JP2011115681A - Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP2011115681A
JP2011115681A JP2009273282A JP2009273282A JP2011115681A JP 2011115681 A JP2011115681 A JP 2011115681A JP 2009273282 A JP2009273282 A JP 2009273282A JP 2009273282 A JP2009273282 A JP 2009273282A JP 2011115681 A JP2011115681 A JP 2011115681A
Authority
JP
Japan
Prior art keywords
catalyst
atomic ratio
particles
composite oxide
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009273282A
Other languages
Japanese (ja)
Inventor
Kohei Yamada
耕平 山田
Tomomasa Tatsumi
奉正 辰已
Masahide Kondo
正英 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2009273282A priority Critical patent/JP2011115681A/en
Publication of JP2011115681A publication Critical patent/JP2011115681A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid excellent in catalytic activity and selectivity. <P>SOLUTION: The catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid is made of a particle of a composite oxide containing at least molybdenum, iron and cobalt, wherein the particle satisfies the following formulas (i) B/A≤0.8 and (ii) D/C≤0.7. In the formulas, A presents Fe/Mo atomic ratio in bulk composition of the particle, B presents Fe/Mo atomic ratio in surface composition, C presents Co/Mo atomic ratio in bulk composition of the particle and D presents Co/Mo atomic ratio in surface composition of the particle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、不飽和アルデヒドおよび不飽和カルボン酸合成用触媒に関する。より詳しくは、プロピレン、イソブチレン、第三級ブタノール(以下、TBAと略記する。)またはメチル第三級ブチルエーテル(以下、MTBEと略記する。)を分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸を合成する際に用いられる触媒に関する。   The present invention relates to an unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst. More specifically, propylene, isobutylene, tertiary butanol (hereinafter abbreviated as TBA) or methyl tertiary butyl ether (hereinafter abbreviated as MTBE) is subjected to gas phase catalytic oxidation with molecular oxygen, respectively. It relates to a catalyst used in the synthesis of the corresponding unsaturated aldehyde and unsaturated carboxylic acid.

従来、プロピレン、イソブチレン、TBAまたはMTBEを高温下で気相接触酸化して、それぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸を製造する際に用いられる触媒として、モリブデン、鉄等の複数の元素を触媒成分として含む複合酸化物が用いられている。このような触媒やその製造方法について数多く提案がなされており、たとえば特許文献1には、所定の触媒成分を含む水性スラリーを加熱処理し、得られたスラリー状物を乾燥、焼成して複合酸化物を得る際に、加熱処理後のスラリー状物中の固形物のX線回折像における三酸化アンチモンの結晶相に起因するピーク強度を、モリブデン酸コバルトに起因するピーク強度の20%以下とすることが開示されている。また、特許文献2には、触媒成分を含む水性スラリーの粒子を微粒化した後、スプレー乾燥機を用いて球状粒子とし、焼成する方法が開示されている。特許文献3には、触媒成分を含む原料塩水溶液を加熱処理して灼熱原料が1%〜5%である触媒前駆体粉末を得、これを成形、焼成する方法が開示されている。   Conventionally, a plurality of elements such as molybdenum and iron are used as catalysts used in the production of unsaturated aldehydes and unsaturated carboxylic acids corresponding to gas phase catalytic oxidation of propylene, isobutylene, TBA or MTBE at high temperatures. A composite oxide containing is used as a catalyst component. Many proposals have been made on such a catalyst and its production method. For example, in Patent Document 1, an aqueous slurry containing a predetermined catalyst component is heat-treated, and the resulting slurry is dried and fired to obtain a composite oxidation. When obtaining a product, the peak intensity attributed to the crystal phase of antimony trioxide in the X-ray diffraction image of the solid matter in the slurry after heat treatment is set to 20% or less of the peak intensity attributed to cobalt molybdate. It is disclosed. Further, Patent Document 2 discloses a method in which particles of an aqueous slurry containing a catalyst component are atomized and then made into spherical particles using a spray dryer and fired. Patent Document 3 discloses a method in which a raw material salt solution containing a catalyst component is subjected to a heat treatment to obtain a catalyst precursor powder containing 1% to 5% of a sparkling raw material, which is molded and fired.

特開平9−57106号公報JP-A-9-57106 特開平10−258233号公報JP 10-258233 A 特開2001−96162号公報JP 2001-96162 A

しかしながら、従来の方法で得られる触媒は、触媒活性が必ずしも充分ではなく、イソブチレン等の原料の反応率が低い場合がある。また、選択性が必ずしも充分ではなく、副生物が生じる場合がある。これらの問題は、不飽和アルデヒドおよび不飽和カルボン酸の収率に影響するため、更なる性能の向上が望まれているのが実状である。
本発明は、上記事情に鑑みてなされたものであって、触媒活性および選択性に優れた不飽和アルデヒドおよび不飽和カルボン酸合成用触媒を提供することを目的とする。
However, the catalyst obtained by the conventional method does not necessarily have sufficient catalytic activity, and the reaction rate of raw materials such as isobutylene may be low. Further, the selectivity is not always sufficient, and a by-product may be generated. Since these problems affect the yields of unsaturated aldehydes and unsaturated carboxylic acids, further improvements in performance are desired.
This invention is made | formed in view of the said situation, Comprising: It aims at providing the catalyst for unsaturated aldehyde and unsaturated carboxylic acid synthesis | combination excellent in catalyst activity and selectivity.

本発明者らは鋭意検討の結果、少なくともモリブデン、鉄およびコバルトを含む複合酸化物の粒子は、バルクの組成が同じでも、製造条件によって粒子表面のモリブデン、鉄およびコバルトの比率が異なり、その違いが、該粒子を用いた触媒の触媒性能に影響していることを見出し、かかる知見に基づき本発明を完成させた。
本発明は、少なくともモリブデン、鉄およびコバルトを含む複合酸化物の粒子からなり、該粒子が下記式(i)および(ii)を満足する、不飽和アルデヒドおよび不飽和カルボン酸合成用触媒である。
B/A≦0.8 …(i)
D/C≦0.7 …(ii)
[式中、Aは当該粒子のバルク組成におけるFe/Mo原子比を示し、Bは当該粒子の表面組成におけるFe/Mo原子比を示し、Cは当該粒子のバルク組成におけるCo/Mo原子比を示し、Dは当該粒子の表面組成におけるCo/Mo原子比を示す。]
As a result of intensive studies, the present inventors have determined that the composite oxide particles containing at least molybdenum, iron and cobalt have the same bulk composition, but the ratio of molybdenum, iron and cobalt on the particle surface differs depending on the production conditions. Was found to affect the catalyst performance of the catalyst using the particles, and the present invention was completed based on such findings.
The present invention is a catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids, comprising particles of a composite oxide containing at least molybdenum, iron and cobalt, and the particles satisfy the following formulas (i) and (ii).
B / A ≦ 0.8 (i)
D / C ≦ 0.7 (ii)
[In the formula, A represents the Fe / Mo atomic ratio in the bulk composition of the particles, B represents the Fe / Mo atomic ratio in the surface composition of the particles, and C represents the Co / Mo atomic ratio in the bulk composition of the particles. D represents the Co / Mo atomic ratio in the surface composition of the particles. ]

本発明によれば、触媒活性および選択性に優れた不飽和アルデヒドおよび不飽和カルボン酸合成用触媒を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the catalyst for unsaturated aldehyde and unsaturated carboxylic acid synthesis | combination excellent in catalyst activity and selectivity can be provided.

本発明の不飽和アルデヒドおよび不飽和カルボン酸合成用触媒(以下、本発明の触媒という。)は、少なくともモリブデン、鉄およびコバルトを含む複合酸化物の粒子からなり、該粒子が下記式(i)および(ii)を満足するものである。
B/A≦0.8 …(i)
D/C≦0.7 …(ii)
[式中、Aは当該粒子のバルク組成におけるFe/Mo原子比を示し、Bは当該粒子の表面組成におけるFe/Mo原子比を示し、Cは当該粒子のバルク組成におけるCo/Mo原子比を示し、Dは当該粒子の表面組成におけるCo/Mo原子比を示す。]
The unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst of the present invention (hereinafter referred to as the catalyst of the present invention) comprises composite oxide particles containing at least molybdenum, iron and cobalt, and the particles are represented by the following formula (i): And (ii) is satisfied.
B / A ≦ 0.8 (i)
D / C ≦ 0.7 (ii)
[In the formula, A represents the Fe / Mo atomic ratio in the bulk composition of the particles, B represents the Fe / Mo atomic ratio in the surface composition of the particles, and C represents the Co / Mo atomic ratio in the bulk composition of the particles. D represents the Co / Mo atomic ratio in the surface composition of the particles. ]

本発明において、「粒子のバルク組成」とは、当該粒子を構成する全元素の組成(原子比率)、つまり複合酸化物の組成(原子比率)を示す。該バルク組成は、当該粒子を溶解した溶液について、ICP(誘導結合高周波プラズマ)発光分析法、原子吸光分析法等による元素分析を行うことにより求められる。また、当該粒子の製造に使用した原料の仕込み量から算出することもできる。
「粒子の表面組成」とは、当該粒子の表層(露出面)を構成する元素の組成(原子比率)を示す。該表面組成は、当該粒子について、X線源としてAl−kα線を使用したX線光電子分光(XPS:X−ray Photoelectron Spectroscopy)分析を行うことにより求められる。
In the present invention, the “bulk composition of particles” refers to the composition (atomic ratio) of all elements constituting the particle, that is, the composition (atomic ratio) of the composite oxide. The bulk composition is obtained by performing elemental analysis on the solution in which the particles are dissolved by ICP (inductively coupled radio frequency plasma) emission spectrometry, atomic absorption spectrometry, or the like. It can also be calculated from the amount of raw material used for the production of the particles.
The “particle surface composition” refers to the composition (atomic ratio) of the elements constituting the surface layer (exposed surface) of the particle. This surface composition is calculated | required by performing the X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy) analysis which uses Al-k alpha ray as an X-ray source about the said particle | grain.

式(i)中、B/Aは、前記粒子のバルク組成におけるFe/Mo原子比に対する、粒子表面組成におけるFe/Mo原子比の比率である。B/Aは0.8以下であり、0.75以下が好ましい。B/Aが0.8を超える場合は、触媒活性の低下につながる。B/Aの下限は特に限定されないが、0.3以上が好ましく、0.4以上がより好ましい。B/Aが0.3未満では、触媒活性の必要以上な向上につながり、不飽和アルデヒドおよび不飽和カルボン酸の合成の際、目的生成物の選択性の低下等の不具合を生じるおそれがある。
式(ii)中、D/Cは、前記粒子のバルク組成におけるCo/Mo原子比に対する、粒子表面組成におけるCo/Mo原子比の比率である。D/Cは0.7以下である。D/Cが0.7を超えた場合は選択性の低下、ひいては目的生成物(特に不飽和アルデヒド)の収率低下につながる。D/Cの下限は特に限定されないが、0.3以上が好ましい。D/Cが0.3未満では、熱的安定性が不利になるおそれがある。
In formula (i), B / A is the ratio of the Fe / Mo atomic ratio in the particle surface composition to the Fe / Mo atomic ratio in the bulk composition of the particles. B / A is 0.8 or less, and preferably 0.75 or less. When B / A exceeds 0.8, the catalyst activity is reduced. The lower limit of B / A is not particularly limited, but is preferably 0.3 or more, and more preferably 0.4 or more. When B / A is less than 0.3, the catalyst activity is unnecessarily improved, and there is a risk that problems such as a decrease in selectivity of the target product may occur during the synthesis of unsaturated aldehydes and unsaturated carboxylic acids.
In formula (ii), D / C is the ratio of the Co / Mo atomic ratio in the particle surface composition to the Co / Mo atomic ratio in the bulk composition of the particles. D / C is 0.7 or less. When D / C exceeds 0.7, the selectivity is lowered, and consequently the yield of the target product (particularly unsaturated aldehyde) is lowered. The lower limit of D / C is not particularly limited, but is preferably 0.3 or more. If D / C is less than 0.3, thermal stability may be disadvantageous.

前記粒子のバルク組成は、少なくともモリブデン、鉄およびコバルトを含むものであればよく、触媒成分として、これら3種以外の元素を含んでもよい。好ましいバルク組成として、下記式(1)で表される組成が挙げられる。
MoBiFeSi …(1)
[式中、Mo、Bi、Fe、SiおよびOはそれぞれモリブデン、ビスマス、鉄、ケイ素および酸素を示す。Mはコバルト、またはコバルトおよびニッケルを示す。Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタルおよび亜鉛から選ばれる少なくとも1種の元素を示す。Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモンおよびチタンから選ばれる少なくとも1種の元素を示す。Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムから選ばれる少なくとも1種の元素を示す。a、b、c、d、e、f、g、hおよびiは各元素の原子比率を表し、a=12のときb=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2およびh=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。]
The bulk composition of the particles only needs to include at least molybdenum, iron, and cobalt, and may include elements other than these three types as a catalyst component. A preferable bulk composition is a composition represented by the following formula (1).
Mo a Bi b Fe c M d X e Y f Z g Si h O i ... (1)
[Wherein, Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively. M represents cobalt or cobalt and nickel. X represents at least one element selected from chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc. Y represents at least one element selected from phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium. Z represents at least one element selected from lithium, sodium, potassium, rubidium, cesium and thallium. a, b, c, d, e, f, g, h, and i represent atomic ratios of the respective elements. When a = 12, b = 0.01-3, c = 0.01-5, d = 1 -12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, and h = 0 to 20, and i is an oxygen atomic ratio necessary to satisfy the valence of each component. is there. ]

Mがコバルトおよびニッケルを示す場合、つまり複合酸化物がコバルトおよびニッケルの両方を含む場合、dはそれらの合計の原子比率を示す。Xとして2種以上の元素を含む場合、eはそれら2種以上の元素の合計の原子比率を示し、Yにおけるf、Zにおけるgも同様である。   When M represents cobalt and nickel, that is, when the composite oxide contains both cobalt and nickel, d represents their total atomic ratio. When X contains two or more elements, e represents the total atomic ratio of the two or more elements, and the same applies to f in Y and g in Z.

複合酸化物の粒子(以下、複合酸化物粒子という。)は、たとえば、少なくともモリブデン、鉄およびコバルトを含む水性スラリーを調製し、該水性スラリーを加熱処理した後、乾燥、焼成する方法により製造できる。このとき、加熱処理条件を調節することで、前記式(i)および(ii)を満足する複合酸化物粒子が得られる。具体的には、該加熱処理を、80℃以上110℃以下の温度で所定時間行うことにより該複合酸化物粒子が得られる。
以下、複合酸化物粒子の製造方法について、より詳細に説明する。
Composite oxide particles (hereinafter referred to as composite oxide particles) can be produced, for example, by preparing an aqueous slurry containing at least molybdenum, iron, and cobalt, heating the aqueous slurry, and then drying and firing. . At this time, by adjusting the heat treatment conditions, composite oxide particles satisfying the above formulas (i) and (ii) can be obtained. Specifically, the composite oxide particles can be obtained by performing the heat treatment at a temperature of 80 ° C. or higher and 110 ° C. or lower for a predetermined time.
Hereinafter, the method for producing composite oxide particles will be described in more detail.

まず、得ようとする複合酸化物粒子のバルク組成に対応した触媒成分を含む水性スラリーを調製する。触媒成分としては、少なくともモリブデン、鉄およびコバルトを含み、その他任意に、前記式(1)中に示したような元素を含んでいてもよい。
各触媒成分を含む水性スラリーを製造する方法としては、特殊な方法に限定する必要はなく、成分の著しい偏在を伴わない限り、従来からよく知られている蒸発乾固法、沈殿法、酸化物混合法等の種々の方法を用いることができる。
たとえば各触媒成分の原料の所要量を水などの水性媒体中に溶解または懸濁させることにより調製できる。
触媒成分の原料としては、各元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物等を使用することができる。モリブデン原料としては、たとえばパラモリブデン酸アンモニウム、三酸化モリブデン等が挙げられる。ビスマス原料としては、たとえば、三酸化ビスマス、硝酸ビスマス、炭酸ビスマス、水酸化ビスマス等が使用できる。鉄原料としては、たとえば、硝酸第二鉄、塩化第二鉄等が使用できる。コバルト原料としては、たとえば硝酸コバルト、水酸化コバルト、酸化コバルト、塩化コバルト等が使用できる。
触媒成分の原料は、各元素について1種でもよく、2種以上を併用してもよい。また、硝酸ビスマス等の水に不溶な原料は、予め硝酸等の酸の水溶液に溶かして配合してもよい。
First, an aqueous slurry containing a catalyst component corresponding to the bulk composition of the composite oxide particles to be obtained is prepared. The catalyst component contains at least molybdenum, iron, and cobalt, and may optionally contain an element as shown in the above formula (1).
As a method for producing an aqueous slurry containing each catalyst component, it is not necessary to be limited to a special method, and as long as there is no significant uneven distribution of components, a conventionally well-known evaporation-drying method, precipitation method, oxide Various methods such as a mixing method can be used.
For example, it can be prepared by dissolving or suspending the required amount of the raw material of each catalyst component in an aqueous medium such as water.
As raw materials for the catalyst component, oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides, and the like of each element can be used. Examples of the molybdenum raw material include ammonium paramolybdate and molybdenum trioxide. Examples of the bismuth raw material that can be used include bismuth trioxide, bismuth nitrate, bismuth carbonate, and bismuth hydroxide. As an iron raw material, ferric nitrate, ferric chloride, etc. can be used, for example. As the cobalt raw material, for example, cobalt nitrate, cobalt hydroxide, cobalt oxide, cobalt chloride and the like can be used.
The raw material of the catalyst component may be one kind for each element or two or more kinds may be used in combination. In addition, a raw material insoluble in water such as bismuth nitrate may be dissolved in an aqueous solution of an acid such as nitric acid in advance.

次に、前記水性スラリーを加熱処理する。
加熱処理温度は、80℃以上110℃以下であり、85℃以上105℃以下が好ましい。該温度範囲内において、加熱処理温度が高いほど、B/Aの値が小さくなり、D/Cの値が大きくなる傾向がある。
一方、加熱処理温度が80℃未満では、B/Aの値を0.8以下とすることが難しく、本発明の効果が充分に得られない。これは、触媒構造が安定されにくいため、触媒性能の向上が少ないためと考えられる。加熱処理温度が110℃を超える場合、D/Cの値を0.7以下とすることが難しく、本発明の効果が充分に得られない。また、水分の蒸発が多く、ハンドリングも複雑になり、経済性および操作性の面でも著しく不利となる。
加熱処理時間は、所望のB/AおよびD/Cの値、加熱処理後の水性スラリーの所望の性状(比重、粘度等)を考慮して適宜設定すればよい。触媒性能の向上の観点からは通常30分間以上加熱処理され、上限は、加熱処理後に該水性スラリーがスラリー状態を保持している範囲で適宜設定されるが、B/AおよびD/Cの値を考慮すると、2時間以上8時間以下が好ましく、2.5時間以上6時間以下がより好ましい。該範囲内において、加熱処理時間が長いほど、B/Aの値が小さくなり、D/Cの値が大きくなる傾向ある。
加熱処理後の水性スラリーの比重は1.3g/mL以上1.8g/mL以下であることが好ましい。該比重が1.3g/mL未満では、続く乾燥工程において処理時間が長くなり、1.8g/mLを超える場合では、ハンドリングが難しい。
また、加熱処理後の水性スラリーの粘度は100mPa・s以上であることが好ましく、300mPa・s以上であることがより好ましい。また該粘度は、3000mPa・s以下であることが好ましい。該粘度が100mPa・s未満では、乾燥工程での乾燥時間が長くなり経済性の面で不利となり、3000mPa・sを超える場合、スラリーのハンドリングが難しく操作性の面で不利となる。
Next, the aqueous slurry is heat-treated.
The heat treatment temperature is 80 ° C. or higher and 110 ° C. or lower, and preferably 85 ° C. or higher and 105 ° C. or lower. Within this temperature range, the higher the heat treatment temperature, the smaller the B / A value and the higher the D / C value.
On the other hand, when the heat treatment temperature is less than 80 ° C., it is difficult to make the B / A value 0.8 or less, and the effect of the present invention cannot be sufficiently obtained. This is presumably because the catalyst structure is difficult to be stabilized and therefore the catalyst performance is hardly improved. When the heat treatment temperature exceeds 110 ° C., it is difficult to make the D / C value 0.7 or less, and the effect of the present invention cannot be obtained sufficiently. In addition, the evaporation of water is large, handling is complicated, and it is extremely disadvantageous in terms of economy and operability.
The heat treatment time may be appropriately set in consideration of desired B / A and D / C values and desired properties (specific gravity, viscosity, etc.) of the aqueous slurry after the heat treatment. From the viewpoint of improving the catalyst performance, the heat treatment is usually carried out for 30 minutes or more, and the upper limit is appropriately set within the range in which the aqueous slurry maintains a slurry state after the heat treatment, but the values of B / A and D / C Is preferably 2 hours or longer and 8 hours or shorter, more preferably 2.5 hours or longer and 6 hours or shorter. Within this range, the longer the heat treatment time, the smaller the value of B / A and the larger the value of D / C.
The specific gravity of the aqueous slurry after the heat treatment is preferably 1.3 g / mL or more and 1.8 g / mL or less. When the specific gravity is less than 1.3 g / mL, the processing time becomes long in the subsequent drying step, and when it exceeds 1.8 g / mL, handling is difficult.
Further, the viscosity of the aqueous slurry after the heat treatment is preferably 100 mPa · s or more, and more preferably 300 mPa · s or more. The viscosity is preferably 3000 mPa · s or less. When the viscosity is less than 100 mPa · s, the drying time in the drying step is long, which is disadvantageous in terms of economy. When it exceeds 3000 mPa · s, handling of the slurry is difficult and disadvantageous in terms of operability.

次に、前記加熱処理後の水性スラリーを乾燥して粒状の乾燥物(以下、乾燥粒子という。)を得る。この乾燥粒子を焼成することで、目的の複合酸化物粒子が得られる。
乾燥方法としては、種々の方法を用いることが可能であり、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等が挙げられる。乾燥に使用する乾燥機の機種や乾燥時の温度等は特に限定されず、乾燥条件を適宜変えることで目的に応じた乾燥物を得ることができる。なかでも、乾燥粒子、ひいては得られる複合酸化物粒子の平均粒子径を制御し易いことから、噴霧乾燥法を用いることが好ましい。
乾燥条件に特に限定はなく、公知の条件を適用することができ、通常、温度150〜300℃で行われる。
焼成条件に関しても同様に特に限定はなく、公知の条件を適応することができ、通常、200〜550℃で行われる。焼成時間は目的とする触媒によって適宜選択される。焼成は複数回行ってもよい。
本発明において、前記複合酸化物粒子の平均粒子径は、20〜150μmが好ましく、40〜110μmがより好ましい。なお、該平均子径は、レーザ回折・散乱法により測定される値(平均メディアン径)であり、たとえば島津製作所製レーザ回折式粒度分布測定装置SALD−7000を用いて測定できる。
Next, the aqueous slurry after the heat treatment is dried to obtain a granular dried product (hereinafter referred to as dry particles). The target composite oxide particles are obtained by firing the dried particles.
As a drying method, various methods can be used, and examples thereof include an evaporation to dryness method, a spray drying method, a drum drying method, and an airflow drying method. The model of the dryer used for drying, the temperature at the time of drying, etc. are not specifically limited, The dried material according to the objective can be obtained by changing drying conditions suitably. Among these, it is preferable to use a spray drying method because the average particle diameter of the dried particles and thus the obtained composite oxide particles can be easily controlled.
There is no limitation in particular in drying conditions, A well-known condition can be applied and it is normally performed at the temperature of 150-300 degreeC.
There are no particular limitations on the firing conditions as well, and known conditions can be applied, usually at 200 to 550 ° C. The calcination time is appropriately selected depending on the target catalyst. Firing may be performed a plurality of times.
In this invention, 20-150 micrometers is preferable and, as for the average particle diameter of the said composite oxide particle, 40-110 micrometers is more preferable. The average diameter is a value (average median diameter) measured by a laser diffraction / scattering method, and can be measured, for example, using a laser diffraction particle size distribution analyzer SALD-7000 manufactured by Shimadzu Corporation.

上記複合酸化物粒子は、そのまま粒状の触媒として用いることができる。この場合、流動床で好適に使用される。
該複合酸化物粒子を成形し、成形体として用いてもよい。
複合酸化物粒子の成形方法としては、加圧成形、打錠成形、鋳型成形、押出成形、転動造粒等の公知の成形法を適用できる。
成形する際、本発明の効果を損なわない範囲で、公知の添加剤を添加してもよい。該添加剤としては、たとえばポリビニルアルコール、カルボキシメチルセルロース、ポリビニルアルコール、カルボキシメチルセルロース等の有機化合物;グラファイト、ケイソウ土等の無機化合物;ガラス繊維、セラミックファイバー、炭素繊維等の無機ファイバー;等が挙げられる。
成形体の形状は特に限定されず、たとえば円柱状、リング状、球状、不定形状等、任意の形状であってよい。
該複合酸化物粒子を担体に担持させ、担持体として用いてもよい。
担体としては、シリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア、シリコンカーバイト等が挙げられる。
上記成形体または担持体は、固定床で好適に使用される。
The composite oxide particles can be used as a granular catalyst as it is. In this case, it is preferably used in a fluidized bed.
The composite oxide particles may be molded and used as a molded body.
As a method for molding the composite oxide particles, known molding methods such as pressure molding, tablet molding, mold molding, extrusion molding, and rolling granulation can be applied.
When molding, known additives may be added as long as the effects of the present invention are not impaired. Examples of the additive include organic compounds such as polyvinyl alcohol, carboxymethyl cellulose, polyvinyl alcohol, and carboxymethyl cellulose; inorganic compounds such as graphite and diatomaceous earth; inorganic fibers such as glass fiber, ceramic fiber, and carbon fiber.
The shape of the molded body is not particularly limited, and may be any shape such as a columnar shape, a ring shape, a spherical shape, an indefinite shape, or the like.
The composite oxide particles may be supported on a carrier and used as a support.
Examples of the carrier include silica, alumina, silica-alumina, magnesia, titania, silicon carbide and the like.
The molded body or the support is preferably used on a fixed bed.

本発明の触媒は触媒活性が高く、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素を用いて気相接触酸化する際の反応率の向上に寄与する。また、選択性が高く、生成する不飽和アルデヒドおよび不飽和カルボン酸の選択率も高い。そのため、反応したプロピレン、イソブチレン、TBAまたはMTBEが、効率よく対応する不飽和アルデヒドおよび不飽和カルボン酸となる。そのため、本発明の触媒を用いることで、不飽和アルデヒドおよび不飽和カルボン酸を高収率で得ることができる。
B/AおよびD/Cが所定の範囲以下とすることにより高い収率で目的生成物を得ることができる理由については明らかではないが、B/AおよびD/Cの値が小さいということは、その触媒の粒子構造において粒子表面へのFeおよびCoの露出が少ないということである。よって、触媒粒子がそのような構造をとることにより、触媒粒子の構造安定性が向上している可能性が考えられる。
The catalyst of the present invention has high catalytic activity, and contributes to an improvement in the reaction rate when propylene, isobutylene, TBA or MTBE is subjected to gas phase catalytic oxidation using molecular oxygen. Moreover, selectivity is high and the selectivity of the unsaturated aldehyde and unsaturated carboxylic acid to produce | generate is also high. Therefore, the reacted propylene, isobutylene, TBA or MTBE efficiently becomes the corresponding unsaturated aldehyde and unsaturated carboxylic acid. Therefore, unsaturated aldehydes and unsaturated carboxylic acids can be obtained in high yields by using the catalyst of the present invention.
Although it is not clear why B / A and D / C can be obtained in a high yield by setting the B / A and D / C to be within a predetermined range, the values of B / A and D / C are small. In the particle structure of the catalyst, there is little exposure of Fe and Co to the particle surface. Therefore, it can be considered that the structural stability of the catalyst particles is improved by the catalyst particles having such a structure.

本発明の触媒を用いた不飽和アルデヒドおよび不飽和カルボン酸の製造は、たとえば、本発明の触媒の存在下で、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素により気相接触酸化することにより実施できる。これにより、原料(プロピレン、イソブチレン、TBAまたはMTBE)に対応する不飽和アルデヒドおよび不飽和カルボン酸が得られる。たとえば原料としてイソブチレンを用いた場合、メタクロレインおよびメタクリル酸が得られる。
このとき、本発明の触媒を担体で希釈して用いてもよい。担体としては、前記担持体の担体として挙げたものと同様のものが挙げられる。
気相接触酸化反応させる際の原料と分子状酸素との比(モル比)は、原料:分子状酸素=1:0.5〜1:3の範囲内が好ましい。
気相接触酸化は、本発明の触媒を用いる以外は公知の方法により実施でき、たとえば原料および分子状酸素を含む原料ガスを該触媒に接触させることにより実施できる。
原料のプロピレン、イソブチレン、TBAまたはMTBEは、窒素ガス、炭酸ガス、希ガス等の不活性ガスで希釈して用いることが好ましい。また、必要に応じて、前記原料ガスに水蒸気を含有させてもよい。原料ガス中の原料の濃度は、1〜10容量%程度が好ましい。
分子状酸素源としては、純酸素ガスでも良いが、工業的には空気が有利である。
反応圧力は常圧ないし数気圧まで用いられる。反応温度は300〜450℃の範囲が好ましい。
The production of unsaturated aldehydes and unsaturated carboxylic acids using the catalyst of the present invention is carried out, for example, by vapor phase catalytic oxidation of propylene, isobutylene, TBA or MTBE with molecular oxygen in the presence of the catalyst of the present invention. it can. Thereby, the unsaturated aldehyde and unsaturated carboxylic acid corresponding to a raw material (propylene, isobutylene, TBA, or MTBE) are obtained. For example, when isobutylene is used as a raw material, methacrolein and methacrylic acid are obtained.
At this time, the catalyst of the present invention may be diluted with a support. Examples of the carrier are the same as those mentioned as the carrier of the carrier.
The ratio (molar ratio) between the raw material and molecular oxygen in the gas phase catalytic oxidation reaction is preferably in the range of raw material: molecular oxygen = 1: 0.5 to 1: 3.
The gas phase catalytic oxidation can be carried out by a known method except that the catalyst of the present invention is used. For example, the gas phase catalytic oxidation can be carried out by contacting a raw material gas containing a raw material and molecular oxygen with the catalyst.
The raw material propylene, isobutylene, TBA or MTBE is preferably diluted with an inert gas such as nitrogen gas, carbon dioxide gas or rare gas. Further, if necessary, the raw material gas may contain water vapor. The concentration of the raw material in the raw material gas is preferably about 1 to 10% by volume.
As the molecular oxygen source, pure oxygen gas may be used, but industrially, air is advantageous.
The reaction pressure is from normal pressure to several atmospheres. The reaction temperature is preferably in the range of 300 to 450 ° C.

以下、本発明を、実施例を用いてより具体的に説明する。
下記実施例および比較例中、「部」は質量部を意味する。
使用した原料(イソブチレン)の反応率、気相接触酸化反応により生成したメタクロレイン(以下、MALと略記する。)およびメタクリル酸(以下、MAAと略記する。)の選択率、MALおよびMAAの合計収率はそれぞれ以下の式により算出した。反応試験分析(反応した原料のモル数、生成したMALおよびMAAそれぞれのモル数の測定)はガスクロマトグラフィーにより行った。
Hereinafter, the present invention will be described more specifically with reference to examples.
In the following examples and comparative examples, “parts” means parts by mass.
Reaction rate of raw material (isobutylene) used, selectivity of methacrolein (hereinafter abbreviated as MAL) and methacrylic acid (hereinafter abbreviated as MAA) generated by gas phase catalytic oxidation reaction, total of MAL and MAA The yield was calculated by the following formula. Reaction test analysis (measurement of the number of moles of reacted raw materials and the number of moles of MAL and MAA produced) was performed by gas chromatography.

Figure 2011115681
Figure 2011115681

実施例および比較例において、スラリーの比重(g/mL)は、スラリーの一部をサンプリングし、スラリー温度が20℃における体積(mL)と質量(g)を測定し、質量を体積で除して算出した。
スラリーの粘度(mPa・s)は、スラリーの一部をサンプリングし、スラリー温度を20℃とし、固形分が分離しないように充分に攪拌を行った後にB型粘度計を用いて測定した。
複合酸化物粒子の平均粒子径(平均メディアン径)は、島津製作所製粒度分布測定装置SALD−7000を用いて測定した。
複合酸化物粒子のバルク組成におけるFe/Mo原子比およびCo/Mo原子比は、複合酸化物粒子を塩酸に溶解した溶液中の触媒成分量をICP発光分析法と原子吸光分析法により定量して求めた。
複合酸化物粒子の表面組成については、まず、X線光電子分光分析装置(VG社製ESCALAB220iXL)を用い、X線源としてAl−kα線を使用した測定を行い、該測定により得られたXPSスペクトルについて、まず、Mo3dのピーク面積強度、Fe2p3のピーク面積強度およびCo2p3のピーク面積強度を算出し、次いで各々のピーク面積強度について装置固有の相対感度因子による補正を行ったうえでその比率を求めるという手順により、該表面組成におけるFe/Mo原子比およびCo/Mo原子比を求めた。
In Examples and Comparative Examples, the specific gravity (g / mL) of the slurry is obtained by sampling a part of the slurry, measuring the volume (mL) and the mass (g) at a slurry temperature of 20 ° C., and dividing the mass by the volume. Calculated.
The viscosity (mPa · s) of the slurry was measured using a B-type viscometer after sampling a part of the slurry, setting the slurry temperature to 20 ° C., and sufficiently stirring so that the solid content does not separate.
The average particle diameter (average median diameter) of the composite oxide particles was measured using a particle size distribution analyzer SALD-7000 manufactured by Shimadzu Corporation.
The Fe / Mo atomic ratio and Co / Mo atomic ratio in the bulk composition of composite oxide particles are determined by quantifying the amount of catalyst components in a solution of composite oxide particles dissolved in hydrochloric acid by ICP emission spectrometry and atomic absorption spectrometry. Asked.
Regarding the surface composition of the composite oxide particles, first, using an X-ray photoelectron spectrometer (ESCALAB220iXL manufactured by VG), measurement was performed using Al-kα rays as an X-ray source, and an XPS spectrum obtained by the measurement was obtained. First, the peak area intensity of Mo3d, the peak area intensity of Fe2p3, and the peak area intensity of Co2p3 are calculated, and then the ratio is obtained after correcting each peak area intensity by the relative sensitivity factor specific to the apparatus. By the procedure, the Fe / Mo atomic ratio and the Co / Mo atomic ratio in the surface composition were determined.

[実施例1]
60℃の純水2000部に、パラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム12.4部、硝酸セシウム23.0部、三酸化アンチモン27.4部および三酸化ビスマス33.0部を加え、攪拌した(A液)。
これとは別に、室温の純水1000部に、硝酸第二鉄209.8部、硝酸ニッケル75.5部、硝酸コバルト453.3部、硝酸鉛31.3部および85%リン酸5.6部を順次加え、溶解した(B液)。
A液とB液とを混合してスラリー状物を得た後、撹拌下、95℃にて3時間加熱処理を行った。加熱処理後のスラリー状物の一部を採取し、スラリー温度20℃における比重および粘度を測定したところ、比重は1.4g/mL、粘度は470mPa・sであった。
続いて、該スラリー状物を回転円盤型噴霧乾燥機にて、熱風の導入口における温度を220℃、出口における温度を170℃に制御しながら乾燥した。得られた乾燥粒子を空気雰囲気下、300℃で1時間焼成し、さらに空気雰囲気下500℃で6時間焼成した。
こうして得られた複合酸化物粒子のバルク組成のうち、酸素以外の元素の組成は、
Mo12Bi0.6Fe2.2Sb0.8Ni1.1Co6.6Pb0.40.20.2Cs0.5であった。また、複合酸化物粒子のX線光電子分光分析を行い、表面組成におけるFe/Mo原子比およびCo/Mo原子比を求め、これらの結果から、B/AおよびD/Cの値を求めた。その結果、B/Aは0.72、D/Cは0.49であった。
[Example 1]
To 2000 parts of pure water at 60 ° C., 500 parts of ammonium paramolybdate, 12.4 parts of ammonium paratungstate, 23.0 parts of cesium nitrate, 27.4 parts of antimony trioxide and 33.0 parts of bismuth trioxide are added. Stirred (Liquid A).
Separately from this, 1000 parts of pure water at room temperature, 209.8 parts of ferric nitrate, 75.5 parts of nickel nitrate, 453.3 parts of cobalt nitrate, 31.3 parts of lead nitrate and 5.6% of 85% phosphoric acid. Parts were added sequentially and dissolved (Liquid B).
After mixing liquid A and liquid B to obtain a slurry, heat treatment was performed at 95 ° C. for 3 hours with stirring. A part of the slurry-like material after the heat treatment was collected and measured for specific gravity and viscosity at a slurry temperature of 20 ° C. As a result, the specific gravity was 1.4 g / mL and the viscosity was 470 mPa · s.
Subsequently, the slurry was dried with a rotary disk spray dryer while controlling the temperature at the hot air inlet at 220 ° C. and the temperature at the outlet at 170 ° C. The obtained dried particles were fired at 300 ° C. for 1 hour in an air atmosphere, and further fired at 500 ° C. for 6 hours in an air atmosphere.
Of the bulk composition of the composite oxide particles thus obtained, the composition of elements other than oxygen is
It was Mo 12 Bi 0.6 Fe 2.2 Sb 0.8 Ni 1.1 Co 6.6 Pb 0.4 P 0.2 W 0.2 Cs 0.5. In addition, X-ray photoelectron spectroscopic analysis of the composite oxide particles was performed to determine the Fe / Mo atomic ratio and Co / Mo atomic ratio in the surface composition, and from these results, the values of B / A and D / C were determined. As a result, B / A was 0.72 and D / C was 0.49.

得られた複合酸化物粒子を加圧成型し、リング形状の成形物(寸法:外径5mm、内径2mm、高さ4mm)を得た。
該成型物をステンレス製反応管に充填し、そこにイソブチレン5%、分子状酸素12%、水蒸気10%および窒素73%(いずれも容量%)の原料ガスを供給し、常圧下、接触時間3.6秒、反応温度340℃の条件で反応させ、イソブチレンを分子状酸素により気相接触酸化した。
その結果、イソブチレンの反応率は98.5%、MALの選択率は92.5%、MAAの選択率は2.9%、合計収率は94.0%であった。
The obtained composite oxide particles were pressure-molded to obtain a ring-shaped molded product (dimensions: outer diameter 5 mm, inner diameter 2 mm, height 4 mm).
The molded product is filled in a stainless steel reaction tube, and a raw material gas of 5% isobutylene, 12% molecular oxygen, 10% water vapor and 73% nitrogen (both volume%) is supplied, and the contact time is 3 at normal pressure. The reaction was carried out for 6 seconds at a reaction temperature of 340 ° C., and isobutylene was vapor-phase contact oxidized with molecular oxygen.
As a result, the reaction rate of isobutylene was 98.5%, the selectivity of MAL was 92.5%, the selectivity of MAA was 2.9%, and the total yield was 94.0%.

[実施例2]
実施例1と同様にしてA液とB液とを混合したスラリー状物を得、得られたスラリー状物について、撹拌下、105℃にて3時間加熱処理を行った。加熱処理後のスラリー状物の一部を採取し、スラリー温度20℃における比重および粘度を測定したところ、比重は1.7g/mL、粘度は2750mPa・sであった。
続いて、該スラリー状物を実施例1と同様にして噴霧乾燥し、焼成して複合酸化物粒子を得た。該複合酸化物粒子について、実施例1と同様にしてFe/Mo原子比およびCo/Mo原子比を求めたところ、B/Aは0.53であり、D/Cは0.69であった。
該複合酸化物粒子を実施例1と同様にして成形物とし、該成形物を用いて、実施例1と同じ方法により、同じ原料混合ガスを用いて反応を行った。その結果、イソブチレンの反応率は99.0%、MALの選択率は91.3%、MAAの選択率は2.7%、合計収率は93.1%であった。
[Example 2]
In the same manner as in Example 1, a slurry was obtained by mixing the liquid A and the liquid B, and the obtained slurry was heat-treated at 105 ° C. for 3 hours with stirring. A part of the slurry-like material after the heat treatment was collected and measured for specific gravity and viscosity at a slurry temperature of 20 ° C. As a result, the specific gravity was 1.7 g / mL and the viscosity was 2750 mPa · s.
Subsequently, the slurry was spray-dried in the same manner as in Example 1 and fired to obtain composite oxide particles. With respect to the composite oxide particles, the Fe / Mo atomic ratio and the Co / Mo atomic ratio were determined in the same manner as in Example 1. As a result, B / A was 0.53 and D / C was 0.69. .
The composite oxide particles were formed into a molded product in the same manner as in Example 1, and the reaction was performed using the molded product in the same manner as in Example 1 using the same raw material mixed gas. As a result, the reaction rate of isobutylene was 99.0%, the selectivity of MAL was 91.3%, the selectivity of MAA was 2.7%, and the total yield was 93.1%.

[比較例1]
実施例1と同様にしてA液とB液とを混合したスラリー状物を得、得られたスラリー状物について、加熱処理を行わずにその一部を採取して、スラリー温度20℃における比重および粘度を測定したところ、比重は1.25g/mL、粘度は35mPa・sであった。
続いて、該スラリー状物を実施例1と同様にして噴霧乾燥し、焼成して複合酸化物粒子を得た。該複合酸化物粒子について、実施例1と同様にしてFe/Mo原子比およびCo/Mo原子比を求めたところ、B/Aは0.95であり、D/Cは0.36であった。
該複合酸化物粒子を実施例1と同様にして成形物とし、該成形物を用いて、実施例1と同じ方法により、同じ原料混合ガスを用いて反応を行った。その結果、イソブチレンの反応率は96.3%、MALの選択率は91.4%、MAAの選択率は0.9%、合計収率は88.9%であった。
[Comparative Example 1]
In the same manner as in Example 1, a slurry-like product obtained by mixing the liquid A and the solution B was obtained. A portion of the obtained slurry-like product was collected without performing heat treatment, and the specific gravity at a slurry temperature of 20 ° C. When the viscosity was measured, the specific gravity was 1.25 g / mL, and the viscosity was 35 mPa · s.
Subsequently, the slurry was spray-dried in the same manner as in Example 1 and fired to obtain composite oxide particles. With respect to the composite oxide particles, the Fe / Mo atomic ratio and the Co / Mo atomic ratio were determined in the same manner as in Example 1. As a result, B / A was 0.95 and D / C was 0.36. .
The composite oxide particles were formed into a molded product in the same manner as in Example 1, and the reaction was performed using the molded product in the same manner as in Example 1 using the same raw material mixed gas. As a result, the reaction rate of isobutylene was 96.3%, the selectivity of MAL was 91.4%, the selectivity of MAA was 0.9%, and the total yield was 88.9%.

[比較例2]
実施例1と同様にしてA液とB液とを混合したスラリー状物を得、得られたスラリー状物について、撹拌下、115℃にて4時間加熱処理を行った。加熱処理後のスラリー状物の一部を採取し、スラリー温度20℃における比重および粘度を測定したところ、比重は1.82g/mL、粘度は3050mPa・sであった。
続いて、該スラリー状物を実施例1と同様にして噴霧乾燥し、焼成して複合酸化物粒子を得た。該複合酸化物粒子について、実施例1と同様にしてFe/Mo原子比およびCo/Mo原子比を求めたところ、B/Aは0.57であり、D/Cは0.81であった。
該複合酸化物粒子を実施例1と同様にして成形物とし、該成形物を用いて、実施例1と同じ方法により、同じ原料混合ガスを用いて反応を行った。その結果、イソブチレンの反応率は98.8%、MALの選択率は87.2%、MAAの選択率は2.7%、合計収率は88.8%であった。
[Comparative Example 2]
In the same manner as in Example 1, a slurry-like product obtained by mixing the liquid A and the solution B was obtained, and the obtained slurry-like product was heat-treated at 115 ° C. for 4 hours with stirring. A part of the slurry-like material after the heat treatment was collected and measured for specific gravity and viscosity at a slurry temperature of 20 ° C. As a result, the specific gravity was 1.82 g / mL and the viscosity was 3050 mPa · s.
Subsequently, the slurry was spray-dried in the same manner as in Example 1 and fired to obtain composite oxide particles. With respect to the composite oxide particles, the Fe / Mo atomic ratio and the Co / Mo atomic ratio were determined in the same manner as in Example 1. As a result, B / A was 0.57 and D / C was 0.81. .
The composite oxide particles were formed into a molded product in the same manner as in Example 1, and the reaction was performed using the molded product in the same manner as in Example 1 using the same raw material mixed gas. As a result, the reaction rate of isobutylene was 98.8%, the selectivity of MAL was 87.2%, the selectivity of MAA was 2.7%, and the total yield was 88.8%.

[比較例3]
実施例1と同様にしてA液とB液とを混合したスラリー状物を得、得られたスラリー状物について、撹拌下、75℃にて1時間加熱処理を行った。加熱処理後のスラリー状物の一部を採取し、スラリー温度20℃における比重および粘度を測定したところ、比重は1.3g/mL、粘度は89mPa・sであった。
続いて、該スラリー状物を実施例1と同様にして噴霧乾燥し、焼成して複合酸化物粒子を得た。該複合酸化物粒子について、実施例1と同様にしてFe/Mo原子比およびCo/Mo原子比を求めたところ、B/Aは0.91であり、D/Cは0.45であった。
該複合酸化物粒子を実施例1と同様にして成形物とし、該成形物を用いて、実施例1と同じ方法により、同じ原料混合ガスを用いて反応を行った。その結果、イソブチレンの反応率は97.2%、MALの選択率は90.4%、MAAの選択率は1.2%、合計収率は89.0%であった。
[Comparative Example 3]
In the same manner as in Example 1, a slurry-like product obtained by mixing solution A and solution B was obtained, and the resulting slurry-like product was heat-treated at 75 ° C. for 1 hour with stirring. A part of the slurry-like material after the heat treatment was collected and measured for specific gravity and viscosity at a slurry temperature of 20 ° C. As a result, the specific gravity was 1.3 g / mL and the viscosity was 89 mPa · s.
Subsequently, the slurry was spray-dried in the same manner as in Example 1 and fired to obtain composite oxide particles. With respect to the composite oxide particles, the Fe / Mo atomic ratio and the Co / Mo atomic ratio were determined in the same manner as in Example 1. As a result, B / A was 0.91, and D / C was 0.45. .
The composite oxide particles were formed into a molded product in the same manner as in Example 1, and the reaction was performed using the molded product in the same manner as in Example 1 using the same raw material mixed gas. As a result, the reaction rate of isobutylene was 97.2%, the selectivity of MAL was 90.4%, the selectivity of MAA was 1.2%, and the total yield was 89.0%.

[比較例4]
実施例1と同様にしてA液とB液とを混合したスラリー状物を得、得られたスラリー状物について、撹拌下、90℃にて1.5時間加熱処理を行った。加熱処理後のスラリー状物の一部を採取し、スラリー温度20℃における比重および粘度を測定したところ、比重は1.35g/mL、粘度は210mPa・sであった。
続いて、該スラリー状物を実施例1と同様にして噴霧乾燥し、焼成して複合酸化物粒子を得た。該複合酸化物粒子について、実施例1と同様にしてFe/Mo原子比およびCo/Mo原子比を求めたところ、B/Aは0.91であり、D/Cは0.47であった。
該複合酸化物粒子を実施例1と同様にして成形物とし、該成形物を用いて、実施例1と同じ方法により、同じ原料混合ガスを用いて反応を行った。その結果、イソブチレンの反応率は98.0%、MALの選択率は91.2%、MAAの選択率は1.5%、合計収率は90.8%であった。
[Comparative Example 4]
In the same manner as in Example 1, a slurry-like product obtained by mixing solution A and solution B was obtained, and the obtained slurry-like product was heat-treated at 90 ° C. for 1.5 hours with stirring. A part of the slurry-like material after the heat treatment was collected and measured for specific gravity and viscosity at a slurry temperature of 20 ° C. As a result, the specific gravity was 1.35 g / mL and the viscosity was 210 mPa · s.
Subsequently, the slurry was spray-dried in the same manner as in Example 1 and fired to obtain composite oxide particles. With respect to the composite oxide particles, the Fe / Mo atomic ratio and the Co / Mo atomic ratio were determined in the same manner as in Example 1. As a result, B / A was 0.91, and D / C was 0.47. .
The composite oxide particles were formed into a molded product in the same manner as in Example 1, and the reaction was performed using the molded product in the same manner as in Example 1 using the same raw material mixed gas. As a result, the reaction rate of isobutylene was 98.0%, the selectivity of MAL was 91.2%, the selectivity of MAA was 1.5%, and the total yield was 90.8%.

Figure 2011115681
Figure 2011115681

上記結果に示すとおり、実施例1〜2の触媒を用いると、原料の反応率、生成するMALおよびMAAの選択率のいずれも高く、比較例1〜3の触媒を用いた場合に比べて、合計収率が向上した。
一方、比較例1の触媒は、実施例1〜2に比べて、反応率およびMAAの選択率が低く、合計収率も低かった。比較例2の触媒は、実施例1〜2に比べて、MALの選択率が低く、合計収率も低かった。比較例3〜4の触媒は、実施例1〜2に比べて、反応率、MALの選択率およびMAAの選択率が低く、合計収率も低かった。
As shown in the above results, when the catalysts of Examples 1 and 2 were used, both the reaction rate of the raw materials and the selectivity of MAL and MAA to be produced were high, compared with the case of using the catalysts of Comparative Examples 1 to 3, The total yield was improved.
On the other hand, compared with Examples 1-2, the catalyst of the comparative example 1 had a low reaction rate and the selectivity of MAA, and the total yield was also low. The catalyst of Comparative Example 2 had a lower MAL selectivity and a lower total yield than Examples 1-2. The catalysts of Comparative Examples 3 to 4 had a lower reaction rate, MAL selectivity, and MAA selectivity, and a lower total yield than Examples 1-2.

Claims (1)

少なくともモリブデン、鉄およびコバルトを含む複合酸化物の粒子からなり、該粒子が下記式(i)および(ii)を満足する、不飽和アルデヒドおよび不飽和カルボン酸合成用触媒。
B/A≦0.8 …(i)
D/C≦0.7 …(ii)
[式中、Aは当該粒子のバルク組成におけるFe/Mo原子比を示し、Bは当該粒子の表面組成におけるFe/Mo原子比を示し、Cは当該粒子のバルク組成におけるCo/Mo原子比を示し、Dは当該粒子の表面組成におけるCo/Mo原子比を示す。]
A catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids, comprising particles of a composite oxide containing at least molybdenum, iron and cobalt, wherein the particles satisfy the following formulas (i) and (ii).
B / A ≦ 0.8 (i)
D / C ≦ 0.7 (ii)
[In the formula, A represents the Fe / Mo atomic ratio in the bulk composition of the particles, B represents the Fe / Mo atomic ratio in the surface composition of the particles, and C represents the Co / Mo atomic ratio in the bulk composition of the particles. D represents the Co / Mo atomic ratio in the surface composition of the particles. ]
JP2009273282A 2009-12-01 2009-12-01 Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid Pending JP2011115681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273282A JP2011115681A (en) 2009-12-01 2009-12-01 Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273282A JP2011115681A (en) 2009-12-01 2009-12-01 Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid

Publications (1)

Publication Number Publication Date
JP2011115681A true JP2011115681A (en) 2011-06-16

Family

ID=44281667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273282A Pending JP2011115681A (en) 2009-12-01 2009-12-01 Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP2011115681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220114659A (en) 2020-02-26 2022-08-17 미쯔비시 케미컬 주식회사 catalyst
US11648536B2 (en) 2017-11-28 2023-05-16 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation of butene and method for producing the same
KR20230159842A (en) 2021-03-24 2023-11-22 미쯔비시 케미컬 주식회사 Catalyst, method for producing catalyst, and method for producing α,β-unsaturated aldehyde, α,β-unsaturated carboxylic acid, and α,β-unsaturated carboxylic acid ester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11648536B2 (en) 2017-11-28 2023-05-16 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation of butene and method for producing the same
KR20220114659A (en) 2020-02-26 2022-08-17 미쯔비시 케미컬 주식회사 catalyst
KR20230159842A (en) 2021-03-24 2023-11-22 미쯔비시 케미컬 주식회사 Catalyst, method for producing catalyst, and method for producing α,β-unsaturated aldehyde, α,β-unsaturated carboxylic acid, and α,β-unsaturated carboxylic acid ester

Similar Documents

Publication Publication Date Title
JP5628930B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP5678476B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
KR20160004252A (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
KR20160068763A (en) Method for producing unsaturated carboxylic acid, and supported catalyst
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JP5030438B2 (en) Method for producing catalyst and method for producing methacrylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2011115681A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP2008284416A (en) Method for manufacturing metal oxide catalyst
JP3939187B2 (en) Process for producing unsaturated aldehyde
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP5344753B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP5063055B2 (en) Method for packing solid catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP3370548B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JP4875480B2 (en) Method for producing metal-containing catalyst
JP5070089B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same
JP4947756B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2010207803A (en) Compound oxide catalyst
JP4902991B2 (en) Method for producing oxide catalyst
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron
JP7400940B2 (en) Catalyst, method for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing catalyst
JP3313968B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
KR102318486B1 (en) Method for preparing catalyst for preparing α,β-unsaturated carboxylic acid, method for preparing α,β-unsaturated carboxylic acid, and method for preparing α,β-unsaturated carboxylic acid ester