KR102318486B1 - Method for preparing catalyst for preparing α,β-unsaturated carboxylic acid, method for preparing α,β-unsaturated carboxylic acid, and method for preparing α,β-unsaturated carboxylic acid ester - Google Patents

Method for preparing catalyst for preparing α,β-unsaturated carboxylic acid, method for preparing α,β-unsaturated carboxylic acid, and method for preparing α,β-unsaturated carboxylic acid ester Download PDF

Info

Publication number
KR102318486B1
KR102318486B1 KR1020207013491A KR20207013491A KR102318486B1 KR 102318486 B1 KR102318486 B1 KR 102318486B1 KR 1020207013491 A KR1020207013491 A KR 1020207013491A KR 20207013491 A KR20207013491 A KR 20207013491A KR 102318486 B1 KR102318486 B1 KR 102318486B1
Authority
KR
South Korea
Prior art keywords
carboxylic acid
unsaturated carboxylic
catalyst
producing
raw material
Prior art date
Application number
KR1020207013491A
Other languages
Korean (ko)
Other versions
KR20200069340A (en
Inventor
유 구리하라
다쿠로 와타나베
유이치 다가와
Original Assignee
미쯔비시 케미컬 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쯔비시 케미컬 주식회사 filed Critical 미쯔비시 케미컬 주식회사
Publication of KR20200069340A publication Critical patent/KR20200069340A/en
Application granted granted Critical
Publication of KR102318486B1 publication Critical patent/KR102318486B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Abstract

높은 수율로 α,β-불포화 카복실산을 제조할 수 있는 α,β-불포화 카복실산 제조용 촉매를 제공한다. 몰리브데넘 원료로서, 입자경 분포 측정에 의해 얻어지는 빈도 분포 곡선에 있어서, 입자경이 6μm 이하인 입자의 비율이 2∼55체적%인 몰리브데넘 산화물을 사용하는 α,β-불포화 카복실산 제조용 촉매의 제조 방법.Provided is a catalyst for preparing α,β-unsaturated carboxylic acid capable of producing α,β-unsaturated carboxylic acid in high yield. Method for producing a catalyst for production of α,β-unsaturated carboxylic acid using molybdenum oxide as a molybdenum raw material, wherein, in the frequency distribution curve obtained by particle size distribution measurement, the proportion of particles having a particle diameter of 6 μm or less is 2 to 55 vol% .

Description

α,β-불포화 카복실산 제조용 촉매의 제조 방법, α,β-불포화 카복실산의 제조 방법 및 α,β-불포화 카복실산 에스터의 제조 방법Method for preparing catalyst for preparing α,β-unsaturated carboxylic acid, method for preparing α,β-unsaturated carboxylic acid, and method for preparing α,β-unsaturated carboxylic acid ester

본 발명은 α,β-불포화 카복실산 제조용 촉매의 제조 방법, α,β-불포화 카복실산의 제조 방법 및 α,β-불포화 카복실산 에스터의 제조 방법에 관한 것이다.The present invention relates to a method for preparing a catalyst for preparing α,β-unsaturated carboxylic acid, a method for preparing α,β-unsaturated carboxylic acid, and a method for preparing an α,β-unsaturated carboxylic acid ester.

α,β-불포화 알데하이드를 분자상 산소에 의해 기상 접촉 산화시켜 α,β-불포화 카복실산을 제조할 때에 이용되는 촉매로서는, 인 몰리브데넘산, 인 몰리브데넘산염 등의 헤테로폴리산 또는 그의 염을 주성분으로 하는 촉매가 알려져 있다. 해당 촉매의 제조 방법에 대해서는 수많은 검토가 이루어지고 있고, 그 대부분은, 우선 촉매를 구성하는 각 원소를 포함하는 수성 슬러리 또는 수용액을 조제하고, 그 후 이것을 건조하고, 소성함으로써 촉매를 제조하고 있다.As a catalyst used in the production of α,β-unsaturated carboxylic acid by vapor phase catalytic oxidation of α,β-unsaturated aldehyde with molecular oxygen, heteropolyacids such as phosphorus molybdenic acid and phosphorus molybdenum salt or salts thereof as a main component Catalysts are known. Numerous studies have been made on a method for producing the catalyst, and most of them prepare an aqueous slurry or aqueous solution containing each element constituting the catalyst first, and then dry and calcinate the catalyst to produce the catalyst.

이와 같은 촉매의 기본적인 성능은, 주로 원소 조성, 결정 구조, 입자경 등에 의존하지만, 그 제어에는, 수성 슬러리 또는 수용액의 조제 과정의 조건을 제어할 것이 요구된다. 일반적으로, 수성 슬러리 또는 수용액의 조제에 이용되는 원료로서는, 수용성의 원료 및 물에 불용성인 원료 모두 사용 가능하다. 그러나, 특히 물에 불용성인 원료를 이용하는 경우, 원료의 물성이 촉매 성능에 큰 영향을 주는 것이 알려져 있다. 예를 들면 특허문헌 1에는, 압축도가 60 이하인 몰리브데넘 산화물을 원료에 이용함으로써, 높은 촉매 활성 및 선택성을 갖는 몰리브데넘 함유 고체 촉매를 제조할 수 있는 것이 기재되어 있다. 또한, 특허문헌 2에는, X선으로서 CuKα선을 이용한 X선 회절도에 있어서의 회절 피크 위치와 회절 강도가 규정된 몰리브데넘 산화물을 원료로서 사용하는 촉매의 제조 방법이 개시되어 있다.Although the basic performance of such a catalyst mainly depends on elemental composition, crystal structure, particle diameter, etc., the control is calculated|required to control the conditions of the preparation process of an aqueous slurry or aqueous solution. Generally, as a raw material used for preparation of an aqueous slurry or aqueous solution, both a water-soluble raw material and a water-insoluble raw material can be used. However, it is known that, in particular, when a raw material insoluble in water is used, the physical properties of the raw material greatly affect the catalyst performance. For example, Patent Document 1 describes that a molybdenum-containing solid catalyst having high catalytic activity and selectivity can be produced by using molybdenum oxide having a compressibility of 60 or less as a raw material. In addition, Patent Document 2 discloses a method for producing a catalyst using, as a raw material, molybdenum oxide in which a diffraction peak position and a diffraction intensity in an X-ray diffraction diagram using CuKα rays as X-rays are specified.

일본 특허공개 2007-229561호 공보Japanese Patent Laid-Open No. 2007-229561 일본 특허공개 2004-8834호 공보Japanese Patent Laid-Open No. 2004-8834

그러나, 특허문헌 1, 2에 개시되어 있는 몰리브데넘 산화물을 이용하여 제조한 촉매에서는, α,β-불포화 카복실산의 수율이 아직도 불충분하여, 더한층의 촉매의 개량이 요망된다.However, in the catalyst prepared using molybdenum oxide disclosed in Patent Documents 1 and 2, the yield of α,β-unsaturated carboxylic acid is still insufficient, and further improvement of the catalyst is desired.

본 발명은 높은 수율로 α,β-불포화 카복실산을 제조할 수 있는 촉매를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a catalyst capable of producing α,β-unsaturated carboxylic acids in high yield.

본 발명은, 이하의 [1] 내지 [13]이다.The present invention is the following [1] to [13].

[1] 몰리브데넘 원료로서, 입자경 분포 측정에 의해 얻어지는 빈도 분포 곡선에 있어서, 입자경이 6μm 이하인 입자의 비율이 2∼55체적%인 몰리브데넘 산화물을 사용하는 α,β-불포화 카복실산 제조용 촉매의 제조 방법.[1] Catalyst for production of α,β-unsaturated carboxylic acid using molybdenum oxide as a molybdenum raw material, wherein, in the frequency distribution curve obtained by particle size distribution measurement, the proportion of particles having a particle diameter of 6 μm or less is 2 to 55 vol% manufacturing method.

[2] (i) 적어도 상기 몰리브데넘 원료 및 인 원료를 포함하는 촉매 원료와 물을 혼합하여 얻어진 수성 슬러리(I)을, 90∼150℃로 가열하여 헤테로폴리산을 포함하는 수성 슬러리 또는 수용액(II)를 얻는 공정과,[2] (i) An aqueous slurry (I) obtained by mixing at least the catalyst raw material containing the molybdenum raw material and the phosphorus raw material with water is heated to 90 to 150° C. ) and the process of obtaining

(ii) 상기 수성 슬러리 또는 수용액(II)에 금속 양이온 함유 화합물을 첨가하여, 헤테로폴리산염이 석출된 수성 슬러리(III)을 얻는 공정과,(ii) adding a metal cation-containing compound to the aqueous slurry or aqueous solution (II) to obtain an aqueous slurry (III) in which a heteropoly acid salt is precipitated;

(iii) 상기 수성 슬러리(III)을 건조하여, 촉매 전구체 건조물을 얻는 공정과,(iii) drying the aqueous slurry (III) to obtain a dried catalyst precursor;

(iv) 상기 촉매 전구체 건조물을 열처리하여, 촉매를 얻는 공정(iv) heat-treating the dried catalyst precursor product to obtain a catalyst

을 갖고, 상기 공정(i)에 있어서, 상기 수성 슬러리(I)의 온도가 60℃에 도달하고 나서 90℃에 도달할 때까지의 시간이 5∼40분인, [1]에 기재된 α,β-불포화 카복실산 제조용 촉매의 제조 방법., wherein in the step (i), the time from when the temperature of the aqueous slurry (I) reaches 60°C to 90°C is 5 to 40 minutes, α,β- according to [1] A method for preparing a catalyst for the production of unsaturated carboxylic acids.

[3] 상기 공정(i)에 있어서, 상기 수성 슬러리(I)의 온도가 60℃에 도달하고 나서 90℃에 도달할 때까지의 시간이 7∼30분인, [2]에 기재된 α,β-불포화 카복실산 제조용 촉매의 제조 방법.[3] α,β- according to [2], wherein in the step (i), the time from when the temperature of the aqueous slurry (I) reaches 60°C to 90°C is 7 to 30 minutes A method for preparing a catalyst for the production of unsaturated carboxylic acids.

[4] 상기 몰리브데넘 원료가, 입자경이 6μm 이하인 입자의 비율이 2∼35체적%인 몰리브데넘 산화물인, [1] 내지 [3] 중 어느 하나에 기재된 α,β-불포화 카복실산 제조용 촉매의 제조 방법.[4] The catalyst for production of α,β-unsaturated carboxylic acid according to any one of [1] to [3], wherein the molybdenum raw material is molybdenum oxide in which the proportion of particles having a particle diameter of 6 μm or less is 2 to 35% by volume. manufacturing method.

[5] 상기 몰리브데넘 원료가, 입자경이 6μm 이하인 입자의 비율이 2∼15체적%인 몰리브데넘 산화물인, [4]에 기재된 α,β-불포화 카복실산 제조용 촉매의 제조 방법.[5] The method for producing a catalyst for production of α,β-unsaturated carboxylic acid according to [4], wherein the molybdenum raw material is molybdenum oxide in which the proportion of particles having a particle diameter of 6 μm or less is 2 to 15% by volume.

[6] 상기 α,β-불포화 카복실산 제조용 촉매가, 하기 식(1)로 표시되는 조성을 갖는, [1] 내지 [5] 중 어느 하나에 기재된 α,β-불포화 카복실산 제조용 촉매의 제조 방법.[6] The method for producing a catalyst for production of α,β-unsaturated carboxylic acid according to any one of [1] to [5], wherein the catalyst for production of α,β-unsaturated carboxylic acid has a composition represented by the following formula (1).

PaMobVcCudAeEfGgOh (1)P a Mo b V c Cu d A e E f G g O h (1)

(식(1) 중, P, Mo, V, Cu 및 O는 각각 인, 몰리브데넘, 바나듐, 구리 및 산소를 나타내는 원소 기호이다. A는 안티모니, 비스무트, 비소, 저마늄, 지르코늄, 텔루륨, 은, 셀레늄, 규소, 텅스텐 및 붕소로 이루어지는 군으로부터 선택되는 적어도 1종의 원소를 나타내고, E는 철, 아연, 크로뮴, 마그네슘, 칼슘, 스트론튬, 탄탈럼, 코발트, 니켈, 망가니즈, 바륨, 타이타늄, 주석, 납, 나이오븀, 인듐, 황, 팔라듐, 갈륨, 세륨 및 란타넘으로 이루어지는 군으로부터 선택되는 적어도 1종의 원소를 나타내고, G는 리튬, 나트륨, 칼륨, 루비듐, 세슘 및 탈륨으로 이루어지는 군으로부터 선택되는 적어도 1종의 원소를 나타낸다. a∼h는 각 원소의 원자 비율을 나타내고, b=12일 때, a=0.5∼3, c=0.01∼3, d=0.01∼2, e=0∼3, f=0∼3, g=0.01∼3이며, h는 상기 각 원소의 원자가를 만족하는 데 필요한 산소의 원자 비율이다.).(In formula (1), P, Mo, V, Cu and O are element symbols representing phosphorus, molybdenum, vanadium, copper, and oxygen, respectively. A is antimony, bismuth, arsenic, germanium, zirconium, and tel. Rurium, silver, selenium, silicon, tungsten and at least one element selected from the group consisting of boron, E is iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium , titanium, tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and at least one element selected from the group consisting of lanthanum, and G is lithium, sodium, potassium, rubidium, cesium and thallium. at least one element selected from the group consisting of = 0 to 3, f = 0 to 3, g = 0.01 to 3, and h is the atomic ratio of oxygen required to satisfy the valence of each element).

[7] 상기 몰리브데넘 원료로서 삼산화 몰리브데넘을 50질량% 이상 사용하는, [1] 내지 [6] 중 어느 하나에 기재된 α,β-불포화 카복실산 제조용 촉매의 제조 방법.[7] The method for producing a catalyst for production of α,β-unsaturated carboxylic acid according to any one of [1] to [6], wherein 50 mass % or more of molybdenum trioxide is used as the molybdenum raw material.

[8] 상기 몰리브데넘 원료로서 삼산화 몰리브데넘을 70질량% 이상 사용하는, [7]에 기재된 α,β-불포화 카복실산 제조용 촉매의 제조 방법.[8] The method for producing a catalyst for production of α,β-unsaturated carboxylic acid according to [7], wherein 70 mass % or more of molybdenum trioxide is used as the molybdenum raw material.

[9] 상기 α,β-불포화 카복실산 제조용 촉매는, α,β-불포화 알데하이드를 분자상 산소에 의해 기상 접촉 산화시켜 α,β-불포화 카복실산을 제조할 때에 이용되는 촉매로서, 상기 α,β-불포화 알데하이드가 (메트)아크롤레인이고, 또한 상기 α,β-불포화 카복실산이 (메트)아크릴산인, [1] 내지 [8] 중 어느 하나에 기재된 α,β-불포화 카복실산 제조용 촉매의 제조 방법.[9] The catalyst for the production of α,β-unsaturated carboxylic acid is a catalyst used to produce α,β-unsaturated carboxylic acid by gas phase catalytic oxidation of α,β-unsaturated aldehyde with molecular oxygen, and the α,β- The method for producing a catalyst for producing α,β-unsaturated carboxylic acid according to any one of [1] to [8], wherein the unsaturated aldehyde is (meth)acrolein and the α,β-unsaturated carboxylic acid is (meth)acrylic acid.

[10] [1] 내지 [9] 중 어느 하나에 기재된 방법에 의해 α,β-불포화 카복실산 제조용 촉매를 제조하고, 해당 촉매를 이용하여 α,β-불포화 알데하이드를 분자상 산소에 의해 기상 접촉 산화시켜 α,β-불포화 카복실산을 제조하는 α,β-불포화 카복실산의 제조 방법.[10] A catalyst for producing α,β-unsaturated carboxylic acid is prepared by the method according to any one of [1] to [9], and gas phase catalytic oxidation of α,β-unsaturated aldehyde with molecular oxygen using the catalyst A method for producing an α,β-unsaturated carboxylic acid to produce an α,β-unsaturated carboxylic acid.

[11] [1] 내지 [9] 중 어느 하나에 기재된 방법에 의해 제조된 α,β-불포화 카복실산 제조용 촉매를 이용하여, α,β-불포화 알데하이드를 분자상 산소에 의해 기상 접촉 산화시켜 α,β-불포화 카복실산을 제조하는 α,β-불포화 카복실산의 제조 방법.[11] Using the catalyst for producing α,β-unsaturated carboxylic acid prepared by the method according to any one of [1] to [9], gas phase catalytic oxidation of α,β-unsaturated aldehyde with molecular oxygen to α, A process for the preparation of α,β-unsaturated carboxylic acids for preparing β-unsaturated carboxylic acids.

[12] [10] 또는 [11]에 기재된 방법에 의해 제조된 α,β-불포화 카복실산을 에스터화하는 α,β-불포화 카복실산 에스터의 제조 방법.[12] A method for producing an α,β-unsaturated carboxylic acid ester, wherein the α,β-unsaturated carboxylic acid prepared by the method described in [10] or [11] is esterified.

[13] [10] 또는 [11]에 기재된 방법에 의해 α,β-불포화 카복실산을 제조하고, 해당 α,β-불포화 카복실산을 에스터화하는 α,β-불포화 카복실산 에스터의 제조 방법.[13] A method for producing an α,β-unsaturated carboxylic acid ester, wherein the α,β-unsaturated carboxylic acid is prepared by the method described in [10] or [11], and the α,β-unsaturated carboxylic acid is esterified.

본 발명에 의하면, 높은 수율로 α,β-불포화 카복실산을 제조할 수 있는 촉매를 제공할 수 있다.According to the present invention, it is possible to provide a catalyst capable of producing α,β-unsaturated carboxylic acid in high yield.

도 1은 실시예 1∼4 및 비교예 1∼3에 있어서의 삼산화 몰리브데넘의 입자경 분포를 나타내는 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the particle size distribution of molybdenum trioxide in Examples 1-4 and Comparative Examples 1-3.

[α,β-불포화 카복실산 제조용 촉매] [Catalyst for production of α,β-unsaturated carboxylic acid]

본 발명에 따른 방법에 의해 제조되는 α,β-불포화 카복실산 제조용 촉매는, 적어도 몰리브데넘을 포함하지만, 인 및 몰리브데넘을 포함하는 것이 바람직하고, 하기 식(1)로 표시되는 조성을 갖는 것이 보다 바람직하다. 이에 의해, α,β-불포화 카복실산의 제조에 있어서 고수율로 α,β-불포화 카복실산을 제조할 수 있다. 한편, 촉매의 원소 조성은, 촉매를 암모니아수에 용해시킨 용액을 ICP 발광 분석법으로 분석하는 것에 의해 구한 값으로 한다.The catalyst for producing α,β-unsaturated carboxylic acid produced by the method according to the present invention contains at least molybdenum, but preferably contains phosphorus and molybdenum, and has a composition represented by the following formula (1) more preferably. Thereby, in the production of α,β-unsaturated carboxylic acid, α,β-unsaturated carboxylic acid can be produced in high yield. In addition, let the element composition of a catalyst be the value calculated|required by analyzing the solution which melt|dissolved the catalyst in aqueous ammonia by ICP emission spectrometry.

PaMobVcCudAeEfGgOh (1) P a Mo b V c Cu d A e E f G g O h (1)

식(1) 중, P, Mo, V, Cu 및 O는 각각 인, 몰리브데넘, 바나듐, 구리 및 산소를 나타내는 원소 기호이다. A는 안티모니, 비스무트, 비소, 저마늄, 지르코늄, 텔루륨, 은, 셀레늄, 규소, 텅스텐 및 붕소로 이루어지는 군으로부터 선택되는 적어도 1종의 원소를 나타내고, E는 철, 아연, 크로뮴, 마그네슘, 칼슘, 스트론튬, 탄탈럼, 코발트, 니켈, 망가니즈, 바륨, 타이타늄, 주석, 납, 나이오븀, 인듐, 황, 팔라듐, 갈륨, 세륨 및 란타넘으로 이루어지는 군으로부터 선택되는 적어도 1종의 원소를 나타내고, G는 리튬, 나트륨, 칼륨, 루비듐, 세슘 및 탈륨으로 이루어지는 군으로부터 선택되는 적어도 1종의 원소를 나타낸다. a∼h는 각 원소의 원자 비율을 나타내고, b=12일 때, a=0.5∼3, c=0.01∼3, d=0.01∼2, e=0∼3, f=0∼3, g=0.01∼3이며, h는 상기 각 원소의 원자가를 만족하는 데 필요한 산소의 원자 비율이다.In Formula (1), P, Mo, V, Cu, and O are element symbols which represent phosphorus, molybdenum, vanadium, copper, and oxygen, respectively. A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron, E is iron, zinc, chromium, magnesium, at least one element selected from the group consisting of calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum; , G represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. a to h represent the atomic ratio of each element, when b = 12, a = 0.5 to 3, c = 0.01 to 3, d = 0.01 to 2, e = 0 to 3, f = 0 to 3, g = 0.01 to 3, and h is the atomic ratio of oxygen required to satisfy the valence of each element.

또한, 촉매는 식(1)에 기재가 없는 원소를 소량 포함하고 있어도 된다.In addition, the catalyst may contain a small amount of the element which does not have a description in Formula (1).

본 발명에 따른 방법에 의해 제조되는 α,β-불포화 카복실산 제조용 촉매는, α,β-불포화 알데하이드를 분자상 산소에 의해 기상 접촉 산화시켜 α,β-불포화 카복실산을 제조할 때에 이용되는 것이 바람직하다. 또한, α,β-불포화 알데하이드가 (메트)아크롤레인이고, 또한 α,β-불포화 카복실산이 (메트)아크릴산인 것이 바람직하다.The catalyst for production of α,β-unsaturated carboxylic acid prepared by the method according to the present invention is preferably used for producing α,β-unsaturated carboxylic acid by gas phase catalytic oxidation of α,β-unsaturated aldehyde with molecular oxygen. . Further, it is preferable that the α,β-unsaturated aldehyde is (meth)acrolein, and the α,β-unsaturated carboxylic acid is (meth)acrylic acid.

[α,β-불포화 카복실산 제조용 촉매의 제조 방법] [Method for preparing catalyst for production of α,β-unsaturated carboxylic acid]

본 발명에 따른 α,β-불포화 카복실산 제조용 촉매의 제조 방법에서는, 몰리브데넘 원료로서, 입자경 분포 측정에 의해 얻어지는 빈도 분포 곡선에 있어서, 입자경이 6μm 이하인 입자의 비율이 2∼55체적%인 몰리브데넘 산화물을 사용한다. 한편, 몰리브데넘 산화물의 입자경 분포 측정은, 레이저 회절식 입도 분포 측정 장치 SALD-7000(제품명, 시마즈 제작소사제)을 이용하여, 순수 500g에 대해서 몰리브데넘 산화물 0.02∼0.1g을 분산시키고, 30초간 교반시킨 후에 행해진다. 또한, 본 발명에서는, 입자경이 1000μm 이하인 입자의 적산 체적을 전체 입자 체적으로 해서 빈도 분포 곡선을 구한다.In the method for producing a catalyst for production of α,β-unsaturated carboxylic acid according to the present invention, as a molybdenum raw material, in the frequency distribution curve obtained by particle size distribution measurement, the proportion of particles having a particle diameter of 6 μm or less is 2 to 55% by volume. Libdenum oxide is used. On the other hand, the particle size distribution measurement of molybdenum oxide is performed by dispersing 0.02 to 0.1 g of molybdenum oxide with respect to 500 g of pure water using a laser diffraction type particle size distribution measuring apparatus SALD-7000 (product name, manufactured by Shimadzu Corporation), 30 This is done after stirring for a second. Further, in the present invention, a frequency distribution curve is obtained by taking the integrated volume of particles having a particle diameter of 1000 µm or less as the total particle volume.

본 발명에서는, 전술한 입자경 분포 측정에 의해 얻어지는 빈도 분포 곡선에 있어서, 입자경 1000μm 이하의 입자에 있어서의 입자경이 6μm 이하인 입자의 비율이 2∼55체적%인 몰리브데넘 산화물을 몰리브데넘 원료에 이용하여 α,β-불포화 카복실산 제조용 촉매를 제조한다. 이에 의해, 얻어진 촉매에 적합한 활성점이 형성되고, 촉매 활성이 향상되어, α,β-불포화 카복실산의 수율을 향상시킬 수 있다고 생각된다.In the present invention, in the frequency distribution curve obtained by the aforementioned particle size distribution measurement, molybdenum oxide having a ratio of 2 to 55 vol% of particles having a particle diameter of 6 μm or less in particles having a particle diameter of 1000 μm or less is added to the molybdenum raw material. A catalyst for preparing α,β-unsaturated carboxylic acids is prepared using It is thought that by this, an active site suitable for the obtained catalyst is formed, catalytic activity is improved, and the yield of alpha, beta -unsaturated carboxylic acid can be improved.

본 발명에 따른 α,β-불포화 카복실산 제조용 촉매의 제조 방법은, 상기 몰리브데넘 산화물을 몰리브데넘 원료로서 사용하는 것 이외에는 특별히 한정되지 않고, 예를 들면 상기 몰리브데넘 산화물을 포함하는 원료와 물을 혼합하여 수성 슬러리 또는 수용액을 얻는 공정을 가질 수 있다. 그러나, α,β-불포화 카복실산의 수율이 보다 향상되는 관점에서, 상기 방법은 이하의 공정(i) 내지 (iv)를 갖는 것이 바람직하다.The method for producing a catalyst for producing α,β-unsaturated carboxylic acid according to the present invention is not particularly limited except that the molybdenum oxide is used as a molybdenum raw material, for example, a raw material containing the molybdenum oxide and It may have a process of mixing water to obtain an aqueous slurry or aqueous solution. However, from the viewpoint of further improving the yield of the ?,?-unsaturated carboxylic acid, the method preferably has the following steps (i) to (iv).

(i) 적어도 몰리브데넘 원료 및 인 원료를 포함하는 촉매 원료와 물을 혼합하여 얻어진 수성 슬러리(I)을, 90∼150℃로 가열하여 헤테로폴리산을 포함하는 수성 슬러리 또는 수용액(II)를 얻는 공정.(i) a step of heating an aqueous slurry (I) obtained by mixing a catalyst raw material containing at least a molybdenum raw material and a phosphorus raw material and water to 90 to 150° C. to obtain an aqueous slurry or aqueous solution (II) containing a heteropoly acid .

(ii) 상기 수성 슬러리 또는 수용액(II)에 금속 양이온 함유 화합물을 첨가하여, 헤테로폴리산염이 석출된 수성 슬러리(III)을 얻는 공정.(ii) adding a metal cation-containing compound to the aqueous slurry or aqueous solution (II) to obtain an aqueous slurry (III) in which a heteropoly acid salt is precipitated.

(iii) 상기 수성 슬러리(III)을 건조하여, 촉매 전구체 건조물을 얻는 공정.(iii) drying the aqueous slurry (III) to obtain a dried catalyst precursor.

(iv) 상기 촉매 전구체 건조물을 열처리하여, 촉매를 얻는 공정.(iv) heat-treating the dried catalyst precursor product to obtain a catalyst.

또한, 본 발명에 따른 α,β-불포화 카복실산 제조용 촉매의 제조 방법은, 후술하는 성형 공정을 추가로 가져도 된다.Moreover, the manufacturing method of the catalyst for alpha, beta- unsaturated carboxylic acid production which concerns on this invention may further have the shaping|molding process mentioned later.

(공정(i)) (Process (i))

공정(i)에서는, 적어도 몰리브데넘 원료 및 인 원료를 포함하는 촉매 원료와 물을 혼합하여 얻어진 수성 슬러리(I)을, 90∼150℃로 가열하여 헤테로폴리산을 포함하는 수성 슬러리 또는 수용액(II)를 얻는다. 한편, 수성 슬러리(I)을 가열한 후, 수성 슬러리가 되는 경우도 수용액이 되는 경우도 있다. 그 때문에, 이들을 「수성 슬러리 또는 수용액(II)」라고 총칭한다. 또한, 촉매가 상기 식(1)로 표시되는 조성을 갖는 경우, 상기 식(1)로 표시되는 조성에 포함되는 G 이외의 원소를, 상기 촉매 원료로서 물과 혼합하여, 수성 슬러리(I)을 얻는 것이 바람직하다.In step (i), an aqueous slurry (I) obtained by mixing a catalyst raw material containing at least a molybdenum raw material and a phosphorus raw material and water is heated to 90 to 150° C. to obtain an aqueous slurry or aqueous solution (II) containing a heteropoly acid get On the other hand, after heating an aqueous slurry (I), it may turn into an aqueous solution when it turns into an aqueous slurry. Therefore, these are generically called "aqueous slurry or aqueous solution (II)." In addition, when the catalyst has a composition represented by the formula (1), an element other than G contained in the composition represented by the formula (1) is mixed with water as the catalyst raw material to obtain an aqueous slurry (I) it is preferable

수성 슬러리(I)을 가열하면 몰리브데넘 원료가 물에 용해되지만, 이때의 용해 속도는, 몰리브데넘 원료의 입자경 분포에 의해 변화한다. 이 용해 속도가 얻어지는 촉매의 활성점에 영향을 주고 있다고 추측된다.When the aqueous slurry (I) is heated, the molybdenum raw material is dissolved in water, but the dissolution rate at this time varies depending on the particle size distribution of the molybdenum raw material. It is estimated that this dissolution rate affects the active point of the obtained catalyst.

몰리브데넘 원료로서는, 입자경 분포 측정에 의해 얻어지는 빈도 분포 곡선에 있어서, 입자경이 6μm 이하인 입자의 비율이 2∼55체적%인 몰리브데넘 산화물을 사용한다. 이에 의해, α,β-불포화 알데하이드의 분자상 산소에 의한 기상 접촉 산화에 적합한 활성점이 형성된다. 해당 비율의 하한은 5체적% 이상이 바람직하고, 10체적% 이상이 보다 바람직하다. 또한, 상한은 35체적% 이하가 바람직하고, 30체적% 이하가 보다 바람직하고, 25체적% 이하가 더 바람직하고, 20체적% 이하가 특히 바람직하며, 15체적% 이하가 가장 바람직하다.As the molybdenum raw material, molybdenum oxide in which the proportion of particles having a particle diameter of 6 µm or less in the frequency distribution curve obtained by particle size distribution measurement is 2 to 55% by volume is used. Thereby, an active site suitable for gas phase catalytic oxidation of α,β-unsaturated aldehydes with molecular oxygen is formed. 5 volume% or more is preferable and, as for the lower limit of this ratio, 10 volume% or more is more preferable. Further, the upper limit is preferably 35% by volume or less, more preferably 30% by volume or less, still more preferably 25% by volume or less, particularly preferably 20% by volume or less, and most preferably 15% by volume or less.

또한, 상기 몰리브데넘 산화물은, 입자경이 30∼200μm인 입자의 비율이 35∼90체적%인 것이 바람직하다. 해당 비율의 하한은 40체적% 이상이 보다 바람직하고, 50체적% 이상이 더 바람직하고, 60체적% 이상이 특히 바람직하며, 70체적% 이상이 가장 바람직하다. 또한, 상한은 85체적% 이하가 보다 바람직하고, 80체적% 이하가 더 바람직하다. 이에 의해, α,β-불포화 알데하이드의 분자상 산소에 의한 기상 접촉 산화에 보다 적합한 활성점이 형성된다.Moreover, it is preferable that the ratio of the particle|grains whose particle diameter is 30-200 micrometers in the said molybdenum oxide is 35-90 volume%. As for the lower limit of this ratio, 40 volume% or more is more preferable, 50 volume% or more is still more preferable, 60 volume% or more is especially preferable, and 70 volume% or more is the most preferable. Moreover, 85 volume% or less is more preferable, and, as for an upper limit, 80 volume% or less is still more preferable. Thereby, an active site more suitable for gas phase catalytic oxidation of α,β-unsaturated aldehydes with molecular oxygen is formed.

몰리브데넘 산화물 중의 몰리브데넘과 산소의 원자 비율은 특별히 한정되지 않고, 예를 들면, 몰리브데넘:산소의 원자 비율이 1:2인 이산화 몰리브데넘, 1:3인 삼산화 몰리브데넘 등을 들 수 있다. 단, α,β-불포화 카복실산의 수율이 보다 향상되는 관점에서, 몰리브데넘 원료로서, 입자경이 6μm 이하인 입자의 비율이 2∼55체적%인 삼산화 몰리브데넘을 50질량% 이상 사용하는 것이 바람직하다. 삼산화 몰리브데넘의 비율의 하한은 70질량% 이상이 보다 바람직하고, 90질량% 이상이 더 바람직하다. 몰리브데넘 산화물에는, 예를 들면, 나트륨, 칼륨, 철, 납, 황산근(根), 질산근 및 암모늄근 등의 불순물이 미량 포함되어 있어도 되지만, 이들 불순물의 함유량은 적을수록 바람직하고, 이들 불순물을 포함하지 않는 것이 특히 바람직하다.The atomic ratio of molybdenum to oxygen in the molybdenum oxide is not particularly limited, and for example, molybdenum dioxide with an atomic ratio of molybdenum:oxygen of 1:2, molybdenum trioxide of 1:3, etc. can be heard However, from the viewpoint of further improving the yield of α,β-unsaturated carboxylic acid, it is preferable to use 50% by mass or more of molybdenum trioxide in which the proportion of particles having a particle diameter of 6 μm or less is 2 to 55% by volume as the molybdenum raw material. do. As for the lower limit of the ratio of molybdenum trioxide, 70 mass % or more is more preferable, and 90 mass % or more is still more preferable. Molybdenum oxide may contain trace amounts of impurities such as sodium, potassium, iron, lead, sulfate group, nitrate group and ammonium group, but the content of these impurities is preferably as small as these It is particularly preferred that it contains no impurities.

본 발명에 따른 몰리브데넘 산화물의 제조 방법으로서는, 예를 들면 이하의 방법을 들 수 있다. 몰리브데넘을 포함하는 광석을 배소하여 얻어진 조(粗) 삼산화 몰리브데넘을 순수에 분산시킨 후, 암모니아수에 용해시킨다. 이 용액을 여과 후, 염산을 첨가해서 pH 조정을 행하여 얻어진 침전물을, 순수, 질산 암모늄이나 염화 암모늄 등을 소량 포함하는 수용액으로 분산·세정한다. 그 후, 원심 여과 등에 의해 함수량을 저감하여 전구체 침전물을 얻고, 이것을 건조 후 소성하여, 몰리브데넘 산화물을 얻을 수 있다. 또한, 상기 전구체 침전물에 암모니아수를 첨가해서 용해·정석하여 얻어진 파라몰리브데넘산 암모늄을 소성하는 방법도 들 수 있다. 후자의 방법쪽이, 전자의 방법보다도 얻어지는 몰리브데넘 산화물의 입자경을 작게 할 수 있다. 또, 상기 소성 온도에 의해서도 몰리브데넘 산화물의 입자경을 조정할 수 있다. 소성 온도를 낮게 함으로써 얻어지는 몰리브데넘 산화물의 입자경이 작아지고, 소성 온도를 높게 함으로써 얻어지는 몰리브데넘 산화물의 입자경이 커지는 경향이 있다. 또한, 상기 방법으로 제조한 몰리브데넘 산화물에 대해서, 필요에 따라서, 입자경이 6μm 이하인 입자의 비율이 2∼55체적%, 바람직하게는 2∼35체적%, 보다 바람직하게는 2∼15체적%가 되도록 분쇄 조작이나 분급 조작을 해도 된다. 분쇄 조작으로서는, 볼 밀, 로드 밀, SAG 밀, 자생 분쇄 밀, 페블 밀, 고압 분쇄 롤, 종축 임팩터 밀, 제트 밀 등의 장치를 이용하는 방법을 들 수 있다. 분급 조작으로서는, 체에 의한 방법, 중력이나 원심력을 이용하는 방법(반자유 소용돌이식 분급기, 강제 소용돌이식 분급기) 등을 들 수 있다. 또한, 본 발명에 따른 몰리브데넘 산화물로서, 전술한 방법에 의해 제조된, 상이한 입도 분포를 갖는 복수의 몰리브데넘 산화물을 혼합한 것을 이용해도 된다.As a manufacturing method of the molybdenum oxide which concerns on this invention, the following method is mentioned, for example. Crude molybdenum trioxide obtained by roasting ores containing molybdenum is dispersed in pure water and then dissolved in aqueous ammonia. After filtering this solution, hydrochloric acid is added and the precipitate obtained by pH adjustment is disperse|distributed and wash|cleaned with the aqueous solution containing a small amount of pure water, ammonium nitrate, ammonium chloride, etc. Thereafter, the water content is reduced by centrifugal filtration or the like to obtain a precursor precipitate, which is dried and calcined to obtain molybdenum oxide. Moreover, the method of calcining the ammonium paramolybdenate obtained by adding aqueous ammonia to the said precursor precipitate, and dissolving and crystallizing is also mentioned. The latter method can make the particle diameter of the molybdenum oxide obtained smaller than the former method. Moreover, the particle diameter of molybdenum oxide can be adjusted also by the said calcination temperature. The particle diameter of the molybdenum oxide obtained by making the calcination temperature low tends to become small, and there exists a tendency for the particle diameter of the molybdenum oxide obtained by raising the calcination temperature to become large. In addition, with respect to the molybdenum oxide produced by the above method, if necessary, the proportion of particles having a particle diameter of 6 μm or less is 2 to 55% by volume, preferably 2 to 35% by volume, more preferably 2 to 15% by volume pulverization operation or classification operation may be performed so that As grinding operation, a method using apparatuses, such as a ball mill, a rod mill, a SAG mill, an autogenous grinding mill, a pebble mill, a high pressure grinding roll, a vertical axis|shaft impactor mill, and a jet mill, is mentioned. As classification operation, the method by a sieve, the method using gravity or centrifugal force (semi-free vortex classifier, forced vortex classifier), etc. are mentioned. Further, as the molybdenum oxide according to the present invention, a mixture of a plurality of molybdenum oxides having different particle size distributions produced by the above-described method may be used.

인 원료로서는, 예를 들면 정인산, 오산화 인, 인산 암모늄, 인산 세슘 등을 들 수 있다. 이들은 1종을 이용해도 되고, 2종 이상을 병용해도 된다.Examples of the phosphorus raw material include orthophosphoric acid, phosphorus pentoxide, ammonium phosphate, and cesium phosphate. These may use 1 type and may use 2 or more types together.

몰리브데넘 원료 및 인 원료 이외의 촉매 원료의 종류는 특별히 한정되지 않고, 각 원소의 황산염, 질산염, 탄산염, 중탄산염, 아세트산염, 암모늄염, 산화물, 수산화물, 염화물, 할로젠화물, 옥소산, 옥소산염 등을 들 수 있다. 구리 원료로서는, 예를 들면 황산 구리, 질산 구리, 아세트산 구리, 산화 구리, 염화 구리 등을 들 수 있다. 바나듐 원료로서는, 예를 들면 바나드산 암모늄, 메타바나드산 암모늄, 오산화 바나듐, 염화 바나듐 등을 들 수 있다. 이들은 1종을 이용해도 되고, 2종 이상을 병용해도 된다.The types of catalyst raw materials other than the molybdenum raw material and the phosphorus raw material are not particularly limited, and sulfate, nitrate, carbonate, bicarbonate, acetate, ammonium salt, oxide, hydroxide, chloride, halide, oxo acid, and oxo acid salt of each element. and the like. As a copper raw material, copper sulfate, copper nitrate, copper acetate, copper oxide, copper chloride etc. are mentioned, for example. Examples of the vanadium raw material include ammonium vanadate, ammonium metavanadate, vanadium pentoxide, and vanadium chloride. These may use 1 type and may use 2 or more types together.

헤테로폴리산을 포함하는 수성 슬러리 또는 수용액(II)의 조제는, 물에 상기 촉매 원료의 일부 또는 전부를 가하여 얻어지는 수성 슬러리(I)을, 가열하면서 교반하는 방법에 의해 행하는 것이 간편하여 바람직하다. 수성 슬러리(I)은, 물에 상기 촉매 원료의 수용액, 수성 슬러리 또는 수성 졸을 첨가하여 얻을 수도 있다. 수성 슬러리(I)을, 90∼150℃로 가열함으로써 수성 슬러리 또는 수용액(II)를 얻는 것이 바람직하다. 가열 온도의 하한은 95℃ 이상, 상한은 130℃ 이하가 보다 바람직하다. 해당 가열 온도를 90℃ 이상으로 함으로써, 상기 촉매 원료로부터 효율적으로 헤테로폴리산이 생성된다. 또한, 해당 가열 온도를 150℃ 이하로 함으로써, 수성 슬러리 또는 수용액 중의 물의 증발을 억제할 수 있다.Preparation of the aqueous slurry or aqueous solution (II) containing the heteropolyacid is simple and preferable because it is simple to perform the aqueous slurry (I) obtained by adding a part or all of the catalyst raw material to water and stirring while heating. Aqueous slurry (I) can also be obtained by adding the aqueous solution of the said catalyst raw material, aqueous slurry, or aqueous sol to water. It is preferable to obtain an aqueous slurry or aqueous solution (II) by heating the aqueous slurry (I) to 90-150 degreeC. The lower limit of the heating temperature is more preferably 95°C or higher, and the upper limit is more preferably 130°C or lower. Heteropolyacid is efficiently produced|generated from the said catalyst raw material by making this heating temperature into 90 degreeC or more. Moreover, evaporation of the water in an aqueous slurry or aqueous solution can be suppressed by making this heating temperature into 150 degrees C or less.

전술한 대로, 몰리브데넘 원료로서, 입자경 분포 측정에 의해 얻어지는 빈도 분포 곡선에 있어서, 입자경이 6μm 이하인 입자의 비율이 2∼55체적%인 몰리브데넘 산화물을 사용한 경우, 상기 수성 슬러리(I)을 가열하여, 상기 몰리브데넘 원료가 물에 용해될 때의 용해 속도가, 얻어지는 촉매의 활성점에 영향을 주고 있다고 추측된다. 이때, 상기 수성 슬러리(I)의 온도가 60℃에 도달하고 나서 90℃에 도달할 때까지의 동안에 상기 몰리브데넘 원료가 물에 용해된다. 그 때문에, 이 시간을 조정함으로써, α,β-불포화 알데하이드의 분자상 산소에 의한 기상 접촉 산화에 보다 적합한 활성점을 형성시킬 수 있다. 상기 수성 슬러리(I)의 온도가 60℃에 도달하고 나서 90℃에 도달할 때까지의 시간은, 바람직하게는 5∼40분, 보다 바람직하게는 7∼30분이다.As described above, when molybdenum oxide is used as the molybdenum raw material in which the proportion of particles having a particle diameter of 6 μm or less is 2 to 55 vol% in the frequency distribution curve obtained by particle size distribution measurement, the aqueous slurry (I) It is presumed that the dissolution rate when heating the molybdenum raw material is dissolved in water affects the active point of the obtained catalyst. At this time, the molybdenum raw material is dissolved in water from when the temperature of the aqueous slurry (I) reaches 60°C until it reaches 90°C. Therefore, by adjusting this time, an active site more suitable for gas phase catalytic oxidation of α,β-unsaturated aldehyde with molecular oxygen can be formed. The time from when the temperature of the said aqueous slurry (I) reaches 60 degreeC until it reaches 90 degreeC becomes like this. Preferably it is 5-40 minutes, More preferably, it is 7-30 minutes.

상기 수성 슬러리(I)에 있어서, 온도가 60℃에 도달하고 나서 90℃에 도달할 때까지의 시간은, 승온 속도의 조정 등에 의해 제어할 수 있다. 또한, 상기 수성 슬러리(I)의 온도는 단조 증가시켜도 되고, 승온 속도를 적절히 변화시키면서 제어해도 된다.In the aqueous slurry (I), the time from when the temperature reaches 60°C until it reaches 90°C is controllable by adjusting the temperature increase rate or the like. In addition, the temperature of the said aqueous slurry (I) may be monotonically increased, and may be controlled, changing a temperature increase rate suitably.

조제되는 수성 슬러리 또는 수용액(II)의 pH는, α,β-불포화 카복실산의 수율 향상의 관점에서 4 이하가 바람직하고, 2 이하가 보다 바람직하다. 수성 슬러리 또는 수용액(II)의 pH가 높은 경우에는, 질산근 등을 많이 포함하도록 각 원료를 선택하는 것이 바람직하다.From the viewpoint of improving the yield of α,β-unsaturated carboxylic acid, the pH of the prepared aqueous slurry or aqueous solution (II) is preferably 4 or less, and more preferably 2 or less. When the pH of an aqueous slurry or aqueous solution (II) is high, it is preferable to select each raw material so that many nitrate radicals etc. may be contained.

공정(i)에 있어서 수성 슬러리 또는 수용액(II) 중에 헤테로폴리산이 형성되어 있는지 여부는, NICOLET6700FT-IR(제품명, Thermo electron사제) 등을 이용한 적외 흡수 분석 및 X선 회절 장치 X'Pert PRO MPD(제품명, PANaltical사제) 등을 이용한 X선 회절 분석에 의해 확인할 수 있다.In the step (i), whether heteropolyacid is formed in the aqueous slurry or aqueous solution (II) is determined by infrared absorption analysis using NICOLET6700FT-IR (product name, manufactured by Thermo Electron Corporation) and the like and X-ray diffraction apparatus X'Pert PRO MPD (product name). , manufactured by PANaltical) can be confirmed by X-ray diffraction analysis.

(공정(ii)) (Process (ii))

공정(ii)에서는, 공정(i)에서 얻어진 수성 슬러리 또는 수용액(II)에 금속 양이온 함유 화합물을 첨가하여, 헤테로폴리산염이 석출된 수성 슬러리(III)을 얻는다. 금속 양이온 함유 화합물로서는, 리튬, 나트륨, 칼륨, 루비듐, 세슘 및 탈륨으로 이루어지는 군으로부터 선택되는 적어도 1종의 원소(상기 식(1)의 G에 상당)를 포함하는 화합물을 이용하는 것이 바람직하다. 또한, 공정(ii)에서는, 금속 양이온 함유 화합물에 더하여, 암모늄 화합물을 첨가하는 것이 바람직하다. 암모늄 화합물을 첨가하는 것에 의해, α,β-불포화 알데하이드의 분자상 산소에 의한 기상 접촉 산화에 적합한 결정 구조가 형성된다. 암모늄 화합물로서는, 탄산수소 암모늄, 탄산 암모늄, 질산 암모늄, 암모니아수 등을 들 수 있다. 이들 암모늄 화합물은 1종을 이용해도 되고, 2종 이상을 병용해도 된다.In the step (ii), a metal cation-containing compound is added to the aqueous slurry or aqueous solution (II) obtained in the step (i) to obtain an aqueous slurry (III) in which a heteropoly acid salt is precipitated. As the metal cation-containing compound, it is preferable to use a compound containing at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium (corresponding to G in the above formula (1)). In addition, in the process (ii), it is preferable to add an ammonium compound in addition to a metal cation containing compound. By adding an ammonium compound, a crystal structure suitable for gas phase catalytic oxidation of an α,β-unsaturated aldehyde with molecular oxygen is formed. As an ammonium compound, ammonium hydrogencarbonate, ammonium carbonate, ammonium nitrate, aqueous ammonia, etc. are mentioned. These ammonium compounds may use 1 type and may use 2 or more types together.

금속 양이온 함유 화합물 및 암모늄 화합물은, 용매에 용해 또는 현탁시켜 첨가하는 것이 바람직하다. 용매로서는, 물, 에틸 알코올, 아세톤 등을 들 수 있다. 단, 상기 공정(i)에서 얻어지는 수성 슬러리 또는 수용액(II)와 동일한 물을 용매로서 이용하는 것이 바람직하다. 금속 양이온 함유 화합물 및 필요에 따라서 첨가되는 암모늄 화합물을 첨가한 후의 수성 슬러리 또는 수용액의 교반 시간은, 1∼300분이 바람직하고, 하한은 10분 이상, 상한은 30분 이하가 보다 바람직하다. 또한, 교반 시의 수성 슬러리 또는 수용액의 온도는, 50∼100℃가 바람직하고, 하한은 80℃ 이상이 보다 바람직하다. 교반 시간을 1분 이상, 온도를 50℃ 이상으로 함으로써, 헤테로폴리산의 금속염 및 암모늄염을 충분히 형성시킬 수 있다. 한편, 교반 시간을 300분 이하, 온도를 100℃ 이하로 함으로써, 목적으로 하는 헤테로폴리산의 금속염 및 암모늄염 이외의 화합물의 형성을 억제할 수 있다.The metal cation-containing compound and the ammonium compound are preferably added by dissolving or suspending them in a solvent. As a solvent, water, ethyl alcohol, acetone, etc. are mentioned. However, it is preferable to use the same water as the aqueous slurry or aqueous solution (II) obtained in the said process (i) as a solvent. The stirring time of the aqueous slurry or aqueous solution after adding the metal cation-containing compound and the optionally added ammonium compound is preferably 1 to 300 minutes, the lower limit is more preferably 10 minutes or more, and the upper limit is more preferably 30 minutes or less. Moreover, 50-100 degreeC is preferable and, as for the temperature of the aqueous slurry or aqueous solution at the time of stirring, 80 degreeC or more is more preferable. When the stirring time is 1 minute or more and the temperature is 50°C or more, the metal salt and the ammonium salt of the heteropolyacid can be sufficiently formed. On the other hand, when the stirring time is 300 minutes or less and the temperature is 100° C. or less, the formation of compounds other than the target metal salt and ammonium salt of the heteropolyacid can be suppressed.

석출시키는 헤테로폴리산염(헤테로폴리산의 금속염 및 암모늄염)은, 케긴형 구조를 갖고 있어도, 도슨형 구조 등의 케긴형 이외의 구조를 갖고 있어도 상관없지만, α,β-불포화 카복실산의 수율 향상의 관점에서, 케긴형 구조를 갖는 것이 바람직하다. 케긴형 구조를 갖는 헤테로폴리산염을 석출시키는 방법으로서는, 공정(ii)에 있어서 얻어지는 수성 슬러리(III)의 pH를 3 이하로 조정하는 방법을 들 수 있다. 한편, 석출된 헤테로폴리산염의 구조는, NICOLET6700FT-IR(제품명, Thermo electron사제)을 이용한 적외 흡수 분석 및 X선 회절 장치 X'Pert PRO MPD(제품명, PANaltical사제)를 이용한 X선 회절 분석에 의해 확인할 수 있다.The heteropoly acid salt (metal salt and ammonium salt of heteropolyacid) to be precipitated may have a Keggin type structure or a structure other than Keggin type such as a Dawson type structure, but from the viewpoint of improving the yield of α,β-unsaturated carboxylic acid, It is preferable to have an elongate structure. As a method of precipitating the heteropolyacid salt which has a Keggin-type structure, the method of adjusting the pH of the aqueous slurry (III) obtained in process (ii) to 3 or less is mentioned. On the other hand, the structure of the precipitated heteropoly acid salt can be confirmed by infrared absorption analysis using NICOLET6700FT-IR (product name, manufactured by Thermo electron) and X-ray diffraction analysis using an X-ray diffraction apparatus X'Pert PRO MPD (product name, manufactured by PANaltical). have.

(공정(iii)) (Process (iii))

공정(iii)에서는, 공정(ii)에서 얻어진 수성 슬러리(III)을 건조하여, 촉매 전구체 건조물을 얻는다. 건조 방법으로서는, 예를 들면, 드럼 건조법, 기류 건조법, 증발 건고법, 분무 건조법 등을 들 수 있다. 건조 온도는 120∼500℃가 바람직하고, 하한은 140℃ 이상, 상한은 350℃ 이하가 보다 바람직하다. 건조는 수성 슬러리(III)이 건고될 때까지 행할 수 있다. 촉매 전구체 건조물의 수분 함유율은 0.1∼4.5질량%가 바람직하다. 한편, 이들 조건은 원하는 촉매 전구체 건조물의 형상이나 크기에 따라 적절히 선택할 수 있다.In the step (iii), the aqueous slurry (III) obtained in the step (ii) is dried to obtain a dried catalyst precursor. As a drying method, the drum drying method, the airflow drying method, the evaporation-drying method, the spray-drying method etc. are mentioned, for example. As for drying temperature, 120-500 degreeC is preferable, and, as for a minimum, 140 degreeC or more, and, as for an upper limit, 350 degrees C or less are more preferable. Drying can be performed until the aqueous slurry (III) is dry. As for the moisture content of a catalyst precursor dried material, 0.1-4.5 mass % is preferable. On the other hand, these conditions can be appropriately selected according to the shape or size of the desired catalyst precursor dried material.

(성형 공정) (Forming process)

성형 공정에서는, 공정(iii)에서 얻어진 촉매 전구체 건조물을 성형할 수 있다. 성형에 이용되는 장치로서는, 타정 성형기, 압출 성형기, 가압 성형기, 전동 조립(造粒)기 등의 분체용 성형기를 들 수 있다. 성형품의 형상으로서는 특별히 제한은 없고, 구형 입상, 링상, 원주형 펠릿상, 별형상, 성형 후에 분쇄 분급한 과립상 등의 임의의 형상을 들 수 있다. 성형할 때에는, 담체에 담지해도 되고, 또한 필요에 따라서 예를 들면 그래파이트, 탤크 등의 공지의 첨가제나 유기물, 무기물 유래의 공지의 바인더를 첨가해도 된다. 본 발명에서는, 공정(iii)에서 얻어진 촉매 전구체 건조물, 및 해당 촉매 전구체 건조물을 성형한 것을 통틀어 촉매 전구체 건조물로 나타낸다.In the shaping|molding process, the catalyst precursor dried product obtained in the process (iii) can be shape|molded. As an apparatus used for shaping|molding, molding machines for powder, such as a tableting molding machine, an extrusion molding machine, a pressure molding machine, and a rolling granulator, are mentioned. There is no restriction|limiting in particular as a shape of a molded article, Arbitrary shapes, such as spherical granular shape, ring shape, cylindrical pellet shape, star shape, and the granular shape grind|pulverized and classified after shaping|molding, are mentioned. When shaping|molding, you may support|support on a support|carrier, and you may add well-known additives, such as graphite and a talc, and a well-known binder derived from organic substance and inorganic substance, for example as needed. In the present invention, the dried catalyst precursor obtained in step (iii) and the molded catalyst precursor dried product are collectively referred to as the catalyst precursor dried product.

(공정(iv)) (Process (iv))

공정(iv)에서는, 공정(iii) 또는 성형 공정에서 얻어진 촉매 전구체 건조물을 열처리하여, 촉매를 얻는다. 열처리 조건으로서는 특별히 한정은 없지만, 예를 들면 공기 등의 산소 함유 가스 및 불활성 가스 중 적어도 한쪽의 유통하에서 행할 수 있다. 열처리 온도는 200∼500℃인 것이 바람직하고, 하한은 300℃ 이상, 상한은 450℃ 이하인 것이 보다 바람직하다. 열처리 시간은 0.5∼40시간이 바람직하고, 하한은 1시간 이상인 것이 보다 바람직하다. 한편, 공정(iii) 후에 상기 성형 공정을 행하지 않는 경우, 공정(iv)에서 얻어진 열처리 후의 촉매에 대해, 상기 성형 공정을 실시해도 된다.In the step (iv), the dried catalyst precursor obtained in the step (iii) or the forming step is heat-treated to obtain a catalyst. Although there is no limitation in particular as conditions for heat processing, For example, it can carry out under circulation of at least one of oxygen-containing gas, such as air, and an inert gas. It is preferable that heat processing temperature is 200-500 degreeC, and, as for a minimum, it is more preferable that it is 300 degreeC or more and an upper limit is 450 degrees C or less. The heat treatment time is preferably 0.5 to 40 hours, and the lower limit is more preferably 1 hour or more. In addition, when the said shaping|molding process is not performed after process (iii), you may implement the said shaping|molding process with respect to the catalyst after heat processing obtained in process (iv).

[α,β-불포화 카복실산의 제조 방법] [Method for producing α,β-unsaturated carboxylic acid]

본 발명에서는, 본 발명에 따른 방법에 의해 α,β-불포화 카복실산 제조용 촉매를 제조하고, 해당 촉매를 이용하여 α,β-불포화 알데하이드를 분자상 산소에 의해 기상 접촉 산화시켜 α,β-불포화 카복실산을 제조한다. 또한, 본 발명에 따른 α,β-불포화 카복실산의 제조 방법은, 본 발명에 따른 방법에 의해 제조된 α,β-불포화 카복실산 제조용 촉매를 이용하여, α,β-불포화 알데하이드를 분자상 산소에 의해 기상 접촉 산화시켜 α,β-불포화 카복실산을 제조하는 방법이다.In the present invention, a catalyst for production of α,β-unsaturated carboxylic acid is prepared by the method according to the present invention, and α,β-unsaturated carboxylic acid is catalytically oxidized by gas phase catalytic oxidation of α,β-unsaturated aldehyde with molecular oxygen using the catalyst to α,β-unsaturated carboxylic acid to manufacture In addition, the method for producing α,β-unsaturated carboxylic acid according to the present invention uses the catalyst for preparing α,β-unsaturated carboxylic acid prepared by the method according to the present invention, and converts α,β-unsaturated aldehyde to molecular oxygen. It is a method for preparing α,β-unsaturated carboxylic acid by gas phase catalytic oxidation.

본 발명에 따른 방법에 있어서, 상기 α,β-불포화 알데하이드로서는, (메트)아크롤레인, 크로톤알데하이드(β-메틸아크롤레인), 신남알데하이드(β-페닐아크롤레인) 등을 들 수 있다. 그 중에서도, 목적 생성물의 수율의 관점에서, (메트)아크롤레인인 것이 바람직하고, 메타크롤레인인 것이 보다 바람직하다. 제조되는 α,β-불포화 카복실산은 α,β-불포화 알데하이드의 알데하이드기가 카복실기로 변화된 α,β-불포화 카복실산이다. 구체적으로는, α,β-불포화 알데하이드가 (메트)아크롤레인인 경우, (메트)아크릴산이 얻어진다. 한편, 「(메트)아크롤레인」은 아크롤레인 및 메타크롤레인을 나타내고, 「(메트)아크릴산」은 아크릴산 및 메타크릴산을 나타낸다.In the method according to the present invention, examples of the α,β-unsaturated aldehyde include (meth)acrolein, crotonaldehyde (β-methylacrolein), and cinnamaldehyde (β-phenylacrolein). Especially, from a viewpoint of the yield of the target product, it is preferable that it is (meth)acrolein, and it is more preferable that it is methacrolein. The α,β-unsaturated carboxylic acid to be prepared is an α,β-unsaturated carboxylic acid in which the aldehyde group of the α,β-unsaturated aldehyde is changed to a carboxyl group. Specifically, when the α,β-unsaturated aldehyde is (meth)acrolein, (meth)acrylic acid is obtained. In addition, "(meth)acrolein" represents acrolein and methacrolein, and "(meth)acrylic acid" represents acrylic acid and methacrylic acid.

이하, 대표예로서, 본 발명에 따른 방법에 의해 제조된 메타크릴산 제조용 촉매의 존재하, 메타크롤레인을 분자상 산소에 의해 기상 접촉 산화시켜 메타크릴산을 제조하는 방법에 대하여 설명한다.Hereinafter, as a representative example, a method for producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen in the presence of a catalyst for producing methacrylic acid prepared by the method according to the present invention will be described.

이 방법에서는, 메타크롤레인 및 분자상 산소를 포함하는 원료 가스와, 본 발명에 따른 촉매를 접촉시킴으로써 메타크릴산을 제조한다. 이 반응에서는, 고정상형 반응기를 사용할 수 있다. 구체적으로는, 반응관 내에 촉매를 충전하고, 해당 반응기로 원료 가스를 공급하는 것에 의해 반응을 행할 수 있다. 촉매층은 1층이어도 되고, 활성이 상이한 복수의 촉매를 각각 복수의 층에 나누어 충전해도 된다. 또한, 활성을 제어하기 위해서, 메타크릴산 제조용 촉매를 불활성 담체에 의해 희석하여 충전해도 된다.In this method, methacrylic acid is produced by bringing a raw material gas containing methacrolein and molecular oxygen into contact with the catalyst according to the present invention. In this reaction, a fixed bed reactor can be used. Specifically, the reaction can be performed by filling the reaction tube with a catalyst and supplying the raw material gas to the reactor. The number of catalyst layers may be sufficient, and a plurality of catalysts having different activities may be divided into a plurality of layers, respectively, and may be filled. Moreover, in order to control activity, you may dilute and fill the catalyst for methacrylic acid production with an inert carrier.

원료 가스 중의 메타크롤레인의 농도는 특별히 한정되지 않지만, 1∼20용량%가 바람직하고, 하한은 3용량% 이상, 상한은 10용량% 이하가 보다 바람직하다. 원료인 메타크롤레인은, 저급 포화 알데하이드 등의 본 반응에 실질적인 영향을 주지 않는 불순물을 소량 포함하고 있어도 된다.The concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, more preferably 3% by volume or more, and more preferably 10% by volume or less as for the upper limit. Methacrolein as a raw material may contain a small amount of impurities which do not substantially affect this reaction, such as a lower saturated aldehyde.

원료 가스 중의 분자상 산소의 농도는 메타크롤레인 1몰에 대해서 0.4∼4몰이 바람직하고, 하한은 0.5몰 이상, 상한은 3몰 이하가 보다 바람직하다. 한편, 분자상 산소원으로서는, 경제성의 관점에서 공기가 바람직하다. 필요하면, 공기에 순산소를 가하여 분자상 산소를 부화(富化)한 기체를 이용해도 된다.0.4 to 4 mol is preferable with respect to 1 mol of methacrolein, and, as for the density|concentration of molecular oxygen in raw material gas, 0.5 mol or more and, as for a minimum, 3 mol or less are more preferable. On the other hand, as the molecular oxygen source, air is preferable from the viewpoint of economy. If necessary, a gas enriched with molecular oxygen by adding pure oxygen to air may be used.

원료 가스는, 메타크롤레인 및 분자상 산소를, 질소, 탄산 가스 등의 불활성 가스로 희석한 것이어도 된다. 추가로, 원료 가스에 수증기를 가해도 된다. 수증기의 존재하에서 반응을 행하는 것에 의해, 메타크릴산을 보다 높은 수율로 얻을 수 있다. 원료 가스 중의 수증기의 농도는 0.1∼50용량%가 바람직하고, 하한은 1용량% 이상, 상한은 40용량% 이하가 보다 바람직하다.The raw material gas may be obtained by diluting methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide gas. Furthermore, you may add water vapor|steam to raw material gas. By performing the reaction in the presence of water vapor, methacrylic acid can be obtained in a higher yield. 0.1-50 volume% is preferable and, as for the density|concentration of water vapor|steam in raw material gas, 1 volume% or more and, as for a lower limit, 1 volume% or more, and an upper limit, 40 volume% or less are more preferable.

원료 가스와 메타크릴산 제조용 촉매의 접촉 시간은 1.5∼15초가 바람직하다. 반응 압력은 0.1∼1MPa(G)가 바람직하다. 단, (G)는 게이지압인 것을 의미한다. 반응 온도는 200∼450℃가 바람직하고, 하한은 250℃ 이상, 상한은 400℃ 이하가 보다 바람직하다.As for the contact time of raw material gas and the catalyst for methacrylic acid manufacture, 1.5 to 15 second is preferable. The reaction pressure is preferably 0.1 to 1 MPa (G). However, (G) means that it is a gauge pressure. 200-450 degreeC is preferable and, as for reaction temperature, 250 degreeC or more and, as for a minimum, 400 degreeC or less are more preferable.

[α,β-불포화 카복실산 에스터의 제조 방법] [Method for producing α,β-unsaturated carboxylic acid ester]

본 발명에 따른 α,β-불포화 카복실산 에스터의 제조 방법은, 본 발명에 따른 방법에 의해 제조된 α,β-불포화 카복실산을 에스터화하는 방법이다. 또한, 본 발명에 따른 α,β-불포화 카복실산 에스터의 제조 방법은, 본 발명에 따른 방법에 의해 α,β-불포화 카복실산을 제조하고, 해당 α,β-불포화 카복실산을 에스터화하는 방법이다. 이들 방법에 의하면, α,β-불포화 알데하이드의 기상 접촉 산화에 의해 얻어지는 α,β-불포화 카복실산을 이용하여, α,β-불포화 카복실산 에스터를 얻을 수 있다. α,β-불포화 카복실산과 반응시키는 알코올로서는 특별히 한정되지 않고, 예를 들면 메탄올, 에탄올, 아이소프로판올, n-뷰탄올, 아이소뷰탄올 등을 들 수 있다. 얻어지는 α,β-불포화 카복실산 에스터로서는, 예를 들면 (메트)아크릴산 메틸, (메트)아크릴산 에틸, (메트)아크릴산 프로필, (메트)아크릴산 뷰틸 등을 들 수 있다. 반응은 설폰산형 양이온 교환 수지 등의 산성 촉매의 존재하에서 행할 수 있다. 반응 온도는 50∼200℃가 바람직하다.The method for producing an α,β-unsaturated carboxylic acid ester according to the present invention is a method for esterifying the α,β-unsaturated carboxylic acid prepared by the method according to the present invention. Further, the method for producing an α,β-unsaturated carboxylic acid ester according to the present invention is a method of preparing an α,β-unsaturated carboxylic acid by the method according to the present invention and esterifying the α,β-unsaturated carboxylic acid. According to these methods, an α,β-unsaturated carboxylic acid ester can be obtained by using an α,β-unsaturated carboxylic acid obtained by gas phase catalytic oxidation of an α,β-unsaturated aldehyde. The alcohol to be reacted with the α,β-unsaturated carboxylic acid is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, n-butanol and isobutanol. Examples of the obtained α,β-unsaturated carboxylic acid ester include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and butyl (meth)acrylate. The reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin. As for the reaction temperature, 50-200 degreeC is preferable.

실시예 Example

이하, 실시예 및 비교예에 의해 본 발명을 상세하게 설명하지만, 본 발명은 이들 실시예로 한정되는 것은 아니다. 실시예 및 비교예 중의 「부」는 질량부를 의미한다. 원료 가스 및 생성물의 분석은 가스 크로마토그래피를 이용하여 행했다. 가스 크로마토그래피의 결과로부터, 메타크릴산 수율을 하기 식으로 구했다.Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples. "Part" in an Example and a comparative example means a mass part. The raw material gas and product were analyzed using gas chromatography. From the result of gas chromatography, the methacrylic acid yield was calculated|required by the following formula.

메타크릴산 수율(%)=(B/A)×100 Methacrylic acid yield (%) = (B / A) × 100

식 중, A는 반응기로 공급한 메타크롤레인의 몰수, B는 생성된 메타크릴산의 몰수이다.In the formula, A is the number of moles of methacrolein supplied to the reactor, and B is the number of moles of methacrylic acid produced.

삼산화 몰리브데넘의 입자경 분포 측정은, 레이저 회절식 입도 분포 측정 장치 SALD-7000(제품명, 시마즈 제작소사제)을 이용하여, 순수 500g에 대해서 삼산화 몰리브데넘 0.02∼0.1g을 분산시키고, 30초간 교반시킨 후에 행했다.For particle size distribution measurement of molybdenum trioxide, 0.02 to 0.1 g of molybdenum trioxide was dispersed in 500 g of pure water using a laser diffraction particle size distribution analyzer SALD-7000 (product name, manufactured by Shimadzu Corporation) and stirred for 30 seconds. did it after

(실시예 1) (Example 1)

순수 400부에, 도 1에 있어서 실시예 1로서 나타내는 입자경 분포를 갖는 삼산화 몰리브데넘(입자경이 6μm 이하인 입자의 비율: 2.9체적%) 100부, 메타바나드산 암모늄 3.4부, 85질량% 인산 수용액 9.4부를 순수 6.0부로 희석한 희석물, 및 질산 구리(II) 삼수화물 2.1부를 순수 4.5부에 용해시킨 용해물을 첨가하여, 수성 슬러리(I)을 얻었다. 해당 수성 슬러리(I)을 교반하면서 25℃로부터 95℃로 승온하고, 액온을 95℃로 유지하면서 2시간 교반하여, 헤테로폴리산을 포함하는 수성 슬러리(II)를 얻었다. 이때, 상기 수성 슬러리(I)의 온도가 60℃에 도달하고 나서 90℃에 도달할 때까지의 시간은 15분이었다. 추가로 액온을 95℃로 유지하고 교반하면서, 중탄산 세슘 13.5부를 순수 24부에 용해시킨 용해물과, 탄산 암모늄 9.2부를 순수 26부에 용해시킨 용해물을 적하하고 교반하여, 헤테로폴리산의 세슘염 및 암모늄염을 석출시켰다. 석출된 헤테로폴리산의 세슘염 및 암모늄염은 케긴형 구조를 갖고 있었다. 그 후, 액온을 95℃로 유지하면서 15분간 교반했다. 얻어진 수성 슬러리(III)을 스프레이 드라이어로 건조하여, 촉매 전구체 건조물을 얻었다. 얻어진 촉매 전구체 건조물을 압출 성형함으로써 직경 5.5mm, 높이 5.5mm의 원주상으로 성형하고, 공기 유통하, 380℃에서 10시간 열처리함으로써 촉매를 제조했다. 해당 촉매의 산소 이외의 조성은 P1.4Mo12V0.5Cu0.15Cs1.2였다.To 400 parts of pure water, 100 parts of molybdenum trioxide (ratio of particles having a particle diameter of 6 µm or less: 2.9% by volume) having a particle size distribution shown as Example 1 in Fig. 1 , 3.4 parts of ammonium metavanadate, 85 mass% phosphoric acid A diluent obtained by diluting 9.4 parts of aqueous solution with 6.0 parts of pure water and a lysate obtained by dissolving 2.1 parts of copper(II) nitrate trihydrate in 4.5 parts of pure water were added to obtain an aqueous slurry (I). The aqueous slurry (I) was heated from 25°C to 95°C while stirring, and stirred for 2 hours while maintaining the liquid temperature at 95°C to obtain an aqueous slurry (II) containing heteropolyacid. At this time, the time from when the temperature of the said aqueous slurry (I) reached 60 degreeC until it reached 90 degreeC was 15 minutes. Further, while maintaining the solution temperature at 95° C. and stirring, a lysate obtained by dissolving 13.5 parts of cesium bicarbonate in 24 parts of pure water and a lysate obtained by dissolving 9.2 parts of ammonium carbonate in 26 parts of pure water are added dropwise and stirred, cesium salt and ammonium salt of heteropolyacid was precipitated. The precipitated cesium salt and ammonium salt of heteropolyacid had a Keggin-type structure. Then, it stirred for 15 minutes, maintaining the liquid temperature at 95 degreeC. The obtained aqueous slurry (III) was dried with a spray dryer to obtain a dried catalyst precursor. The obtained catalyst precursor dried product was extruded and molded into a cylindrical shape having a diameter of 5.5 mm and a height of 5.5 mm, followed by heat treatment at 380°C for 10 hours under air circulation to prepare a catalyst. The composition other than oxygen of the catalyst was P 1.4 Mo 12 V 0.5 Cu 0.15 Cs 1.2 .

상기 촉매를 반응관에 충전하고, 메타크롤레인 5용량%, 산소 10용량%, 수증기 30용량% 및 질소 55용량%의 원료 가스를 반응 온도 310℃, 상기 원료 가스와 상기 촉매의 접촉 시간 7.1초로 통하게 했다. 반응기로부터 얻어지는 생성물을 포집하고, 가스 크로마토그래피로 분석하여 메타크릴산 수율을 산출했다. 결과를 표 1에 나타낸다.The catalyst was charged in a reaction tube, and the raw material gas of 5% by volume methacrolein, 10% by volume oxygen, 30% by volume water vapor and 55% by volume nitrogen was reacted at a reaction temperature of 310° C. and a contact time of the raw material gas and the catalyst was 7.1 seconds. made it through The product obtained from the reactor was collected and analyzed by gas chromatography to calculate the yield of methacrylic acid. A result is shown in Table 1.

(실시예 2∼4, 비교예 1∼3) (Examples 2 to 4, Comparative Examples 1 to 3)

실시예 1에 있어서 이용한 삼산화 몰리브데넘 100부 대신에, 도 1에 있어서 각 실시예, 비교예로서 나타내는 입자경 분포를 갖는 삼산화 몰리브데넘(입자경이 6μm 이하인 입자의 비율은 표 1에 기재) 100부를 이용한 것 이외에는, 실시예 1과 마찬가지로 촉매를 제조하고, 메타크릴산 수율을 산출했다. 결과를 표 1에 나타낸다. 한편, 실시예 2∼4 및 비교예 1∼3에 있어서도, 실시예 1과 마찬가지로, 석출된 헤테로폴리산의 세슘염 및 암모늄염은 케긴형 구조를 갖고 있었다.Instead of 100 parts of molybdenum trioxide used in Example 1, molybdenum trioxide having a particle size distribution shown as each Example and Comparative Example in FIG. 1 (the ratio of particles having a particle size of 6 µm or less is described in Table 1) 100 Except having used the part, the catalyst was manufactured similarly to Example 1, and the methacrylic acid yield was computed. A result is shown in Table 1. On the other hand, also in Examples 2 to 4 and Comparative Examples 1 to 3, similarly to Example 1, the precipitated cesium salt and ammonium salt of heteropolyacid had a Keggin-type structure.

(실시예 5∼8) (Examples 5 to 8)

실시예 1에 있어서, 수성 슬러리(I)의 온도가 60℃에 도달하고 나서 90℃에 도달할 때까지의 시간을, 각각 표 1에 나타내는 대로 조정한 것 이외에는, 실시예 1과 마찬가지로 촉매를 제조하고, 메타크릴산 수율을 산출했다. 결과를 표 1에 나타낸다. 한편 실시예 5∼8에 있어서도, 실시예 1과 마찬가지로, 석출된 헤테로폴리산의 세슘염 및 암모늄염은 케긴형 구조를 갖고 있었다.In Example 1, a catalyst was prepared in the same manner as in Example 1, except that the time from when the temperature of the aqueous slurry (I) reached 60°C to 90°C was adjusted as shown in Table 1, respectively. and the methacrylic acid yield was calculated. A result is shown in Table 1. On the other hand, also in Examples 5 to 8, similarly to Example 1, the precipitated cesium salt and ammonium salt of heteropolyacid had a Keggin-type structure.

Figure 112020047595804-pct00001
Figure 112020047595804-pct00001

표 1에 나타내는 바와 같이, 몰리브데넘 원료로서, 입자경 분포에 있어서의 입자경이 6μm 이하인 입자의 비율이 2∼55체적%인 몰리브데넘 산화물을 사용한 실시예 1∼8에서는, 높은 수율로 메타크릴산이 얻어졌다. 또한 실시예 1∼8 중에서도, 수성 슬러리(I)의 온도가 60℃에 도달하고 나서 90℃에 도달할 때까지의 시간이 5∼40분의 범위 내인 실시예 1∼6은, 보다 메타크릴산 수율이 높고, 7∼30분의 범위 내인 실시예 1∼4는, 특히 메타크릴산 수율이 높았다. 한편, 몰리브데넘 원료로서, 입자경 분포에 있어서의 입자경이 6μm 이하인 입자의 비율이 상기 범위 외인 몰리브데넘 산화물을 사용한 비교예 1∼3에서는, 모두 실시예와 비교해서 메타크릴산 수율이 낮은 것이 되었다.As shown in Table 1, in Examples 1 to 8 in which molybdenum oxide was used as the molybdenum raw material in which the proportion of particles having a particle diameter of 6 μm or less in the particle size distribution was 2 to 55 vol%, methacrylic in high yield. acid was obtained. Moreover, among Examples 1-8, Examples 1-6 in which the time from when the temperature of the aqueous slurry (I) reaches 60 degreeC until it reaches 90 degreeC exists in the range of 5 to 40 minutes, more methacrylic acid The yield was high, and Examples 1-4 in the range of 7 to 30 minutes had especially high methacrylic acid yield. On the other hand, in Comparative Examples 1 to 3 in which molybdenum oxide was used as the molybdenum raw material in which the proportion of particles having a particle diameter of 6 μm or less in the particle size distribution was outside the above range, the methacrylic acid yield was lower than in Examples. became

이 출원은 2017년 10월 20일에 출원된 일본 출원 특원2017-203592를 기초로 하는 우선권을 주장하고, 그 개시의 모두를 여기에 원용한다.This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2017-203592 for which it applied on October 20, 2017, and uses all the indication here.

이상, 실시형태 및 실시예를 참조하여 본원 발명을 설명했지만, 본원 발명은 상기 실시형태 및 실시예로 한정되는 것은 아니다. 본원 발명의 구성이나 상세는 본원 발명의 범주 내에서 당업자가 이해할 수 있는 다양한 변경을 할 수 있다.As mentioned above, although this invention was demonstrated with reference to embodiment and an Example, this invention is not limited to the said embodiment and an Example. Various changes that can be understood by those skilled in the art can be made in the configuration and details of the present invention within the scope of the present invention.

본 발명에 의하면, α,β-불포화 알데하이드로부터 높은 수율로 α,β-불포화 카복실산을 제조할 수 있는 α,β-불포화 카복실산 제조용 촉매를 제공할 수 있어, 공업적으로 유용하다.According to the present invention, it is possible to provide a catalyst for producing α,β-unsaturated carboxylic acid capable of producing α,β-unsaturated carboxylic acid in high yield from α,β-unsaturated aldehyde, which is industrially useful.

Claims (13)

몰리브데넘 원료로서, 입자경 분포 측정에 의해 얻어지는 빈도 분포 곡선에 있어서, 입자경이 6μm 이하인 입자의 비율이 2∼55체적%인 몰리브데넘 산화물을 사용하는 α,β-불포화 카복실산 제조용 촉매의 제조 방법으로서,
(i) 적어도 상기 몰리브데넘 원료 및 인 원료를 포함하는 촉매 원료와 물을 혼합하여 얻어진 수성 슬러리(I)을, 90∼150℃로 가열하여 헤테로폴리산을 포함하는 수성 슬러리 또는 수용액(II)를 얻는 공정과,
(ii) 상기 수성 슬러리 또는 수용액(II)에 금속 양이온 함유 화합물을 첨가하여, 헤테로폴리산염이 석출된 수성 슬러리(III)을 얻는 공정과,
(iii) 상기 수성 슬러리(III)을 건조하여, 촉매 전구체 건조물을 얻는 공정과,
(iv) 상기 촉매 전구체 건조물을 열처리하여, 촉매를 얻는 공정
을 갖고, 상기 공정(i)에 있어서, 상기 수성 슬러리(I)의 온도가 60℃에 도달하고 나서 90℃에 도달할 때까지의 시간이 5∼40분인, α,β-불포화 카복실산 제조용 촉매의 제조 방법.
Method for producing a catalyst for production of α,β-unsaturated carboxylic acid using molybdenum oxide as a molybdenum raw material, wherein the proportion of particles having a particle diameter of 6 μm or less is 2 to 55 vol% in the frequency distribution curve obtained by particle size distribution measurement As,
(i) heating an aqueous slurry (I) obtained by mixing at least the catalyst raw material containing the molybdenum raw material and the phosphorus raw material and water to 90 to 150 ° C. to obtain an aqueous slurry or aqueous solution (II) containing heteropolyacid process and
(ii) adding a metal cation-containing compound to the aqueous slurry or aqueous solution (II) to obtain an aqueous slurry (III) in which a heteropoly acid salt is precipitated;
(iii) drying the aqueous slurry (III) to obtain a dried catalyst precursor;
(iv) heat-treating the dried catalyst precursor product to obtain a catalyst
In the step (i), the time from when the temperature of the aqueous slurry (I) reaches 60 ° C. to 90 ° C. is 5 to 40 minutes, α, β- unsaturated carboxylic acid production catalyst manufacturing method.
삭제delete 제 1 항에 있어서,
상기 공정(i)에 있어서, 상기 수성 슬러리(I)의 온도가 60℃에 도달하고 나서 90℃에 도달할 때까지의 시간이 7∼30분인, α,β-불포화 카복실산 제조용 촉매의 제조 방법.
The method of claim 1,
In the step (i), the time from when the temperature of the aqueous slurry (I) reaches 60°C to 90°C is 7 to 30 minutes, the method for producing a catalyst for production of α,β-unsaturated carboxylic acid.
제 1 항 또는 제 3 항에 있어서,
상기 몰리브데넘 원료가, 입자경이 6μm 이하인 입자의 비율이 2∼35체적%인 몰리브데넘 산화물인, α,β-불포화 카복실산 제조용 촉매의 제조 방법.
4. The method of claim 1 or 3,
The method for producing a catalyst for production of α,β-unsaturated carboxylic acid, wherein the molybdenum raw material is molybdenum oxide in which the proportion of particles having a particle diameter of 6 μm or less is 2 to 35% by volume.
제 4 항에 있어서,
상기 몰리브데넘 원료가, 입자경이 6μm 이하인 입자의 비율이 2∼15체적%인 몰리브데넘 산화물인, α,β-불포화 카복실산 제조용 촉매의 제조 방법.
5. The method of claim 4,
The method for producing a catalyst for production of α,β-unsaturated carboxylic acid, wherein the molybdenum raw material is molybdenum oxide in which the proportion of particles having a particle diameter of 6 μm or less is 2 to 15% by volume.
제 1 항 또는 제 3 항에 있어서,
상기 α,β-불포화 카복실산 제조용 촉매가, 하기 식(1)로 표시되는 조성을 갖는, α,β-불포화 카복실산 제조용 촉매의 제조 방법.
PaMobVcCudAeEfGgOh (1)
(식(1) 중, P, Mo, V, Cu 및 O는 각각 인, 몰리브데넘, 바나듐, 구리 및 산소를 나타내는 원소 기호이다. A는 안티모니, 비스무트, 비소, 저마늄, 지르코늄, 텔루륨, 은, 셀레늄, 규소, 텅스텐 및 붕소로 이루어지는 군으로부터 선택되는 적어도 1종의 원소를 나타내고, E는 철, 아연, 크로뮴, 마그네슘, 칼슘, 스트론튬, 탄탈럼, 코발트, 니켈, 망가니즈, 바륨, 타이타늄, 주석, 납, 나이오븀, 인듐, 황, 팔라듐, 갈륨, 세륨 및 란타넘으로 이루어지는 군으로부터 선택되는 적어도 1종의 원소를 나타내고, G는 리튬, 나트륨, 칼륨, 루비듐, 세슘 및 탈륨으로 이루어지는 군으로부터 선택되는 적어도 1종의 원소를 나타낸다. a∼h는 각 원소의 원자 비율을 나타내고, b=12일 때, a=0.5∼3, c=0.01∼3, d=0.01∼2, e=0∼3, f=0∼3, g=0.01∼3이며, h는 상기 각 원소의 원자가를 만족하는 데 필요한 산소의 원자 비율이다.)
4. The method of claim 1 or 3,
The method for producing a catalyst for production of α,β-unsaturated carboxylic acid, wherein the catalyst for production of α,β-unsaturated carboxylic acid has a composition represented by the following formula (1).
P a Mo b V c Cu d A e E f G g O h (1)
(In formula (1), P, Mo, V, Cu and O are element symbols representing phosphorus, molybdenum, vanadium, copper and oxygen, respectively. A is antimony, bismuth, arsenic, germanium, zirconium, and tel. Rurium, silver, selenium, silicon, at least one element selected from the group consisting of tungsten and boron, E is iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium , titanium, tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and at least one element selected from the group consisting of lanthanum, and G is lithium, sodium, potassium, rubidium, cesium and thallium. at least one element selected from the group consisting of = 0 to 3, f = 0 to 3, g = 0.01 to 3, and h is the atomic ratio of oxygen required to satisfy the valence of each element.)
제 1 항 또는 제 3 항에 있어서,
상기 몰리브데넘 원료로서 삼산화 몰리브데넘을 50질량% 이상 사용하는, α,β-불포화 카복실산 제조용 촉매의 제조 방법.
4. The method of claim 1 or 3,
A method for producing a catalyst for production of α,β-unsaturated carboxylic acid, wherein 50% by mass or more of molybdenum trioxide is used as the molybdenum raw material.
제 7 항에 있어서,
상기 몰리브데넘 원료로서 삼산화 몰리브데넘을 70질량% 이상 사용하는, α,β-불포화 카복실산 제조용 촉매의 제조 방법.
8. The method of claim 7,
A method for producing a catalyst for production of α,β-unsaturated carboxylic acid, wherein 70% by mass or more of molybdenum trioxide is used as the molybdenum raw material.
제 1 항 또는 제 3 항에 있어서,
상기 α,β-불포화 카복실산 제조용 촉매는, α,β-불포화 알데하이드를 분자상 산소에 의해 기상 접촉 산화시켜 α,β-불포화 카복실산을 제조할 때에 이용되는 촉매로서, 상기 α,β-불포화 알데하이드가 (메트)아크롤레인이고, 또한 상기 α,β-불포화 카복실산이 (메트)아크릴산인, α,β-불포화 카복실산 제조용 촉매의 제조 방법.
4. The method of claim 1 or 3,
The catalyst for producing α,β-unsaturated carboxylic acid is a catalyst used for producing α,β-unsaturated carboxylic acid by gas phase catalytic oxidation of α,β-unsaturated aldehyde with molecular oxygen, wherein the α,β-unsaturated aldehyde is A method for producing a catalyst for production of α,β-unsaturated carboxylic acid, wherein it is (meth)acrolein, and wherein the α,β-unsaturated carboxylic acid is (meth)acrylic acid.
제 1 항 또는 제 3 항에 기재된 방법에 의해 α,β-불포화 카복실산 제조용 촉매를 제조하고, 해당 촉매를 이용하여 α,β-불포화 알데하이드를 분자상 산소에 의해 기상 접촉 산화시켜 α,β-불포화 카복실산을 제조하는 α,β-불포화 카복실산의 제조 방법.A catalyst for producing an α,β-unsaturated carboxylic acid is prepared by the method according to claim 1 or 3, and the α,β-unsaturated aldehyde is catalytically oxidized in the gas phase with molecular oxygen using the catalyst to α,β-unsaturated A process for the preparation of α,β-unsaturated carboxylic acids for preparing carboxylic acids. 제 1 항 또는 제 3 항에 기재된 방법에 의해 제조된 α,β-불포화 카복실산 제조용 촉매를 이용하여, α,β-불포화 알데하이드를 분자상 산소에 의해 기상 접촉 산화시켜 α,β-불포화 카복실산을 제조하는 α,β-불포화 카복실산의 제조 방법.Using the catalyst for preparing α,β-unsaturated carboxylic acid prepared by the method according to claim 1 or 3, α,β-unsaturated aldehyde is subjected to gas phase catalytic oxidation with molecular oxygen to produce α,β-unsaturated carboxylic acid A method for producing an α,β-unsaturated carboxylic acid. 제 10 항에 기재된 방법에 의해 제조된 α,β-불포화 카복실산을 에스터화하는 α,β-불포화 카복실산 에스터의 제조 방법.A method for producing an α,β-unsaturated carboxylic acid ester, wherein the α,β-unsaturated carboxylic acid prepared by the method according to claim 10 is esterified. 제 10 항에 기재된 방법에 의해 α,β-불포화 카복실산을 제조하고, 해당 α,β-불포화 카복실산을 에스터화하는 α,β-불포화 카복실산 에스터의 제조 방법.A method for producing an α,β-unsaturated carboxylic acid ester, wherein the α,β-unsaturated carboxylic acid is prepared by the method according to claim 10, and the α,β-unsaturated carboxylic acid is esterified.
KR1020207013491A 2017-10-20 2018-10-17 Method for preparing catalyst for preparing α,β-unsaturated carboxylic acid, method for preparing α,β-unsaturated carboxylic acid, and method for preparing α,β-unsaturated carboxylic acid ester KR102318486B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2017-203592 2017-10-20
JP2017203592 2017-10-20
PCT/JP2018/038646 WO2019078244A1 (en) 2017-10-20 2018-10-17 METHOD FOR PRODUCING CATALYST FOR PRODUCTION OF α,β-UNSATURATED CARBOXYLIC ACID, METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID ESTER

Publications (2)

Publication Number Publication Date
KR20200069340A KR20200069340A (en) 2020-06-16
KR102318486B1 true KR102318486B1 (en) 2021-10-27

Family

ID=66174155

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207013491A KR102318486B1 (en) 2017-10-20 2018-10-17 Method for preparing catalyst for preparing α,β-unsaturated carboxylic acid, method for preparing α,β-unsaturated carboxylic acid, and method for preparing α,β-unsaturated carboxylic acid ester

Country Status (5)

Country Link
JP (1) JP6922993B2 (en)
KR (1) KR102318486B1 (en)
CN (2) CN116603547A (en)
SG (1) SG11202002211PA (en)
WO (1) WO2019078244A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509904A (en) 1998-03-31 2002-04-02 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing (meth) acrylic acid and (meth) acrylic acid ester
JP2004346049A (en) 2003-05-26 2004-12-09 Sanyo Chem Ind Ltd Method for producing carboxylic acid ester
JP2005336110A (en) 2004-05-27 2005-12-08 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid and (meth)acrylic acid ester
JP2010520042A (en) * 2007-03-01 2010-06-10 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing a catalyst comprising a support and a catalytically active material coated on the support

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222721B2 (en) * 2000-12-25 2009-02-12 三菱レイヨン株式会社 Method for producing methacrylic acid
JP2004008834A (en) 2002-06-03 2004-01-15 Mitsubishi Rayon Co Ltd Method for producing catalyst for use in manufacturing methacrylic acid
WO2004108267A1 (en) * 2003-06-04 2004-12-16 Basf Aktiengesellschaft Method for the thermal treatment of an active catalytic mass
JP5030438B2 (en) 2006-02-28 2012-09-19 三菱レイヨン株式会社 Method for producing catalyst and method for producing methacrylic acid
JP5838613B2 (en) * 2011-06-27 2016-01-06 三菱レイヨン株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
WO2013073691A1 (en) * 2011-11-17 2013-05-23 日本化薬株式会社 Catalyst for production of methacrylic acid and method for producing methacrylic acid using same
CN105749944A (en) * 2016-03-23 2016-07-13 重庆紫光海力催化剂有限公司 Catalyst for preparing alpha-methacrylic acid from 2-methylacrolein with gas-phase catalytic oxidation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509904A (en) 1998-03-31 2002-04-02 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing (meth) acrylic acid and (meth) acrylic acid ester
JP2004346049A (en) 2003-05-26 2004-12-09 Sanyo Chem Ind Ltd Method for producing carboxylic acid ester
JP2005336110A (en) 2004-05-27 2005-12-08 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid and (meth)acrylic acid ester
JP2010520042A (en) * 2007-03-01 2010-06-10 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing a catalyst comprising a support and a catalytically active material coated on the support

Also Published As

Publication number Publication date
JP6922993B2 (en) 2021-08-18
CN111050906A (en) 2020-04-21
KR20200069340A (en) 2020-06-16
SG11202002211PA (en) 2020-04-29
CN116603547A (en) 2023-08-18
JPWO2019078244A1 (en) 2020-04-09
WO2019078244A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP4856579B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
CN110300622B (en) Catalyst for methacrylic acid production, catalyst precursor for methacrylic acid production, processes for producing these, process for producing methacrylic acid, and process for producing methacrylic acid ester
JP6653871B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP7006477B2 (en) A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid.
KR102318486B1 (en) Method for preparing catalyst for preparing α,β-unsaturated carboxylic acid, method for preparing α,β-unsaturated carboxylic acid, and method for preparing α,β-unsaturated carboxylic acid ester
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP2000342974A (en) Catalyst for synthesizing methacrylic acid and manufacture of methacrylic acid
CN110062656B (en) Method for producing catalyst precursor for production of alpha, beta-unsaturated carboxylic acid
JP4372573B2 (en) Method for producing a catalyst for methacrylic acid production
JP5885019B2 (en) Method for producing a catalyst for methacrylic acid production
JP2011115681A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP5789917B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP5070089B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same
CN111770795B (en) Method for producing catalyst for producing alpha, beta-unsaturated carboxylic acid, and method for producing alpha, beta-unsaturated carboxylic acid
KR102463952B1 (en) Method for producing catalyst for methacrylic acid production, and method for producing methacrylic acid and methacrylic acid ester
KR102346234B1 (en) Catalyst precursor, method for preparing catalyst, method for preparing methacrylic acid and acrylic acid, and method for preparing methacrylic acid ester and acrylic acid ester
JP4902991B2 (en) Method for producing oxide catalyst
JP2009279555A (en) Method for manufacturing molded catalyst consisting of heteropolyacid compound

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant