマス原料としては、例えば、三酸化ビスマス、硝酸ビスマス、炭酸ビスマス、水酸化ビスマス等が使用できる。鉄原料としては、例えば、硝酸第二鉄、塩化第二鉄等が使用できる。前記触媒成分の原料は、各元素について1種のみでもよく、2種以上を併用してもよい。また、硝酸ビスマス等の水に不溶な原料は、予め硝酸等の酸に溶かして用いてもよい。   As starting materials for the catalyst components, oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides, and the like of each element can be used. Examples of the molybdenum raw material include ammonium paramolybdate and molybdenum trioxide. Examples of the bismuth raw material that can be used include bismuth trioxide, bismuth nitrate, bismuth carbonate, and bismuth hydroxide. As the iron raw material, for example, ferric nitrate, ferric chloride and the like can be used. The raw material of the catalyst component may be only one kind for each element, or two or more kinds may be used in combination. Further, a raw material insoluble in water such as bismuth nitrate may be used by dissolving in an acid such as nitric acid in advance.

触媒成分を含む溶液又はスラリーを調製する方法としては、触媒成分の著しい偏在を伴わない範囲で、沈殿法、酸化物混合法等の公知の方法を適用することができる。該溶液又はスラリーの溶媒としては水、アルコール等を用いることができる。   As a method for preparing a solution or slurry containing a catalyst component, a known method such as a precipitation method or an oxide mixing method can be applied as long as the catalyst component is not significantly unevenly distributed. As the solvent of the solution or slurry, water, alcohol or the like can be used.

触媒成分を含む溶液又はスラリーの乾燥方法としては、種々の方法を用いることが可能であり、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等が挙げられる。乾燥に使用する乾燥機の機種や乾燥時の温度等は特に限定されず、乾燥条件を適宜変えることで目的に応じた触媒前駆体の乾燥物を得ることができる。中でも、後述するように、乾燥物の平均粒子径を制御し易いことから、噴霧乾燥法を用いることが好ましい。   As a method for drying a solution or slurry containing a catalyst component, various methods can be used, and examples thereof include an evaporating and drying method, a spray drying method, a drum drying method, and an airflow drying method. The model of the dryer used for drying, the temperature at the time of drying and the like are not particularly limited, and a dried catalyst precursor according to the purpose can be obtained by appropriately changing the drying conditions. Among these, as will be described later, it is preferable to use the spray drying method because the average particle diameter of the dried product can be easily controlled.

噴霧乾燥法は、例えば回転円板型遠心アトマイザー、二流体ノズル型アトマイザー等を備えたスプレー乾燥機を使用して行うことができる。スプレー乾燥機の入口温度や出口温度等の条件は、所望の平均粒子径が得られるように適宜設定される。例えば、固形物を35〜55質量%含む水性スラリーを、回転円板型遠心アトマイザーを備えたスプレー乾燥機を用いて噴霧乾燥する場合の一般的な乾燥条件は、入口温度100〜500℃、出口温度100〜200℃、アトマイザー回転数は4000〜25000rpmである。   The spray drying method can be performed using, for example, a spray dryer provided with a rotating disk type centrifugal atomizer, a two-fluid nozzle type atomizer, or the like. Conditions such as the inlet temperature and outlet temperature of the spray dryer are appropriately set so as to obtain a desired average particle size. For example, the general drying conditions in the case of spray drying an aqueous slurry containing 35 to 55% by mass of a solid using a spray dryer equipped with a rotating disk type centrifugal atomizer include an inlet temperature of 100 to 500 ° C., an outlet The temperature is 100 to 200 ° C., and the atomizer speed is 4000 to 25000 rpm.

触媒成分を含む溶液又はスラリーを乾燥した後の粉体は、触媒成分の出発原料等に由来する硝酸塩等の塩を含んでいる場合がある。塩が残存していると触媒成形体の機械的強度が低下する場合があるため、乾燥後、塩を分解するために焼成する。塩分解のための焼成条件としては公知の焼成条件を適用できるが、空気雰囲気下、200〜600℃で行われることが好ましい。焼成時間は、目的とする触媒成形体に応じて適宜選択される。当該焼成により、触媒粉体が得られる。   The powder after the solution or slurry containing the catalyst component is dried may contain a salt such as nitrate derived from the starting material of the catalyst component. If the salt remains, the mechanical strength of the catalyst molded body may be reduced. Therefore, after drying, the catalyst is fired to decompose the salt. Although known firing conditions can be applied as firing conditions for salt decomposition, it is preferably performed at 200 to 600 ° C. in an air atmosphere. The calcination time is appropriately selected according to the target catalyst molded body. A catalyst powder is obtained by the calcination.

前記触媒粉体の平均粒子径を小さくすると細孔径2μmより大きな細孔が触媒内部に多く形成される傾向にある。一方、前記触媒粉体の平均粒子径を大きくすると2μmより小さな細孔が触媒内部に多く形成される傾向がある。また、前記触媒粉体の平均粒子径を小さくすると単位体積当たりの粒子同士の接触点が増加するため得られる触媒成形体の機械的強度が向上する傾向がある。   When the average particle size of the catalyst powder is reduced, many pores larger than 2 μm in pore size tend to be formed inside the catalyst. On the other hand, when the average particle diameter of the catalyst powder is increased, many pores smaller than 2 μm tend to be formed inside the catalyst. Further, when the average particle size of the catalyst powder is reduced, the contact point between the particles per unit volume increases, so that the mechanical strength of the obtained catalyst compact tends to be improved.

これらを考慮すると、前記触媒粉体の平均粒子径は10μm以上、200μm以下が好ましい。平均粒子径が前記範囲であれば、選択率及び機械的強度のバランスに優れている。前記触媒粉体の平均粒子径は、20μm以上、150μm以下がより好ましい。なお、触媒粉体の平均粒子径は、触媒成分を含む溶液又はスラリーの乾燥条件、焼成条件等を適宜選択することにより前記範囲内に制御することができる。また、触媒粉体の平均粒子径は、粒度分布測定装置「SALD−7000」(商品名、島津製作所製)を用いて測定した平均粒子径である。   Considering these, the average particle diameter of the catalyst powder is preferably 10 μm or more and 200 μm or less. When the average particle diameter is in the above range, the balance between selectivity and mechanical strength is excellent. The average particle diameter of the catalyst powder is more preferably 20 μm or more and 150 μm or less. The average particle diameter of the catalyst powder can be controlled within the above range by appropriately selecting the drying conditions, firing conditions, etc. of the solution or slurry containing the catalyst component. The average particle size of the catalyst powder is an average particle size measured using a particle size distribution measuring device “SALD-7000” (trade name, manufactured by Shimadzu Corporation).

前記触媒粉体の嵩比重は、成形する際の取り扱い性と触媒の性能の面から0.5〜1.8kg/Lの範囲であることが好ましい。この範囲であれば成形に耐えうる十分な強度が得られるため成形の際に粒子が潰れ難く、また、触媒の活性及び選択性も高い。前記触媒粉体の嵩比重は、0.8〜1.2kg/Lであることがより好ましい。ここで、嵩比重とは、JIS K 6720−2:1999記載の方法で測定した値である。前記触媒粉体の嵩比重は、例えば、噴霧乾燥する溶液又はスラリーの濃度、該溶液又はスラリーを調製する際の混合速度や攪拌速度等で調節することができる。   The bulk density of the catalyst powder is preferably in the range of 0.5 to 1.8 kg / L from the viewpoint of handleability during molding and the performance of the catalyst. Within this range, sufficient strength to withstand molding can be obtained, so that the particles are not easily crushed during molding, and the activity and selectivity of the catalyst are high. The bulk density of the catalyst powder is more preferably 0.8 to 1.2 kg / L. Here, the bulk specific gravity is a value measured by the method described in JIS K 6720-2: 1999. The bulk specific gravity of the catalyst powder can be adjusted, for example, by the concentration of the solution or slurry to be spray-dried, the mixing speed or the stirring speed when preparing the solution or slurry.

前記触媒粉体は次いで成形され、触媒成形体とする。触媒粉体を成形する方法としては特に限定されないが、例えば押出成形、打錠成形、転動造粒、鋳型成形等により行うことができる。   The catalyst powder is then molded into a catalyst molded body. The method for forming the catalyst powder is not particularly limited, and can be performed by, for example, extrusion molding, tableting molding, rolling granulation, mold molding or the like.

触媒成形体を製造する際には、公知の添加剤、例えば、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース等の有機化合物を添加しても良い。さらにグラファイトやケイソウ土等の無機化合物、ガラス繊維、セラミックファイバーや炭素繊維等の無機ファイバーを添加してもよい。   When manufacturing a catalyst molded body, you may add well-known additives, for example, organic compounds, such as polyvinyl alcohol, carboxymethylcellulose, and hydroxypropyl methylcellulose. Further, inorganic compounds such as graphite and diatomaceous earth, inorganic fibers such as glass fiber, ceramic fiber and carbon fiber may be added.

上記のようにして得られた触媒成形体は再度焼成しても構わない。焼成は通常200〜600℃の温度範囲で1〜3時間行われる。これにより触媒が製造される。   The catalyst molded body obtained as described above may be fired again. Firing is usually performed in a temperature range of 200 to 600 ° C. for 1 to 3 hours. Thereby, a catalyst is manufactured.

触媒の形状については特に制限はなく、球状、円柱状(ペレット状)、リング状、不定形などのいずれの形状でもよい。球状の場合、真球である必要はなく実質的に球状であればよい。円柱状及びリング状についても同様である。触媒の大きさについては、触媒の形状が球状の場合、平均直径は1〜15mmが好ましく、1〜10mmがより好ましく、3〜10mmが更に好ましく、3〜8mmが特に好ましい。触媒の細孔容積としては、好ましくは0.2〜0.7cm3/gである。 The shape of the catalyst is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape (pellet shape), a ring shape, and an indefinite shape. In the case of a spherical shape, it does not have to be a true sphere and may be substantially spherical. The same applies to the cylindrical shape and the ring shape. About the magnitude | size of a catalyst, when the shape of a catalyst is spherical shape, 1-15 mm is preferable, as for an average diameter, 1-10 mm is more preferable, 3-10 mm is still more preferable, and 3-8 mm is especially preferable. The pore volume of the catalyst is preferably 0.2 to 0.7 cm 3 / g.

なお、本発明における触媒の細孔容積及び細孔径分布は、水銀圧入式ポロシメーター(商品名:「AutoPore IV 9500」、micromeritics社製)を用い、平均昇圧速度0.01〜0.3MPa/秒で昇圧し、細孔径0.006〜300μmの範囲について測定された触媒単位質量あたりの細孔容積及び細孔径分布である。   In addition, the pore volume and pore diameter distribution of the catalyst in the present invention were measured by using a mercury intrusion porosimeter (trade name: “AutoPore IV 9500”, manufactured by micromeritics) at an average pressure increase rate of 0.01 to 0.3 MPa / second. The pore volume and the pore size distribution per unit mass of the catalyst measured for pressure in the range of 0.006 to 300 μm.

本発明において用いることのできる触媒の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比は、特に限定されないが、好ましくは0.30〜0.98の範囲であり、より好ましくは0.35〜0.85の範囲である。細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比を0.30以上とすることによって、細孔内拡散効率が向上し、目的生成物への選択率が向上する傾向にある。一方、細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比を0.98以下とすることによって、触媒強度が向上する傾向にある。   The ratio of the pore volume in the pore diameter range of 0.1 to 2 μm to the pore volume in the pore diameter range of 0.1 to 100 μm of the catalyst that can be used in the present invention is not particularly limited, but preferably 0.30. It is the range of -0.98, More preferably, it is the range of 0.35-0.85. By setting the ratio of the pore volume in the range of 0.1 to 2 μm to the pore volume in the range of 0.1 to 100 μm to 0.30 or more, the diffusion efficiency in the pores is improved, and the target generation There is a tendency for the selectivity to goods to improve. On the other hand, when the ratio of the pore volume in the range of 0.1 to 2 μm to the pore volume in the range of 0.1 to 100 μm is 0.98 or less, the catalyst strength tends to be improved.

(不飽和アルデヒド及び不飽和カルボン酸の製造方法)
本発明に係る方法では、触媒を充填した固定床管式反応器を用いて、プロピレン、イソブチレン、第三級ブチルアルコール及びメチル第三級ブチルエーテルからなる群から選択される少なくとも一種の化合物を原料とし、分子状酸素又は分子状酸素含有ガスにより気相接触酸化することにより、原料に対応する不飽和アルデヒド及び不飽和カルボン酸を製造する。
(Method for producing unsaturated aldehyde and unsaturated carboxylic acid)
In the method according to the present invention, using a fixed bed tubular reactor packed with a catalyst, at least one compound selected from the group consisting of propylene, isobutylene, tertiary butyl alcohol and methyl tertiary butyl ether is used as a raw material. The unsaturated aldehyde and unsaturated carboxylic acid corresponding to the raw material are produced by vapor phase catalytic oxidation with molecular oxygen or molecular oxygen-containing gas.

本発明においては、固定床管式反応器内の反応管の内部を管軸方向に分割することにより、複数個の反応帯を設け、反応管の原料入口側から出口側に向けて、前記触媒の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比が大きくなるように、反応管内の各反応帯に前記触媒を充填する。細孔径0.1〜2μmの範囲の細孔容積の割合が大きい触媒を出口側に配置することにより、前記不飽和アルデヒド及び不飽和カルボン酸の製造においてホットスポット部の温度を低下させ、かつ不飽和アルデヒド及び不飽和カルボン酸の選択率、収率を向上させることができる。   In the present invention, by dividing the inside of the reaction tube in the fixed bed tubular reactor in the tube axis direction, a plurality of reaction zones are provided, and the catalyst is provided from the raw material inlet side to the outlet side of the reaction tube. The catalyst is packed in each reaction zone in the reaction tube so that the ratio of the pore volume in the range of 0.1 to 2 μm to the pore volume in the range of 0.1 to 100 μm is larger. By disposing a catalyst having a large pore volume ratio in the range of pore diameters of 0.1 to 2 μm on the outlet side, the temperature of the hot spot part is decreased in the production of the unsaturated aldehyde and unsaturated carboxylic acid, and Selectivity and yield of saturated aldehyde and unsaturated carboxylic acid can be improved.

各反応帯に充填する触媒の組成は、同一でも、あるいは異なっていてもよいが、触媒活性は同一であることが好ましい。また、各反応帯に充填する触媒の形状は、同一でも、あるいは異なっていてもよいが(例えば、原料入口側:球状触媒、出口側:ペレット状触媒)、通常、同一形状の成形触媒又は同一形状の触媒を充填するのが好ましい。また、各反応帯に充填する触媒の充填密度(嵩密度)は、同一でも、あるいは異なっていてもよい。充填密度が極端に高い部分があると、反応が急激に進行しホットスポット部が発生しやすくなるため、触媒充填密度は、0.3〜1.2g/mlの範囲が好ましい。   The composition of the catalyst charged in each reaction zone may be the same or different, but the catalyst activity is preferably the same. In addition, the shape of the catalyst filled in each reaction zone may be the same or different (for example, raw material inlet side: spherical catalyst, outlet side: pellet-like catalyst). It is preferable to fill the catalyst in the shape. Moreover, the packing density (bulk density) of the catalyst packed in each reaction zone may be the same or different. If there is a portion with an extremely high packing density, the reaction proceeds rapidly and a hot spot portion is likely to be generated. Therefore, the catalyst packing density is preferably in the range of 0.3 to 1.2 g / ml.

反応管内の反応帯の数は特に限定されず、多いほど触媒層のホットスポット部の温度を制御しやすくなるが、工業的には2又は3程度にすることで十分目的とする効果を得ることができる。また、各反応帯に充填される触媒層の長さの比については、酸化反応条件や各反応帯に充填される触媒の組成、形状、サイズ等によって最適値が異なるため特に制限されず、全体として最適な活性、選択率及び収率が得られるように適宜選択することができる。触媒の反応管への充填に際しては、不活性物質で希釈した触媒を各反応帯に充填することもできる。   The number of reaction zones in the reaction tube is not particularly limited, and the greater the number, the easier it is to control the temperature of the hot spot part of the catalyst layer. Can do. Further, the ratio of the length of the catalyst layer filled in each reaction zone is not particularly limited because the optimum value varies depending on the oxidation reaction conditions and the composition, shape, size, etc. of the catalyst filled in each reaction zone. Can be appropriately selected so as to obtain optimum activity, selectivity and yield. When filling the catalyst into the reaction tube, a catalyst diluted with an inert substance can be filled in each reaction zone.

本発明に係る方法では、プロピレン、イソブチレン、第三級ブチルアルコール及びメチル第三級ブチルエーテルからなる群から選択される少なくとも一種の化合物を原料とし、それと分子状酸素又は分子状酸素含有ガスとを固体触媒に接触させる。前記原料並びに分子状酸素もしくは分子状酸素含有ガス(以下「原料ガス」という)中の前記化合物の濃度は通常1〜20容量%である。前記原料ガス中の前記化合物と分子状酸素とのモル比は1:0.5〜1:3が好ましい。前記原料ガスには水蒸気を加えてもよく、水蒸気の濃度は通常1〜45容量%である。また、反応圧力は通常0〜数100kPa、反応温度は通常250〜400℃である、接触時間は通常1.5〜15秒である。   In the method according to the present invention, at least one compound selected from the group consisting of propylene, isobutylene, tertiary butyl alcohol and methyl tertiary butyl ether is used as a raw material, and it is solidified with molecular oxygen or a molecular oxygen-containing gas. Contact with catalyst. The concentration of the compound in the raw material and molecular oxygen or molecular oxygen-containing gas (hereinafter referred to as “source gas”) is usually 1 to 20% by volume. The molar ratio of the compound and molecular oxygen in the source gas is preferably 1: 0.5 to 1: 3. Water vapor may be added to the source gas, and the concentration of water vapor is usually 1 to 45% by volume. The reaction pressure is usually 0 to several hundred kPa, the reaction temperature is usually 250 to 400 ° C., and the contact time is usually 1.5 to 15 seconds.

以下、実施例及び比較例により本発明を具体的に説明する。実施例及び比較例中の「部」は質量部である。原料ガス及び反応ガスは、ガスクロマトグラフィーにより分析した。触媒成分の組成は触媒原料の仕込み量から求めた。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. “Parts” in Examples and Comparative Examples are parts by mass. The raw material gas and the reaction gas were analyzed by gas chromatography. The composition of the catalyst component was determined from the charged amount of the catalyst raw material.

実施例及び比較例の反応原料の転化率、生成する不飽和アルデヒド又は不飽和カルボン酸の選択率、不飽和アルデヒド及び不飽和カルボン酸の合計収率、並びにΔTは、それぞれ以下のように定義される。   The conversion rates of the reaction raw materials in Examples and Comparative Examples, the selectivity of the unsaturated aldehyde or unsaturated carboxylic acid to be produced, the total yield of unsaturated aldehyde and unsaturated carboxylic acid, and ΔT are respectively defined as follows: The

転化率(%)=A/B×100
不飽和アルデヒドの選択率(%)=C/A×100
不飽和カルボン酸の選択率(%)=D/A×100
合計収率(%)=(C+D)/B×100
ΔT=(ホットスポット部温度(℃))−(反応温度(℃))
ここで、Aは反応した原料のモル数、Bは供給した原料のモル数、Cは生成した不飽和アルデヒドのモル数、Dは生成した不飽和カルボン酸のモル数である。ホットスポット部の温度は反応管内部に熱伝対を設置し、軸方向に1cmあるいは0.5cm間隔で実反応温度を測定し、反応温度は熱媒の温度とした。
Conversion rate (%) = A / B × 100
Selectivity of unsaturated aldehyde (%) = C / A × 100
Selectivity of unsaturated carboxylic acid (%) = D / A × 100
Total yield (%) = (C + D) / B × 100
ΔT = (hot spot temperature (° C.)) − (Reaction temperature (° C.))
Here, A is the number of moles of the reacted raw material, B is the number of moles of the supplied raw material, C is the number of moles of the generated unsaturated aldehyde, and D is the number of moles of the generated unsaturated carboxylic acid. As for the temperature of the hot spot part, a thermocouple was installed inside the reaction tube, the actual reaction temperature was measured at intervals of 1 cm or 0.5 cm in the axial direction, and the reaction temperature was the temperature of the heat medium.

充填密度は、JIS K 7365:1999にしたがって測定を行った。   The packing density was measured according to JIS K 7365: 1999.

細孔容積及び細孔径分布の測定は、水銀圧入式ポロシメーター(商品名:「AutoPore IV 9500」、micromeritics社製)を用い、平均昇圧速度0.01〜0.3MPa/秒で昇圧し、細孔径0.006〜300μmの範囲について行った。また、触媒粉体の平均粒子径の測定は、粒度分布測定装置(商品名:「SALD−7000」、島津製作所製)を用いて行った。   The pore volume and pore size distribution were measured using a mercury intrusion porosimeter (trade name: “AutoPore IV 9500”, manufactured by micromeritics), and the pressure was increased at an average pressure increase rate of 0.01 to 0.3 MPa / second. It carried out about the range of 0.006-300 micrometers. The average particle size of the catalyst powder was measured using a particle size distribution measuring device (trade name: “SALD-7000”, manufactured by Shimadzu Corporation).

<触媒製造例1:触媒(1)の調製>
純水2000部に、パラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム12.4部、硝酸セシウム23.0部、三酸化アンチモン27.4部及び三酸化ビスマス33.0部を加え、加熱、撹拌した。更に、硝酸第二鉄209.8部、硝酸ニッケル75.5部、硝酸コバルト453.3部、硝酸鉛31.3部及び85質量%リン酸5.6部を順次加え、加熱、撹拌し、水性のスラリーとした。その後、該水性のスラリーを、回転円板型遠心アトマイザーを備えたスプレー乾燥機を用いて噴霧乾燥した。このとき、スプレー乾燥機のアトマイザーの回転数は22,000rpm、スプレー乾燥機の入口温度は250℃、出口温度は170℃であった。次いで、この乾燥粒子を300℃で1時間、510℃で3時間焼成を行い、触媒粉体とした。このときの触媒粉体の平均粒子径は30μmであった。
<Catalyst Production Example 1: Preparation of catalyst (1)>
To 2000 parts of pure water, 500 parts of ammonium paramolybdate, 12.4 parts of ammonium paratungstate, 23.0 parts of cesium nitrate, 27.4 parts of antimony trioxide and 33.0 parts of bismuth trioxide are added and heated and stirred. did. Further, 209.8 parts of ferric nitrate, 75.5 parts of nickel nitrate, 453.3 parts of cobalt nitrate, 31.3 parts of lead nitrate and 5.6 parts of 85% by mass phosphoric acid were added successively, heated and stirred. An aqueous slurry was obtained. Thereafter, the aqueous slurry was spray-dried using a spray dryer equipped with a rotating disk type centrifugal atomizer. At this time, the rotation speed of the atomizer of the spray dryer was 22,000 rpm, the inlet temperature of the spray dryer was 250 ° C., and the outlet temperature was 170 ° C. Next, the dried particles were calcined at 300 ° C. for 1 hour and at 510 ° C. for 3 hours to obtain catalyst powder. The average particle size of the catalyst powder at this time was 30 μm.

このようにして得られた触媒粉体100部に対して2質量%水溶液としたときの20℃における粘度が10,000mPa・sのヒドロキシプロピルメチルセルロース5部を加え、乾式混合した。ここに純水45部を混合し、双腕型の撹拌羽根を有するバッチ式の混練機を用いて混練した後、押出成形機にて、外径5mm、内径2mm、及び長さ5mmのリング状物を成形した。次いで、得られた成形物を、熱風乾燥機を用いて110℃で乾燥し、更に400℃で3時間焼成を行い、触媒(1)を得た。   To 100 parts of the catalyst powder thus obtained, 5 parts of hydroxypropylmethylcellulose having a viscosity of 10,000 mPa · s at 20 ° C. when made into a 2% by mass aqueous solution was added and dry-mixed. 45 parts of pure water was mixed here and kneaded using a batch-type kneader having a double-armed stirring blade, and then in an extruder, a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm. The object was molded. Subsequently, the obtained molded product was dried at 110 ° C. using a hot air dryer and further calcined at 400 ° C. for 3 hours to obtain a catalyst (1).

得られた触媒(1)の酸素以外の元素の組成は、Mo120.2Bi0.6Fe2.2Sb0.8Ni1.1Co6.6Pb0.40.2Cs0.5であった。触媒(1)の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比は0.36であった。また、細孔径0.1〜100μmの範囲の細孔容積は0.60ml/gであった。 The composition of elements other than oxygen in the obtained catalyst (1) was Mo 12 W 0.2 Bi 0.6 Fe 2.2 Sb 0.8 Ni 1.1 Co 6.6 Pb 0.4 P 0.2 Cs 0.5 . The ratio of the pore volume in the range of 0.1 to 2 μm to the pore volume in the range of 0.1 to 100 μm of the catalyst (1) was 0.36. The pore volume in the range of pore diameters of 0.1 to 100 μm was 0.60 ml / g.

<触媒製造例2:触媒(2)の調製>
前記触媒製造例1の触媒(1)の調製方法において、スプレー乾燥機のアトマイザーの回転数を12,000rpmとし、触媒粉体の平均粒子径を80μmとした以外は前記触媒製造法1と同様にして触媒(2)を得た。触媒(2)の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比は0.62であった。また、細孔径0.1〜100μmの範囲の細孔容積は0.53ml/gであった。
<Catalyst Production Example 2: Preparation of catalyst (2)>
In the preparation method of the catalyst (1) of the catalyst production example 1, the same procedure as in the catalyst production method 1 except that the atomizer rotation speed of the spray dryer was 12,000 rpm and the average particle diameter of the catalyst powder was 80 μm. Thus, catalyst (2) was obtained. The ratio of the pore volume in the range of the pore diameter of 0.1 to 2 μm to the pore volume in the range of the pore diameter of 0.1 to 100 μm of the catalyst (2) was 0.62. Moreover, the pore volume in the range of pore diameters of 0.1 to 100 μm was 0.53 ml / g.

<触媒製造例3:触媒(3)の調製>
前記触媒製造例1の触媒(1)の調製方法において、スプレー乾燥機のアトマイザーの回転数を7,000rpmとし、触媒粉体の平均粒子径を120μmとした以外は触媒製造法1と同様にして触媒(3)を得た。触媒(3)の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比は0.84であった。また、細孔径0.1〜100μmの範囲の細孔容積は0.43ml/gであった。
<Catalyst Production Example 3: Preparation of Catalyst (3)>
In the preparation method of the catalyst (1) of the catalyst production example 1, the same procedure as in the catalyst production method 1 except that the atomizer rotation speed of the spray dryer was set to 7,000 rpm and the average particle diameter of the catalyst powder was set to 120 μm. Catalyst (3) was obtained. The ratio of the pore volume in the range of 0.1-2 μm pore diameter to the pore volume in the range of 0.1-100 μm pore diameter of catalyst (3) was 0.84. The pore volume in the range of pore diameters of 0.1 to 100 μm was 0.43 ml / g.

<触媒製造例4:触媒(4)の調製>
水2000部に、パラモリブデン酸アンモニウム500部、硝酸セシウム27.6部、酸化スズ3.2部、二酸化ケイ素14.2部、二酸化チタン0.18部及び三酸化アンチモン17.2部を加え加熱撹拌した(A液)。A液とは別に、水1000部に60質量%硝酸75部を加え、均一にした後、硝酸ビスマス103.0部を加え溶解した。これに硝酸第二鉄238.4部、硝酸ニッケル137.2部、硝酸コバルト343.3部、硝酸マグネシウム484.3部及び硝酸セリウム2.05部を順次加え溶解した(B液)。A液にB液を加え水性のスラリーとした。その後、前記水性のスラリーを触媒製造例1の調製条件にて乾燥、焼成、成形を行い、触媒(4)を得た。このときの触媒粉体の平均粒子径は30μmであった。
<Catalyst Production Example 4: Preparation of Catalyst (4)>
To 2000 parts of water, 500 parts of ammonium paramolybdate, 27.6 parts of cesium nitrate, 3.2 parts of tin oxide, 14.2 parts of silicon dioxide, 0.18 part of titanium dioxide and 17.2 parts of antimony trioxide are added and heated. Stirred (Liquid A). Separately from the liquid A, 75 parts of 60% by mass nitric acid was added to 1000 parts of water to make it uniform, and then 103.0 parts of bismuth nitrate were added and dissolved. To this, 238.4 parts of ferric nitrate, 137.2 parts of nickel nitrate, 343.3 parts of cobalt nitrate, 484.3 parts of magnesium nitrate and 2.05 parts of cerium nitrate were sequentially added and dissolved (Liquid B). B liquid was added to A liquid to make an aqueous slurry. Thereafter, the aqueous slurry was dried, calcined and molded under the preparation conditions of Catalyst Production Example 1 to obtain a catalyst (4). The average particle size of the catalyst powder at this time was 30 μm.

得られた触媒(4)の酸素以外の元素の組成は、Mo12Bi0.9Fe2.5Ni2Co5Mg0.8Sn0.1Si1Ce0.02Ti0.01Sb0.5Cs0.6であった。触媒(4)の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比は0.36であった。また、細孔径0.1〜100μmの範囲の細孔容積は0.63ml/gであった。 The composition of elements other than oxygen in the obtained catalyst (4) was Mo 12 Bi 0.9 Fe 2.5 Ni 2 Co 5 Mg 0.8 Sn 0.1 Si 1 Ce 0.02 Ti 0.01 Sb 0.5 Cs 0.6 . The ratio of the pore volume in the range of 0.1-2 μm pore diameter to the pore volume in the range of 0.1-100 μm pore diameter of catalyst (4) was 0.36. The pore volume in the range of pore diameters of 0.1 to 100 μm was 0.63 ml / g.

<触媒製造例5:触媒(5)の調製>
前記触媒製造例4の触媒(4)の調製方法において、スプレー乾燥機のアトマイザーの回転数を12,000rpmとし、触媒粉体の平均粒子径を80μmとした以外は触媒製造法4と同様にして触媒(5)を得た。触媒(5)の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比は0.58であった。また、細孔径0.1〜100μmの範囲の細孔容積は0.60ml/gであった。
<Catalyst Production Example 5: Preparation of catalyst (5)>
In the preparation method of the catalyst (4) of the catalyst production example 4, the same procedure as in the catalyst production method 4 except that the atomizer rotation speed of the spray dryer was 12,000 rpm and the average particle size of the catalyst powder was 80 μm. A catalyst (5) was obtained. The ratio of the pore volume in the range of the pore diameter of 0.1 to 2 μm to the pore volume in the range of the pore diameter of 0.1 to 100 μm of the catalyst (5) was 0.58. The pore volume in the range of pore diameters of 0.1 to 100 μm was 0.60 ml / g.

<触媒製造例6:触媒(6)の調製>
前記触媒製造例4の触媒(4)の調製方法において、スプレー乾燥機のアトマイザーの回転数を7,000rpmとし、触媒粉体の平均粒子径を120μmとした以外は触媒製造法4と同様にして触媒(6)を得た。触媒(6)の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比は0.76であった。また、細孔径0.1〜100μmの範囲の細孔容積は0.48ml/gであった。
<Catalyst Production Example 6: Preparation of catalyst (6)>
In the preparation method of the catalyst (4) of the catalyst production example 4, the atomization speed of the spray dryer was set to 7,000 rpm, and the average particle size of the catalyst powder was set to 120 μm. A catalyst (6) was obtained. The ratio of the pore volume in the range of the pore diameter of 0.1 to 2 μm to the pore volume in the range of the pore diameter of 0.1 to 100 μm of the catalyst (6) was 0.76. The pore volume in the range of pore diameters of 0.1 to 100 μm was 0.48 ml / g.

[実施例1]
内径25.4mmのステンレス製反応管の原料入口側から出口側に向けて順に、触媒(1)を層長1500mm、触媒(2)を層長1500mmとなるように充填した。前記反応器入口からイソブチレン5容量%、酸素12容量%、水蒸気10容量%及び窒素73容量%の原料混合ガスを導入し、前記反応管の周囲に熱媒を循環させて反応熱を除去しながら、反応温度345℃、空間速度1400hr-1で反応を行った。結果を表1に示す。
[Example 1]
In order from the raw material inlet side to the outlet side of a stainless steel reaction tube having an inner diameter of 25.4 mm, the catalyst (1) was packed in a layer length of 1500 mm and the catalyst (2) in a layer length of 1500 mm. While introducing a raw material mixed gas of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen from the inlet of the reactor, a heat medium is circulated around the reaction tube to remove reaction heat. The reaction was carried out at a reaction temperature of 345 ° C. and a space velocity of 1400 hr −1 . The results are shown in Table 1.

[実施例2]
実施例1において、反応ガス入口側から出口側に向けて順に、触媒(1)を層長1000mm、触媒(2)を層長1000mm、触媒(3)を層長1000mmとなるように充填した以外は実施例1と同様に反応を行った。結果を表1に示す。
[Example 2]
In Example 1, except that the catalyst (1) was packed in order from the reaction gas inlet side to the outlet side so that the layer length was 1000 mm, the catalyst (2) was a layer length of 1000 mm, and the catalyst (3) was a layer length of 1000 mm. Reacted in the same manner as in Example 1. The results are shown in Table 1.

[比較例1]
実施例1において、触媒(1)のみを3000mm充填した以外は実施例1と同様に反応を行った。結果を表1に示す。
[Comparative Example 1]
In Example 1, the reaction was performed in the same manner as in Example 1 except that only 3000 mm of catalyst (1) was filled. The results are shown in Table 1.

[比較例2]
実施例1において、触媒(2)のみを3000mm充填した以外は実施例1と同様に反応を行った。結果を表1に示す。
[Comparative Example 2]
In Example 1, the reaction was performed in the same manner as in Example 1 except that only 3000 mm of the catalyst (2) was filled. The results are shown in Table 1.

[比較例3]
実施例1において、触媒(3)のみを3000mm充填した以外は実施例1と同様に反応を行った。結果を表1に示す。
[Comparative Example 3]
In Example 1, the reaction was carried out in the same manner as in Example 1 except that only the catalyst (3) was packed 3000 mm. The results are shown in Table 1.

[比較例4]
実施例1において、原料入口側から出口側に向けて順に、触媒(2)を層長1500mm、触媒(1)を層長1500mmとなるように充填した以外は実施例1と同様に反応を行った。結果を表1に示す。
[Comparative Example 4]
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the catalyst (2) was packed in a layer length of 1500 mm and the catalyst (1) in a layer length of 1500 mm in order from the raw material inlet side to the outlet side. It was. The results are shown in Table 1.

[実施例3]
実施例1において、原料入口側から出口側に向けて順に、触媒(5)を層長1000mm、触媒(6)を層長2000mmとなるように充填した以外は実施例1と同様に反応を行った。結果を表1に示す。
[Example 3]
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the catalyst (5) was packed in a layer length of 1000 mm and the catalyst (6) in a layer length of 2000 mm in order from the raw material inlet side to the outlet side. It was. The results are shown in Table 1.

[実施例4]
実施例1において、原料入口側から出口側に向けて順に、触媒(4)を層長500mm、触媒(5)を層長1000mm、触媒(6)を層長1500mmとなるように充填した以外は実施例1と同様に反応を行った。結果を表1に示す。
[Example 4]
In Example 1, except that the catalyst (4) was packed in order from the raw material inlet side to the outlet side so that the layer length was 500 mm, the catalyst (5) was a layer length of 1000 mm, and the catalyst (6) was a layer length of 1500 mm. The reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

[比較例5]
実施例1において、触媒(4)のみを3000mm充填した以外は実施例1と同様に反応を行った。結果を表1に示す。
[Comparative Example 5]
In Example 1, the reaction was performed in the same manner as in Example 1 except that only 3000 mm of catalyst (4) was filled. The results are shown in Table 1.

[比較例6]
実施例1において、原料入口側から出口側に向けて順に、触媒(6)を層長1000mm、触媒(4)を層長2000mmとなるように充填した以外は実施例1と同様に反応を行った。結果を表1に示す。
[Comparative Example 6]
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the catalyst (6) was packed in a layer length of 1000 mm and the catalyst (4) in a layer length of 2000 mm in order from the raw material inlet side to the outlet side. It was. The results are shown in Table 1.

[比較例7]
実施例1において、原料入口側から出口側に向けて順に、触媒(6)を層長1500mm、触媒(5)を層長1500mmとなるように充填した以外は実施例1と同様に反応を行った。結果を表1に示す。
[Comparative Example 7]
In Example 1, the reaction was performed in the same manner as in Example 1 except that the catalyst (6) was packed in a layer length of 1500 mm and the catalyst (5) in a layer length of 1500 mm in order from the raw material inlet side to the outlet side. It was. The results are shown in Table 1.

Figure 2011246384
Figure 2011246384

Claims (1)

触媒を充填した固定床管式反応器を用いて、プロピレン、イソブチレン、第三級ブチルアルコール及びメチル第三級ブチルエーテルからなる群から選択される少なくとも一種の化合物を原料とし、分子状酸素又は分子状酸素含有ガスにより気相接触酸化することにより、原料に対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法において、
前記触媒が、モリブデン、ビスマス及び鉄を少なくとも含む複合酸化物であり、
前記固定床管式反応器内の反応管の内部を管軸方向に分割することにより、複数個の反応帯を設け、
前記反応管の原料入口側から出口側に向けて、前記触媒の細孔径0.1〜100μmの範囲の細孔容積に対する細孔径0.1〜2μmの範囲の細孔容積の比が大きくなるように、前記反応管内の各反応帯に前記触媒が充填されている不飽和アルデヒド及び不飽和カルボン酸の製造方法。
Using a fixed bed tubular reactor packed with a catalyst, starting from at least one compound selected from the group consisting of propylene, isobutylene, tertiary butyl alcohol and methyl tertiary butyl ether, molecular oxygen or molecular In the method of producing an unsaturated aldehyde and unsaturated carboxylic acid corresponding to a raw material by performing gas phase catalytic oxidation with an oxygen-containing gas,
The catalyst is a composite oxide containing at least molybdenum, bismuth and iron;
By dividing the inside of the reaction tube in the fixed bed tube reactor in the tube axis direction, a plurality of reaction zones are provided,
From the raw material inlet side to the outlet side of the reaction tube, the ratio of the pore volume in the pore diameter range of 0.1 to 2 μm to the pore volume in the pore diameter range of 0.1 to 100 μm of the catalyst increases. And a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein each reaction zone in the reaction tube is filled with the catalyst.
JP2010120464A 2010-05-26 2010-05-26 Process for producing unsaturated aldehyde and unsaturated carboxylic acid Active JP5678476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010120464A JP5678476B2 (en) 2010-05-26 2010-05-26 Process for producing unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010120464A JP5678476B2 (en) 2010-05-26 2010-05-26 Process for producing unsaturated aldehyde and unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2011246384A true JP2011246384A (en) 2011-12-08
JP5678476B2 JP5678476B2 (en) 2015-03-04

Family

ID=45412127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120464A Active JP5678476B2 (en) 2010-05-26 2010-05-26 Process for producing unsaturated aldehyde and unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP5678476B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147041A1 (en) * 2012-03-30 2013-10-03 株式会社日本触媒 Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor
WO2013161702A1 (en) * 2012-04-23 2013-10-31 日本化薬株式会社 Catalyst for producing butadiene, method for producing said catalyst, and method for producing butadiene using said catalyst
WO2014014041A1 (en) * 2012-07-20 2014-01-23 日本化薬株式会社 Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
US20140350282A1 (en) * 2012-11-26 2014-11-27 Ineos Usa Llc Pre calcination additives for mixed metal oxide ammoxidation catalysts
CN104185617A (en) * 2012-03-29 2014-12-03 株式会社日本触媒 Process for producing acrylic acid using fixed-bed multitubular reactor
JPWO2013161702A1 (en) * 2012-04-23 2015-12-24 日本化薬株式会社 Catalyst for producing butadiene, method for producing the catalyst, and method for producing butadiene using the catalyst
JP2016106082A (en) * 2015-11-24 2016-06-16 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2016195987A (en) * 2015-04-02 2016-11-24 三菱化学株式会社 Composite oxide catalyst, and production method of acrolein and acrylic acid using the same
WO2019177031A1 (en) * 2018-03-14 2019-09-19 三菱ケミカル株式会社 Catalyst molded body, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using same
JP2023101553A (en) * 2019-04-23 2023-07-21 日本化薬株式会社 Catalyst, and production method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200839A (en) * 1987-02-17 1988-08-19 Nippon Shokubai Kagaku Kogyo Co Ltd Propylene oxidizing catalyst and its production with excellent reproducibility
JPS63220839A (en) * 1987-03-09 1988-09-14 株式会社トーメー Method and apparatus for measuring reticle potential
JPS63315147A (en) * 1987-06-18 1988-12-22 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for synthesis of methacrolein and preparation thereof showing excellent reproducibility
JPS63315148A (en) * 1987-06-18 1988-12-22 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility
JPH06154610A (en) * 1992-11-27 1994-06-03 Chevron Res & Technol Co Catalyst for residual oil having high metal content, method for its production and process for its use
JP2000084412A (en) * 1998-09-17 2000-03-28 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid, production thereof and production of methacrylic acid
JP2001328951A (en) * 2000-05-19 2001-11-27 Nippon Shokubai Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2003220334A (en) * 2001-11-08 2003-08-05 Mitsubishi Chemicals Corp Compound oxide catalyst and method for manufacturing the same
JP2004002208A (en) * 2002-04-03 2004-01-08 Nippon Shokubai Co Ltd Method for producing unsaturated aldehyde
JP2004002323A (en) * 2002-04-03 2004-01-08 Nippon Shokubai Co Ltd Method for producing unsaturated aldehyde
JP2008535784A (en) * 2005-02-25 2008-09-04 エルジー・ケム・リミテッド Process for producing unsaturated aldehyde and / or unsaturated acid
JP2010207803A (en) * 2009-02-13 2010-09-24 Mitsubishi Rayon Co Ltd Compound oxide catalyst

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200839A (en) * 1987-02-17 1988-08-19 Nippon Shokubai Kagaku Kogyo Co Ltd Propylene oxidizing catalyst and its production with excellent reproducibility
JPS63220839A (en) * 1987-03-09 1988-09-14 株式会社トーメー Method and apparatus for measuring reticle potential
JPS63315147A (en) * 1987-06-18 1988-12-22 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for synthesis of methacrolein and preparation thereof showing excellent reproducibility
JPS63315148A (en) * 1987-06-18 1988-12-22 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility
JPH06154610A (en) * 1992-11-27 1994-06-03 Chevron Res & Technol Co Catalyst for residual oil having high metal content, method for its production and process for its use
JP2000084412A (en) * 1998-09-17 2000-03-28 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid, production thereof and production of methacrylic acid
JP2001328951A (en) * 2000-05-19 2001-11-27 Nippon Shokubai Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2003220334A (en) * 2001-11-08 2003-08-05 Mitsubishi Chemicals Corp Compound oxide catalyst and method for manufacturing the same
JP2004002208A (en) * 2002-04-03 2004-01-08 Nippon Shokubai Co Ltd Method for producing unsaturated aldehyde
JP2004002323A (en) * 2002-04-03 2004-01-08 Nippon Shokubai Co Ltd Method for producing unsaturated aldehyde
JP2008535784A (en) * 2005-02-25 2008-09-04 エルジー・ケム・リミテッド Process for producing unsaturated aldehyde and / or unsaturated acid
JP2010207803A (en) * 2009-02-13 2010-09-24 Mitsubishi Rayon Co Ltd Compound oxide catalyst

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185617B (en) * 2012-03-29 2016-03-16 株式会社日本触媒 Use the method for producing acrylic acid of fixed bed multitube reactor
CN104185617A (en) * 2012-03-29 2014-12-03 株式会社日本触媒 Process for producing acrylic acid using fixed-bed multitubular reactor
CN104203883A (en) * 2012-03-30 2014-12-10 株式会社日本触媒 Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor
WO2013147041A1 (en) * 2012-03-30 2013-10-03 株式会社日本触媒 Method for producing acrylic acid and acrolein using fixed-bed multitubular reactor
JPWO2013147041A1 (en) * 2012-03-30 2015-12-14 株式会社日本触媒 Method for producing acrolein and acrylic acid using fixed bed multitubular reactor
US9073845B2 (en) 2012-03-30 2015-07-07 Nippon Shokubai Co., Ltd. Method for producing acrolein and acrylic acid with a fixed-bed multitubular reactor
JPWO2013161702A1 (en) * 2012-04-23 2015-12-24 日本化薬株式会社 Catalyst for producing butadiene, method for producing the catalyst, and method for producing butadiene using the catalyst
US9573127B2 (en) 2012-04-23 2017-02-21 Nipponkayaku Kabushikikaisha Process for producing shaped catalyst and process for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using the shaped catalyst
US9604199B2 (en) 2012-04-23 2017-03-28 Nipponkayaku Kabushikikaisha Catalyst for production of butadiene, process for producing the catalyst, and process for producing butadiene using the catalyst
CN104245128A (en) * 2012-04-23 2014-12-24 日本化药株式会社 Catalyst for producing butadiene, method for producing said catalyst, and method for producing butadiene using said catalyst
WO2013161702A1 (en) * 2012-04-23 2013-10-31 日本化薬株式会社 Catalyst for producing butadiene, method for producing said catalyst, and method for producing butadiene using said catalyst
WO2014014041A1 (en) * 2012-07-20 2014-01-23 日本化薬株式会社 Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
JP2014019675A (en) * 2012-07-20 2014-02-03 Nippon Kayaku Co Ltd Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid
RU2621715C2 (en) * 2012-07-20 2017-06-07 Ниппон Каяку Кабусики Кайся Method of obtaining an unsaturated aldehyde and/or unsaturated carboxylic acid
US9295977B2 (en) * 2012-11-26 2016-03-29 Ineos Usa Llc Pre calcination additives for mixed metal oxide ammoxidation catalysts
US20140350282A1 (en) * 2012-11-26 2014-11-27 Ineos Usa Llc Pre calcination additives for mixed metal oxide ammoxidation catalysts
JP2016195987A (en) * 2015-04-02 2016-11-24 三菱化学株式会社 Composite oxide catalyst, and production method of acrolein and acrylic acid using the same
JP2016106082A (en) * 2015-11-24 2016-06-16 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2019177031A1 (en) * 2018-03-14 2019-09-19 三菱ケミカル株式会社 Catalyst molded body, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using same
CN111727085A (en) * 2018-03-14 2020-09-29 三菱化学株式会社 Molded catalyst, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using same
JPWO2019177031A1 (en) * 2018-03-14 2021-03-11 三菱ケミカル株式会社 A catalyst molded product and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid using the catalyst molded product.
JP2023101553A (en) * 2019-04-23 2023-07-21 日本化薬株式会社 Catalyst, and production method thereof
JP7455256B2 (en) 2019-04-23 2024-03-25 日本化薬株式会社 Catalyst and its manufacturing method

Also Published As

Publication number Publication date
JP5678476B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5678476B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP6294883B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP6674441B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5951121B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
US9169188B2 (en) Process for preparing an unsaturated aldehyde and/or an unsaturated carboxylic acid
JP6668207B2 (en) Catalyst for acrylic acid production
JP6694884B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5680373B2 (en) Catalyst and method for producing acrylic acid
JPWO2019163707A1 (en) Catalyst and direct-coupled two-stage catalytic gas phase oxidation method using the same
JPWO2020196853A1 (en) A catalyst molded body, a catalyst molded body for producing methacrolein and / or methacrylic acid, and a method for producing methacrolein and / or methacrylic acid.
JP2004002209A (en) Method for producing unsaturated aldehyde
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JP2010207803A (en) Compound oxide catalyst
JP5451271B2 (en) Method for producing unsaturated aldehyde or unsaturated carboxylic acid
JP2011115681A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP3939262B2 (en) Process for producing unsaturated aldehydes
JP7383202B2 (en) Catalyst and method for producing compounds using the same
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5462300B2 (en) Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
WO2022065116A1 (en) Catalyst precursor, catalyst using same, production method for compound and production method for catalyst
JP2004244383A (en) Method for producing acrylic acid
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron
JP5394457B2 (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2006263677A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R151 Written notification of patent or utility model registration

Ref document number: 5678476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250