JPWO2019163707A1 - Catalyst and direct-coupled two-stage catalytic gas phase oxidation method using the same - Google Patents

Catalyst and direct-coupled two-stage catalytic gas phase oxidation method using the same Download PDF

Info

Publication number
JPWO2019163707A1
JPWO2019163707A1 JP2019540016A JP2019540016A JPWO2019163707A1 JP WO2019163707 A1 JPWO2019163707 A1 JP WO2019163707A1 JP 2019540016 A JP2019540016 A JP 2019540016A JP 2019540016 A JP2019540016 A JP 2019540016A JP WO2019163707 A1 JPWO2019163707 A1 JP WO2019163707A1
Authority
JP
Japan
Prior art keywords
catalyst
direct
acid
coupled
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019540016A
Other languages
Japanese (ja)
Other versions
JP6598419B1 (en
Inventor
秀臣 酒井
秀臣 酒井
誠一郎 福永
誠一郎 福永
佑太 中澤
佑太 中澤
昌平 後藤
昌平 後藤
成喜 奥村
成喜 奥村
元彦 杉山
元彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Application granted granted Critical
Publication of JP6598419B1 publication Critical patent/JP6598419B1/en
Publication of JPWO2019163707A1 publication Critical patent/JPWO2019163707A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

高沸点化合物である芳香族化合物の副生を低減することで長期安定的な運転と最終生成物を高収率に提供することを可能とする触媒、及びそれを用いた直結二段接触気相酸化方法を提供するものである。当該触媒は、モリブデン、ビスマス、鉄およびアルカリ金属を必須成分とし、かつモリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満であり、かつアンモニア昇温脱離法による高温側における触媒の酸量が0.026mmol/g以下である。Catalyst that enables long-term stable operation and high yield of final product by reducing by-products of aromatic compounds that are high-boiling compounds, and direct-coupled two-stage catalytic gas phase using the same An oxidation method is provided. The catalyst contains molybdenum, bismuth, iron, and an alkali metal as essential components, has an atomic ratio of alkali metal to 12 atoms of molybdenum of more than 0.3 and less than 1.0, and has a high temperature side by an ammonia thermal desorption method. Is not more than 0.026 mmol / g.

Description

本発明は、モリブデン、ビスマス、鉄およびアルカリ金属を含む触媒とそれを用いた直結二段接触気相酸化方法に関する。   TECHNICAL FIELD The present invention relates to a catalyst containing molybdenum, bismuth, iron and an alkali metal, and a direct-coupled two-step catalytic gas-phase oxidation method using the same.

プロピレン、イソブチレン、t−ブチルアルコール等を原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する方法や、ブテン類から1,3−ブタジエンを製造する方法として、分子状酸素による接触気相酸化方法が、数多く提案されている。   As a method for producing the corresponding unsaturated aldehyde or unsaturated carboxylic acid using propylene, isobutylene, t-butyl alcohol or the like as a raw material or a method for producing 1,3-butadiene from butenes, a contact gas phase with molecular oxygen is used. Many oxidation methods have been proposed.

例えば、特許文献1には、モリブデン、ビスマスを含む複合酸化物触媒の製造方法において、(1)少なくともこれらの成分元素の供給源化合物の水性系での一体化工程において有機酸を添加し、触媒原料を含む溶液またはスラリーを調製する段階と、(2)前記溶液またはスラリーを乾燥、焼成する段階とを含む、アンモニア昇温脱離法による高温側における触媒の酸量に対するアンモニア昇温脱離法による低温側における触媒の酸量の比率が0.14以下であることを特徴とする複合酸化物触媒の製造方法が開示されている。   For example, Patent Document 1 discloses a method for producing a composite oxide catalyst containing molybdenum and bismuth, wherein (1) an organic acid is added at least in a step of integrating a source compound of these component elements in an aqueous system, Ammonia thermal desorption method for the amount of catalyst acid on the high temperature side by the ammonia thermal desorption method, comprising the steps of: preparing a solution or slurry containing raw materials; and (2) drying and calcining the solution or slurry. Discloses a method for producing a composite oxide catalyst, wherein the ratio of the acid amount of the catalyst on the low temperature side is 0.14 or less.

特許文献2には、触媒前駆体に硝酸塩、アンモニウム塩などの塩類を含有させる方法、特許文献3にはモリブデン含有スラリーにキレート剤を添加する方法、特許文献4には、モリブデン化合物およびビスマス化合物の一体化の際にアンモニア水を添加する方法が開示されている。   Patent Document 2 discloses a method of adding salts such as nitrates and ammonium salts to a catalyst precursor, Patent Document 3 a method of adding a chelating agent to a molybdenum-containing slurry, and Patent Document 4 discloses a method of adding a molybdenum compound and a bismuth compound. A method of adding aqueous ammonia at the time of integration is disclosed.

これら公知技術は、触媒成分の添加工程を種々工夫して、得られる触媒の高収率化を図っているが、触媒製造時の簡便性や安全性、触媒製造における再現性、触媒の機械強度の面、さらには環境問題等の面では従来の触媒は未だ充分とは言えず、その改良も望まれていた。   These known techniques are designed to increase the yield of the obtained catalyst by devising various steps for adding the catalyst component.However, the simplicity and safety during the production of the catalyst, the reproducibility in the production of the catalyst, and the mechanical strength of the catalyst are improved. However, conventional catalysts are not yet sufficient in terms of environmental problems and the like, and improvement thereof has been desired.

また、イソブチレンおよびt−ブチルアルコ−ルから選ばれる少なくとも1種を接触気相酸化反応させた場合、主生成物のメタクロレインのほかに、マレイン酸やテレフタル酸等の比較的高沸点の化合物が副生し、同時に重合物やタール状物質が反応生成ガス中に含まれてくる。このような物質を含む反応生成ガスをそのまま後段反応に供すると、これらの物質は配管内や後段触媒充填層での閉塞を引き起し、圧力損失の増大や、触媒活性の低下、メタクリル酸への選択率の低下などの原因となる。また、閉塞を除去するために工業生産を停止しなければならなくなり、多大な生産性の低下を引き起こしてしまう。このようなトラブルは、メタクリル酸の生産性を高めるためにイソブチレンおよび/またはt−ブチルアルコールの供給量を増やしたり、イソブチレンおよび/またはt−ブチルアルコール濃度を上げたりすると多く発生する。   When at least one selected from isobutylene and t-butyl alcohol is subjected to a catalytic gas phase oxidation reaction, compounds having a relatively high boiling point, such as maleic acid and terephthalic acid, are added to the main product, in addition to methacrolein. At the same time, a polymer or tar-like substance is contained in the reaction product gas. When the reaction product gas containing such substances is subjected to the latter reaction as it is, these substances cause clogging in the piping and the latter catalyst packed bed, increasing the pressure loss, decreasing the catalytic activity, and causing methacrylic acid. Causes a decrease in the selectivity of the film. In addition, industrial production must be stopped in order to remove the blockage, which causes a great decrease in productivity. Such troubles often occur when the supply amount of isobutylene and / or t-butyl alcohol is increased or the concentration of isobutylene and / or t-butyl alcohol is increased in order to increase the productivity of methacrylic acid.

このようなトラブルを防止するため一般に採用される方法としては、定期的に反応を停止して、後段触媒のガス入口側に触媒層での閉塞や触媒の活性低下を防止するために充填した不活性物質を抜き出して入れ替える方法が提案されている。あるいは前段反応生成ガスからメタクロレインをいったん分離し、あらためてこの分離メタクロレインを後段反応に供給することで酸化反応の最適化プロセスを採用する方法も提案されている。さらには原料ガス濃度を必要以上に希釈して、副生成物濃度を下げて反応を行う方法も提案されている。特許文献5には前段および後段の反応の中間部での配管などの閉塞防止のために、その部分を無水マレイン酸の沸点以上の温度に保温する方法、ガス線速度を極めて大きくとるように工夫する方法が開示されている。特許文献6には、後段反応に用いられる触媒の形状を特定して触媒間の空隙率を上げて前段反応器からの固形物の閉塞を押える方法等が提案されている。しかしながら、これらの方法もまた、工業的方法としては充分満足できるものではなく、僅かな収率の向上よりも長期間な工業生産のため、高沸点物質の副生が少ない触媒の開発が望まれている。   In order to prevent such troubles, a commonly employed method is to stop the reaction periodically and fill the gas inlet side of the latter catalyst with a gas filled to prevent clogging in the catalyst layer and a decrease in the activity of the catalyst. Methods have been proposed for extracting and replacing the active substance. Alternatively, a method has been proposed in which methacrolein is once separated from a gas produced by a first-stage reaction, and the separated methacrolein is supplied to a second-stage reaction, thereby adopting a process for optimizing an oxidation reaction. Further, a method has been proposed in which the reaction is performed by diluting the raw material gas concentration more than necessary to lower the concentration of by-products. Patent Literature 5 discloses a method of keeping the temperature of a portion above the boiling point of maleic anhydride at a temperature higher than the boiling point of maleic anhydride in order to prevent clogging of a pipe or the like at an intermediate portion of the first and second stages of the reaction. A method for doing so is disclosed. Patent Literature 6 proposes a method of specifying the shape of a catalyst used in the latter-stage reaction, increasing the porosity between the catalysts, and suppressing blockage of solids from the former-stage reactor. However, these methods are also not sufficiently satisfactory as industrial methods. For long-term industrial production rather than a slight improvement in yield, it is desired to develop a catalyst with less by-products of high-boiling substances. ing.

日本国特開2012−115825号公報Japanese Patent Application Laid-Open No. 2012-115825 日本国特開2003−251183号公報Japanese Patent Application Laid-Open No. 2003-251183 日本国特開平2−214543号公報Japanese Patent Application Laid-Open No. 2-214543 日本国特開2003−220335号公報JP-A-2003-220335 日本国特開昭50−126605号公報Japanese Patent Application Laid-Open No. 50-126605 日本国特開昭61−221149号公報Japanese Patent Application Laid-Open No. 61-221149

本発明の目的は、高沸点化合物である芳香族化合物の副生を低減することで長期安定的な運転と最終生成物を高収率に提供することを可能とする触媒、及びその触媒を用いた直結二段接触気相酸化方法を提供するものである。   An object of the present invention is to provide a catalyst capable of providing long-term stable operation and a high yield of a final product by reducing by-products of an aromatic compound which is a high boiling point compound, and a catalyst using the catalyst. The present invention provides a direct-coupled two-stage catalytic gas phase oxidation method.

本発明者らは、上記課題を解決するために、モリブデン、ビスマス、鉄およびアルカリ金属を必須成分とし、かつモリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満である触媒において、特定の酸量を有した触媒とそれを用いた直結二段接触気相酸化方法が、高沸点化合物である芳香族化合物の副生を抑え、長期安定的な運転と高収率での最終生成物製造に寄与するものであることを見出し、本発明を完成させるに至った。   In order to solve the above problems, the present inventors have proposed a catalyst comprising molybdenum, bismuth, iron and an alkali metal as essential components and having an atomic ratio of alkali metal to molybdenum of 12 atoms of more than 0.3 and less than 1.0. In, a catalyst having a specific acid amount and a direct-coupled two-step catalytic gas-phase oxidation method using the same suppress the by-product of aromatic compounds, which are high-boiling compounds, and provide long-term stable operation and high yield. They have found that they contribute to the production of final products, and have completed the present invention.

すなわち、本発明は、
(1)
モリブデン、ビスマス、鉄およびアルカリ金属を必須成分とし、かつモリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満であり、かつアンモニア昇温脱離法による高温側における触媒の酸量が0.026mmol/g以下である、触媒、
(2)
前記アンモニア昇温脱離法による高温側における触媒の酸量が0.024mmol/g以下である、(1)に記載の触媒、
(3)
前記アンモニア昇温脱離法による高温側における触媒の酸量が0.020mmol/g以下である、(1)又は(2)に記載の触媒、
(4)
触媒活性成分が下記式(I)で表される組成を有する、(1)〜(3)のいずれかに記載の触媒、
Moa1Bib1Fec1d1e1f1g1h1x1 (I)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも一種の元素、Bはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれる少なくとも一種の元素、Cはホウ素、リン、クロム、マンガン、亜鉛、ヒ素、ニオブ、スズ、アンチモン、テルル、セリウムおよび鉛から選ばれる少なくとも一種の元素、Dはシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、Eはアルカリ土類金属から選ばれる少なくとも一種の元素、そしてOは酸素であり、a1、b1、c1、d1、e1、f1、g1、h1およびx1はそれぞれMo、Bi、Fe、A、B、C、D、EおよびOの原子比を表し、a1=12の時、0.1≦b1≦10、0.1≦c1≦20、1≦d1≦20、0.3<e1<1.0、0≦f1≦10、0≦g1≦30、0≦h1≦5であり、x1はそれぞれの元素の酸化状態によって定まる数値である。)
(5)
アルカリ金属がセシウムである、(1)〜(4)のいずれかに記載の触媒、
(6)
成形触媒である、(1)〜(5)のいずれかに記載の触媒、
(7)
球状担体に触媒活性成分が担持された触媒であり、触媒の平均粒径が3.0mm以上10.0mm以下であり、触媒活性成分が触媒全体に占める割合が20質量%以上80質量%以下である、(1)〜(6)のいずれかに記載の触媒、
(8)
触媒活性成分の組成を構成する金属成分を含有するスラリーを乾燥して乾燥紛体を得る工程、前記乾燥粉体を200℃以上600℃以下の温度で予備焼成して予備焼成紛体を得る工程、前記予備焼成粉体を成形する工程、および得られた成形物を再度200℃以上600℃以下の温度で本焼成する工程、を含む(1)〜(7)のいずれかに記載の触媒の製造方法、
(9)
(1)〜(7)のいずれか一項に記載の触媒(以下触媒(A)とする)を用いて、不飽和アルデヒド化合物を経由した後、不飽和カルボン酸化合物を得る、直結二段接触気相酸化方法、
(10)
前記触媒(A)を用いて不飽和アルデヒド化合物を得る段階である第一段目工程、および前記第一段目工程に用いた触媒と異なる触媒(以下触媒(B)とする)を用いて不飽和カルボン酸化合物を製造する段階である第二段目工程を含む、(9)に記載の直結二段接触気相酸化方法、
(11)
前記触媒(B)の触媒活性成分が下記式(II)で表される組成を有する、(10)に記載の直結二段接触気相酸化方法。
Mo10a2b2Cuc2Asd2e2g2 (II)
(式中、Mo、V、P、Cu、As、Oはそれぞれモリブデン、バナジウム、リン、銅、ヒ素及び酸素を表し、XはAg、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Sb、Cr、Re、Bi、W、Fe、Co、Ni、Ce及びThからなる群から選ばれる少なくとも一種の元素を表す。a2〜e2は、それぞれMo、V、P、Cu、AsおよびXの原子比を表し、a2は0.1≦a2≦6、b2は0.5≦b2≦6、c2は0<c2≦3、d2は0≦d2≦3、e2は0≦e2≦3であり、g2は他の元素の原子価ならびに原子比により定まる値である。)
(12)
前記不飽和アルデヒドがメタクロレインであり、前記不飽和カルボン酸がメタクリル酸である、(9)〜(11)のいずれかに記載の直結二段接触気相酸化方法、
(13)
(9)〜(12)のいずれかに記載の直結二段接触気相酸化方法を用いた、副生成物である芳香族化合物の低減方法、
(14)
前記芳香族化合物がテレフタル酸である、(13)に記載の副生成物である芳香族化合物の低減方法、
(15)
(9)〜(12)のいずれかに記載の直結二段接触気相酸化方法を用いる、不飽和アルデヒド化合物、不飽和カルボン酸化合物またはその両方の製造方法、に関する。
That is, the present invention
(1)
Molybdenum, bismuth, iron and an alkali metal are essential components, and the atomic ratio of the alkali metal to 12 atoms of molybdenum is greater than 0.3 and less than 1.0, and the acid of the catalyst on the high temperature side by the ammonia thermal desorption method A catalyst having an amount of 0.026 mmol / g or less,
(2)
The catalyst according to (1), wherein the acid amount of the catalyst on the high temperature side by the ammonia thermal desorption method is 0.024 mmol / g or less,
(3)
The catalyst according to (1) or (2), wherein the acid amount of the catalyst on the high-temperature side according to the ammonia thermal desorption method is 0.020 mmol / g or less.
(4)
The catalyst according to any one of (1) to (3), wherein the catalytically active component has a composition represented by the following formula (I):
Mo a1 Bi b1 Fe c1 A d1 B e1 C f1 D g1 E h1 O x1 (I)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from lithium, sodium, potassium, rubidium and cesium, and C is At least one element selected from boron, phosphorus, chromium, manganese, zinc, arsenic, niobium, tin, antimony, tellurium, cerium and lead, D is at least one element selected from silicon, aluminum, titanium and zirconium, E is At least one element selected from alkaline earth metals, and O is oxygen, and a1, b1, c1, d1, e1, f1, g1, h1, and x1 are Mo, Bi, Fe, A, B, C, Represents the atomic ratio of D, E and O, and when a1 = 12, 0.1 ≦ b1 ≦ 10 0.1 ≦ c1 ≦ 20, 1 ≦ d1 ≦ 20, 0.3 <e1 <1.0, 0 ≦ f1 ≦ 10, 0 ≦ g1 ≦ 30, 0 ≦ h1 ≦ 5, and x1 is a value of each element. It is a value determined by the oxidation state.)
(5)
The catalyst according to any one of (1) to (4), wherein the alkali metal is cesium,
(6)
The catalyst according to any one of (1) to (5), which is a shaped catalyst.
(7)
A catalyst in which a catalytically active component is supported on a spherical carrier, the average particle size of the catalyst is 3.0 mm or more and 10.0 mm or less, and the ratio of the catalytically active component to the whole catalyst is 20% by mass or more and 80% by mass or less. A catalyst according to any one of (1) to (6),
(8)
A step of drying a slurry containing a metal component constituting the composition of the catalytically active component to obtain a dry powder, a step of pre-baking the dried powder at a temperature of 200 ° C. to 600 ° C. to obtain a pre-fired powder, The method for producing a catalyst according to any one of (1) to (7), including a step of forming a prefired powder and a step of again firing the obtained molded article at a temperature of 200 ° C to 600 ° C. ,
(9)
(1) using the catalyst according to any one of (1) to (7) (hereinafter referred to as catalyst (A)) to obtain an unsaturated carboxylic acid compound after passing through an unsaturated aldehyde compound; Gas phase oxidation method,
(10)
A first step in which an unsaturated aldehyde compound is obtained using the catalyst (A), and an unsaturation using a catalyst different from the catalyst used in the first step (hereinafter referred to as catalyst (B)). The direct-coupled two-stage catalytic gas phase oxidation method according to (9), including a second-stage process for producing a saturated carboxylic acid compound,
(11)
The direct-coupled two-stage catalytic gas phase oxidation method according to (10), wherein the catalytically active component of the catalyst (B) has a composition represented by the following formula (II).
Mo 10 V a2 P b2 Cu c2 As d2 X e2 O g2 (II)
(In the formula, Mo, V, P, Cu, As, and O represent molybdenum, vanadium, phosphorus, copper, arsenic, and oxygen, respectively, and X represents Ag, Mg, Zn, Al, B, Ge, Sn, Pb, and Ti. , Zr, Sb, Cr, Re, Bi, W, Fe, Co, Ni, Ce and Th represent at least one element selected from the group consisting of Mo, V, P, Cu and As, respectively. And a represents the atomic ratio of X, a2 is 0.1 ≦ a2 ≦ 6, b2 is 0.5 ≦ b2 ≦ 6, c2 is 0 <c2 ≦ 3, d2 is 0 ≦ d2 ≦ 3, and e2 is 0 ≦ e2 ≦ 3, and g2 is a value determined by the valence and atomic ratio of another element.)
(12)
The direct-coupled two-stage catalytic gas phase oxidation method according to any one of (9) to (11), wherein the unsaturated aldehyde is methacrolein, and the unsaturated carboxylic acid is methacrylic acid.
(13)
(9) A method for reducing an aromatic compound which is a by-product, using the direct-coupled two-stage catalytic gas phase oxidation method according to any one of (12) to (12).
(14)
The method for reducing an aromatic compound which is a by-product according to (13), wherein the aromatic compound is terephthalic acid,
(15)
(9) A method for producing an unsaturated aldehyde compound, an unsaturated carboxylic acid compound, or both, using the direct-coupled two-stage catalytic gas phase oxidation method according to any one of (9) to (12).

本発明の触媒は、モリブデン、ビスマス、鉄およびアルカリ金属を必須成分とし、かつモリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満であり、かつアンモニア昇温脱離法による高温側における触媒の酸量が0.026mmol/g以下であることを特徴とし、その触媒を用いた直結二段接触気相酸化方法は、高沸点の副生成物である芳香族化合物の低減に有効である。本方法によれば、長期安定的な運転と高収率で最終生成物を得ることが可能である。   The catalyst of the present invention contains molybdenum, bismuth, iron and an alkali metal as essential components, has an atomic ratio of alkali metal to molybdenum of 12 atoms of more than 0.3 and less than 1.0, and is prepared by an ammonia temperature-programmed desorption method. The acid amount of the catalyst on the high-temperature side is 0.026 mmol / g or less, and the direct-coupled two-stage catalytic gas-phase oxidation method using the catalyst is useful for reducing aromatic compounds, which are high-boiling by-products. It is valid. According to this method, it is possible to obtain a final product in a long-term stable operation and a high yield.

特にイソブチレンおよびt−ブチルアルコ−ルから選ばれる少なくとも1種の原料を、分子状酸素含有ガスを用いて接触気相酸化する状況下において本発明の製造方法を用いると、高沸点化合物である芳香族化合物の副生を低減することができ、長期安定的な運転とメタクロレインおよび/またはメタクリル酸を高収率に製造することを維持できる。
また、副生成物の削減により、配管閉塞も起こし難く、定期的な清掃によるシャットダウンの回数を減らすことができ、安定的に不飽和アルデヒドおよび/または不飽和カルボン酸化合物を製造することも可能である。
In particular, when at least one raw material selected from isobutylene and t-butyl alcohol is subjected to catalytic gas-phase oxidation using a molecular oxygen-containing gas, the production method of the present invention makes it possible to obtain an aromatic compound having a high boiling point. By-products of the compound can be reduced, and long-term stable operation and high production of methacrolein and / or methacrylic acid can be maintained.
Also, by reducing by-products, pipe blockage is less likely to occur, the number of shutdowns due to periodic cleaning can be reduced, and unsaturated aldehydes and / or unsaturated carboxylic acid compounds can be stably produced. is there.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[触媒(A)について]
本実施形態の触媒は、モリブデン、ビスマス、鉄およびアルカリ金属を含む複合酸化物触媒であり、モリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満であり、かつアンモニア昇温脱離法による高温側における触媒の酸量が0.026mmol/g以下である。なお、本明細書において、上記構成を有する触媒を触媒(A)と記載する。
[About the catalyst (A)]
The catalyst of the present embodiment is a composite oxide catalyst containing molybdenum, bismuth, iron and an alkali metal, in which the atomic ratio of alkali metal to 12 atoms of molybdenum is greater than 0.3 and less than 1.0, and the temperature of ammonia increases. The acid amount of the catalyst on the high temperature side by the desorption method is 0.026 mmol / g or less. In the present specification, the catalyst having the above configuration is referred to as catalyst (A).

上記触媒(A)においてアンモニア昇温脱離法による高温側における触媒の酸量は0.026mmol/g以下であるが、好ましくは0.024mmol/g以下、さらに好ましくは0.020mmol/g以下である。この酸量であることにより、目的化合物への酸化反応以外の副反応を抑制し、目的化合物以外の副生成物が減少する結果、高沸点化合物の副生を少なくできる。また特に、不飽和アルデヒド化合物及び/又は不飽和カルボン酸化合物等の最終生成物を安定に高い収率で得ることができる。なお下限は特に制限はないが、0.0002mmol/g等で良く、好ましい下限は0.0012である。   In the catalyst (A), the acid amount of the catalyst on the high temperature side by the ammonia thermal desorption method is 0.026 mmol / g or less, preferably 0.024 mmol / g or less, more preferably 0.020 mmol / g or less. is there. With this acid amount, side reactions other than the oxidation reaction to the target compound are suppressed, and by-products other than the target compound are reduced. As a result, by-products of the high boiling point compound can be reduced. In particular, it is possible to stably obtain a final product such as an unsaturated aldehyde compound and / or an unsaturated carboxylic acid compound in a high yield. The lower limit is not particularly limited, but may be 0.0002 mmol / g or the like, and a preferable lower limit is 0.0012.

本実施形態の触媒(A)をアンモニア昇温脱離スペクトル(例えば「BELCAT−B」、日本ベル株式会社製等で測定可能)にて測定すると、100℃以上400℃以下の範囲(低温側)に1つのピーク(この酸量の値を酸量(L)と表記する)を有しており、400℃以上の範囲(高温側)に1つのピーク(この酸量の値を酸量(H)と表記する)を有していた。100℃以上400℃以下の範囲のピークの頂点は200℃付近に存在し、400℃以上の範囲のピークの頂点は600℃付近に存在する。   When the catalyst (A) of the present embodiment is measured with an ammonia temperature-programmed desorption spectrum (for example, “BELCAT-B”, which can be measured by Nippon Bell Co., Ltd.), the range is 100 ° C. or more and 400 ° C. or less (low temperature side). Has one peak (the value of this acid amount is referred to as acid amount (L)), and one peak (the value of this acid amount is )). The peak of the peak in the range of 100 ° C. or more and 400 ° C. or less exists near 200 ° C., and the peak of the peak in the range of 400 ° C. or more exists near 600 ° C.

上記触媒(A)は、モリブデン、ビスマス、鉄およびアルカリ金属を含む複合酸化物触媒であり、モリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満である。副生成物である芳香族化合物の生成をより有効に抑える為のアルカリ金属の原子比の下限としては、0.32がより好ましく、0.34が更に好ましく、0.36が最も好ましい。またアルカリ金属の原子比の上限としては、0.8がより好ましく、0.6が更に好ましく、0.5が最も好ましい。   The catalyst (A) is a composite oxide catalyst containing molybdenum, bismuth, iron, and an alkali metal, and has an atomic ratio of alkali metal to molybdenum of 12 atoms of more than 0.3 and less than 1.0. The lower limit of the atomic ratio of the alkali metal for more effectively suppressing the generation of the aromatic compound as a by-product is preferably 0.32, more preferably 0.34, and most preferably 0.36. The upper limit of the atomic ratio of the alkali metal is more preferably 0.8, still more preferably 0.6, and most preferably 0.5.

触媒(A)の触媒活性成分の好ましい組成は、下記一般式(I)で表される。
Moa1Bib1Fec1d1e1f1g1h1x1 (I)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも一種の元素、Bはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれる少なくとも一種の元素、Cはホウ素、リン、クロム、マンガン、亜鉛、ヒ素、ニオブ、スズ、アンチモン、テルル、セリウムおよび鉛から選ばれる少なくとも一種の元素、Dはシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、Eはアルカリ土類金属から選ばれる少なくとも一種の元素、そしてOは酸素であり、a1、b1、c1、d1、e1、f1、g1、h1およびx1はそれぞれMo、Bi、Fe、A、B、C、D、EおよびOの原子比を表し、a1=12の時、0.1≦b1≦10、0.1≦c1≦20、1≦d1≦20、0.3<e1<1.0、0≦f1≦10、0≦g1≦30、0≦h1≦5であり、x1はそれぞれの元素の酸化状態によって定まる数値である。)。
なお、ここでいう触媒活性成分は、触媒(A)や後述する触媒(B)等に含まれる触媒活性を示す成分を指す。すなわち、触媒が不活性担体を含む場合には、当該不活性担体は触媒活性成分に含まれない。
A preferred composition of the catalytically active component of the catalyst (A) is represented by the following general formula (I).
Mo a1 Bi b1 Fe c1 A d1 B e1 C f1 D g1 E h1 O x1 (I)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from lithium, sodium, potassium, rubidium and cesium, and C is At least one element selected from boron, phosphorus, chromium, manganese, zinc, arsenic, niobium, tin, antimony, tellurium, cerium and lead, D is at least one element selected from silicon, aluminum, titanium and zirconium, E is At least one element selected from alkaline earth metals, and O is oxygen, and a1, b1, c1, d1, e1, f1, g1, h1, and x1 are Mo, Bi, Fe, A, B, C, Represents the atomic ratio of D, E and O, and when a1 = 12, 0.1 ≦ b1 ≦ 10 0.1 ≦ c1 ≦ 20, 1 ≦ d1 ≦ 20, 0.3 <e1 <1.0, 0 ≦ f1 ≦ 10, 0 ≦ g1 ≦ 30, 0 ≦ h1 ≦ 5, and x1 is a value of each element. It is a value determined by the oxidation state.)
The term "catalytically active component" used herein refers to a component that exhibits catalytic activity contained in the catalyst (A), the catalyst (B) described below, and the like. That is, when the catalyst contains an inert carrier, the inert carrier is not included in the catalytically active component.

本実施形態の触媒(A)を構成する各元素の出発原料としては特に制限されるものではないが、例えばモリブデン成分の原料としては三酸化モリブデンのようなモリブデン酸化物、モリブデン酸、パラモリブデン酸アンモニウム、メタモリブデン酸アンモニウムのようなモリブデン酸またはその塩、リンモリブデン酸、ケイモリブデン酸のようなモリブデンを含むヘテロポリ酸またはその塩などを用いることができる。   The starting material of each element constituting the catalyst (A) of the present embodiment is not particularly limited. For example, molybdenum oxide such as molybdenum trioxide, molybdenum acid, paramolybdate Molybdic acid or a salt thereof such as ammonium or ammonium metamolybdate, a heteropoly acid containing molybdenum such as phosphomolybdic acid or silico-molybdic acid or a salt thereof can be used.

ビスマス成分の原料としては硝酸ビスマス、炭酸ビスマス、硫酸ビスマス、酢酸ビスマスのようなビスマス塩、三酸化ビスマス、金属ビスマスなどを用いることができる。これらの原料は固体のままあるいは水溶液や硝酸溶液、それらの水溶液から生じるビスマス化合物のスラリーとして用いることができるが、硝酸塩、あるいはその溶液、またはその溶液から生じるスラリーを用いることが好ましい。上記一般式(I)の組成におけるb1の下限としては、0.3がより好ましく、0.5が更に好ましく、0.8が特に好ましい。またb1の上限としては、8がより好ましく、6が更に好ましく、4が特に好ましい。   As a raw material of the bismuth component, bismuth salts such as bismuth nitrate, bismuth carbonate, bismuth sulfate, and bismuth acetate, bismuth trioxide, and metal bismuth can be used. These raw materials can be used as a solid or as an aqueous solution, a nitric acid solution, or a slurry of a bismuth compound generated from the aqueous solution. It is preferable to use a nitrate, a solution thereof, or a slurry generated from the solution. The lower limit of b1 in the composition of the above general formula (I) is more preferably 0.3, still more preferably 0.5, and particularly preferably 0.8. As the upper limit of b1, 8 is more preferable, 6 is further preferable, and 4 is particularly preferable.

上記一般式(I)で表されるB成分であるアルカリ金属の原料としては、これらに限定されないが、成分元素(リチウム、ナトリウム、カリウム、ルビジウム、セシウム)の水酸化物、塩化物、炭酸塩、硫酸塩、硝酸塩、酸化物又は酢酸塩等が挙げられる。好ましくは、セシウムを含有する化合物であり、例えば、水酸化セシウム、塩化セシウム、炭酸セシウム、硫酸セシウム、酸化セシウム等が挙げられるが、特に硝酸セシウムを用いることが好ましい。上記一般式(I)の組成において、eは0.3<e1<1.0、好ましくは0.32≦e1≦0.8、より好ましくは0.34≦e1≦0.6である。また、触媒(A)におけるアルカリ金属はセシウムであると好ましく、上記の好ましい態様における一般式(I)のB成分はセシウムであると好ましい。   Examples of the raw material of the alkali metal as the component B represented by the general formula (I) include, but are not limited to, hydroxides, chlorides, and carbonates of component elements (lithium, sodium, potassium, rubidium, and cesium). , Sulfates, nitrates, oxides or acetates. Preferably, the compound is a compound containing cesium, for example, cesium hydroxide, cesium chloride, cesium carbonate, cesium sulfate, cesium oxide, and the like. Particularly, cesium nitrate is preferably used. In the composition of the general formula (I), e satisfies 0.3 <e1 <1.0, preferably 0.32 ≦ e1 ≦ 0.8, and more preferably 0.34 ≦ e1 ≦ 0.6. Further, the alkali metal in the catalyst (A) is preferably cesium, and the B component of the general formula (I) in the above preferred embodiment is preferably cesium.

上記一般式(I)で表されるB成分であるアルカリ金属の原料は原子比が低すぎると、アンモニア昇温脱離法による触媒の酸量(H)が高くなり、高沸点化合物の副生が多くなるため、好ましくない。また、B成分原料の原子比が高い場合、高沸点化合物の副生は少なくなり、長期間な工業生産は可能となるが、原料転化率が低くなってしまうため、結果として満足のいく収率の向上が期待できない。   If the atomic ratio of the alkali metal raw material as the component B represented by the general formula (I) is too low, the acid amount (H) of the catalyst obtained by the ammonia temperature-programmed desorption method becomes high, and the by-product of the high boiling point compound is produced. Is undesirably increased. In addition, when the atomic ratio of the B component raw material is high, by-products of the high-boiling compounds are reduced and industrial production can be performed for a long period of time, but the conversion of the raw material decreases, and as a result, a satisfactory yield is obtained. Improvement cannot be expected.

その他の成分元素の出発原料としては、一般にこの種の触媒に使用される金属元素のアンモニウム塩、硝酸塩、炭酸塩、塩化物、硫酸塩、水酸化物、有機酸塩、酸化物またはこれらの混合物を組み合わせて用いればよいが、アンモニウム塩および硝酸塩が好適に用いられる。上記一般式(I)の組成におけるc1の下限としては、0.3がより好ましく、0.6が更に好ましく、1が特に好ましい。またc1の上限としては、16がより好ましく、12が更に好ましく、8が特に好ましい。上記一般式(I)の組成におけるd1の下限としては、3がより好ましく、5が更に好ましく、6が特に好ましい。またd1の上限としては、16がより好ましく、14が更に好ましく、12が特に好ましい。上記一般式(I)の組成におけるf1の上限としては、8がより好ましく、6が更に好ましく、4が特に好ましい。上記一般式(I)の組成におけるg1の上限としては、20がより好ましく、15が更に好ましく、10が特に好ましい。上記一般式(I)の組成におけるh1の上限としては、4がより好ましく、3が更に好ましく、2が特に好ましい。   Starting materials for the other component elements include ammonium salts, nitrates, carbonates, chlorides, sulfates, hydroxides, organic acid salts, oxides, and mixtures thereof, which are generally used for this type of catalyst. May be used in combination, but ammonium salts and nitrates are preferably used. As a lower limit of c1 in the composition of the above-mentioned general formula (I), 0.3 is more preferred, 0.6 is still more preferred, and 1 is particularly preferred. As the upper limit of c1, 16 is more preferable, 12 is further preferable, and 8 is particularly preferable. As the lower limit of d1 in the composition of the general formula (I), 3 is more preferable, 5 is more preferable, and 6 is particularly preferable. As the upper limit of d1, 16 is more preferable, 14 is further preferable, and 12 is particularly preferable. As an upper limit of f1 in the composition of the general formula (I), 8 is more preferable, 6 is more preferable, and 4 is particularly preferable. As the upper limit of g1 in the composition of the general formula (I), 20 is more preferable, 15 is more preferable, and 10 is particularly preferable. As the upper limit of h1 in the composition of the general formula (I), 4 is more preferable, 3 is further preferable, and 2 is particularly preferable.

触媒(A)の製造にあたっては、これら活性成分を含む化合物は単独で使用してもよいし、2種以上を混合して使用してもよい。スラリー液は、各活性成分含有化合物と水とを均一に混合して得ることができる。スラリー液における水の使用量は、用いる化合物の全量を完全に溶解できるか、または均一に混合できる量であれば特に制限はない。乾燥方法や乾燥条件を勘案して、水の使用量を適宜決定すれば良い。通常、スラリー調製用化合物の合計質量100質量部に対して、200質量部以上2000質量部以下である。水の量は多くてもよいが、多過ぎると乾燥工程のエネルギーコストが高くなり、又完全に乾燥できない場合も生ずるなどデメリットが多い。   In the production of the catalyst (A), these compounds containing an active ingredient may be used alone or in combination of two or more. The slurry liquid can be obtained by uniformly mixing each active ingredient-containing compound and water. The amount of water used in the slurry liquid is not particularly limited as long as the entire amount of the compound used can be completely dissolved or uniformly mixed. The amount of water used may be appropriately determined in consideration of the drying method and the drying conditions. Usually, it is 200 parts by mass or more and 2000 parts by mass or less based on 100 parts by mass of the total mass of the compound for slurry preparation. Although the amount of water may be large, if it is too large, there are many disadvantages such as an increase in energy cost in a drying step and a case where drying cannot be performed completely.

上記各成分元素の供給源化合物のスラリー液は上記の各供給源化合物を、(イ)一括して混合する方法、(ロ)一括して混合後、熟成処理する方法、(ハ)段階的に混合する方法、(ニ)段階的に混合・熟成処理を繰り返す方法、および(イ)〜(ニ)を組み合わせた方法により調製することが好ましい。ここで、上記熟成とは、「工業原料もしくは半製品を、一定時間、一定温度などの特定条件のもとに処理して、必要とする物理性、化学性の取得、上昇あるいは所定反応の進行などをはかる操作」のことをいう。なお、本実施形態において、上記の一定時間とは、5分以上24時間以下の範囲をいい、上記の一定温度とは室温以上の水溶液ないし水分散液の沸点以下の範囲をいう。   The slurry liquid of the source compound of each component element is obtained by mixing the above source compounds together (a) collectively, (b) collectively mixing and then aging, (c) stepwise. It is preferable to prepare by a method of mixing, (d) a method of repeating the mixing and aging treatment stepwise, and a method of combining (a) to (d). Here, the ripening means that "an industrial raw material or a semi-finished product is processed under specific conditions such as a certain time and a certain temperature to obtain necessary physical properties and chemical properties, increase or advance a predetermined reaction. Operation ". In the present embodiment, the above-mentioned certain time refers to a range of 5 minutes to 24 hours, and the certain temperature refers to a range of room temperature or higher and the boiling point of an aqueous solution or water dispersion or lower.

本実施形態において、必須活性成分を混合する際に用いられる攪拌機の攪拌翼の形状は特に制約はなく、プロペラ翼、タービン翼、パドル翼、傾斜パドル翼、スクリュー翼、アンカー翼、リボン翼、大型格子翼などの任意の攪拌翼を1段あるいは上下方向に同一翼または異種翼を2段以上で使用することができる。また、反応槽内には必要に応じてバッフル(邪魔板)を設置しても良い。   In the present embodiment, the shape of the stirring blade of the stirrer used when mixing the essential active ingredients is not particularly limited, and propeller blades, turbine blades, paddle blades, inclined paddle blades, screw blades, anchor blades, ribbon blades, large-sized Arbitrary stirring blades such as lattice blades can be used in one stage or the same blade or different blades in two or more stages in the vertical direction. Further, a baffle (baffle) may be provided in the reaction tank as needed.

次いで、このようにして得られたスラリー液を乾燥する。乾燥方法は、スラリー液が完全に乾燥できる方法であれば特に制約はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固などが挙げられる。これらのうち本実施形態においては、スラリー液を短時間に粉末又は顆粒に乾燥することができる噴霧乾燥が特に好ましい。噴霧乾燥の乾燥温度はスラリー液の濃度、送液速度等によって異なるが、概ね乾燥機の出口における温度が70℃以上150℃以下である。また、この際得られるスラリー液乾燥体の平均粒径が10μm以上700μm以下となるように乾燥するのが好ましい。   Next, the slurry liquid thus obtained is dried. The drying method is not particularly limited as long as the slurry liquid can be completely dried, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness. Of these, in the present embodiment, spray drying which can dry the slurry liquid into powder or granules in a short time is particularly preferable. The drying temperature of the spray drying varies depending on the concentration of the slurry liquid, the feeding speed, and the like, but the temperature at the outlet of the dryer is generally 70 ° C. or more and 150 ° C. or less. In this case, it is preferable to dry the obtained slurry liquid so that the average particle diameter of the dried slurry liquid is 10 μm or more and 700 μm or less.

上記のようにして得られた触媒前駆体は予備焼成し、成形を経て、本焼成することで、成形形状を制御、保持することが可能となり、工業用途として特に機械的強度が優れた触媒が得られ、安定した触媒性能を発現できる。   The catalyst precursor obtained as described above is preliminarily calcined, molded, and finally calcined, whereby the molded shape can be controlled and maintained, and a catalyst having particularly excellent mechanical strength for industrial use can be obtained. As a result, stable catalytic performance can be exhibited.

成形は、シリカ等の担体に担持する担持成形と、担体を使用しない非担持成形と、のいずれの成形方法も採用できる。具体的な成形方法としては、例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状としては、例えば、円柱状、リング状、球状等が運転条件を考慮して適宜選択可能である。球状担体、特にシリカやアルミナ等の不活性担体に触媒活性成分を担持した、平均粒径3.0mm以上10.0mm以下、好ましくは平均粒径3.0mm以上8.0mm以下の担持触媒を使用すると好ましい。担体に担持する場合には、触媒活性成分が触媒全体に占める割合が20質量%以上80質量%以下であると好ましい。なお、成形に際しては、公知の添加剤、例えば、グラファイト、タルク等を少量添加してもよい。また、担体としては、炭化珪素、アルミナ、シリカアルミナ、ムライト、アランダム等を用いてもよい。   For the molding, any of a molding method in which the carrier is supported on a carrier such as silica and a non-supporting molding in which the carrier is not used can be adopted. Specific molding methods include, for example, tablet molding, press molding, extrusion molding, granulation molding and the like. As the shape of the molded product, for example, a columnar shape, a ring shape, a spherical shape, or the like can be appropriately selected in consideration of operating conditions. A supported catalyst having an average particle size of 3.0 mm or more and 10.0 mm or less, preferably an average particle size of 3.0 mm or more and 8.0 mm or less, in which a catalytically active component is supported on a spherical carrier, particularly an inert carrier such as silica or alumina, is used. It is preferable. When supported on a carrier, the ratio of the catalytically active component to the entire catalyst is preferably 20% by mass or more and 80% by mass or less. At the time of molding, a small amount of a known additive such as graphite or talc may be added. Further, as the carrier, silicon carbide, alumina, silica alumina, mullite, alundum, or the like may be used.

予備焼成方法や予備焼成条件または本焼成方法や本焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。予備焼成や本焼成の最適条件は、用いる触媒原料、触媒組成、調製法等によって異なるが、通常、空気等の酸素含有ガス流通下または不活性ガス流通下で、200℃以上600℃以下、好ましくは300℃以上550℃以下で、0.5時間以上、好ましくは1時間以上40時間以下で行う。ここで、不活性ガスとは、触媒の反応活性を低下させない気体のことをいい、具体的には、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。   The pre-firing method and pre-firing conditions or the main firing method and main firing conditions are not particularly limited, and known processing methods and conditions can be applied. Optimum conditions for the pre-firing or main firing vary depending on the catalyst raw material used, the catalyst composition, the preparation method, and the like. Is performed at 300 ° C. or more and 550 ° C. or less for 0.5 hour or more, preferably for 1 hour or more and 40 hours or less. Here, the inert gas refers to a gas that does not decrease the reaction activity of the catalyst, and specific examples include nitrogen, carbon dioxide, helium, and argon.

この触媒(A)は特定の組成及び特定の酸量を有することにより、芳香族化合物の生成を有効に低減することができる。
またこの効果は、特に芳香族アルデヒド化合物の生成を抑える効果が大きいため、不飽和アルデヒド化合物を得る段階(本明細書においては第一段目工程と定義する)において用いることがより効果的である。また、上記芳香族化合物は、テレフタル酸の前駆体である場合が多い為、本実施形態の直結二段接触気相酸化方法によれば、テレフタル酸の副生の抑制に特に効果的である。
Since the catalyst (A) has a specific composition and a specific acid amount, generation of an aromatic compound can be effectively reduced.
In addition, since this effect is particularly effective in suppressing the generation of an aromatic aldehyde compound, it is more effective to use it in the step of obtaining an unsaturated aldehyde compound (defined as the first step in this specification). . In addition, since the aromatic compound is often a precursor of terephthalic acid, the direct-coupled two-step catalytic gas phase oxidation method of the present embodiment is particularly effective in suppressing the by-product of terephthalic acid.

直結二段接触気相酸化方法とは、第一段目生成ガスから目的生成物を分離した後、第二段目反応に供する分離法とは異なり、第一段目の生成ガスを直接第二段目に供する方法である。また、本実施形態の直結二段接触気相酸化方法は、イソブチレンおよびt−ブチルアルコ−ルから選ばれる少なくとも1種の原料を、酸化触媒組成物の存在下に、分子状酸素含有ガスを用いて接触気相酸化して、メタクロレインおよび/またはメタクリル酸を製造する際に用いられることが特に好ましい。   The direct-coupled two-stage catalytic gas-phase oxidation method is different from the separation method in which the target product is separated from the first-stage product gas and then subjected to the second-stage reaction, and the first-stage product gas is directly transferred to the second-stage reaction gas. It is a method to be served on the stage. In addition, the direct-coupled two-stage catalytic gas phase oxidation method of the present embodiment uses at least one raw material selected from isobutylene and t-butyl alcohol using a molecular oxygen-containing gas in the presence of an oxidation catalyst composition. It is particularly preferably used in producing methacrolein and / or methacrylic acid by catalytic gas phase oxidation.

[触媒(B)について]
本実施形態の直結二段接触気相酸化方法において、不飽和カルボン酸を製造する段階(本明細書において第二段目工程と記載する)では第一段目工程で用いた触媒とは異なる触媒(本明細書において触媒(B)と記載する)を用いることが好ましい。ここで、「異なる」とは触媒の組成又は製造方法が異なるものを意味し、同一組成、同一製造方法で製造された触媒であれば、多少の物性値に違いがあったとしても「異なる」ものではない。
触媒(B)としては、第一段目工程で用いる触媒と異なるものであれば特に制限はなく、上記触媒(A)の条件を満たすものであっても、満たさないものであっても良い。
[About the catalyst (B)]
In the direct-coupled two-stage catalytic gas phase oxidation method of the present embodiment, in the step of producing an unsaturated carboxylic acid (hereinafter referred to as the second step), a catalyst different from the catalyst used in the first step is used. (Hereinafter referred to as catalyst (B)) is preferably used. Here, "different" means that the composition or the production method of the catalyst is different, and if the catalyst is produced by the same composition and the same production method, it is "different" even if there are some differences in physical property values. Not something.
The catalyst (B) is not particularly limited as long as it is different from the catalyst used in the first step, and may or may not satisfy the conditions of the catalyst (A).

触媒(B)の触媒活性成分の好ましい組成は、下記一般式(II)で表される。
Mo10a2b2Cuc2Asd2e2g2 (II)
(式中、Mo、V、P、Cu、As、Oはそれぞれモリブデン、バナジウム、リン、銅、ヒ素及び酸素を表し、XはAg、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Sb、Cr、Re、Bi、W、Fe、Co、Ni、Ce及びThからなる群から選ばれる少なくとも一種の元素を表す。a2〜e2は、それぞれMo、V、P、Cu、AsおよびXの原子比を表し、a2は0.1≦a2≦6、b2は0.5≦b2≦6、c2は0<c2≦3、d2は0≦d2≦3、e2は0≦e2≦3であり、g2は他の元素の原子価ならびに原子比により定まる値である。)
A preferred composition of the catalytically active component of the catalyst (B) is represented by the following general formula (II).
Mo 10 V a2 P b2 Cu c2 As d2 X e2 O g2 (II)
(In the formula, Mo, V, P, Cu, As, and O represent molybdenum, vanadium, phosphorus, copper, arsenic, and oxygen, respectively, and X represents Ag, Mg, Zn, Al, B, Ge, Sn, Pb, and Ti. , Zr, Sb, Cr, Re, Bi, W, Fe, Co, Ni, Ce and Th represent at least one element selected from the group consisting of Mo, V, P, Cu and As, respectively. And a represents the atomic ratio of X, a2 is 0.1 ≦ a2 ≦ 6, b2 is 0.5 ≦ b2 ≦ 6, c2 is 0 <c2 ≦ 3, d2 is 0 ≦ d2 ≦ 3, and e2 is 0 ≦ e2 ≦ 3, and g2 is a value determined by the valence and atomic ratio of another element.)

上記好ましい組成の触媒活性成分を含む触媒(B)の製造にあたっては、この種の触媒、例えば酸化物触媒、ヘテロポリ酸又はその塩構造を有する触媒を調製する方法として一般に知られている方法が採用できる。触媒を製造する際に使用できる原料は特に限定されず、種々のものが使用できる。例えば、モリブデン化合物としては、モリブデン酸アンモニウム、モリブデン酸、酸化モリブデン等が使用でき、バナジウム化合物としては、メタバナジン酸アンモニウム、五酸化バナジウム等が使用でき、リン化合物としては、リン酸もしくはその塩、重合リン酸もしくはその塩が使用でき、銅化合物としては、酸化銅、リン酸銅、硫酸銅、硝酸銅、モリブデン酸銅、銅金属等が使用でき、アンチモン、砒素、銀、マグネシウム、亜鉛、アルミニウム、ホウ素、ゲルマニウム、錫、鉛、チタン、ジルコニウム、クロム、レニウム、ビスマス、タングステン、鉄、コバルト、ニッケル、セリウム、トリウム、カリウム及びルビジウム化合物としては、それぞれの硝酸塩、硫酸塩、炭酸塩、リン酸塩、有機酸塩、ハロゲン化物、水酸化物、酸化物、金属等が使用できる。   In producing the catalyst (B) containing the catalytically active component having the preferred composition, a method generally known as a method for preparing this kind of catalyst, for example, an oxide catalyst, a catalyst having a heteropolyacid or a salt structure thereof, is employed. it can. Raw materials that can be used in producing the catalyst are not particularly limited, and various materials can be used. For example, as a molybdenum compound, ammonium molybdate, molybdic acid, molybdenum oxide and the like can be used, as a vanadium compound, ammonium metavanadate, vanadium pentoxide and the like can be used, and as a phosphorus compound, phosphoric acid or a salt thereof, polymerization Phosphoric acid or a salt thereof can be used, and as the copper compound, copper oxide, copper phosphate, copper sulfate, copper nitrate, copper molybdate, copper metal, etc. can be used, and antimony, arsenic, silver, magnesium, zinc, aluminum, Boron, germanium, tin, lead, titanium, zirconium, chromium, rhenium, bismuth, tungsten, iron, cobalt, nickel, cerium, thorium, potassium and rubidium compounds include nitrates, sulfates, carbonates and phosphates, respectively. , Organic acid salts, halides, hydroxides, oxidation , Metal or the like can be used.

触媒(B)の製造にあたっては、これら活性成分を含む化合物は単独で使用してもよいし、2種以上を混合して使用してもよい。上記の触媒(A)において説明した方法と同様の方法に従って、スラリー液を調製できる。得られたスラリー液を乾燥し、触媒活性成分固体とする。乾燥方法は、スラリー液が完全に乾燥できる方法であれば特に制約はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固などが挙げられるが、スラリー液を短時間に粉末又は顆粒に乾燥することができる噴霧乾燥が好ましい。噴霧乾燥の乾燥温度はスラリー液の濃度、送液速度等によって異なるが、概ね乾燥機の出口における温度が70〜150℃である。また、この際得られるスラリー液乾燥体の平均粒径が10〜700μmとなるように乾燥するのが好ましい。   In the production of the catalyst (B), these compounds containing an active ingredient may be used alone or in combination of two or more. A slurry liquid can be prepared according to the same method as that described for the catalyst (A). The obtained slurry liquid is dried to obtain a catalytically active component solid. The drying method is not particularly limited as long as the slurry liquid can be completely dried, and includes, for example, drum drying, freeze drying, spray drying, and evaporation to dryness. Spray drying, which can be dried, is preferred. The drying temperature of the spray drying varies depending on the concentration of the slurry liquid, the liquid sending speed, and the like, but the temperature at the outlet of the dryer is generally 70 to 150 ° C. Further, it is preferable that the dried slurry liquid obtained at this time is dried so that the average particle diameter thereof is 10 to 700 μm.

本実施形態の触媒活性成分固体のうち特に好ましいものは、ヘテロポリ酸構造を有する触媒である。このヘテロポリ酸構造を有する触媒は、リンバナドモリブデン酸を基本骨格とし、他の構成元素はこのヘテロポリ酸構造の中に組み込まれ、触媒活性及び選択性の向上に寄与すると共に、構造の熱的安定性の向上にも寄与していると考えられる。このヘテロポリ酸構造を有する触媒は、特に寿命の長い触媒である。ヘテロポリ酸構造を有する触媒は通常のヘテロポリ酸の一般的な調製法によって容易に調製できる。   Particularly preferred among the catalytically active component solids of the present embodiment are catalysts having a heteropolyacid structure. The catalyst having the heteropolyacid structure has phosphorus banadomolybdic acid as a basic skeleton, and other constituent elements are incorporated into the heteropolyacid structure, thereby contributing to improvement in catalytic activity and selectivity and thermal stability of the structure. It is thought that it also contributed to the improvement of the performance. The catalyst having the heteropolyacid structure is a catalyst having a particularly long life. A catalyst having a heteropolyacid structure can be easily prepared by a general method for preparing a heteropolyacid.

前記のようにして得られた触媒活性成分固体は、そのまま被覆用混合物に供することができるが、焼成すると成形性が向上する場合があり好ましい。焼成方法や焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。焼成の最適条件は、使用する触媒原料、触媒組成、調製法等によって異なるが、焼成温度は通常100〜350℃、好ましくは150〜300℃、焼成時間は1〜20時間である。なお、焼成は、通常空気雰囲気下に行われるが、窒素、炭酸ガス、ヘリウム、アルゴン等の不活性ガス雰囲気下で行ってもよいし、不活性ガス雰囲気下での焼成後に必要に応じて更に空気雰囲気下で焼成を行ってもよい。   The catalytically active component solid obtained as described above can be used as it is for a coating mixture, but when calcined, moldability may be improved, which is preferable. The firing method and firing conditions are not particularly limited, and known processing methods and conditions can be applied. The optimum conditions for the calcination vary depending on the catalyst raw material, catalyst composition, preparation method and the like to be used, but the calcination temperature is usually 100 to 350 ° C, preferably 150 to 300 ° C, and the calcination time is 1 to 20 hours. The firing is usually performed in an air atmosphere, but may be performed in an inert gas atmosphere such as nitrogen, carbon dioxide, helium, or argon, or may be further performed as necessary after firing in an inert gas atmosphere. The firing may be performed in an air atmosphere.

また、本実施形態において、前記スラリーを調製する際の活性成分を含有する化合物は、必ずしも全ての活性成分を含んでいる必要はなく、一部の成分を下記被覆工程前に使用してもよい。   Further, in the present embodiment, the compound containing an active ingredient in preparing the slurry does not necessarily need to contain all the active ingredients, and some of the ingredients may be used before the coating step described below. .

本実施形態の触媒(B)の形状は特に制約はなく、酸化反応において反応ガスの圧力損失を小さくするために、柱状物、錠剤、リング状、球状等に成型し使用する。このうち選択性の向上や反応熱の除去が期待できることから、不活性担体に触媒活性成分固体を被覆し、被覆触媒とするのが特に好ましい。   The shape of the catalyst (B) of the present embodiment is not particularly limited, and is used by molding into a column, a tablet, a ring, a sphere or the like in order to reduce the pressure loss of the reaction gas in the oxidation reaction. Among these, it is particularly preferable to coat the inert carrier with the solid of the catalytically active component to obtain a coated catalyst since selectivity and removal of heat of reaction can be expected.

この被覆工程は以下に述べる転動造粒法が好ましい。この方法は、例えば固定容器内の底部に、平らなあるいは凹凸のある円盤を有する装置中で、円盤を高速で回転することにより、容器内の担体を自転運動と公転運動の繰返しにより激しく攪拌させ、ここにバインダーと触媒活性成分固体並びに、必要により、これらに他の添加剤例えば成形助剤、強度向上剤を添加した被覆用混合物を担体に被覆する方法である。   This coating step is preferably a rolling granulation method described below. In this method, for example, in a device having a flat or uneven disk at the bottom of a fixed container, by rotating the disk at a high speed, the carrier in the container is vigorously stirred by repetition of rotation and revolving motion. This is a method in which a carrier is coated with a coating mixture in which a binder, a catalytically active component solid, and, if necessary, other additives such as a molding aid and a strength improver are added thereto.

バインダーの添加方法は、1)前記被覆用混合物に予め混合しておく、2)被覆用混合物を固定容器内に添加するのと同時に添加、3)被覆用混合物を固定容器内に添加した後に添加、4)被覆用混合物を固定容器内に添加する前に添加、5)被覆用混合物とバインダーをそれぞれ分割し、2)〜4)を適宜組み合わせて全量添加する等の方法を任意に採用しうる。このうち5)においては、例えば被覆用混合物の固定容器壁への付着、被覆用混合物同士の凝集がなく担体上に所定量が担持されるようオートフィーダー等を用いて添加速度を調節して行うのが好ましい。   The method of adding the binder is as follows: 1) preliminarily mixing with the coating mixture, 2) adding the coating mixture into the fixed container at the same time, and 3) adding the coating mixture into the fixed container and then adding it. 4) Addition before adding the coating mixture into the fixed container, 5) Separate the coating mixture and the binder, and appropriately combine 2) to 4) to add all of them. . Of these, in 5), for example, the addition rate is adjusted using an auto feeder or the like so that the coating mixture does not adhere to the fixed container wall, and the coating mixture does not agglomerate and a predetermined amount is supported on the carrier. Is preferred.

バインダーは水及び1気圧以下での沸点が150℃以下の有機化合物からなる群から選ばれる少なくとも1種であれば特に制約はない。水以外のバインダーの具体例としてはメタノール、エタノール、プロパノール類、ブタノール類等のアルコール、好ましくは炭素数1〜4のアルコール、エチルエーテル、ブチルエーテル又はジオキサン等のエーテル、酢酸エチル又は酢酸ブチル等のエステル、アセトン又はメチルエチルケトン等のケトン等並びにそれらの水溶液が挙げられ、特にエタノールが好ましい。バインダーとしてエタノールを使用する場合、エタノール/水=10/0〜0/10(質量比)、好ましくは水と混合し9/1〜1/9(質量比)とすることが好ましい。これらバインダーの使用量は、被覆用混合物100質量部に対して通常2〜60質量部、好ましくは10〜50質量部である。   The binder is not particularly limited as long as it is at least one selected from the group consisting of water and organic compounds having a boiling point at 150 ° C. or less at 1 atm or less. Specific examples of binders other than water include alcohols such as methanol, ethanol, propanols and butanols, preferably alcohols having 1 to 4 carbon atoms, ethers such as ethyl ether, butyl ether or dioxane, and esters such as ethyl acetate or butyl acetate. , Acetone or ketones such as methyl ethyl ketone, and aqueous solutions thereof, with ethanol being particularly preferred. When ethanol is used as the binder, it is preferable that ethanol / water = 10/0 to 0/10 (mass ratio), preferably 9/1 to 1/9 (mass ratio) by mixing with water. The amount of the binder to be used is generally 2 to 60 parts by mass, preferably 10 to 50 parts by mass, per 100 parts by mass of the coating mixture.

上記被覆における担体の具体例としては、炭化珪素、アルミナ、シリカアルミナ、ムライト、アランダム等の直径1〜15mm、好ましくは2.5〜10mmの球形担体等が挙げられる。これら担体は通常は10〜70%の空孔率を有するものが用いられる。担体と被覆用混合物の割合は通常、被覆用混合物/(被覆用混合物+担体)=10〜75質量%、好ましくは15〜60質量%となる量を使用する。被覆用混合物の割合が大きい場合、被覆触媒の反応活性は大きくなるが、機械的強度が小さくなる傾向にある。逆に、被覆用混合物の割合が小さい場合、機械的強度は大きいが、反応活性は小さくなる傾向がある。なお、前記において、必要により使用する成形助剤としては、シリカゲル、珪藻土、アルミナ粉末等が挙げられる。成形助剤の使用量は、触媒活性成分固体100質量部に対して通常1〜60質量部である。また、更に必要により触媒活性成分固体及び反応ガスに対して不活性な無機繊維(例えば、セラミックス繊維又はウィスカー等)を強度向上剤として用いることは、触媒の機械的強度の向上に有用であり、ガラス繊維が好ましい。これら繊維の使用量は、触媒活性成分固体100質量部に対して通常1〜30質量部である。   Specific examples of the carrier in the coating include a spherical carrier having a diameter of 1 to 15 mm, preferably 2.5 to 10 mm, such as silicon carbide, alumina, silica alumina, mullite, and alundum. These carriers usually have a porosity of 10 to 70%. The ratio of the carrier and the coating mixture is usually such that the coating mixture / (coating mixture + carrier) = 10 to 75% by mass, preferably 15 to 60% by mass. When the proportion of the coating mixture is large, the reaction activity of the coated catalyst increases, but the mechanical strength tends to decrease. Conversely, when the proportion of the coating mixture is small, the mechanical strength is large, but the reaction activity tends to be small. In the above, as a molding aid used as necessary, silica gel, diatomaceous earth, alumina powder and the like can be mentioned. The amount of the molding aid used is usually 1 to 60 parts by mass with respect to 100 parts by mass of the catalytically active component solid. Further, if necessary, the use of an inorganic fiber (for example, a ceramic fiber or a whisker) that is inert to the catalytically active component solid and the reaction gas as a strength improver is useful for improving the mechanical strength of the catalyst, Glass fibers are preferred. The amount of these fibers to be used is generally 1 to 30 parts by mass based on 100 parts by mass of the catalytically active component solid.

前記のようにして得られた被覆触媒はそのまま触媒として接触気相酸化反応に供することができるが、焼成すると触媒活性が向上する場合があり好ましい。焼成方法や焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。焼成の最適条件は、使用する触媒原料、触媒組成、調製法等によって異なるが、焼成温度は通常100〜450℃、好ましくは270〜420℃、焼成時間は1〜20時間である。なお、焼成は、通常空気雰囲気下に行われるが、窒素、炭酸ガス、ヘリウム、アルゴン等の不活性ガス雰囲気下で行ってもよいし、不活性ガス雰囲気下での焼成後に必要に応じて更に空気雰囲気下で焼成を行ってもよい。本実施形態に用いられる触媒(B)は担体に担持させることによって、耐熱性、寿命の向上、反応収率の増大等好ましい効果が期待できる。担体の材質としてはアルミナ、シリカ、チタニア、ジルコニア、ニオビア、シリカアルミナ、炭化ケイ素、炭化物、およびこれらの混合物など公知の物を使用でき、さらにその粒径、吸水率、機械的強度、各結晶相の結晶化度や混合割合なども特に制限はなく、最終的な触媒(B)の性能、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。   The coated catalyst obtained as described above can be directly used as a catalyst in a catalytic gas-phase oxidation reaction, but calcining is preferred because the catalytic activity may be improved in some cases. The firing method and firing conditions are not particularly limited, and known processing methods and conditions can be applied. Optimum conditions for the calcination vary depending on the used catalyst raw material, catalyst composition, preparation method and the like, but the calcination temperature is usually 100 to 450 ° C, preferably 270 to 420 ° C, and the calcination time is 1 to 20 hours. The firing is usually performed in an air atmosphere, but may be performed in an inert gas atmosphere such as nitrogen, carbon dioxide, helium, or argon, or may be further performed as necessary after firing in an inert gas atmosphere. The firing may be performed in an air atmosphere. By supporting the catalyst (B) used in the present embodiment on a carrier, favorable effects such as improved heat resistance, improved life, and increased reaction yield can be expected. As the material of the carrier, known materials such as alumina, silica, titania, zirconia, niobia, silica alumina, silicon carbide, carbide, and mixtures thereof can be used. The crystallinity and the mixing ratio of are not particularly limited, and an appropriate range should be selected in consideration of the performance, moldability, production efficiency, and the like of the final catalyst (B).

本実施形態の触媒(A)は、プロピレン、イソブチレン、t−ブチルアルコール等を原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する方法や、ブテン類から1,3−ブタジエンを製造する方法、特にイソブチレン、t−ブチルアルコールを分子状酸素又は分子状酸素含有ガスにより接触気相酸化してメタクロレイン、メタアクリル酸を製造する方法に用いることができる。触媒(A)を上記方法に用いることで、芳香族化合物(特にテレフタル酸)の副生を有効に抑制することができる。また、ホットスポットの温度を抑制し高収率に目的物を製造することができ、これらの結果として公知の方法と比較して、製品の価格競争力の向上が期待できる。   The catalyst (A) of this embodiment is a method for producing the corresponding unsaturated aldehyde or unsaturated carboxylic acid using propylene, isobutylene, t-butyl alcohol or the like as a raw material, or producing 1,3-butadiene from butenes. It can be used in a method, in particular, a method for producing methacrolein or methacrylic acid by subjecting isobutylene or t-butyl alcohol to catalytic gas phase oxidation with molecular oxygen or a molecular oxygen-containing gas. By using the catalyst (A) in the above method, by-products of aromatic compounds (particularly terephthalic acid) can be effectively suppressed. In addition, the target product can be produced in a high yield by suppressing the temperature of the hot spot, and as a result, the price competitiveness of the product can be expected to be improved as compared with known methods.

触媒(A)は、特にイソブチレンおよびt−ブチルアルコ−ルから選ばれる少なくとも1種の原料を、触媒の存在下に、分子状酸素含有ガスを用いて接触気相酸化して、メタクロレインおよび/またはメタクリル酸を製造する際に好適に使用できる。本実施形態の製造方法における原料ガスの流通方法は、通常の単流通法でもあるいはリサイクル法でもよく、一般に用いられている条件下で実施することができ特に限定されない。たとえば出発原料物質としてのイソブチレンが常温で1〜10容量%、好ましくは4〜9容量%、分子状酸素が3〜20容量%、好ましくは4〜18容量%、水蒸気が0〜60容量%、好ましくは4〜50容量%、二酸化炭素、窒素等の不活性ガスが20〜80容量%、好ましくは30〜60容量%からなる混合ガスを反応管中に充填した本実施形態の触媒上に250〜450℃で、常圧〜10気圧の圧力下で、空間速度300〜5000hr−1で導入し反応を行う。The catalyst (A) is obtained by subjecting at least one kind of raw material selected from isobutylene and t-butyl alcohol to catalytic gas-phase oxidation using a molecular oxygen-containing gas in the presence of a catalyst to give methacrolein and / or It can be suitably used when producing methacrylic acid. The method of flowing the raw material gas in the production method of the present embodiment may be an ordinary single flow method or a recycling method, and can be carried out under generally used conditions, and is not particularly limited. For example, isobutylene as a starting material at room temperature is 1 to 10% by volume, preferably 4 to 9% by volume, molecular oxygen is 3 to 20% by volume, preferably 4 to 18% by volume, water vapor is 0 to 60% by volume, Preferably, 4 to 50% by volume, 20 to 80% by volume, preferably 30 to 60% by volume of a mixed gas containing an inert gas such as carbon dioxide and nitrogen is filled in the reaction tube in the catalyst of the present embodiment. The reaction is carried out by introducing at a space velocity of 300 to 5000 hr -1 at a pressure of normal pressure to 10 atm at -450 ° C.

以下に、実施例により本発明を更に具体的に説明する。
なお実施例において転化率、収率、選択率は次の通りに定義される。
・原料転化率=(第一段目工程で反応したt−ブチルアルコールまたはイソブチレンのモル数)/(第一段目工程に供給したt−ブチルアルコールまたはイソブチレンのモル数)*100
・第一段目工程メタクロレイン収率=(第一段目工程で生成したメタクロレインのモル数)/(第一段目工程に供給したt−ブチルアルコールまたはイソブチレンのモル数)*100
・第一段目工程メタクリル酸収率=(第一段目工程で生成したメタクリル酸のモル数)/(第一段目工程に供給したt−ブチルアルコールまたはイソブチレンのモル数)*100
・有効収率=第一段目工程メタクロレイン収率+第一段目工程メタクリル酸収率
・第二段目工程メタクロレイン収率=(第二段目工程で生成したメタクロレインのモル数)/(第一段目工程に供給したt−ブチルアルコールまたはイソブチレンのモル数)*100
・第二段目工程メタクロレイン転化率=(第一段目工程メタクロレイン収率−第二段目工程メタクロレイン収率)/(第一段目工程メタクロレイン収率)*100
・最終メタクリル酸収率=(第一段目工程で生成したメタクリル酸のモル数)+第二段目工程で生成したメタクリル酸のモル数)/(第一段目工程に供給したt−ブチルアルコールまたはイソブチレンのモル数)*100
Hereinafter, the present invention will be described more specifically with reference to examples.
In the examples, the conversion, yield, and selectivity are defined as follows.
Raw material conversion rate = (moles of t-butyl alcohol or isobutylene reacted in the first step) / (moles of t-butyl alcohol or isobutylene supplied to the first step) * 100
First-stage process methacrolein yield = (number of moles of methacrolein generated in first-stage process) / (number of moles of t-butyl alcohol or isobutylene supplied to first-stage process) * 100
-First-stage methacrylic acid yield = (moles of methacrylic acid generated in the first-stage process) / (moles of t-butyl alcohol or isobutylene supplied to the first-stage process) * 100
-Effective yield = first-stage step methacrolein yield + first-stage step methacrylic acid yield-Second-stage step methacrolein yield = (number of moles of methacrolein generated in the second-stage step) / (Molar number of t-butyl alcohol or isobutylene supplied to the first step) * 100
-Second-stage process methacrolein conversion = (first-stage process methacrolein yield-second-stage process methacrolein yield) / (first-stage process methacrolein yield) * 100
-Final methacrylic acid yield = (moles of methacrylic acid generated in the first step) + (moles of methacrylic acid generated in the second step) / (t-butyl supplied to the first step) The number of moles of alcohol or isobutylene) * 100

なお、本実施例におけるアンモニア昇温脱離法によるモリブデン、ビスマスを含む複合酸化物触媒の酸量は、触媒分析装置(商品名:「BELCAT−B」、日本ベル株式会社製)を用いて測定した。触媒0.3gを正確に秤量後、測定管に充填し、ヘリウム雰囲気下にて処理温度500℃で1時間の触媒前処理を行った。次いで、アンモニアガスを吸着温度100℃で吸着させ、30分間真空排気し、600℃まで10℃/minの速度で昇温して、触媒成形体単位重量当たりのアンモニア脱離量を測定した。   The acid amount of the composite oxide catalyst containing molybdenum and bismuth by the ammonia thermal desorption method in this example was measured using a catalyst analyzer (trade name: "BELCAT-B", manufactured by Nippon Bell Co., Ltd.). did. After accurately weighing 0.3 g of the catalyst, the catalyst was filled in a measuring tube and subjected to a catalyst pretreatment at a treatment temperature of 500 ° C. for 1 hour in a helium atmosphere. Next, ammonia gas was adsorbed at an adsorption temperature of 100 ° C., evacuated for 30 minutes, heated up to 600 ° C. at a rate of 10 ° C./min, and the amount of ammonia desorbed per unit weight of the molded catalyst was measured.

また、テレフタル酸の定量は液体クロマトグラフィー(商品名:「UltiMate 3000 HPLC system」、Thermo Scientific社製)を用いて行った。実施例において、テレフタル酸収率は以下の式に従って算出した。
テレフタル酸収率(%)=(生成したテレフタル酸のモル数)/(供給したt−ブタノールまたはイソブチレンのモル数)*100
The quantification of terephthalic acid was performed using liquid chromatography (trade name: “UltiMate 3000 HPLC system”, manufactured by Thermo Scientific). In the examples, the terephthalic acid yield was calculated according to the following equation.
Terephthalic acid yield (%) = (moles of terephthalic acid produced) / (moles of t-butanol or isobutylene supplied) * 100

[触媒(A)に関する評価]
(酸化反応試験)
熱媒体として溶融塩を循環させるためのジャケットおよび触媒層温度を測定するための熱電対を管軸に設置した、内径22.2mmのステンレス製反応器に触媒成形体を充填した。当該反応器に、原料モル比がイソブチレン:酸素:窒素:水=1:2.2:12.5:1.0の混合ガスを接触時間2.4秒(NTP基準)で供給して、0.05kgfの加圧下で反応を行った。反応成績、アンモニア昇温脱離法による触媒成形体の酸量およびテレフタル酸収率は表1の通りであった。
[Evaluation on Catalyst (A)]
(Oxidation reaction test)
A stainless steel reactor having an inner diameter of 22.2 mm, in which a jacket for circulating a molten salt as a heat medium and a thermocouple for measuring the temperature of the catalyst layer were installed on a tube shaft, was filled with the formed catalyst. A mixed gas having a starting material molar ratio of isobutylene: oxygen: nitrogen: water = 1: 2.2: 12.5: 1.0 was supplied to the reactor for a contact time of 2.4 seconds (NTP basis), and 0 The reaction was performed under a pressure of 0.05 kgf. Table 1 shows the reaction results, the acid amount of the molded catalyst and the terephthalic acid yield by the ammonia thermal desorption method.

[実施例1]
蒸留水3040mlを加熱攪拌しながらモリブデン酸アンモニウム800gと硝酸セシウム29gとを溶解して水溶液(A)を得た。別に、硝酸コバルト791g、硝酸第二鉄267g、および硝酸ニッケル88gを蒸留水607mlに溶解して水溶液(B)を調製した。また、濃硝酸78mlを加えて酸性にした蒸留水402mlに硝酸ビスマス306gを溶解して水溶液(C)を調製した。上記水溶液(A)に(B)、(C)を順次、激しく攪拌しながら混合し、生成した懸濁液をスプレードライヤーを用いて乾燥し、440℃で5時間予備焼成し予備焼成粉末(D)を得た。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Fe=1.8、Co=7.2、Ni=0.8、Cs=0.4であった。
[Example 1]
While heating and stirring 3040 ml of distilled water, 800 g of ammonium molybdate and 29 g of cesium nitrate were dissolved to obtain an aqueous solution (A). Separately, 791 g of cobalt nitrate, 267 g of ferric nitrate, and 88 g of nickel nitrate were dissolved in 607 ml of distilled water to prepare an aqueous solution (B). An aqueous solution (C) was prepared by dissolving 306 g of bismuth nitrate in 402 ml of acidified distilled water by adding 78 ml of concentrated nitric acid. The aqueous solution (A) was mixed with (B) and (C) in this order with vigorous stirring, and the resulting suspension was dried using a spray drier and preliminarily calcined at 440 ° C. for 5 hours. ) Got. At this time, the composition ratio excluding oxygen of the catalytically active component was represented by the following atomic ratio: Mo = 12, Bi = 1.7, Fe = 1.8, Co = 7.2, Ni = 0.8, Cs = 0.4. Met.

その後、予備焼成粉末(D)100質量部に結晶性セルロース5質量部を混合した粉末を不活性担体(粒径4.0mm)に担持した。担持は、予備焼成粉末(D)が成形後の触媒全体に占める割合が40質量%となるように、実施した。
こうして得た成形物を520℃で5時間本焼成し触媒成形体(E)を得た。得られた触媒成形体のアンモニア昇温脱離スペクトルを測定したところ、100℃以上400℃以下の範囲に1つのピークを有しており、400℃以上の範囲に1つのピークを有していた。100℃以上400℃以下の範囲のピークの頂点は200℃付近に存在し(この酸量の値を表1において酸量(L)と表記する)、400℃以上の範囲のピークの頂点は600℃付近(この酸量の値を表1において酸量(H)と表記する)に存在していた。得られた結果を表1に示した。
Thereafter, a powder obtained by mixing 5 parts by mass of crystalline cellulose with 100 parts by mass of the pre-fired powder (D) was supported on an inert carrier (particle size: 4.0 mm). The loading was performed so that the ratio of the pre-fired powder (D) to the entire catalyst after molding was 40% by mass.
The molded product thus obtained was fully fired at 520 ° C. for 5 hours to obtain a molded catalyst (E). When the ammonia temperature-programmed desorption spectrum of the obtained molded catalyst was measured, it had one peak in the range of 100 ° C. or more and 400 ° C. or less, and had one peak in the range of 400 ° C. or more. . The peak of the peak in the range of 100 ° C. or more and 400 ° C. or less exists near 200 ° C. (the value of this acid amount is described as acid amount (L) in Table 1), and the peak of the peak in the range of 400 ° C. or more is 600 ° C. ° C (the value of this acid amount is indicated as acid amount (H) in Table 1). Table 1 shows the obtained results.

[比較例1]
実施例1において硝酸セシウム29gを0gにした以外は実施例1と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Fe=1.8、Co=7.2、Ni=0.8、Cs=0であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例1の触媒と同様の形状を示していた。得られた結果を表1に示した。
[Comparative Example 1]
A catalyst was prepared in the same manner as in Example 1 except that 29 g of cesium nitrate was changed to 0 g. At this time, the composition ratio excluding oxygen of the catalytically active component was Mo = 12, Bi = 1.7, Fe = 1.8, Co = 7.2, Ni = 0.8, and Cs = 0 in atomic ratio. Was. The ammonia heated desorption spectrum of the obtained molded catalyst showed a shape similar to that of the catalyst of Example 1. Table 1 shows the obtained results.

[比較例2]
実施例1において硝酸セシウム29gを11gにした以外は実施例1と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Fe=1.8、Co=7.2、Ni=0.8、Cs=0.2であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例1の触媒と同様の形状を示していた。得られた結果を表1に示した。
[Comparative Example 2]
A catalyst was prepared in the same manner as in Example 1 except that 29 g of cesium nitrate was changed to 11 g. At this time, the composition ratio excluding oxygen of the catalytically active component was expressed as Mo = 12, Bi = 1.7, Fe = 1.8, Co = 7.2, Ni = 0.8, Cs = 0.2 in atomic ratio. Met. The ammonia heated desorption spectrum of the obtained molded catalyst showed a shape similar to that of the catalyst of Example 1. Table 1 shows the obtained results.

[実施例2]
蒸留水3040mlを加熱攪拌しながらモリブデン酸アンモニウム800gと硝酸セシウム29gとを溶解して水溶液(A)を得た。別に、硝酸コバルト718g、硝酸第二鉄297g、および硝酸ニッケル264gを蒸留水678mlに溶解して水溶液(B)を調製した。また、濃硝酸43mlを加えて酸性にした蒸留水224mlに硝酸ビスマス170gを溶解して水溶液(C)を調製した。上記水溶液(A)に(B)、(C)を順次、激しく攪拌しながら混合し、生成した懸濁液をスプレードライヤーを用いて乾燥し、440℃で5時間予備焼成し予備焼成粉末(D)を得た。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=0.9、Fe=2.0、Co=6.5、Ni=2.4、Cs=0.4であった。
[Example 2]
While heating and stirring 3040 ml of distilled water, 800 g of ammonium molybdate and 29 g of cesium nitrate were dissolved to obtain an aqueous solution (A). Separately, 718 g of cobalt nitrate, 297 g of ferric nitrate, and 264 g of nickel nitrate were dissolved in 678 ml of distilled water to prepare an aqueous solution (B). An aqueous solution (C) was prepared by dissolving 170 g of bismuth nitrate in 224 ml of acidified distilled water by adding 43 ml of concentrated nitric acid. The aqueous solution (A) was mixed with (B) and (C) in this order with vigorous stirring, and the resulting suspension was dried using a spray drier and preliminarily calcined at 440 ° C. for 5 hours. ) Got. At this time, the composition ratio excluding oxygen of the catalytically active component was represented by the following atomic ratio: Mo = 12, Bi = 0.9, Fe = 2.0, Co = 6.5, Ni = 2.4, Cs = 0.4. Met.

その後、予備焼成粉末(D)100質量部に結晶性セルロース5質量部を混合した粉末を不活性担体(粒径4.0mm)に担持した。担持は、予備焼成粉末(D)が成形後の触媒全体に占める割合が40質量%となるように、実施した。
こうして得た成形物を520℃で5時間本焼成し触媒成形体(E)を得た。得られた触媒成形体のアンモニア昇温脱離スペクトルを測定したところ、100℃以上400℃以下の範囲に1つのピークを有しており、400℃以上の範囲に1つのピークを有していた。100℃以上400℃以下の範囲のピークの頂点は200℃付近に存在し、400℃以上の範囲のピークの頂点は600℃付近に存在していた。得られた結果を表1に示した。
Thereafter, a powder obtained by mixing 5 parts by mass of crystalline cellulose with 100 parts by mass of the pre-fired powder (D) was supported on an inert carrier (particle size: 4.0 mm). The loading was performed so that the ratio of the pre-fired powder (D) to the entire catalyst after molding was 40% by mass.
The molded product thus obtained was fully fired at 520 ° C. for 5 hours to obtain a molded catalyst (E). When the ammonia temperature-programmed desorption spectrum of the obtained molded catalyst was measured, it had one peak in the range of 100 ° C. or more and 400 ° C. or less, and had one peak in the range of 400 ° C. or more. . The peak of the peak in the range of 100 ° C to 400 ° C was around 200 ° C, and the peak of the peak in the range of 400 ° C or more was around 600 ° C. Table 1 shows the obtained results.

[実施例3]
実施例2において硝酸セシウム29gを37gにした以外は実施例2と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は、原子比でMo=12、Bi=0.9、Fe=2.0、Co=6.5、Ni=2.4、Cs=0.5であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例2の触媒と同様の形状を示していた。得られた結果を表1に示した。
[Example 3]
A catalyst was prepared in the same manner as in Example 2, except that 29 g of cesium nitrate was changed to 37 g. At this time, the composition ratio of the catalytically active component excluding oxygen was represented by atomic ratios of Mo = 12, Bi = 0.9, Fe = 2.0, Co = 6.5, Ni = 2.4, and Cs = 0. It was 5. The ammonia temperature-programmed desorption spectrum of the obtained molded catalyst showed a shape similar to that of the catalyst of Example 2. Table 1 shows the obtained results.

[比較例3]
実施例2において硝酸セシウム29gを74gにした以外は実施例2と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は、原子比でMo=12、Bi=0.9、Fe=2.0、Co=6.5、Ni=2.4、Cs=1.0であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例2の触媒と同様の形状を示していた。得られた結果を表1に示した。モリブデン12原子に対するセシウムの原子比が大きいため、テレフタル酸の副生は少なくなり、長期間の工業生産は可能となるが、原料転化率が低くなってしまったため、満足のいく収率を達成できない結果となった。
[Comparative Example 3]
A catalyst was prepared in the same manner as in Example 2 except that 74 g of cesium nitrate was used in Example 2. At this time, the composition ratio excluding oxygen of the catalytically active component was Mo = 12, Bi = 0.9, Fe = 2.0, Co = 6.5, Ni = 2.4, and Cs = 1. It was 0. The ammonia temperature-programmed desorption spectrum of the obtained molded catalyst showed a shape similar to that of the catalyst of Example 2. Table 1 shows the obtained results. Since the atomic ratio of cesium to 12 atoms of molybdenum is large, by-products of terephthalic acid are reduced and long-term industrial production is possible, but a satisfactory yield cannot be achieved because the raw material conversion rate has decreased. The result was.

[比較例4]
実施例2において硝酸セシウム29gを3gにした以外は実施例2と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は、原子比でMo=12、Bi=0.9、Fe=2.0、Co=6.5、Ni=2.4、Cs=0.04であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例1の触媒と同様の形状を示していた。得られた結果を表1に示した。
[Comparative Example 4]
A catalyst was prepared in the same manner as in Example 2, except that 29 g of cesium nitrate was changed to 3 g. At this time, the composition ratio of the catalytically active component excluding oxygen was represented by atomic ratios of Mo = 12, Bi = 0.9, Fe = 2.0, Co = 6.5, Ni = 2.4, and Cs = 0. 04. The ammonia heated desorption spectrum of the obtained molded catalyst showed a shape similar to that of the catalyst of Example 1. Table 1 shows the obtained results.

[比較例5]
実施例2において硝酸セシウム29gを22gにした以外は実施例2と同様の方法で触媒を調製した。このときの触媒活性成分の酸素を除いた組成比は、原子比でMo=12、Bi=0.9、Fe=2.0、Co=6.5、Ni=2.4、Cs=0.3であった。得られた触媒成形体のアンモニア昇温脱離スペクトルは実施例2の触媒と同様の形状を示していた。得られた結果を表1に示した。
[Comparative Example 5]
A catalyst was prepared in the same manner as in Example 2, except that 29 g of cesium nitrate was changed to 22 g. At this time, the composition ratio of the catalytically active component excluding oxygen was represented by atomic ratios of Mo = 12, Bi = 0.9, Fe = 2.0, Co = 6.5, Ni = 2.4, and Cs = 0. It was 3. The ammonia temperature-programmed desorption spectrum of the obtained molded catalyst showed a shape similar to that of the catalyst of Example 2. Table 1 shows the obtained results.

Figure 2019163707
Figure 2019163707

上記の酸化反応(直結二段接触気相酸化における第一段目工程)において、テレフタル酸収率が0.01%以下であれば、実用性として問題がない。上記の実施例1および実施例2では、テレフタル酸収率が0.01%以下であり、実用上問題がないことが確認された。   In the above oxidation reaction (the first step in the direct two-stage catalytic gas phase oxidation), if the terephthalic acid yield is 0.01% or less, there is no problem in practicality. In Examples 1 and 2, the terephthalic acid yield was 0.01% or less, and it was confirmed that there was no practical problem.

[直結二段接触気相酸化方法に関する評価]
[実施例4]
実施例1において、予備焼成粉末(D)に結晶性セルロースを混合した粉末を不活性担体に担持して得た成形物を、540℃で5時間本焼成し触媒成形体を得た。この時のアンモニア昇温脱離法による高温側における触媒の酸量は0.011mmol/gであった。
実施例1及び上記のようにして調製した触媒を、熱媒である溶融塩を循環させるためのジャケットを備え、気相酸化触媒層と不活性充填物層との境界部の温度を測定するための熱電対が管軸に設置された、内径22.6mmのステンレス製反応管に充填した。充填は、気相酸化触媒層の層高が313cm(反応原料ガス入口部より540℃本焼成品が90cm、520℃本焼成品が223cm)になるように実施した。また、反応原料ガスの入り口部には、平均粒径5mmのシリカ及びアルミナを主成分とする不活性充填物からなる球状体を、層高が140cmになるように充填した。次いで、この反応管に、イソブチレンを分子状酸素を用いて酸化させてなる反応原料ガス(組成(モル比);イソブチレン:酸素:水蒸気:窒素=1:2.0:1.6:11.9)を、空間速度1000hr−1となるように供給し、浴温を340℃に設定し、第一段目工程の反応を開始した。
第二段酸化反応器には、日本国特許第5570142号公報の実施例1に記載のMo−V−P系ヘテロポリ酸触媒を用いた。触媒を内径29.4mmのステンレス反応管に350cm充填し、上記第一段目工程の酸化反応による生成ガスを導入し、第二段目工程の酸化反応を実施した。反応管出口圧力は0.05MPaに調製した。第二段目工程の反応浴温度はメタクロレイン転化率が65%から85%となるように調整し、第二段目工程におけるメタクロレインの転化率により、配管閉塞物のメイン成分であるテレフタル酸生成量がどのように変化するか測定を行った。結果を表2に示す。
[Evaluation of direct-coupled two-stage catalytic gas phase oxidation method]
[Example 4]
In Example 1, a molded product obtained by supporting a powder obtained by mixing crystalline cellulose with the preliminarily calcined powder (D) on an inert carrier was fully calcined at 540 ° C. for 5 hours to obtain a molded catalyst. At this time, the acid amount of the catalyst on the high temperature side by the ammonia thermal desorption method was 0.011 mmol / g.
The catalyst prepared as described in Example 1 and above was provided with a jacket for circulating a molten salt as a heat medium, for measuring the temperature at the boundary between the gas-phase oxidation catalyst layer and the inert packing layer. Was filled in a stainless steel reaction tube having an inner diameter of 22.6 mm, which was installed on a tube shaft. The filling was performed so that the layer height of the gas phase oxidation catalyst layer was 313 cm (90 cm for the 540 ° C. main firing product from the reaction material gas inlet portion, and 223 cm for the 520 ° C. main firing product). In addition, the inlet of the reaction raw material gas was filled with a spherical body having an average particle size of 5 mm and made of an inert filler mainly composed of silica and alumina so as to have a layer height of 140 cm. Next, a reaction material gas (composition (molar ratio); isobutylene: oxygen: steam: nitrogen = 1: 2.0: 1.6: 11.9) obtained by oxidizing isobutylene using molecular oxygen is placed in the reaction tube. ) Was supplied at a space velocity of 1000 hr -1 , the bath temperature was set to 340 ° C., and the reaction in the first step was started.
In the second stage oxidation reactor, a Mo-VP heteropolyacid catalyst described in Example 1 of Japanese Patent No. 5570142 was used. The catalyst was charged 350 cm into a stainless steel reaction tube having an inner diameter of 29.4 mm, and the gas generated by the oxidation reaction in the first step was introduced to perform the oxidation reaction in the second step. The reaction tube outlet pressure was adjusted to 0.05 MPa. The reaction bath temperature in the second stage is adjusted so that the conversion of methacrolein is from 65% to 85%, and the conversion of methacrolein in the second stage is controlled by terephthalic acid, which is the main component of the clogged pipe. Measurements were made on how the amount of formation changed. Table 2 shows the results.

[比較例6]
比較例2で調製した触媒を、気相酸化触媒層の層高が313cmになるように第一段目工程の酸化反応器に充填した以外は実施例4と同様にして反応を開始した。
なお第二段目工程の酸化反応器には、実施例4で用いたものと同じ触媒を用いた。結果を表2に示す。
[Comparative Example 6]
The reaction was started in the same manner as in Example 4 except that the catalyst prepared in Comparative Example 2 was charged into the oxidation reactor in the first step so that the layer height of the gas phase oxidation catalyst layer became 313 cm.
Note that the same catalyst as that used in Example 4 was used in the oxidation reactor in the second step. Table 2 shows the results.

Figure 2019163707
Figure 2019163707

実施例4、比較例6の結果より、本発明の直結二段接触気相酸化方法を用いた場合には、テレフタル酸の副生率を大きく低減できていることが確認された。またそれに伴って、収率の向上にもつながっていることが分かる。   From the results of Example 4 and Comparative Example 6, it was confirmed that when the direct-coupled two-stage catalytic gas phase oxidation method of the present invention was used, the by-product rate of terephthalic acid was significantly reduced. In addition, it can be seen that the yield is also improved accordingly.

本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本願は、2018年2月20日付で出願された日本国特許出願(特願2018−27498)および2018年6月26日付で出願された日本国特許出願(特願2018−120455)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the present invention has been described in detail with reference to particular embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on February 20, 2018 (Japanese Patent Application No. 2018-27498) and a Japanese patent application filed on June 26, 2018 (Japanese Patent Application No. 2018-120455). And is incorporated by reference in its entirety. Also, all references cited herein are incorporated in their entirety.

本発明は、高沸点化合物である芳香族化合物の副生を低減することで長期安定的な運転と最終生成物を高収率に提供することを可能とする触媒とそれを用いた不飽和カルボン酸化合物の製造方法を提供するものである。特にイソブチレン又はt−ブチルアルコ−ルを原料として原料、分子状酸素含有ガスを用いて接触気相酸化する状況下において高沸点化合物である芳香族化合物の副生を低減することができ、長期安定的な運転とメタクロレインおよび/またはメタクリル酸を高収率に得ることができる。   The present invention relates to a catalyst capable of providing long-term stable operation and a high yield of a final product by reducing by-products of an aromatic compound which is a high boiling point compound, and an unsaturated carboxylic acid using the catalyst. An object of the present invention is to provide a method for producing an acid compound. In particular, it is possible to reduce by-products of aromatic compounds, which are high-boiling compounds, under conditions of catalytic gas-phase oxidation using isobutylene or t-butyl alcohol as a raw material, and a molecular oxygen-containing gas. Operation and methacrolein and / or methacrylic acid can be obtained in high yield.

Claims (15)

モリブデン、ビスマス、鉄およびアルカリ金属を必須成分とし、かつモリブデン12原子に対するアルカリ金属の原子比が0.3より大きく1.0未満であり、かつアンモニア昇温脱離法による高温側における触媒の酸量が0.026mmol/g以下である、触媒。   Molybdenum, bismuth, iron and an alkali metal are essential components, and the atomic ratio of the alkali metal to 12 atoms of molybdenum is more than 0.3 and less than 1.0, and the acid of the catalyst on the high temperature side by the ammonia thermal desorption method. A catalyst having an amount of 0.026 mmol / g or less. 前記アンモニア昇温脱離法による高温側における触媒の酸量が0.024mmol/g以下である、請求項1に記載の触媒。   The catalyst according to claim 1, wherein the acid amount of the catalyst on the high temperature side by the ammonia temperature-programmed desorption method is 0.024 mmol / g or less. 前記アンモニア昇温脱離法による高温側における触媒の酸量が0.020mmol/g以下である、請求項1又は2に記載の触媒。   The catalyst according to claim 1 or 2, wherein the amount of acid of the catalyst on the high temperature side by the ammonia thermal desorption method is 0.020 mmol / g or less. 触媒活性成分が下記式(I)で表される組成を有する、請求項1〜3のいずれか一項に記載の触媒。
Moa1Bib1Fec1d1e1f1g1h1x1 (I)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも一種の元素、Bはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれる少なくとも一種の元素、Cはホウ素、リン、クロム、マンガン、亜鉛、ヒ素、ニオブ、スズ、アンチモン、テルル、セリウムおよび鉛から選ばれる少なくとも一種の元素、Dはシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、Eはアルカリ土類金属から選ばれる少なくとも一種の元素、そしてOは酸素であり、a1、b1、c1、d1、e1、f1、g1、h1およびx1はそれぞれMo、Bi、Fe、A、B、C、D、EおよびOの原子比を表し、a1=12の時、0.1≦b1≦10、0.1≦c1≦20、1≦d1≦20、0.3<e1<1.0、0≦f1≦10、0≦g1≦30、0≦h1≦5であり、x1はそれぞれの元素の酸化状態によって定まる数値である。)
The catalyst according to any one of claims 1 to 3, wherein the catalytically active component has a composition represented by the following formula (I).
Mo a1 Bi b1 Fe c1 A d1 B e1 C f1 D g1 E h1 O x1 (I)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from lithium, sodium, potassium, rubidium and cesium, and C is At least one element selected from boron, phosphorus, chromium, manganese, zinc, arsenic, niobium, tin, antimony, tellurium, cerium and lead, D is at least one element selected from silicon, aluminum, titanium and zirconium, E is At least one element selected from alkaline earth metals, and O is oxygen, and a1, b1, c1, d1, e1, f1, g1, h1, and x1 are Mo, Bi, Fe, A, B, C, Represents the atomic ratio of D, E and O, and when a1 = 12, 0.1 ≦ b1 ≦ 10 0.1 ≦ c1 ≦ 20, 1 ≦ d1 ≦ 20, 0.3 <e1 <1.0, 0 ≦ f1 ≦ 10, 0 ≦ g1 ≦ 30, 0 ≦ h1 ≦ 5, and x1 is a value of each element. It is a value determined by the oxidation state.)
アルカリ金属がセシウムである、請求項1〜4のいずれか一項に記載の触媒。   The catalyst according to any one of claims 1 to 4, wherein the alkali metal is cesium. 成形触媒である、請求項1〜5のいずれか一項に記載の触媒。   The catalyst according to any one of claims 1 to 5, which is a shaped catalyst. 球状担体に触媒活性成分が担持された触媒であり、触媒の平均粒径が3.0mm以上10.0mm以下であり、触媒活性成分が触媒全体に占める割合が20質量%以上80質量%以下である、請求項1〜6のいずれか一項に記載の触媒。   A catalyst in which a catalytically active component is supported on a spherical carrier, the average particle size of the catalyst is 3.0 mm or more and 10.0 mm or less, and the ratio of the catalytically active component to the whole catalyst is 20% by mass or more and 80% by mass or less. A catalyst according to any one of claims 1 to 6. 触媒活性成分の組成を構成する金属成分を含有するスラリーを乾燥して乾燥紛体を得る工程、前記乾燥粉体を200℃以上600℃以下の温度で予備焼成して予備焼成紛体を得る工程、前記予備焼成粉体を成形する工程、および得られた成形物を再度200℃以上600℃以下の温度で本焼成する工程、を含む請求項1〜7のいずれか一項に記載の触媒の製造方法。   A step of drying a slurry containing a metal component constituting the composition of the catalytically active component to obtain a dry powder, a step of pre-baking the dried powder at a temperature of 200 ° C. to 600 ° C. to obtain a pre-fired powder, The method for producing a catalyst according to any one of claims 1 to 7, comprising a step of forming a pre-fired powder and a step of again firing the obtained molded article at a temperature of 200 ° C or higher and 600 ° C or lower. . 請求項1〜7のいずれか一項に記載の触媒(以下触媒(A)とする)を用いて、不飽和アルデヒド化合物を経由した後、不飽和カルボン酸化合物を得る、直結二段接触気相酸化方法。   A direct-coupled two-stage contact gas phase in which an unsaturated carboxylic acid compound is obtained after passing through an unsaturated aldehyde compound using the catalyst according to any one of claims 1 to 7 (hereinafter referred to as catalyst (A)). Oxidation method. 前記触媒(A)を用いて不飽和アルデヒド化合物を得る段階である第一段目工程、および前記第一段目工程に用いた触媒と異なる触媒(以下触媒(B)とする)を用いて不飽和カルボン酸化合物を製造する段階である第二段目工程を含む、請求項9に記載の直結二段接触気相酸化方法。   A first step in which an unsaturated aldehyde compound is obtained using the catalyst (A), and an unsaturation using a catalyst different from the catalyst used in the first step (hereinafter referred to as catalyst (B)). The direct-coupled two-stage catalytic gas-phase oxidation method according to claim 9, comprising a second-stage process in which a saturated carboxylic acid compound is produced. 前記触媒(B)の触媒活性成分が下記式(II)で表される組成を有する、請求項10に記載の直結二段接触気相酸化方法。
Mo10a2b2Cuc2Asd2e2g2 (II)
(式中、Mo、V、P、Cu、As、Oはそれぞれモリブデン、バナジウム、リン、銅、ヒ素及び酸素を表し、XはAg、Mg、Zn、Al、B、Ge、Sn、Pb、Ti、Zr、Sb、Cr、Re、Bi、W、Fe、Co、Ni、Ce及びThからなる群から選ばれる少なくとも一種の元素を表す。a2〜e2は、それぞれMo、V、P、Cu、AsおよびXの原子比を表し、a2は0.1≦a2≦6、b2は0.5≦b2≦6、c2は0<c2≦3、d2は0≦d2≦3、e2は0≦e2≦3であり、g2は他の元素の原子価ならびに原子比により定まる値である。)
The direct-coupled two-stage catalytic gas phase oxidation method according to claim 10, wherein the catalytically active component of the catalyst (B) has a composition represented by the following formula (II).
Mo 10 V a2 P b2 Cu c2 As d2 X e2 O g2 (II)
(In the formula, Mo, V, P, Cu, As, and O represent molybdenum, vanadium, phosphorus, copper, arsenic, and oxygen, respectively, and X represents Ag, Mg, Zn, Al, B, Ge, Sn, Pb, and Ti. , Zr, Sb, Cr, Re, Bi, W, Fe, Co, Ni, Ce and Th represent at least one element selected from the group consisting of Mo, V, P, Cu and As, respectively. And a represents the atomic ratio of X, a2 is 0.1 ≦ a2 ≦ 6, b2 is 0.5 ≦ b2 ≦ 6, c2 is 0 <c2 ≦ 3, d2 is 0 ≦ d2 ≦ 3, and e2 is 0 ≦ e2 ≦ 3, and g2 is a value determined by the valence and atomic ratio of another element.)
前記不飽和アルデヒドがメタクロレインであり、前記不飽和カルボン酸がメタクリル酸である、請求項9〜11のいずれか一項に記載の直結二段接触気相酸化方法。   The direct-coupled two-stage catalytic gas phase oxidation method according to any one of claims 9 to 11, wherein the unsaturated aldehyde is methacrolein, and the unsaturated carboxylic acid is methacrylic acid. 請求項9〜12のいずれか一項に記載の直結二段接触気相酸化方法を用いた、副生成物である芳香族化合物の低減方法。   A method for reducing an aromatic compound as a by-product, using the direct-coupled two-stage catalytic gas phase oxidation method according to claim 9. 前記芳香族化合物がテレフタル酸である、請求項13に記載の副生成物である芳香族化合物の低減方法。   14. The method according to claim 13, wherein the aromatic compound is terephthalic acid. 請求項9〜12のいずれか一項に記載の直結二段接触気相酸化方法を用いる、不飽和アルデヒド化合物、不飽和カルボン酸化合物またはその両方の製造方法。   A method for producing an unsaturated aldehyde compound, an unsaturated carboxylic acid compound, or both, using the direct-coupled two-stage catalytic gas phase oxidation method according to any one of claims 9 to 12.
JP2019540016A 2018-02-20 2019-02-18 Catalyst and direct-coupled two-stage catalytic gas phase oxidation method using the same Active JP6598419B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018027498 2018-02-20
JP2018027498 2018-02-20
JP2018120455 2018-06-26
JP2018120455 2018-06-26
PCT/JP2019/005842 WO2019163707A1 (en) 2018-02-20 2019-02-18 Catalyst and direct-coupled two-stage contact gas phase oxidation method using same

Publications (2)

Publication Number Publication Date
JP6598419B1 JP6598419B1 (en) 2019-10-30
JPWO2019163707A1 true JPWO2019163707A1 (en) 2020-02-27

Family

ID=67686767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019540016A Active JP6598419B1 (en) 2018-02-20 2019-02-18 Catalyst and direct-coupled two-stage catalytic gas phase oxidation method using the same

Country Status (4)

Country Link
JP (1) JP6598419B1 (en)
KR (1) KR102618400B1 (en)
CN (1) CN111757779A (en)
WO (1) WO2019163707A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694635A (en) * 2019-11-25 2020-01-17 上海华谊新材料有限公司 Molybdenum-vanadium composite oxide catalyst, preparation method and application thereof
CN114471530B (en) * 2020-10-27 2023-09-29 中国石油化工股份有限公司 Composite catalyst for methacrylic acid production and preparation method thereof
EP4286048A1 (en) * 2021-01-27 2023-12-06 Nippon Kayaku Kabushiki Kaisha Catalyst, and method for producing unsaturated carboxylic acid using same
WO2022163725A1 (en) * 2021-01-27 2022-08-04 日本化薬株式会社 Catalyst, and method for producing unsaturated carboxylic acid using same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126605A (en) 1974-03-23 1975-10-04
JPS61221149A (en) 1985-03-26 1986-10-01 Nippon Shokubai Kagaku Kogyo Co Ltd Production of methacrylic acid
JP2747920B2 (en) 1989-02-16 1998-05-06 日東化学工業株式会社 Preparation of Molybdenum Containing Metal Oxide Fluidized Bed Catalyst Suitable for Oxidation Reaction
KR100362159B1 (en) * 1994-12-21 2003-04-11 미쯔비시 레이온 가부시끼가이샤 Manufacturing method of supported catalyst for methacrolein and methacrylate synthesis
JP4280797B2 (en) 2001-11-21 2009-06-17 三菱化学株式会社 Method for producing composite oxide catalyst
JP4242597B2 (en) * 2002-02-28 2009-03-25 株式会社日本触媒 Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
CN102203040B (en) * 2008-11-06 2014-04-16 日本化药株式会社 Methacrylic acid manufacturing method and catalyst for methacrylic acid manufacture
JP2010241700A (en) * 2009-04-02 2010-10-28 Nippon Shokubai Co Ltd Method for producing acrylic acid
KR20120022559A (en) * 2010-08-04 2012-03-12 닛뽄 가야쿠 가부시키가이샤 Catalyst for producing methacrolein and methacrylic acid, and process for producing the same
JP5763406B2 (en) * 2011-05-02 2015-08-12 花王株式会社 Method for producing α-olefin
CN104302391A (en) * 2012-05-18 2015-01-21 日本化药株式会社 Catalyst for use in production of methacrylic acid, method for producing said catalyst, and method for producing methacrylic acid using said catalyst
JP6078387B2 (en) * 2013-03-19 2017-02-08 住友化学株式会社 Method for producing methacrylic acid
WO2014175113A1 (en) * 2013-04-25 2014-10-30 日本化薬株式会社 Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst
JP5951121B2 (en) * 2013-05-09 2016-07-13 日本化薬株式会社 Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP6552126B2 (en) * 2015-03-03 2019-07-31 日本化薬株式会社 Catalyst for producing conjugated diolefin and method for producing the same

Also Published As

Publication number Publication date
KR20200122302A (en) 2020-10-27
WO2019163707A1 (en) 2019-08-29
KR102618400B1 (en) 2023-12-27
JP6598419B1 (en) 2019-10-30
CN111757779A (en) 2020-10-09

Similar Documents

Publication Publication Date Title
JP7418252B2 (en) Catalyst precursor, catalyst using the same, and manufacturing method thereof
JP6674441B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP6598419B1 (en) Catalyst and direct-coupled two-stage catalytic gas phase oxidation method using the same
KR20160068763A (en) Method for producing unsaturated carboxylic acid, and supported catalyst
JP5951121B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
WO2013073691A1 (en) Catalyst for production of methacrylic acid and method for producing methacrylic acid using same
JP2012115825A (en) Catalyst for producing methacrolein and methacrylic acid, and method for producing the same
JP6694884B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5680373B2 (en) Catalyst and method for producing acrylic acid
JP5388897B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP2020015043A (en) Method fop producing catalyst for producing methacrylic acid
JP6932292B1 (en) Catalysts, catalyst filling methods, and methods for producing compounds using catalysts.
WO2021141134A1 (en) Catalyst, method for producing compound using same, and compound
KR20190046853A (en) Catalyst for the production of acrylic acid and method for producing acrylic acid
WO2012063771A1 (en) Catalyst for producing methacrolein and methacrylic acid, and process for production thereof
JP6067013B2 (en) Catalyst for producing acrylic acid and process for producing acrylic acid by using this catalyst
JP7224351B2 (en) Catalyst and method for producing compound using the same
JP2023141551A (en) Catalyst and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the same
WO2022065116A1 (en) Catalyst precursor, catalyst using same, production method for compound and production method for catalyst
JP5269046B2 (en) Method for producing a catalyst for methacrylic acid production
JP2023141552A (en) Manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2024091001A (en) Method for producing unsaturated aldehyde, unsaturated carboxylic acid or conjugated diene

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190723

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190723

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R150 Certificate of patent or registration of utility model

Ref document number: 6598419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250