JP3939187B2 - Process for producing unsaturated aldehyde - Google Patents

Process for producing unsaturated aldehyde Download PDF

Info

Publication number
JP3939187B2
JP3939187B2 JP2002113915A JP2002113915A JP3939187B2 JP 3939187 B2 JP3939187 B2 JP 3939187B2 JP 2002113915 A JP2002113915 A JP 2002113915A JP 2002113915 A JP2002113915 A JP 2002113915A JP 3939187 B2 JP3939187 B2 JP 3939187B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
carboxylic acid
producing
unsaturated carboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002113915A
Other languages
Japanese (ja)
Other versions
JP2004002209A (en
Inventor
弘己 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2002113915A priority Critical patent/JP3939187B2/en
Priority to TW92104818A priority patent/TWI247628B/en
Publication of JP2004002209A publication Critical patent/JP2004002209A/en
Application granted granted Critical
Publication of JP3939187B2 publication Critical patent/JP3939187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法に関する。詳しくは、触媒を充填した固定床多管式反応器を用いて、プロピレン、イソブチレン、t−ブチルアルコールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を原料とし、分子状酸素または分子状酸素含有ガスにより気相接触酸化することにより、不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法に関する。
【0002】
【従来の技術】
触媒を充填した固定床多管式反応器を用いて、プロピレン、イソブチレン、t−ブチルアルコールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を原料とし、分子状酸素または分子状酸素含有ガスにより気相接触酸化することにより、それぞれに対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法に関しては、これまでにいくつかの提案(例えば、特公昭53−30688号公報、特公昭63−38331号公報、特開平3−294238号公報、特開平3−294239号公報、特開平4−217932号公報、特開平8−3093号公報、特開平10−168003号公報など)が報告され、中には工業的に実施されている方法もある。
【0003】
この気相接触酸化反応は非常な発熱反応を伴うことから、触媒層に局所的な異常高温部(以下、ホットスポット部と称することがある)が発生する。特に、固定床多管式反応器を用いた酸化反応を実施する以上、触媒層におけるホットスポット部の発生をなくすことは避けられない。
ホットスポット部の温度が高いと、過度の酸化反応を引き起こして収率が低下したり、最悪の場合には暴走反応を引き起こす。また、ホットスポット部に位置する触媒は高温に曝されるため、触媒の物理的性質および化学的性質が変化してしまい、活性や目的生成物の選択率が低下するなど、触媒の劣化が加速される。特に、モリブデン系の触媒の場合、モリブデン成分が昇華して触媒組成および物性が変化しやすいため、触媒の劣化の度合いが大きい。
【0004】
上記の問題は、目的生成物の生産性向上を目的として、高い空間速度での反応や高い原料ガス濃度での反応を行う場合に、さらに顕著となる。
以上の問題について、反応管に充填された触媒層全体に着目すると、ホットスポット部に位置する触媒は、他の部分の触媒に比べて劣化が速く、長時間の使用によって目的生成物の収率が著しく低下し、安定的に製造を行うことが困難となり得る。そして、前述したように、モリブデン系の触媒の場合や、高い空間速度での反応や高い原料ガス濃度での反応を行う場合、触媒の劣化の度合いが特に大きい。
【0005】
【発明が解決しようとする課題】
前述した従来公知のいずれの提案も、ホットスポット部の温度を低く抑えることに着目した提案である。しかしながら、固定床多管式反応器を用いた酸化反応を実施する場合、触媒層におけるホットスポット部の発生を完全になくすことはできず、ホットスポット部に位置する触媒の劣化度合いが他の部分に位置する触媒の劣化度合いに比較して相対的に大きいという問題は解決できていない。特に、モリブデン系の触媒を使用する場合や高い原料ガス濃度で反応を行う場合には、この問題は顕著となる。
【0006】
従って、本発明の課題は、モリブデン系の触媒を充填した固定床多管式反応器を用いた気相接触酸化反応によって不飽和アルデヒドおよび/または不飽和カルボン酸を製造する場合に、ホットスポット部に位置する触媒の劣化を抑制し、ホットスポット部がどこに発生するかによらず、また、原料ガス濃度が高い場合であっても、高い収率を維持しながら長期にわたって反応を継続することができる方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は上記課題を解決するべく鋭意検討を行った。その結果、触媒の真密度に対する触媒の見掛け密度の比R(触媒の見掛け密度/触媒の真密度)に着目し、このRが相対的に高い触媒は低い触媒に比べて高温に曝されても劣化度合いが小さいことを見出した。そして、Rが異なる触媒を用意し、Rの高い触媒がホットスポット部やその近傍に位置されるように充填することによって上記課題が解決できることに想到した。
すなわち、本発明にかかる不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法は、触媒を充填した固定床多管式反応器を用いて、プロピレン、イソブチレン、t−ブチルアルコール、およびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を原料とし、分子状酸素または分子状酸素含有ガスにより気相接触酸化することにより、原料に対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法において、前記触媒として、モリブデン、ビスマスおよび鉄を必須成分とする酸化物および/または複合酸化物を使用し、前記固定床多管型反応器における各反応管の内部を管軸方向に分割することにより複数個の反応帯を設け、
(1)触媒前駆体の減量率を変化させること、
(2)触媒に添加する細孔形成剤の種類および/または量を変えること、
から選ばれる少なくとも一つの方法によって触媒の真密度に対する触媒の見掛け密度の比R(触媒の見掛け密度/触媒の真密度)が異なる前記触媒を調製し、それぞれの反応帯に前記Rが異なる前記触媒をそれぞれ充填することを特徴とする。
【0008】
【発明の実施の形態】
本発明で使用するモリブデン、ビスマスおよび鉄を必須成分とする触媒としては、プロピレン、イソブチレン、t−ブチルアルコールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を原料とし、気相接触酸化反応により対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造し得るものであればいずれも使用できるが、下記一般式(1)で表される複合酸化物触媒が好適に用いられる。
MoaWbBicFedAeBfCgDhEiOx (1)
(ここで、Moはモリブデン、Wはタングステン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも一種の元素、Bはナトリウム、カリウム、ルビジウム、セシウムおよびタリウムから選ばれる少なくとも一種の元素、Cはホウ素、リン、クロム、マンガン、亜鉛、ヒ素、ニオブ、スズ、アンチモン、テルル、セリウムおよび鉛から選ばれる少なくとも一種の元素、Dはシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、Eはアルカリ土類金属から選ばれる少なくとも一種の元素、そしてOは酸素であり、a、b、c、d、e、f、g、h、iおよびxはそれぞれMo、W、Bi、Fe、A、B、C、D、EおよびOの原子比を表し、a=12の時、0≦b≦5、0.1≦c≦10、0.1≦d≦20、1≦e≦20、0.001≦f≦5、0≦g≦10、0≦h≦30、0≦i≦5であり、xはそれぞれの元素の酸化状態によって定まる数値である。)
上記触媒成分元素の出発原料については特段の制限はなく、一般にこの種の触媒に使用される金属元素のアンモニウム塩、硝酸塩、炭酸塩、塩化物、硫酸塩、水酸化物、有機酸塩、酸化物またはこれらの混合物を組み合わせて用いればよいが、アンモニウム塩および硝酸塩が好適に用いられる。
【0009】
触媒原料塩の混合水溶液または水性スラリーは、この種の触媒に一般に用いられている方法により調製すればよく、例えば、上記触媒原料を水溶液とし、これらを順次混合すればよい。触媒原料の混合条件(混合順序、温度、圧力、pH等)については特に制限はない。こうして得られた触媒原料塩の混合水溶液または水性スラリーは必要に応じて濃縮乾固してケーキ状固形物を得る場合もある。前記触媒原料塩混合水溶液、水性スラリーまたはケーキ状固形物は加熱処理され、触媒前駆体P1を得る。
触媒前駆体P1を得るための加熱処理方法および触媒前駆体の形態については特に限定はなく、例えばスプレードライヤー、ドラムドライヤー等を用いて粉末状の触媒前駆体を得てもよいし、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱してブロック状またはフレーク状の触媒前駆体を得てもよい。
【0010】
触媒前駆体P1は、好ましくは減量率が10質量%以上40質量%未満、より好ましくは13質量%以上37質量%以下、さらに好ましくは15質量%以上35質量%以下となるように加熱処理条件を設定する。しかしながら、減量率が上記範囲外の場合であっても、もちろん使用可能である。
触媒前駆体の減量率は、触媒前駆体P1を均一に混合して約10g精秤し、これを空気雰囲気下にて300℃で1時間加熱した場合に下記式から算出される。
減量率(質量%)=(触媒前駆体質量−加熱後の触媒前駆体質量)/触媒前駆体質量×100
減量分は、加熱処理により分解、揮発、昇華する触媒前駆体P1に残存している硝酸根、アンモニウム根等および水分である。(触媒前駆体P1に含有される硝酸塩、アンモニウム塩は高温で加熱することにより分解して触媒前駆体P1より除去される。すなわち減量率が高い触媒前駆体ほど、硝酸塩、アンモニウム塩などを高い割合で含有していることを意味する。)
上記した加熱処理条件は、加熱装置(乾燥機)の種類や加熱装置の特性によって適宜選択されるべきであって一概に特定できないが、例えば、箱型乾燥機を用いる場合、気体流通下、230℃以下の温度で3〜24時間処理すればよい。
【0011】
上記のように好ましくは減量率を調整された触媒前駆体P1は、必要に応じて適当な粒度の粉体を得るための粉砕工程や分級工程を経て、続く成型工程に送る。
減量率が好ましくは上記範囲内に調整された触媒前駆体P1に対し、続いて、バインダーを添加、混合し、触媒前駆体P2とする。
触媒前駆体P1に対して添加、混合するバインダーの種類は特に限定されず、例えば、触媒成型に用いることが可能な公知のバインダーを挙げることができるが、好ましくは、水である。
【0012】
触媒前駆体P1に対して添加、混合するバインダーの量、好ましくは、触媒前駆体P1に対して添加、混合する水の量は、前記触媒前駆体P1の100質量部に対して好ましくは5質量部以上30質量部以下であり、より好ましくは8質量部以上27質量部以下、さらにより好ましくは11質量部以上24質量部以下である。
添加量が30質量部より多くなると、触媒前駆体P2の成型性が悪化し、成型ができなくなる場合もある。添加量が5質量部未満だと触媒前駆体P2同士の結合が弱く、成型自体ができなくなるか成型できたとしても、触媒の機械強度が低くなる場合がある。押出成型の場合は、最悪の場合、成型機が壊れる。
【0013】
触媒前駆体P1に添加される水は、各種物質の水溶液や各種物質と水との混合物の形でも添加できる。
水と共に添加される物質としては、成型性を向上させる成型助剤、触媒の強度を向上させる補強剤やバインダー、触媒に細孔を形成させる気孔形成剤として一般に用いられる物質などが挙げられる。これら物質としては、添加によって触媒性能(活性、目的生成物の選択性)に悪影響を及ぼさないものが好ましい。つまり、(i)焼成後に触媒中に残存しない物質の水溶液または水との混合物、(ii)焼成後に触媒中に残存するとしても触媒性能に対して悪影響を及ぼさない物質からなる水溶液または水との混合物である。
【0014】
上記(i)の具体例としては、エチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコールまたはフェノール等の有機化合物や硝酸、硝酸アンモニウム、炭酸アンモニウムなどが挙げられる。
上記(ii)の具体例としては、補強剤として一般に知られているシリカ、アルミナ、ガラス繊維、炭化珪素、窒化珪素などが挙げられる。本発明によれば、製造される触媒は実用上十分な機械強度を有しているが、更に高い機械強度が必要な場合、これら補強剤が添加される。
【0015】
これら物質は、添加量が過剰な場合、触媒の機械強度が著しく低下するので、工業触媒として実用不可能な程度まで触媒の機械強度が低下しない程度の量を添加することが好ましい。
上記した各種物質の水溶液や各種物質と水との混合物の形で添加する場合、例えば、100質量部の触媒前駆体P1に、20質量部の5質量%エチレングリコール水溶液を添加して成型した場合、P1に添加された水の量は20×(1−0.05)=19質量部となる。
本発明で使用する触媒は触媒前駆体P2を一定の形状に成型した成型触媒であっても、あるいは触媒前駆体P2を一定の形状を有する任意の不活性担体に担持させた担持触媒であっても、あるいはこれら成型触媒と担持型触媒との組み合わせであってもよいが、好ましくは、触媒前駆体P2を一定の形状に成型した成型触媒である。
【0016】
上記触媒の形状については特に制限はなく、球状、円柱状(ペレット状)、リング状、不定形などのいずれの形状でもよい。もちろん、球状の場合、真球である必要はなく実質的に球状であればよい。円柱状およびリング状についても同様である。また、各反応帯に充填する触媒の形状は同一でも、あるいは異なっていてもよいが(例えば、ガス入口側:球状触媒、ガス出口側:ペレット状触媒)、通常、同一形状の成型触媒または同一形状の担持型触媒を充填するのが好ましい。
上記触媒の大きさについては、触媒の形状が球状の場合、平均触媒粒径が1〜15mmが好ましく、より好ましくは1〜10mm、さらに好ましくは3〜10mm、さらにより好ましくは3〜8mmのものが好適に用いられる。
【0017】
触媒の細孔容積としては、好ましくは0.2〜0.6cm3/g、より好ましくは0.25〜0.55cm3/gである。
担持触媒の場合、担体の材質自体には特に制限はなく、アクロレインを気相酸化してアクリル酸を製造する触媒を製造する際に通常用いることができる担体をいずれも使用することができる。使用可能な担体の具体例としてはアルミナ、シリカ、シリカ・アルミナ、チタニア、マグネシア、ステアタイト、シリカマグネシア、シリカマグネシアアルミナ、炭化珪素、窒化珪素、ゼオライトなどが挙げられる。
【0018】
担持触媒の場合、各反応帯に充填する触媒の担持率は、酸化反応条件、触媒の活性、および強度等を勘案して最適な活性および選択性が得られるように適宜決定されるが、好ましくは5〜200%、より好ましくは10〜100%、特に好ましくは15〜50%である。
なお、本発明において、触媒の担持率は次式により算出される。
担持率(%)
=[(焼成後の触媒質量−担体質量)/焼成後の触媒質量]×100
触媒調製時の熱処理条件(いわゆる焼成条件)についても特段の制限はなく、この種の触媒製造にて一般的に採用されている焼成条件を適用できる。各反応帯に充填する触媒の熱処理温度は同一でも異なっていてもよく、熱処理温度としては、好ましくは350〜600℃、より好ましくは400〜550℃、熱処理時間としては好ましくは1〜10時間である。
【0019】
触媒の成型方法は従来公知の方法でよく、例えば、押出成型法、打錠成型法、造粒法(転動造粒装置、遠心流動コーティング装置)、マルメライザー法などの成型方法が適用できる。なかでも押出成型法が好適である。
本発明にかかる不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法おいては、固定床多管型反応器における各反応管の内部を管軸方向に分割することにより複数個の反応帯を設け、この各反応帯に、触媒の真密度に対する触媒の見掛け密度の比R(触媒の見掛け密度/触媒の真密度)が異なる前記触媒をそれぞれ充填することを特徴とする。
【0020】
なお、本発明では、触媒の見掛け密度=1/(1/真密度+細孔容積)とする。
また、担体に触媒活性物質を担持させた、いわゆる担持型触媒の場合には、任意の方法で担体表面から触媒活性物質のみを剥離させ、触媒活性物質のみの真密度および細孔容積を測定して上式よりRを算出する。
このように真密度に対する触媒の見掛け密度の比Rが異なる触媒を充填することによって、モリブデン系の触媒を充填した固定床多管式反応器を用いた気相接触酸化反応によって不飽和アルデヒドおよび/または不飽和カルボン酸を製造する場合に、ホットスポット部がどこに発生するかによらず、また、原料ガス濃度が高い場合であっても、高い収率を維持しながら長期にわたって反応を継続することができるのである。
【0021】
真密度に対する触媒の見掛け密度の比Rが異なる触媒の製造方法は特に限定されないが、例えば、以下のような方法(1)〜(4)あるいはそれらの組み合わせによって製造することができる。
(1)触媒前駆体の減量率を変えることでRを変えることができる。減量率が低いと、触媒の細孔形成が少なくなるため、触媒の見掛け密度が高くなる。そして、真密度は触媒の組成が極端に変わらなければ製造方法を変えても変化しないので、減量率が低いとRは大きくなる。逆に、減量率が高いと、触媒の見掛け密度が低くなるため、Rは小さくなる。
【0022】
(2)触媒に添加する細孔形成剤の種類および/または添加量を制御する。触媒に細孔を形成する作用のある細孔形成剤を添加し、この添加量を相対的に少なくすると、見掛け密度は高くなり、Rは大きくなる。逆に、添加量が相対的に多くなると、Rは小さくなる。また、細孔形成剤の種類を変えることによってもRを制御できる。
(3)Rを変える効果は小さいが、触媒組成(触媒原料として用いられる金属の種類や添加割合)を変えると、真密度が変わるので、Rも変わる。
(4)成型の際の圧力を変えることによってもRを制御できる。例えば、打錠成型の場合、打圧を高くすればRは大きくなり、打圧を低くすればRは小さくなる。また、押出成型の場合、押出し圧を高くすればRが大きくなり、押出し圧を低くすればRは小さくなる。
【0023】
本発明において用いることができる触媒の真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)の範囲は、特に限定されないが、好ましくは0.25〜0.55、より好ましくは0.30〜0.50である。
触媒の真密度に対する見掛け密度の比が0.25未満の場合、細孔容積の増加に伴って細孔内拡散効率は上昇する場合があり、この場合、触媒の活性および目的生成物への選択率は向上するが、触媒強度が著しく低下するために好ましくない。
触媒の真密度に対する見掛け密度の比が0.55より大きい場合は上記の逆となり、触媒強度は向上するが、触媒の活性および目的生成物への選択率が著しく低下するために好ましくない。
【0024】
本発明においては、固定床多管型反応器における各反応管の内部を管軸方向に分割することによって複数個の反応帯を設け、これら複数個の反応帯に上記した方法によって調製されたRの異なる複数個の触媒を充填する。
上記充填配置の方法については、特に限定されず、例えば、ガス入口側からガス出口側に向かってRがより小さくなるように充填する配置や、ガス入口側からガス出口側に向かってRが一旦大きくなった後に小さくなるように充填する配置などが挙げられるが、好ましくは、Rの異なる触媒を各反応管のガス入口側からガス出口側に向かってRがより小さくなるように配置する。すなわち、Rが最も大きい触媒を入口側に、Rの最も小さい触媒を出口側に配置する。また、ガス入口側からガス出口側に向かってRが一旦大きくなった後に小さくなるように充填する配置においては、ガス入口部分のRが大きい触媒の充填層長は、全触媒層の60%以下が好ましく、5〜50%がより好ましく、10〜40%がさらに好ましい。
【0025】
このように触媒の真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)の異なる複数個の触媒を配列することによって、モリブデン系の触媒を充填した固定床多管式反応器を用いた気相接触酸化反応によって不飽和アルデヒドおよび/または不飽和カルボン酸を製造する場合に、ホットスポット部に位置する触媒の劣化を抑制し、ホットスポット部がどこに発生するかによらず、また、原料ガス濃度が高い場合であっても、高い収率を維持しながら長期にわたって反応を継続することができる。また、従来のように活性の異なる触媒を使用して触媒活性をコントロールするだけでは、特に原料ガス濃度が高い場合には限界があったが、本発明にかかる方法を用いれば、原料ガス濃度が高い場合であっても、ホットスポット部がどこに発生するかによらず、高い収率を維持しながら長期にわたって反応を継続することができる。
【0026】
本発明にかかる不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法おいては、さらに、前記複数個の反応帯にそれぞれ充填される触媒の活性が異なることが好ましい。
上記活性の異なる触媒の製造方法は特に限定されず、例えば、従来公知の方法を用いることが出来る。具体的には、例えば、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムから選ばれる少なくとも一種の元素(本発明で用いる触媒でいうB成分)の種類および/または量を変える方法、担持率を変える方法、焼成温度を変える方法、希釈率を変える方法、担持触媒と成型触媒を組み合わせる方法、触媒の粒径を変える方法や、これらの組み合わせによる方法が挙げられる。
【0027】
このように活性の異なる触媒を前記複数個の反応帯にそれぞれ充填する場合、すなわち、触媒の真密度に対する触媒の見掛け密度の比R(触媒の見掛け密度/触媒の真密度)が異なり、かつ、活性も異なる触媒を前記複数個の反応帯にそれぞれ充填する場合、触媒の充填配置の方法については、特に限定されず、Rに着目した場合には前述のように、例えば、ガス入口側からガス出口側に向かってRがより小さくなるように充填する配置や、ガス入口側からガス出口側に向かってRが一旦大きくなった後に小さくなるように充填する配置などが挙げられるが、活性に着目した場合には、例えば、ガス入口側からガス出口側に向かって活性が順次高くなるように充填する配置や、ガス入口側からガス出口側に向かって活性が一旦下がった後に高くなるように充填する配置などが挙げられ、好ましくは、活性の異なる触媒を各反応管のガス入口側からガス出口側に向かって活性が順次高くなるように配置する。すなわち、活性が最も低い触媒を入口側に、活性の最も高い触媒を出口側に配置する。また、ガス入口側からガス出口側に向かって活性が一旦下がった後に高くなるように充填する配置においては、ガス入口部分の高活性触媒の充填層長は、全触媒層の60%以下が好ましく、5〜50%がより好ましく、10〜40%がさらに好ましい。
【0028】
このように活性の異なる複数個の触媒を配列することによって、モリブデン系の触媒を充填した固定床多管式反応器を用いた気相接触酸化反応によって不飽和アルデヒドおよび/または不飽和カルボン酸を製造する場合に、ホットスポット部に位置する触媒の劣化をさらに抑制し、ホットスポット部がどこに発生するかによらず、また、原料ガス濃度が高い場合であっても、高い収率を維持しながら長期にわたって反応を継続することができる。
触媒の充填配置の最も好ましい形態としては、Rについては、ガス入口側からガス出口側に向かってRがより小さくなるように充填され、かつ、活性については、ガス入口側からガス出口側に向かって活性が順次高くなるように充填されるように配置する形態である。
【0029】
反応帯の数は、特に限定されず、多いほど触媒層のホットスポット温度を制御しやすくなるが、工業的には2または3程度にすることで十分目的とする効果を得ることができる。また、触媒層の分割比については、酸化反応条件や各層に充填された触媒の組成、形状、サイズなどによって最適値が左右されるため一概に特定できず、全体としての最適な活性および選択率が得られるように適宜選択すればよい。
触媒の各反応管への充填に際しては、不活性物質で希釈した触媒を各反応帯に充填することもできる。
【0030】
プロピレン、イソブチレン、t−ブチルアルコール、およびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を原料とし、分子状酸素または分子状酸素含有ガスにより気相接触酸化することにより、原料に対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法としては、触媒として本発明の触媒を使用する点を除けば特に制限はなく、一般に用いられている装置、方法および条件下で実施することができる。
すなわち、本発明における気相接触反応は通常の単流通法、あるいはリサイクル法で行ってもよく、反応器としては固定床反応器、流動床反応器、移動床反応器などを用いることができる。
【0031】
上記反応条件としては、例えば、原料ガスとしてプロピレン、イソブチレン、t−ブチルアルコールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を1〜15容量%、この原料ガスに対して容量比で1〜10倍の範囲の分子状酸素および希釈剤としての不活性ガス、例えば、水蒸気、窒素および炭酸ガスなどからなる混合ガスを250〜450℃の温度範囲で0.1〜1MPaの圧力下に300〜5000hr-1(STP)の空間速度で本発明の触媒と接触させて反応させればよい。
本発明の方法によれば、生産性を上げることを目的とした高負荷反応条件下、例えばより高い原料ガス濃度、あるいはより高い空間速度の条件下において、従来法に比べて特に著しい好結果が得られる。特に、原料ガス濃度が7容量%以上、より厳しくは9容量%以上のような高濃度の原料ガスを用いても、本発明の目的が達成可能となる。
【0032】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によってなんら制限されるものではない。なお、本明細書における転化率、選択率、および収率はそれぞれ以下のように定義される。
転化率(モル%)=(反応した出発原料のモル数)/(供給した出発原料のモル数)×100
選択率(モル%)=(生成した不飽和アルデヒドおよび不飽和カルボン酸のモル数)/(反応した出発原料のモル数)
収率(モル%)=(生成した不飽和アルデヒドおよび不飽和カルボン酸のモル数)/(供給した出発原料のモル数)×100
また、触媒の真密度および細孔容積は以下の測定機器および方法で測定した。
【0033】
真密度:
測定機器:Micromeritics社製 AutoPycnometer1320
測定方法:触媒を約4g量り取り、測定用セルに入れて上記測定機器にセットした。
細孔容積:
測定機器:Micromeritics社製 AutoPoreIII (水銀圧入方式)
測定方法:触媒を約2g量り取り、圧力測定範囲0〜414MPa、等価時間10秒で測定した。
【0034】
(触媒製造例1:触媒(1)の調製)
純水10Lを加熱攪拌しながら、モリブデン酸アンモニウム1500gを溶解し、さらに20質量%シリカゾル425gを加えた。この混合液に、硝酸コバルト1236g、硝酸ニッケル412g、硝酸鉄372g、硝酸カリウム5.7gを純水1000mlに溶解させた液を激しく攪拌しながら滴下した。続いて、純水500mlに濃硝酸250mlを加えた水溶液に硝酸ビスマス446gを溶解した液を激しく攪拌しながら滴下した。生成した懸濁液を加熱攪拌し、水の大部分を蒸発させ、ケーキ状固形物を得た。得られたケーキ状固形物を箱型乾燥機で加熱処理し(加熱ガス温度:170℃、加熱ガス線速:1.2m/sec、加熱処理時間:12時間)、ブロック状の触媒前駆体を得た。この触媒前駆体を粉砕した後、減量率を測定したところ、18.9質量%であった。次いで、50質量%の硝酸アンモニウム水溶液を触媒前駆体粉末1kgに対して260gの割合で添加して1時間混練後、外径6.0mm、内径2.0mm、高さ6.0mmのリング状に押出成型した。次いで、成型体を空気流通下480℃で5時間焼成して触媒(1)を得た。この触媒の酸素を除く金属元素組成は次の通りであった。
【0035】
触媒(1):Mo12Co6Ni2Bi1.3Fe1.3Si20.08
触媒(1)の真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)は0.35であった。
触媒(1)の触媒組成、触媒前駆体P1の減量率、触媒前駆体P1の100質量部に対するバインダーの添加量、触媒のサイズ、および、真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)を表1にまとめた。
(触媒製造例2〜3:触媒(2)〜(3)の調製)
上記触媒製造例1の触媒(1)の調製方法において、触媒前駆体P1に添加する50質量%の硝酸アンモニウム水溶液の量をそれぞれ変えた以外は、触媒製造例1と同様にして触媒(2)〜(3)をそれぞれ得た。
【0036】
触媒(2)〜(3)の触媒組成、触媒前駆体P1の減量率、触媒前駆体P1の100質量部に対するバインダーの添加量、触媒のサイズ、および、真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)を表1にまとめた。
(触媒製造例4:触媒(4)の調製)
上記触媒製造例1の触媒(1)の調製方法において、触媒のサイズを外径7.0mm、内径2.0mm、高さ7.0mmに変えた以外は触媒製造例1と同様にして触媒(4)を得た。
触媒(4)の触媒組成、触媒前駆体P1の減量率、触媒前駆体P1の100質量部に対するバインダーの添加量、触媒のサイズ、および、真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)を表1にまとめた。
【0037】
(触媒製造例5:触媒(5)の調製)
上記触媒製造例1の触媒(1)の調製方法において、硝酸カリウムの添加量を7.2gに変えた以外は触媒製造例1と同様にして触媒(5)を得た。この触媒の酸素を除く金属元素組成は次の通りであった。
触媒(5):Mo12Co6Ni2Bi1.3Fe1.3Si20.1
触媒(5)の触媒組成、触媒前駆体P1の減量率、触媒前駆体P1の100質量部に対するバインダーの添加量、触媒のサイズ、および、真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)を表1にまとめた。
【0038】
(触媒製造例6:触媒(6)の調製)
上記触媒製造例1の触媒(1)の調製方法において、ケーキ状固形物の加熱処理条件のうち、加熱ガス温度を220℃に変え、触媒前駆体P1に添加する50質量%の硝酸アンモニウム水溶液の量を変えた以外は、触媒製造例1と同様にして触媒(6)を得た。
触媒(6)の触媒組成、触媒前駆体P1の減量率、触媒前駆体P1の100質量部に対するバインダーの添加量、触媒のサイズ、および、真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)を表1にまとめた。
【0039】
(触媒製造例7:触媒(7)の調製)
上記触媒製造例1の触媒(1)の調製方法において、硝酸カリウムの添加量を3.6gに変え、触媒前駆体P1に添加する50質量%の硝酸アンモニウム水溶液の量、および、触媒のサイズを変えた以外は触媒製造例1と同様にして触媒(7)を得た。この触媒の酸素を除く金属元素組成は次の通りであった。
触媒(7):Mo12Co6Ni2Bi1.3Fe1.3Si20.05
触媒(7)の触媒組成、触媒前駆体P1の減量率、触媒前駆体P1の100質量部に対するバインダーの添加量、触媒のサイズ、および、真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)を表1にまとめた。
【0040】
(触媒製造例8:触媒(8)の調製)
上記触媒製造例7の触媒(7)の調製方法において、触媒前駆体P1に添加する50質量%の硝酸アンモニウム水溶液の量を変えた以外は触媒製造例7と同様にして触媒(8)を得た。
触媒(8)の触媒組成、触媒前駆体P1の減量率、触媒前駆体P1の100質量部に対するバインダーの添加量、触媒のサイズ、および、真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)を表1にまとめた。
(触媒製造例9:触媒(9)の調製)
上記触媒製造例1の触媒(1)の調製方法において、硝酸カリウムの代わりに硝酸セシウムを9.7g用い、触媒前駆体P1に添加する50質量%の硝酸アンモニウム水溶液の量、および、触媒のサイズを変えた以外は触媒製造例1と同様にして触媒(9)を得た。この触媒の酸素を除く金属元素組成は次の通りであった。
【0041】
触媒(9):Mo12Co6Ni2Bi1.3Fe1.3Si2Cs0.07
触媒(9)の触媒組成、触媒前駆体P1の減量率、触媒前駆体P1の100質量部に対するバインダーの添加量、触媒のサイズ、および、真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)を表1にまとめた。
(触媒製造例10:触媒(10)の調製)
上記触媒製造例9の触媒(9)の調製方法において、触媒前駆体P1に添加する50質量%の硝酸アンモニウム水溶液の量を変えた以外は触媒製造例9と同様にして触媒(10)を得た。
【0042】
触媒(10)の触媒組成、触媒前駆体P1の減量率、触媒前駆体P1の100質量部に対するバインダーの添加量、触媒のサイズ、および、真密度に対する見掛け密度の比R(触媒の見掛け密度/触媒の真密度)を表1にまとめた。
(参考例1〜10)
溶融硝酸塩にて加熱した内径25mmのステンレス製反応管に、触媒製造例1〜10で得られた触媒(1)〜(10)をそれぞれ層長200mmとなるように充填し、下記組成の反応ガスを空間速度1500h-1(STP)で導入してプロピレンの気相接触酸化反応を行った。結果を表2に示した。
【0043】
プロピレン 3容量%
空気 30容量%
水蒸気 40容量%
窒素 27容量%
(実施例1)
溶融硝酸塩にて加熱した内径25mmのステンレス製反応管に、反応ガス入口側から出口側に向かって順に、触媒(1)を層長1500mm、触媒(2)を層長1500mmとなるように充填し、下記組成の反応ガスを空間速度1500h-1(STP)で導入してプロピレンの気相接触酸化反応を行った。結果を表3に示した。
【0044】
プロピレン 5.5容量%
空気 50.0容量%
水蒸気 10.0容量%
窒素 34.5容量%
(比較例1〜2)
実施例1において、触媒(1)のみを層長3000mm、または触媒(2)のみを層長3000mm充填した以外は実施例1と同様にして気相接触反応を行った。結果を表3に示した。
【0045】
(実施例2、比較例3〜4)
実施例1において、表3に示したように触媒を充填し、反応ガス組成を以下のように変えた以外は実施例1と同様にして気相接触酸化反応を行った。結果を表3に示した。
プロピレン 6.5容量%
空気 57.0容量%
水蒸気 10.0容量%
窒素 26.5容量%
(実施例3〜5、比較例5)
実施例1において、表3に示したように触媒を充填し、反応ガス組成を以下のように変えた以外は実施例1と同様にして気相接触酸化反応を行った。結果を表3に示した。
【0046】
プロピレン 8.0容量%
空気 70.0容量%
水蒸気 10.0容量%
窒素 12.0容量%
【0047】
【表1】

Figure 0003939187
【0048】
【表2】
Figure 0003939187
【0049】
【表3】
Figure 0003939187
【0050】
【発明の効果】
本発明によれば、モリブデン系の触媒を充填した固定床多管式反応器を用いた気相接触酸化反応によって不飽和アルデヒドおよび/または不飽和カルボン酸を製造する場合に、ホットスポット部に位置する触媒の劣化を抑制し、ホットスポット部がどこに発生するかによらず、また、原料ガス濃度が高い場合であっても、高い収率を維持しながら長期にわたって反応を継続することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid. Specifically, using a fixed bed multitubular reactor packed with a catalyst, starting from at least one compound selected from propylene, isobutylene, t-butyl alcohol and methyl-t-butyl ether, molecular oxygen or molecular oxygen The present invention relates to a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid by gas phase catalytic oxidation with a contained gas.
[0002]
[Prior art]
Using a fixed bed multi-tubular reactor packed with a catalyst, starting from at least one compound selected from propylene, isobutylene, t-butyl alcohol and methyl-t-butyl ether, and using molecular oxygen or molecular oxygen-containing gas With respect to a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid corresponding to each by gas phase catalytic oxidation, there have been some proposals (for example, Japanese Patent Publication No. 53-30688, Japanese Patent Publication No. 63). No. -38331, JP-A-3-294238, JP-A-3-294239, JP-A-4-217932, JP-A-8-3093, JP-A-10-168003, etc.) Some methods are industrially practiced.
[0003]
Since this gas phase catalytic oxidation reaction is accompanied by a very exothermic reaction, local abnormally high temperature portions (hereinafter sometimes referred to as hot spot portions) are generated in the catalyst layer. In particular, as long as the oxidation reaction using a fixed bed multitubular reactor is performed, it is inevitable that hot spot portions are not generated in the catalyst layer.
If the temperature of the hot spot part is high, an excessive oxidation reaction is caused to reduce the yield, or in the worst case, a runaway reaction is caused. In addition, since the catalyst located in the hot spot is exposed to high temperatures, the physical and chemical properties of the catalyst change, which accelerates the deterioration of the catalyst, such as a decrease in activity and the selectivity of the target product. Is done. In particular, in the case of a molybdenum-based catalyst, the degree of deterioration of the catalyst is large because the molybdenum component is sublimated and the catalyst composition and physical properties are easily changed.
[0004]
The above problem becomes more prominent when a reaction at a high space velocity or a reaction at a high raw material gas concentration is performed for the purpose of improving the productivity of the target product.
Regarding the above problems, focusing on the entire catalyst layer packed in the reaction tube, the catalyst located in the hot spot part deteriorates faster than the catalyst in other parts, and the yield of the target product is increased by long-term use. Significantly decreases, and it may be difficult to perform stable production. As described above, in the case of a molybdenum-based catalyst, or when a reaction at a high space velocity or a reaction at a high source gas concentration is performed, the degree of deterioration of the catalyst is particularly large.
[0005]
[Problems to be solved by the invention]
Any of the above-described conventionally known proposals is a proposal focusing on keeping the temperature of the hot spot portion low. However, when carrying out an oxidation reaction using a fixed bed multitubular reactor, it is not possible to completely eliminate the occurrence of hot spot portions in the catalyst layer, and the degree of deterioration of the catalyst located in the hot spot portion is different from that of other portions. The problem of being relatively large compared to the degree of deterioration of the catalyst located in the region cannot be solved. In particular, this problem becomes significant when a molybdenum-based catalyst is used or when the reaction is performed at a high source gas concentration.
[0006]
Accordingly, an object of the present invention is to provide a hot spot portion when an unsaturated aldehyde and / or an unsaturated carboxylic acid is produced by a gas phase catalytic oxidation reaction using a fixed bed multitubular reactor packed with a molybdenum-based catalyst. It is possible to continue the reaction over a long period of time while maintaining a high yield, regardless of where the hot spot occurs, and even when the raw material gas concentration is high. It is to provide a method that can.
[0007]
[Means for Solving the Problems]
  The present inventor has intensively studied to solve the above problems. As a result, focusing on the ratio R of the apparent density of the catalyst to the true density of the catalyst (the apparent density of the catalyst / the true density of the catalyst), a catalyst having a relatively high R may be exposed to a higher temperature than a low catalyst. It was found that the degree of deterioration was small. Then, the inventors have conceived that the above problem can be solved by preparing a catalyst having a different R and filling the catalyst so that a catalyst having a high R is positioned at or near the hot spot portion.
  That is, the method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid according to the present invention uses propylene, isobutylene, t-butyl alcohol, and methyl-t-, using a fixed bed multitubular reactor packed with a catalyst. In a method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid corresponding to a raw material by subjecting at least one compound selected from butyl ether to gas phase catalytic oxidation with molecular oxygen or a molecular oxygen-containing gas, As the catalyst, oxides and / or composite oxides containing molybdenum, bismuth and iron as essential components are used, and a plurality of them are obtained by dividing the inside of each reaction tube in the fixed bed multitubular reactor in the tube axis direction. Set up reaction zones,
(1) changing the weight loss rate of the catalyst precursor;
(2) changing the type and / or amount of pore-forming agent added to the catalyst;
The catalysts having different ratios of the apparent density of the catalyst to the true density of the catalyst R (the apparent density of the catalyst / the true density of the catalyst) are prepared by at least one method selected from:Are filled with the different catalysts.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a catalyst having molybdenum, bismuth and iron as essential components used in the present invention, at least one compound selected from propylene, isobutylene, t-butyl alcohol and methyl-t-butyl ether is used as a raw material, and by a gas phase catalytic oxidation reaction. Any compound that can produce the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid can be used, but a composite oxide catalyst represented by the following general formula (1) is preferably used.
MoaWbBicFedAeBfCgDhEiOx (1)
(Where Mo is molybdenum, W is tungsten, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from sodium, potassium, rubidium, cesium and thallium. Element, C is at least one element selected from boron, phosphorus, chromium, manganese, zinc, arsenic, niobium, tin, antimony, tellurium, cerium and lead, D is at least one selected from silicon, aluminum, titanium and zirconium Element, E is at least one element selected from alkaline earth metals, and O is oxygen, a, b, c, d, e, f, g, h, i, and x are Mo, W, Bi, Represents the atomic ratio of Fe, A, B, C, D, E and O, and when a = 12, 0 ≦ b ≦ 5, 0.1 ≦ c ≦ 10, 0.1 ≦ d ≦ 20, 1 ≦ e ≦ 20, 0.001 ≦ f ≦ 5, 0 ≦ g ≦ 10, 0 ≦ h ≦ 30, 0 ≦ i ≦ 5, and x Is a numerical value determined by the oxidation state of each element.)
There are no particular restrictions on the starting materials for the above catalyst component elements, and ammonium salts, nitrates, carbonates, chlorides, sulfates, hydroxides, organic acid salts, oxidation of metal elements generally used in this type of catalyst Or a mixture of these may be used, but ammonium salts and nitrates are preferably used.
[0009]
The mixed aqueous solution or aqueous slurry of the catalyst raw material salt may be prepared by a method generally used for this type of catalyst. For example, the catalyst raw material may be used as an aqueous solution, and these may be mixed sequentially. There are no particular restrictions on the mixing conditions (mixing order, temperature, pressure, pH, etc.) of the catalyst raw material. The catalyst mixed salt aqueous solution or aqueous slurry thus obtained may be concentrated to dryness as necessary to obtain a cake-like solid. The catalyst raw material salt mixed aqueous solution, aqueous slurry, or cake-like solid is subjected to heat treatment to obtain a catalyst precursor P1.
The form of the heat treatment method and catalyst precursor for obtaining the catalyst precursor P1 is not particularly limited. For example, a powdered catalyst precursor may be obtained using a spray dryer, a drum dryer or the like, or box-type drying is performed. A block or flake catalyst precursor may be obtained by heating in an air stream using a machine, a tunnel dryer or the like.
[0010]
The heat treatment conditions are such that the catalyst precursor P1 preferably has a weight loss rate of 10% by mass to less than 40% by mass, more preferably 13% by mass to 37% by mass, and even more preferably 15% by mass to 35% by mass. Set. However, even if the weight loss rate is out of the above range, it can of course be used.
The weight loss rate of the catalyst precursor is calculated from the following formula when the catalyst precursor P1 is uniformly mixed and accurately weighed about 10 g and heated at 300 ° C. for 1 hour in an air atmosphere.
Weight loss rate (mass%) = (catalyst precursor mass−catalyst precursor mass after heating) / catalyst precursor mass × 100
The weight loss is nitrate radicals, ammonium radicals and the like remaining in the catalyst precursor P1 which decomposes, volatilizes and sublimes by heat treatment, and moisture. (The nitrate and ammonium salts contained in the catalyst precursor P1 are decomposed and removed from the catalyst precursor P1 by heating at a high temperature. That is, the higher the weight loss rate, the higher the proportion of nitrate, ammonium salt, etc. It means that it is contained in.)
The above heat treatment conditions should be appropriately selected depending on the type of the heating device (dryer) and the characteristics of the heating device, and cannot be specified unconditionally. For example, when using a box-type dryer, What is necessary is just to process for 3 to 24 hours at the temperature below ° C.
[0011]
As described above, the catalyst precursor P1 whose weight reduction rate is preferably adjusted is sent to a subsequent molding step through a pulverization step and a classification step for obtaining a powder having an appropriate particle size as necessary.
Subsequently, a binder is added to and mixed with the catalyst precursor P1 whose weight loss rate is preferably adjusted within the above range to obtain a catalyst precursor P2.
The kind of the binder to be added to and mixed with the catalyst precursor P1 is not particularly limited, and examples thereof include known binders that can be used for catalyst molding, and water is preferable.
[0012]
The amount of the binder to be added to and mixed with the catalyst precursor P1, preferably the amount of water to be added and mixed with respect to the catalyst precursor P1, is preferably 5 mass with respect to 100 parts by mass of the catalyst precursor P1. Part by mass to 30 parts by mass, more preferably 8 parts by mass to 27 parts by mass, and even more preferably 11 parts by mass to 24 parts by mass.
If the addition amount is more than 30 parts by mass, the moldability of the catalyst precursor P2 is deteriorated and it may be impossible to mold. When the addition amount is less than 5 parts by mass, the bonding between the catalyst precursors P2 is weak, and even if the molding itself cannot be performed or can be molded, the mechanical strength of the catalyst may be lowered. In the case of extrusion molding, in the worst case, the molding machine is broken.
[0013]
The water added to the catalyst precursor P1 can be added in the form of an aqueous solution of various substances or a mixture of various substances and water.
Examples of the substance added together with water include a molding aid for improving moldability, a reinforcing agent and a binder for improving the strength of the catalyst, and a substance generally used as a pore forming agent for forming pores in the catalyst. As these substances, those which do not adversely affect the catalyst performance (activity, selectivity of target product) by addition are preferable. That is, (i) a mixture of an aqueous solution or water of a substance that does not remain in the catalyst after calcination, and (ii) an aqueous solution or water composed of a substance that does not adversely affect the catalyst performance even if it remains in the catalyst after calcination. It is a mixture.
[0014]
Specific examples of the above (i) include organic compounds such as ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol or phenol, nitric acid, ammonium nitrate, and ammonium carbonate.
Specific examples of the above (ii) include silica, alumina, glass fiber, silicon carbide, silicon nitride and the like that are generally known as reinforcing agents. According to the present invention, the produced catalyst has a practically sufficient mechanical strength, but when a higher mechanical strength is required, these reinforcing agents are added.
[0015]
These substances are preferably added in such an amount that the mechanical strength of the catalyst is not lowered to the extent that it cannot be practically used as an industrial catalyst since the mechanical strength of the catalyst is remarkably lowered when the addition amount is excessive.
When added in the form of an aqueous solution of various substances described above or a mixture of various substances and water, for example, when 20 parts by mass of a 5 mass% ethylene glycol aqueous solution is added to 100 parts by mass of the catalyst precursor P1 and molded. The amount of water added to P1 is 20 × (1-0.05) = 19 parts by mass.
The catalyst used in the present invention is a molded catalyst obtained by molding the catalyst precursor P2 into a fixed shape, or a supported catalyst in which the catalyst precursor P2 is supported on an arbitrary inert carrier having a fixed shape. Alternatively, a combination of these molded catalyst and supported catalyst may be used, but a molded catalyst obtained by molding the catalyst precursor P2 into a fixed shape is preferable.
[0016]
The shape of the catalyst is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape (pellet shape), a ring shape, and an indefinite shape. Of course, in the case of a spherical shape, it does not have to be a true sphere, and may be substantially spherical. The same applies to the columnar shape and the ring shape. In addition, the shape of the catalyst filled in each reaction zone may be the same or different (for example, gas inlet side: spherical catalyst, gas outlet side: pellet catalyst), but usually the same shaped molded catalyst or the same It is preferable to fill the shaped supported catalyst.
Regarding the size of the catalyst, when the shape of the catalyst is spherical, the average catalyst particle size is preferably 1 to 15 mm, more preferably 1 to 10 mm, still more preferably 3 to 10 mm, and even more preferably 3 to 8 mm. Are preferably used.
[0017]
The pore volume of the catalyst is preferably 0.2 to 0.6 cmThree/ G, more preferably 0.25 to 0.55 cmThree/ G.
In the case of a supported catalyst, the material of the support itself is not particularly limited, and any support that can be used normally when producing a catalyst for producing acrylic acid by vapor phase oxidation of acrolein can be used. Specific examples of usable carriers include alumina, silica, silica / alumina, titania, magnesia, steatite, silica magnesia, silica magnesia alumina, silicon carbide, silicon nitride, zeolite and the like.
[0018]
In the case of a supported catalyst, the loading ratio of the catalyst filled in each reaction zone is appropriately determined so as to obtain optimum activity and selectivity in consideration of oxidation reaction conditions, catalyst activity, strength, etc. Is 5 to 200%, more preferably 10 to 100%, and particularly preferably 15 to 50%.
In the present invention, the catalyst loading is calculated by the following equation.
Loading rate (%)
= [(Catalyst mass after calcination−Carrier mass) / Catalyst mass after calcination] × 100
There are no particular restrictions on the heat treatment conditions (so-called calcination conditions) at the time of catalyst preparation, and the calcination conditions generally employed in the production of this type of catalyst can be applied. The heat treatment temperature of the catalyst filled in each reaction zone may be the same or different. The heat treatment temperature is preferably 350 to 600 ° C., more preferably 400 to 550 ° C., and the heat treatment time is preferably 1 to 10 hours. is there.
[0019]
The molding method of the catalyst may be a conventionally known method. For example, a molding method such as an extrusion molding method, a tableting molding method, a granulation method (rolling granulation device, centrifugal fluid coating device), or a Malmerizer method can be applied. Of these, the extrusion molding method is preferable.
In the method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid according to the present invention, a plurality of reaction zones are provided by dividing the inside of each reaction tube in a fixed bed multitubular reactor in the tube axis direction. Each of the reaction zones is filled with the catalyst having a different ratio R (apparent density of catalyst / true density of catalyst) of the apparent density of the catalyst to the true density of the catalyst.
[0020]
In the present invention, the apparent density of the catalyst = 1 / (1 / true density + pore volume).
In the case of a so-called supported catalyst in which a catalytically active substance is supported on a carrier, only the catalytically active substance is peeled off from the surface of the carrier by any method, and the true density and pore volume of only the catalytically active substance are measured. R is calculated from the above equation.
Thus, by filling the catalyst with different ratios R of the apparent density of the catalyst to the true density, the unsaturated aldehyde and / or by the gas phase catalytic oxidation reaction using the fixed bed multitubular reactor filled with the molybdenum-based catalyst. Or, when producing unsaturated carboxylic acids, the reaction should be continued over a long period of time while maintaining a high yield, regardless of where the hot spot occurs and even when the raw material gas concentration is high. Can do it.
[0021]
A method for producing a catalyst having a ratio R of the apparent density of the catalyst with respect to the true density is not particularly limited. For example, the catalyst can be produced by the following methods (1) to (4) or a combination thereof.
(1) R can be changed by changing the weight loss rate of the catalyst precursor. If the weight loss rate is low, the formation of pores in the catalyst is reduced, so that the apparent density of the catalyst is increased. Since the true density does not change even if the production method is changed unless the composition of the catalyst changes extremely, R becomes large when the weight reduction rate is low. On the other hand, when the weight loss rate is high, the apparent density of the catalyst is low, so R is small.
[0022]
(2) Controlling the type and / or amount of pore-forming agent added to the catalyst. When a pore-forming agent having an action of forming pores is added to the catalyst and the amount added is relatively reduced, the apparent density increases and R increases. On the contrary, when the addition amount is relatively large, R becomes small. R can also be controlled by changing the type of pore forming agent.
(3) Although the effect of changing R is small, changing the catalyst composition (the type and addition ratio of the metal used as the catalyst raw material) changes the true density, so R also changes.
(4) R can also be controlled by changing the pressure during molding. For example, in the case of tableting, R increases as the pressure is increased, and R decreases as the pressure is decreased. Further, in the case of extrusion molding, if the extrusion pressure is increased, R increases, and if the extrusion pressure is decreased, R decreases.
[0023]
The range of the ratio R of the apparent density to the true density of the catalyst that can be used in the present invention (the apparent density of the catalyst / the true density of the catalyst) is not particularly limited, but is preferably 0.25 to 0.55, more preferably 0.30 to 0.50.
If the ratio of the apparent density to the true density of the catalyst is less than 0.25, the efficiency of diffusion in the pores may increase as the pore volume increases. In this case, the activity of the catalyst and the selection of the desired product Although the rate is improved, it is not preferable because the catalyst strength is significantly reduced.
When the ratio of the apparent density to the true density of the catalyst is larger than 0.55, the above is reversed and the catalyst strength is improved, but the activity of the catalyst and the selectivity to the target product are remarkably lowered, which is not preferable.
[0024]
In the present invention, a plurality of reaction zones are provided by dividing the inside of each reaction tube in the fixed bed multitubular reactor in the tube axis direction, and R prepared by the above-described method is provided in the plurality of reaction zones. Are filled with a plurality of different catalysts.
The filling arrangement method is not particularly limited. For example, the filling arrangement is such that R becomes smaller from the gas inlet side to the gas outlet side, or R is once from the gas inlet side to the gas outlet side. Although the arrangement | positioning etc. which are filled so that it may become small after becoming large etc. are mentioned, Preferably, the catalyst from which R differs is arrange | positioned so that R may become smaller toward the gas outlet side from the gas inlet side of each reaction tube. That is, the catalyst having the largest R is arranged on the inlet side, and the catalyst having the smallest R is arranged on the outlet side. Further, in the arrangement in which R is once increased from the gas inlet side toward the gas outlet side and then packed so as to decrease, the packed bed length of the catalyst having a large R at the gas inlet portion is 60% or less of the total catalyst layer. Is preferable, 5 to 50% is more preferable, and 10 to 40% is more preferable.
[0025]
In this way, by arranging a plurality of catalysts having different apparent density ratios R (catalyst apparent density / catalyst true density) to the true density of the catalyst, a fixed bed multitubular reactor filled with a molybdenum-based catalyst. When an unsaturated aldehyde and / or unsaturated carboxylic acid is produced by a gas phase catalytic oxidation reaction using a catalyst, deterioration of the catalyst located in the hot spot part is suppressed, regardless of where the hot spot part occurs, Even when the raw material gas concentration is high, the reaction can be continued for a long period of time while maintaining a high yield. In addition, when the catalyst activity is controlled only by using catalysts having different activities as in the prior art, there is a limit especially when the raw material gas concentration is high. However, if the method according to the present invention is used, the raw material gas concentration is reduced. Even if it is high, the reaction can be continued over a long period of time while maintaining a high yield regardless of where the hot spot portion is generated.
[0026]
In the method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid according to the present invention, it is further preferable that the activities of the catalysts charged in the plurality of reaction zones are different.
The manufacturing method of the said catalyst from which the said activity differs is not specifically limited, For example, a conventionally well-known method can be used. Specifically, for example, a method of changing the kind and / or amount of at least one element selected from sodium, potassium, rubidium, cesium and thallium (component B as used in the catalyst used in the present invention), a method of changing the loading rate, Examples thereof include a method for changing the calcination temperature, a method for changing the dilution rate, a method for combining the supported catalyst and the molded catalyst, a method for changing the particle size of the catalyst, and a method using a combination thereof.
[0027]
When the plurality of reaction zones are filled with the catalysts having different activities as described above, that is, the ratio R of the apparent density of the catalyst to the true density of the catalyst (the apparent density of the catalyst / the true density of the catalyst) is different, and In the case where the plurality of reaction zones are filled with catalysts having different activities, the method for filling the catalyst is not particularly limited. When focusing on R, for example, as described above, the gas is introduced from the gas inlet side. An arrangement in which R is reduced toward the outlet side and an arrangement in which R is once increased from the gas inlet side to the gas outlet side, and an arrangement in which the R is reduced after the increase is mentioned. In this case, for example, the filling is performed so that the activity is sequentially increased from the gas inlet side to the gas outlet side, or the activity is once decreased from the gas inlet side to the gas outlet side. Arrangement and the like to be filled so that, preferably, arranging the activities of different catalysts such activity is sequentially increased toward the gas outlet side from the gas inlet side of each reaction tube. That is, the catalyst having the lowest activity is arranged on the inlet side, and the catalyst having the highest activity is arranged on the outlet side. Further, in the arrangement in which the activity is once lowered from the gas inlet side toward the gas outlet side and then packed so as to increase, the packed bed length of the highly active catalyst at the gas inlet portion is preferably 60% or less of the total catalyst layer. 5 to 50% is more preferable, and 10 to 40% is more preferable.
[0028]
By arranging a plurality of catalysts having different activities in this way, unsaturated aldehydes and / or unsaturated carboxylic acids can be formed by a gas phase catalytic oxidation reaction using a fixed bed multitubular reactor filled with a molybdenum-based catalyst. In the production, the deterioration of the catalyst located in the hot spot part is further suppressed, and the high yield is maintained regardless of where the hot spot part occurs and even when the raw material gas concentration is high. However, the reaction can be continued for a long time.
As a most preferable form of the catalyst filling arrangement, R is filled so that R becomes smaller from the gas inlet side to the gas outlet side, and the activity is directed from the gas inlet side to the gas outlet side. In this form, the filling is performed so that the activity is sequentially increased.
[0029]
The number of reaction zones is not particularly limited, and the greater the number, the easier it is to control the hot spot temperature of the catalyst layer. However, industrially, the target effect can be sufficiently obtained by setting it to about 2 or 3. In addition, the optimal value for the split ratio of the catalyst layer cannot be specified because it depends on the oxidation reaction conditions and the composition, shape, size, etc. of the catalyst packed in each layer. May be appropriately selected so as to obtain
When filling the catalyst into each reaction tube, the catalyst diluted with an inert substance can be filled into each reaction zone.
[0030]
Unsaturation corresponding to the raw material by subjecting at least one compound selected from propylene, isobutylene, t-butyl alcohol, and methyl-t-butyl ether as a raw material to gas phase catalytic oxidation with molecular oxygen or a molecular oxygen-containing gas The method for producing the aldehyde and / or the unsaturated carboxylic acid is not particularly limited except that the catalyst of the present invention is used as a catalyst, and can be carried out under generally used apparatuses, methods and conditions. .
That is, the gas phase catalytic reaction in the present invention may be carried out by a normal single flow method or a recycling method, and a fixed bed reactor, a fluidized bed reactor, a moving bed reactor or the like can be used as the reactor.
[0031]
Examples of the reaction conditions include 1 to 15% by volume of at least one compound selected from propylene, isobutylene, t-butyl alcohol and methyl-t-butyl ether as a source gas, and a volume ratio of 1 to 1 with respect to the source gas. A mixed gas composed of molecular oxygen in a range of 10 times and an inert gas as a diluent, for example, water vapor, nitrogen, carbon dioxide, etc., in a temperature range of 250 to 450 ° C. under a pressure of 0.1 to 1 MPa and 300 to 5000 hr-1What is necessary is just to make it contact with the catalyst of this invention and to make it react with the space velocity of (STP).
According to the method of the present invention, particularly remarkable results are obtained as compared with the conventional method under high-load reaction conditions aimed at increasing productivity, for example, under higher raw material gas concentrations or higher space velocity conditions. can get. In particular, the object of the present invention can be achieved even when a high-concentration source gas having a source gas concentration of 7% by volume or more, more strictly 9% by volume or more is used.
[0032]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not restrict | limited at all by these Examples. The conversion rate, selectivity, and yield in this specification are defined as follows.
Conversion (mol%) = (mol number of reacted starting material) / (mol number of supplied starting material) × 100
Selectivity (mol%) = (number of moles of unsaturated aldehyde and unsaturated carboxylic acid produced) / (number of moles of reacted starting material)
Yield (mol%) = (number of moles of unsaturated aldehyde and unsaturated carboxylic acid produced) / (number of moles of starting material fed) × 100
Further, the true density and pore volume of the catalyst were measured by the following measuring instruments and methods.
[0033]
True density:
Measuring instrument: AutoPycnometer 1320 manufactured by Micromeritics
Measuring method: About 4 g of the catalyst was weighed out, placed in a measuring cell, and set in the measuring instrument.
Pore volume:
Measuring device: AutoPoreIII (mercury press-fitting method) manufactured by Micromeritics
Measurement method: About 2 g of the catalyst was weighed and measured in a pressure measurement range of 0 to 414 MPa and an equivalent time of 10 seconds.
[0034]
(Catalyst production example 1: Preparation of catalyst (1))
While heating and stirring 10 L of pure water, 1500 g of ammonium molybdate was dissolved, and 425 g of 20% by mass silica sol was further added. A solution prepared by dissolving 1236 g of cobalt nitrate, 412 g of nickel nitrate, 372 g of iron nitrate, and 5.7 g of potassium nitrate in 1000 ml of pure water was added dropwise to this mixed solution with vigorous stirring. Subsequently, a solution obtained by dissolving 446 g of bismuth nitrate in an aqueous solution obtained by adding 250 ml of concentrated nitric acid to 500 ml of pure water was added dropwise with vigorous stirring. The resulting suspension was heated and stirred, and most of the water was evaporated to obtain a cake-like solid. The obtained cake-like solid was heat-treated with a box-type dryer (heated gas temperature: 170 ° C., heated gas linear velocity: 1.2 m / sec, heat treatment time: 12 hours), and the block-shaped catalyst precursor was Obtained. After pulverizing this catalyst precursor, the weight loss rate was measured and found to be 18.9% by mass. Next, a 50% by mass ammonium nitrate aqueous solution was added at a rate of 260 g to 1 kg of the catalyst precursor powder, kneaded for 1 hour, and then extruded into a ring shape having an outer diameter of 6.0 mm, an inner diameter of 2.0 mm, and a height of 6.0 mm. Molded. Next, the molded body was calcined at 480 ° C. for 5 hours under air flow to obtain a catalyst (1). The metal element composition excluding oxygen of this catalyst was as follows.
[0035]
Catalyst (1): Mo12Co6Ni2Bi1.3Fe1.3Si2K0.08
The ratio R of the apparent density to the true density of the catalyst (1) (the apparent density of the catalyst / the true density of the catalyst) was 0.35.
Catalyst composition of catalyst (1), reduction rate of catalyst precursor P1, amount of binder added to 100 parts by mass of catalyst precursor P1, catalyst size, and ratio of apparent density to true density R (apparent density of catalyst / The true density of the catalyst) is summarized in Table 1.
(Catalyst Production Examples 2-3: Preparation of Catalysts (2)-(3))
In the preparation method of the catalyst (1) of the catalyst production example 1, the catalysts (2) to (2) are prepared in the same manner as in the catalyst production example 1 except that the amount of the 50 mass% ammonium nitrate aqueous solution added to the catalyst precursor P1 is changed. (3) was obtained respectively.
[0036]
Catalyst composition of catalysts (2) to (3), weight loss rate of catalyst precursor P1, amount of binder added to 100 parts by mass of catalyst precursor P1, catalyst size, and ratio of apparent density to true density R (catalyst The apparent density of the catalyst / the true density of the catalyst is summarized in Table 1.
(Catalyst production example 4: Preparation of catalyst (4))
In the preparation method of the catalyst (1) of the catalyst production example 1 above, the catalyst ( 4) was obtained.
Catalyst composition of catalyst (4), reduction rate of catalyst precursor P1, amount of binder added to 100 parts by mass of catalyst precursor P1, catalyst size, and ratio of apparent density to true density R (apparent density of catalyst / The true density of the catalyst) is summarized in Table 1.
[0037]
(Catalyst Production Example 5: Preparation of catalyst (5))
A catalyst (5) was obtained in the same manner as in Catalyst Production Example 1, except that the amount of potassium nitrate added was changed to 7.2 g in the method for preparing the catalyst (1) of Catalyst Production Example 1. The metal element composition excluding oxygen of this catalyst was as follows.
Catalyst (5): Mo12Co6Ni2Bi1.3Fe1.3Si2K0.1
Catalyst composition of catalyst (5), reduction rate of catalyst precursor P1, amount of binder added to 100 parts by mass of catalyst precursor P1, catalyst size, and ratio of apparent density to true density R (apparent density of catalyst / The true density of the catalyst) is summarized in Table 1.
[0038]
(Catalyst Production Example 6: Preparation of catalyst (6))
In the preparation method of the catalyst (1) of the catalyst production example 1 above, among the heat treatment conditions for the cake-like solid, the heating gas temperature is changed to 220 ° C., and the amount of the ammonium nitrate aqueous solution of 50% by mass added to the catalyst precursor P1 A catalyst (6) was obtained in the same manner as in Catalyst Production Example 1 except that
Catalyst composition of catalyst (6), reduction rate of catalyst precursor P1, amount of binder added to 100 parts by mass of catalyst precursor P1, catalyst size, and ratio of apparent density to true density R (apparent density of catalyst / The true density of the catalyst) is summarized in Table 1.
[0039]
(Catalyst Production Example 7: Preparation of catalyst (7))
In the preparation method of the catalyst (1) of the catalyst production example 1, the amount of potassium nitrate added was changed to 3.6 g, and the amount of 50 mass% ammonium nitrate aqueous solution added to the catalyst precursor P1 and the size of the catalyst were changed. Except for this, a catalyst (7) was obtained in the same manner as in Catalyst Production Example 1. The metal element composition excluding oxygen of this catalyst was as follows.
Catalyst (7): Mo12Co6Ni2Bi1.3Fe1.3Si2K0.05
Catalyst composition of catalyst (7), reduction rate of catalyst precursor P1, amount of binder added to 100 parts by mass of catalyst precursor P1, catalyst size, and ratio of apparent density to true density R (apparent density of catalyst / The true density of the catalyst) is summarized in Table 1.
[0040]
(Catalyst Production Example 8: Preparation of catalyst (8))
A catalyst (8) was obtained in the same manner as in Catalyst Preparation Example 7, except that the amount of 50 mass% ammonium nitrate aqueous solution added to the catalyst precursor P1 was changed in the preparation method of the catalyst (7) of the catalyst preparation example 7. .
Catalyst composition of catalyst (8), reduction rate of catalyst precursor P1, amount of binder added to 100 parts by mass of catalyst precursor P1, catalyst size, and ratio of apparent density to true density R (apparent density of catalyst / The true density of the catalyst) is summarized in Table 1.
(Catalyst Production Example 9: Preparation of catalyst (9))
In the preparation method of catalyst (1) of catalyst production example 1 above, 9.7 g of cesium nitrate was used instead of potassium nitrate, and the amount of 50 mass% ammonium nitrate aqueous solution added to catalyst precursor P1 and the size of the catalyst were changed. Except for the above, a catalyst (9) was obtained in the same manner as in Catalyst Production Example 1. The metal element composition excluding oxygen of this catalyst was as follows.
[0041]
Catalyst (9): Mo12Co6Ni2Bi1.3Fe1.3Si2Cs0.07
Catalyst composition of catalyst (9), reduction rate of catalyst precursor P1, amount of binder added to 100 parts by mass of catalyst precursor P1, catalyst size, and ratio of apparent density to true density R (apparent density of catalyst / The true density of the catalyst) is summarized in Table 1.
(Catalyst Production Example 10: Preparation of catalyst (10))
A catalyst (10) was obtained in the same manner as in Catalyst Preparation Example 9 except that the amount of the 50 mass% ammonium nitrate aqueous solution added to the catalyst precursor P1 was changed in the preparation method of the catalyst (9) of Catalyst Preparation Example 9. .
[0042]
Catalyst composition of catalyst (10), reduction rate of catalyst precursor P1, amount of binder added to 100 parts by mass of catalyst precursor P1, catalyst size, and ratio of apparent density to true density R (apparent density of catalyst / The true density of the catalyst) is summarized in Table 1.
(Reference Examples 1 to 10)
Into a stainless steel reaction tube having an inner diameter of 25 mm heated with molten nitrate, the catalysts (1) to (10) obtained in Catalyst Production Examples 1 to 10 are filled so as to have a layer length of 200 mm, respectively. Space velocity 1500h-1(STP) was introduced to carry out the vapor phase catalytic oxidation reaction of propylene. The results are shown in Table 2.
[0043]
Propylene 3% by volume
Air 30% by volume
Water vapor 40%
Nitrogen 27% by volume
Example 1
A stainless steel reaction tube having an inner diameter of 25 mm heated with molten nitrate is packed in order from the reaction gas inlet side to the outlet side so that the layer length is 1500 mm and the catalyst (2) is 1500 mm. , A reaction gas having the following composition with a space velocity of 1500 h-1(STP) was introduced to carry out the vapor phase catalytic oxidation reaction of propylene. The results are shown in Table 3.
[0044]
Propylene 5.5% by volume
Air 50.0% by volume
Water vapor 10.0% by volume
Nitrogen 34.5% by volume
(Comparative Examples 1-2)
In Example 1, a gas phase contact reaction was performed in the same manner as in Example 1 except that only the catalyst (1) was packed with a layer length of 3000 mm, or only the catalyst (2) was packed with a layer length of 3000 mm. The results are shown in Table 3.
[0045]
(Example 2, Comparative Examples 3-4)
In Example 1, a gas phase catalytic oxidation reaction was performed in the same manner as in Example 1 except that the catalyst was charged as shown in Table 3 and the reaction gas composition was changed as follows. The results are shown in Table 3.
Propylene 6.5% by volume
Air 57.0% by volume
Water vapor 10.0% by volume
Nitrogen 26.5% by volume
(Examples 3 to 5, Comparative Example 5)
In Example 1, a gas phase catalytic oxidation reaction was performed in the same manner as in Example 1 except that the catalyst was charged as shown in Table 3 and the reaction gas composition was changed as follows. The results are shown in Table 3.
[0046]
Propylene 8.0% by volume
Air 70.0% by volume
Water vapor 10.0% by volume
Nitrogen 12.0% by volume
[0047]
[Table 1]
Figure 0003939187
[0048]
[Table 2]
Figure 0003939187
[0049]
[Table 3]
Figure 0003939187
[0050]
【The invention's effect】
According to the present invention, when an unsaturated aldehyde and / or an unsaturated carboxylic acid is produced by a gas phase catalytic oxidation reaction using a fixed bed multitubular reactor filled with a molybdenum-based catalyst, The catalyst can be prevented from deteriorating, and the reaction can be continued for a long period of time while maintaining a high yield regardless of where the hot spot portion is generated and even when the raw material gas concentration is high.

Claims (5)

触媒を充填した固定床多管式反応器を用いて、プロピレン、イソブチレン、t−ブチルアルコール、およびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を原料とし、分子状酸素または分子状酸素含有ガスにより気相接触酸化することにより、原料に対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法において、
前記触媒として、モリブデン、ビスマスおよび鉄を必須成分とする酸化物および/または複合酸化物を使用し、
前記固定床多管型反応器における各反応管の内部を管軸方向に分割することにより複数個の反応帯を設け、
(1)触媒前駆体の減量率を変化させること、
(2)触媒に添加する細孔形成剤の種類および/または量を変えること、
から選ばれる少なくとも一つの方法によって触媒の真密度に対する触媒の見掛け密度の比R(触媒の見掛け密度/触媒の真密度)が異なる前記触媒を調製し、それぞれの反応帯に前記Rが異なる前記触媒をそれぞれ充填する
ことを特徴とする、不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
Using a fixed bed multitubular reactor packed with a catalyst, using as raw material at least one compound selected from propylene, isobutylene, t-butyl alcohol, and methyl-t-butyl ether, molecular oxygen or molecular oxygen-containing gas In the method of producing an unsaturated aldehyde and / or unsaturated carboxylic acid corresponding to a raw material by performing gas phase catalytic oxidation by
As the catalyst, an oxide and / or a composite oxide containing molybdenum, bismuth and iron as essential components is used,
A plurality of reaction zones are provided by dividing the inside of each reaction tube in the fixed bed multitubular reactor in the tube axis direction,
(1) changing the weight loss rate of the catalyst precursor;
(2) changing the type and / or amount of pore-forming agent added to the catalyst;
The catalyst having different ratio R (apparent density of catalyst / true density of catalyst) of the apparent density of the catalyst to the true density of the catalyst is prepared by at least one method selected from the above, and the catalyst having the different R in each reaction zone Each filling ,
A method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid.
前記複数個の反応帯に、前記Rの異なる触媒を各反応管のガス入口側からガス出口側に向けてRがより小さくなるように充填する、請求項1に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。  2. The unsaturated aldehyde and / or the aldehyde according to claim 1, wherein the plurality of reaction zones are filled with the catalyst having different R so that R becomes smaller from the gas inlet side to the gas outlet side of each reaction tube. A method for producing an unsaturated carboxylic acid. 前記複数個の反応帯にそれぞれ充填される触媒の活性が異なる、請求項1または2に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。  The method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid according to claim 1 or 2, wherein the activity of the catalyst charged in each of the plurality of reaction zones is different. 前記複数個の反応帯に、前記活性の異なる触媒を各反応管のガス入口側からガス出口側に向けて活性がより高くなるように充填する、請求項3に記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。  The unsaturated aldehyde and / or the aldehyde according to claim 3, wherein the plurality of reaction zones are filled with the catalyst having different activities so that the activity becomes higher from the gas inlet side to the gas outlet side of each reaction tube. A method for producing an unsaturated carboxylic acid. 前記反応帯の数が2または3である、請求項1から4までのいずれかに記載の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。  The method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid according to any one of claims 1 to 4, wherein the number of reaction zones is 2 or 3.
JP2002113915A 2002-03-29 2002-04-16 Process for producing unsaturated aldehyde Expired - Lifetime JP3939187B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002113915A JP3939187B2 (en) 2002-03-29 2002-04-16 Process for producing unsaturated aldehyde
TW92104818A TWI247628B (en) 2002-03-29 2003-03-06 Production Process for unsaturated aldehyde

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002096886 2002-03-29
JP2002113915A JP3939187B2 (en) 2002-03-29 2002-04-16 Process for producing unsaturated aldehyde

Publications (2)

Publication Number Publication Date
JP2004002209A JP2004002209A (en) 2004-01-08
JP3939187B2 true JP3939187B2 (en) 2007-07-04

Family

ID=30446437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113915A Expired - Lifetime JP3939187B2 (en) 2002-03-29 2002-04-16 Process for producing unsaturated aldehyde

Country Status (2)

Country Link
JP (1) JP3939187B2 (en)
TW (1) TWI247628B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428007B2 (en) 2016-11-01 2019-10-01 Lg Chem, Ltd. Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714606B1 (en) * 2005-02-25 2007-05-07 주식회사 엘지화학 Method of producing unsaturated aldehyde and/or unsaturated acid
JP5542557B2 (en) * 2010-07-15 2014-07-09 株式会社日本触媒 Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
WO2012105304A1 (en) 2011-02-02 2012-08-09 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
CN103772173B (en) * 2012-10-23 2016-06-08 中国石油天然气股份有限公司 A kind of preparation method of acrylic aldehyde
EP3023405A4 (en) 2013-07-18 2016-12-28 Nippon Kayaku Kk Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
KR20180055154A (en) 2016-11-16 2018-05-25 주식회사 엘지화학 Preparation method of catalyst
JP6831920B2 (en) 2018-04-10 2021-02-17 日本化薬株式会社 A method for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid, and a catalyst for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid.
JP6912153B2 (en) 2019-03-29 2021-07-28 日本化薬株式会社 Manufacturing method of unsaturated aldehyde

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428007B2 (en) 2016-11-01 2019-10-01 Lg Chem, Ltd. Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Also Published As

Publication number Publication date
TWI247628B (en) 2006-01-21
TW200304853A (en) 2003-10-16
JP2004002209A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP3793317B2 (en) Catalyst and method for producing unsaturated aldehyde and unsaturated acid
EP0450596B1 (en) Process for producing unsaturated aldehydes and unsaturated acids
JP3943284B2 (en) Acrylic acid production method
KR101821023B1 (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP4318367B2 (en) Method for producing acrolein and acrylic acid
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
KR20080086365A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP4265621B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
EP1350566B1 (en) Process for the preparation of unsaturated aldehydes and/or carboxylic acids by gas phase oxidation using a Mo-Bi-Fe based catalyst
KR100660988B1 (en) Production process for unsaturated aldehyde
EP1526123B1 (en) Catalytic gas phase oxidation reaction
JP3939187B2 (en) Process for producing unsaturated aldehyde
JP5680373B2 (en) Catalyst and method for producing acrylic acid
JP2008264766A (en) Oxide catalyst, manufacturing method of acrolein or acrylic acid and manufacturing method of water-absorptive resin using acrylic acid
JP2005320315A (en) Catalytic gas phase oxidation reaction
JP2006007205A (en) Compound oxide catalyst and its manufacturing method
JP2005169311A (en) Production method for complex oxide catalyst
JP3939262B2 (en) Process for producing unsaturated aldehydes
JP3314457B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2004244383A (en) Method for producing acrylic acid
JP2004002208A (en) Method for producing unsaturated aldehyde
JP2023140995A (en) Catalyst, manufacturing method of (meth)acrolein and (meth)acrylic acid therewith
JP2019210228A (en) Process for producing methacrolein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3939187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

EXPY Cancellation because of completion of term