JP2016168591A - Catalyst for manufacturing methacrylic acid and manufacturing method therefor, and manufacturing method of methacrylic acid - Google Patents

Catalyst for manufacturing methacrylic acid and manufacturing method therefor, and manufacturing method of methacrylic acid Download PDF

Info

Publication number
JP2016168591A
JP2016168591A JP2016046697A JP2016046697A JP2016168591A JP 2016168591 A JP2016168591 A JP 2016168591A JP 2016046697 A JP2016046697 A JP 2016046697A JP 2016046697 A JP2016046697 A JP 2016046697A JP 2016168591 A JP2016168591 A JP 2016168591A
Authority
JP
Japan
Prior art keywords
methacrylic acid
catalyst
group
element selected
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016046697A
Other languages
Japanese (ja)
Other versions
JP6653871B2 (en
Inventor
徹 村山
Toru Murayama
徹 村山
禎シン 張
Zhenxin Zhang
禎シン 張
秀臣 酒井
Hideomi Sakai
秀臣 酒井
誠一郎 福永
Seiichiro Fukunaga
誠一郎 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Nippon Kayaku Co Ltd
Original Assignee
Hokkaido University NUC
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Nippon Kayaku Co Ltd filed Critical Hokkaido University NUC
Publication of JP2016168591A publication Critical patent/JP2016168591A/en
Application granted granted Critical
Publication of JP6653871B2 publication Critical patent/JP6653871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst having a novel structure for manufacturing methacrylic acid by contact vapor phase oxidation of methacrolein.SOLUTION: There is provided a catalyst for manufacturing methacrylic acid for manufacturing methacrylic acid by contact vapor phases oxidation of methacrolein in a presence of molecular oxygen or molecular oxygen-containing gas, represented by the following general formula (I) MoABXYZO(I), and having an ε-Keggin type heteropolyacid structure having diffraction peaks at 7.7°±0.3°, 23.2°±0.3°, 25.4°±0.3°, 26.5°±0.3° and 29.8°±0.3° of a value of 2θ in a powder X-ray diffraction pattern using a Cu-Kα ray.SELECTED DRAWING: Figure 1

Description

本発明は、メタクロレインを接触気相酸化してメタクリル酸を製造する際に使用する、新規な構造を有するメタクリル酸製造用触媒及び該触媒の製造方法、並びに該触媒を使用することにより、メタクロレインからメタクリル酸を製造する方法に関する。   The present invention relates to a catalyst for producing methacrylic acid having a novel structure, a method for producing the catalyst, and a method for producing methacrylic acid by catalytic vapor phase oxidation of methacrolein. The present invention relates to a method for producing methacrylic acid from rain.

メタクリル酸は、メタクロレイン、イソブチルアルデヒド、イソ酪酸等を接触気相酸化させることによって製造することができる。この際に使用される触媒としては、ヘテロポリ酸及び/又はその塩の構造を有するものが有効であることが知られており、その組成、物性、製造法に関し、数多くの提案がなされている。   Methacrylic acid can be produced by catalytic gas phase oxidation of methacrolein, isobutyraldehyde, isobutyric acid and the like. As a catalyst used in this case, it is known that a catalyst having a heteropolyacid and / or salt structure thereof is effective, and many proposals have been made regarding its composition, physical properties and production method.

これらの触媒は、通常、原料混合液の調製、乾燥、成型、焼成等の工程によって製造される。高性能を安定して発揮する触媒の製造に関しては、組成、調整方法、焼成方法に関して多くの報告がなされている。   These catalysts are usually produced by processes such as preparation of a raw material mixture, drying, molding, and firing. With regard to the production of a catalyst that stably exhibits high performance, many reports have been made on the composition, adjustment method, and calcination method.

例えば、特許文献1には、モリブデン、リンを主成分とするもので、ヘテロポリ酸及び/又はその塩の構造を有するものが提案されている。特許文献2には、ヘテロポリ酸系触媒を調製するにあたり、少なくともモリブデン、リン、セシウムを含むヘテロポリ酸塩を得、該ヘテロポリ酸塩に少なくともモリブデン、リンを含み、セシウムを含まない触媒原料を添加し、二段階で調製することを特徴とする触媒の調製方法が開示されている。また特許文献3には、モリブデン、リン、バナジウム、アンチモン、銅系の触媒を調製するにあたり、触媒原料のうちバナジウム原料及び/又はアンチモン原料をのぞく触媒原料を水に溶解又は懸濁させ、アンモニウム根が存在する状態で80〜200℃の温度で1〜24時間加熱処理した後、バナジウム原料及び/又はアンチモン原料を添加し、再度80〜200℃の温度で1〜24時間加熱処理し、焼成する方法が記載されている。   For example, Patent Document 1 proposes a material mainly composed of molybdenum and phosphorus and having a structure of a heteropolyacid and / or a salt thereof. In Patent Document 2, in preparing a heteropolyacid catalyst, a heteropolyacid salt containing at least molybdenum, phosphorus and cesium is obtained, and a catalyst raw material containing at least molybdenum and phosphorus and not containing cesium is added to the heteropolyacid salt. , A method for preparing a catalyst, characterized in that it is prepared in two steps. Further, in Patent Document 3, in preparing a molybdenum, phosphorus, vanadium, antimony, and copper-based catalyst, a catalyst raw material except for a vanadium raw material and / or an antimony raw material is dissolved or suspended in water to prepare an ammonium root. After the heat treatment for 1 to 24 hours at a temperature of 80 to 200 ° C. in the presence of vanadium, a vanadium raw material and / or an antimony raw material is added, and the heat treatment is again performed at a temperature of 80 to 200 ° C. for 1 to 24 hours, followed by firing. A method is described.

一方、非特許文献1には、ε-ケギン型のモリブデン、バナジウム及びビスマスを主成分とするポリ酸が開示されている。   On the other hand, Non-Patent Document 1 discloses a polyacid having ε-Keggin type molybdenum, vanadium and bismuth as main components.

特開平06−91172号公報Japanese Patent Laid-Open No. 06-91172 特開平05−177141号公報JP 05-177141 A 特許第3482476号明細書Japanese Patent No. 3482476

Dalton Trans.,2014,43,13584−13590Dalton Trans. , 2014, 43, 13584-13590

しかしながら、特許文献1〜3に記載のこれら公知のヘテロポリ酸系触媒は、いずれもα−ケギン型構造を有するものであるが、メタクロレインからメタクリル酸を製造する方法の反応成績は、同様の反応であるアクロレインからアクリル酸を製造する方法の反応成績に比べ、不十分なものであった。長期間の鋭意検討にもかかわらず、従来のα−ケギン型ヘテロポリ酸の触媒の性能向上は頭打ちとも見ることが出来る。そこで、本発明の目的は、メタクロレインを接触気相酸化してメタクリル酸を製造するための、新規の構造を有する触媒および該触媒の製造方法、並びに該触媒を使用することにより、メタクロレインからメタクリル酸を製造する方法を提供することである。   However, all of these known heteropolyacid catalysts described in Patent Documents 1 to 3 have an α-kegin structure, but the reaction results of the method for producing methacrylic acid from methacrolein are similar to those of the reaction described above. It was inadequate compared with the reaction result of the method of manufacturing acrylic acid from acrolein. Despite long-term diligent studies, the improvement in the performance of conventional α-Keggin heteropolyacid catalysts can be seen as a peak. Accordingly, an object of the present invention is to provide a catalyst having a novel structure for producing methacrylic acid by catalytic gas phase oxidation of methacrolein, a method for producing the catalyst, and using methacrolein from the methacrolein. It is to provide a method for producing methacrylic acid.

本発明者は、前記課題を解決するため、メタクロレインからメタクリル酸を製造するのに好適に使用できる触媒について鋭意研究した結果、特定の組成式を満たすε−ケギン型構造のヘテロポリ酸及び/又はその塩を用いることにより、メタクロレインからメタクリル酸を製造することができることを見出し、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors have intensively studied on a catalyst that can be suitably used for producing methacrylic acid from methacrolein. By using the salt, it was found that methacrylic acid can be produced from methacrolein, and the present invention was completed.

すなわち、本発明は、
(1) メタクロレインを分子状酸素又は分子状酸素含有ガスの存在下で接触気相酸化してメタクリル酸を製造するためのメタクリル酸製造用触媒であって、
下記一般式(I)で表され、
Mo (I)
(式中、Moはモリブデンであり、
Aはバナジウム、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素であり、
Bはビスマス、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素であり、
Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも一種の元素であり、
Yはリン、ヒ素、アンチモン、ゲルマニウム、ビスマス及びセレンからなる群より選ばれる少なくとも1種の元素であり、
Zは鉄、クロム、ニッケル、コバルト、マンガン、亜鉛、錫、銀、パラジウム、ロジウム、ルテニウム、テルル、タングステン、ケイ素、アルミニウム、セリウム、マグネシウム、ホウ素及びアンモニウムからなる群より選ばれる少なくとも1種の元素又はイオンであり、
a、b、c、d、e及びfは、各元素の原子比をそれぞれ表し、b=1のとき、0<a<5.0、0<c<2.0、0≦d<3.0、0≦e<1.0、0≦f<2.0であり、gは各元素の酸化状態により定まる数である)
Cu−Kα線を使用した粉末X線回折パターンにおいて、2θの値が7.7°±0.3°、23.2°±0.3°、25.4°±0.3°、26.5°±0.3°及び29.8°±0.3°に回折ピークを有する、ε−ケギン型ヘテロポリ酸構造を有する、メタクリル酸製造用触媒、
(2) Aがバナジウムである、(1)に記載のメタクリル酸製造用触媒、
(3) Bがビスマスである、(1)又は(2)に記載のメタクリル酸製造用触媒、
(4) 下記工程を含むことを特徴とする、(1)〜(3)のいずれかに記載のメタクリル酸製造用触媒の製造方法:
工程(A):モリブデンを含有する化合物;バナジウム、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素を含有する化合物;並びにビスマス、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素を含有する化合物;必要によりリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも一種の元素を含有する化合物;必要によりリン、ヒ素、アンチモン、ゲルマニウム、ビスマス及びセレンからなる群より選ばれる少なくとも1種の元素を含有する化合物;並びに必要により鉄、クロム、ニッケル、コバルト、マンガン、亜鉛、錫、銀、パラジウム、ロジウム、ルテニウム、テルル、タングステン、ケイ素、アルミニウム、セリウム、マグネシウム、ホウ素及びアンモニウムからなる群より選ばれる少なくとも1種の元素又はイオンを含有する化合物を、水と混合し、これらの化合物の水溶液又は水分散体を調製する工程、
工程(B):工程(A)で得られた水溶液又は水分散体を用いて、水熱合成により固形分を得る工程、
工程(C):工程(B)で得られた固形分を焼成する工程、
(5) 水熱合成における温度が80℃〜200℃であり、圧力が該温度における飽和蒸気圧である、(4)に記載のメタクリル酸製造用触媒の製造方法、
(6) (1)〜(3)のいずれかに記載のメタクリル酸製造用触媒の存在下で、メタクロレインの分子状酸素又は分子状酸素含有ガスによる接触気相酸化反応を行うことを特徴とする、メタクリル酸の製造方法、
に関する。
That is, the present invention
(1) A catalyst for producing methacrylic acid for producing methacrylic acid by catalytic gas phase oxidation of methacrolein in the presence of molecular oxygen or a molecular oxygen-containing gas,
It is represented by the following general formula (I),
Mo a A b B c X d Y e Z f O g (I)
(Wherein Mo is molybdenum,
A is at least one element selected from the group consisting of vanadium, zinc, manganese, iron, cobalt and nickel;
B is at least one element selected from the group consisting of bismuth, zinc, manganese, iron, cobalt and nickel;
X is at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium;
Y is at least one element selected from the group consisting of phosphorus, arsenic, antimony, germanium, bismuth and selenium,
Z is at least one element selected from the group consisting of iron, chromium, nickel, cobalt, manganese, zinc, tin, silver, palladium, rhodium, ruthenium, tellurium, tungsten, silicon, aluminum, cerium, magnesium, boron, and ammonium. Or an ion,
a, b, c, d, e, and f represent the atomic ratio of each element. When b = 1, 0 <a <5.0, 0 <c <2.0, 0 ≦ d <3. 0, 0 ≦ e <1.0, 0 ≦ f <2.0, and g is a number determined by the oxidation state of each element)
In the powder X-ray diffraction pattern using Cu-Kα rays, the values of 2θ are 7.7 ° ± 0.3 °, 23.2 ° ± 0.3 °, 25.4 ° ± 0.3 °, 26. A catalyst for producing methacrylic acid having an ε-Keggin type heteropolyacid structure having diffraction peaks at 5 ° ± 0.3 ° and 29.8 ° ± 0.3 °,
(2) The catalyst for methacrylic acid production according to (1), wherein A is vanadium,
(3) The catalyst for methacrylic acid production according to (1) or (2), wherein B is bismuth,
(4) The method for producing a catalyst for producing methacrylic acid according to any one of (1) to (3), comprising the following steps:
Step (A): a compound containing molybdenum; a compound containing at least one element selected from the group consisting of vanadium, zinc, manganese, iron, cobalt and nickel; and bismuth, zinc, manganese, iron, cobalt and nickel A compound containing at least one element selected from the group consisting of: a compound containing at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium if necessary; phosphorus, arsenic, antimony, if necessary A compound containing at least one element selected from the group consisting of germanium, bismuth and selenium; and, if necessary, iron, chromium, nickel, cobalt, manganese, zinc, tin, silver, palladium, rhodium, ruthenium, tellurium, tungsten, Silicon Miniumu, cerium, magnesium, at least one element or compound containing ions selected from the group consisting of boron and ammonium, mixed with water to prepare an aqueous solution or aqueous dispersion of these compounds process,
Step (B): A step of obtaining a solid content by hydrothermal synthesis using the aqueous solution or aqueous dispersion obtained in Step (A),
Step (C): a step of firing the solid content obtained in the step (B),
(5) The method for producing a methacrylic acid production catalyst according to (4), wherein the temperature in hydrothermal synthesis is 80 ° C to 200 ° C, and the pressure is a saturated vapor pressure at the temperature,
(6) In the presence of the catalyst for producing methacrylic acid according to any one of (1) to (3), catalytic gas phase oxidation reaction with molecular oxygen or molecular oxygen-containing gas of methacrolein is performed. A process for producing methacrylic acid,
About.

本発明の特定の組成式を満たすε−ケギン型構造のヘテロポリ酸触媒を使用することにより、メタクロレインからメタクリル酸を製造することができる。   Methacrylic acid can be produced from methacrolein by using a heteropolyacid catalyst having an ε-Keggin structure that satisfies the specific composition formula of the present invention.

実施例1に係る焼成前の触媒のCu−Kα線による粉末X線回折の測定結果である。2 is a measurement result of powder X-ray diffraction by Cu—Kα rays of the catalyst before calcination according to Example 1. FIG. 実施例1および比較例1に係る焼成後の触媒のCu−Kα線による粉末X線回折の測定結果である。It is a measurement result of the powder X-ray diffraction by the Cu-K alpha ray of the catalyst after the calcination concerning Example 1 and comparative example 1.

ヘテロポリ酸及びその塩の構造としては、ケギン型、ドーソン型及びアンダーソン型等の複数の構造が知られている。典型的なケギン型ヘテロポリ酸は、3つの正八面体が頂点の酸素原子を共有したものを構成単位とし、4つの構成単位がヘテロ原子を中心とした四面体に配位したものを指す。α−ケギン型ヘテロポリ酸は、4つの構成単位が四面体の角にある4つの酸素原子をそれぞれ共有し、ほぼTd対称の位置に配位している(Tdはシェーンフリースの表記法で分類された点群の1つであり、対象となる分子が四面体形を構成しているものを指す)。   As structures of heteropolyacids and salts thereof, a plurality of structures such as Keggin type, Dawson type and Anderson type are known. A typical Keggin-type heteropolyacid refers to a structure in which three regular octahedrons share an apex oxygen atom as a structural unit, and four structural units coordinate to a tetrahedron centered on a heteroatom. α-Keggin heteropolyacids share four oxygen atoms with four structural units at the corners of the tetrahedron, and are coordinated at approximately Td symmetry positions (Td is classified by the Shane-Fries notation). It is one of the point groups in which the target molecule forms a tetrahedral shape).

一方、ε−ケギン型ヘテロポリ酸は、4つの構成単位が、α−ケギン型からそれぞれC3軸を中心に60°回転したものを指す。ε−ケギン型ヘテロポリ酸は、Cu−Kα線を使用した粉末X線回折パターンにおいて、2θの値が7.7°±0.3°、23.2°±0.3°、25.4°±0.3°、26.5°±0.3°及び29.8°±0.3°に回折ピークを有することにより確認できる。   On the other hand, the ε-Keggin type heteropolyacid refers to one in which four structural units are each rotated from the α-Keggin type by 60 ° around the C3 axis. ε-Keggin type heteropolyacid has a value of 2θ of 7.7 ° ± 0.3 °, 23.2 ° ± 0.3 °, 25.4 ° in a powder X-ray diffraction pattern using Cu—Kα ray. This can be confirmed by having diffraction peaks at ± 0.3 °, 26.5 ° ± 0.3 °, and 29.8 ° ± 0.3 °.

本発明の触媒は、メタクロレインを分子状酸素又は分子状酸素含有ガスの存在下で接触気相酸化してメタクリル酸を製造するためのメタクリル酸製造用触媒であって、
下記一般式(I)で表され、
Mo (I)
(式中、Moはモリブデンであり、
Aはバナジウム、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素であり、
Bはビスマス、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素であり、
Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも一種の元素であり、
Yはリン、ヒ素、アンチモン、ゲルマニウム、ビスマス及びセレンからなる群より選ばれる少なくとも1種の元素であり、
Zは鉄、クロム、ニッケル、コバルト、マンガン、亜鉛、錫、銀、パラジウム、ロジウム、ルテニウム、テルル、タングステン、ケイ素、アルミニウム、セリウム、マグネシウム、ホウ素及びアンモニウムからなる群より選ばれる少なくとも1種の元素又はイオンであり、
a、b、c、d、e及びfは、各元素の原子比をそれぞれ表し、b=1のとき、0<a<5.0、0<c<2.0、0≦d<3.0、0≦e<1.0、0≦f<2.0であり、gは各元素の酸化状態により定まる数である)
Cu−Kα線を使用した粉末X線回折パターンにおいて、2θの値が7.7°±0.3°、23.2°±0.3°、25.4°±0.3°、26.5°±0.3°及び29.8°±0.3°に回折ピークを有する、ε−ケギン型ヘテロポリ酸構造を有する、メタクリル酸製造用触媒である。
The catalyst of the present invention is a catalyst for producing methacrylic acid for producing methacrylic acid by catalytic gas phase oxidation of methacrolein in the presence of molecular oxygen or a molecular oxygen-containing gas,
It is represented by the following general formula (I),
Mo a A b B c X d Y e Z f O g (I)
(Wherein Mo is molybdenum,
A is at least one element selected from the group consisting of vanadium, zinc, manganese, iron, cobalt and nickel;
B is at least one element selected from the group consisting of bismuth, zinc, manganese, iron, cobalt and nickel;
X is at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium;
Y is at least one element selected from the group consisting of phosphorus, arsenic, antimony, germanium, bismuth and selenium,
Z is at least one element selected from the group consisting of iron, chromium, nickel, cobalt, manganese, zinc, tin, silver, palladium, rhodium, ruthenium, tellurium, tungsten, silicon, aluminum, cerium, magnesium, boron, and ammonium. Or an ion,
a, b, c, d, e, and f represent the atomic ratio of each element. When b = 1, 0 <a <5.0, 0 <c <2.0, 0 ≦ d <3. 0, 0 ≦ e <1.0, 0 ≦ f <2.0, and g is a number determined by the oxidation state of each element)
In the powder X-ray diffraction pattern using Cu-Kα rays, the values of 2θ are 7.7 ° ± 0.3 °, 23.2 ° ± 0.3 °, 25.4 ° ± 0.3 °, 26. A catalyst for producing methacrylic acid having an ε-Keggin type heteropolyacid structure having diffraction peaks at 5 ° ± 0.3 ° and 29.8 ° ± 0.3 °.

上記一般式(I)のε−ケギン型ヘテロポリ酸において、Moはポリオキソメタレート構成元素であり、Aはポリオキソメタレート構成元素であり、Bはリンカーであり、Xはカチオン種であり、Yはポリオキソメタレート構成元素(中心元素)であり、さらにカチオン種にもなり得、Zはカチオン種である。Aはバナジウムであることが好ましく、Bはビスマスであることが好ましい。   In the ε-Keggin type heteropolyacid of the above general formula (I), Mo is a polyoxometalate constituent element, A is a polyoxometalate constituent element, B is a linker, X is a cationic species, Y is a polyoxometalate constituent element (central element) and can also be a cationic species, and Z is a cationic species. A is preferably vanadium and B is preferably bismuth.

本発明の触媒は、下記工程を含む方法により調製することができる。
工程(A)
モリブデンを含有する化合物;A(バナジウム、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素)を含有する化合物;並びにB(ビスマス、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素)を含有する化合物;必要によりX(リチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも一種の元素)を含有する化合物;必要によりY(リン、ヒ素、アンチモン、ゲルマニウム、ビスマス及びセレンからなる群より選ばれる少なくとも1種の元素)を含有する化合物;並びに必要によりZ(鉄、クロム、ニッケル、コバルト、マンガン、亜鉛、錫、銀、パラジウム、ロジウム、ルテニウム、テルル、タングステン、ケイ素、アルミニウム、セリウム、マグネシウム、ホウ素及びアンモニウムからなる群より選ばれる少なくとも1種の元素又はイオン)を含有する化合物を、水と混合し、これらの化合物の水溶液又は水分散体を調製する工程、
工程(B)
工程(A)で得られた水溶液又は水分散体を用いて、水熱合成により固形分を得る工程、
工程(C)
工程(B)で得られた固形分を焼成する工程。
The catalyst of the present invention can be prepared by a method including the following steps.
Process (A)
A compound containing molybdenum; a compound containing A (at least one element selected from the group consisting of vanadium, zinc, manganese, iron, cobalt and nickel); and B (from bismuth, zinc, manganese, iron, cobalt and nickel) A compound containing at least one element selected from the group consisting of: a compound containing X (at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium) if necessary; A compound containing phosphorus, arsenic, antimony, germanium, bismuth and selenium; and Z (iron, chromium, nickel, cobalt, manganese, zinc, tin, silver, palladium if necessary); , Rhodium, ruthenium, tellurium, tongue A compound containing at least one element or ion selected from the group consisting of copper, silicon, aluminum, cerium, magnesium, boron and ammonium) is mixed with water to prepare an aqueous solution or dispersion of these compounds. Process,
Process (B)
Using the aqueous solution or aqueous dispersion obtained in step (A) to obtain a solid content by hydrothermal synthesis,
Process (C)
A step of firing the solid content obtained in the step (B).

本発明の触媒の製造方法における出発原料化合物としては特に制限はなく、例えばモリブデンを含有する化合物としては、モリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、モリブデン酸ナトリウム等が挙げられる。   The starting material compound in the method for producing the catalyst of the present invention is not particularly limited, and examples of the compound containing molybdenum include ammonium molybdate, molybdenum trioxide, molybdic acid, and sodium molybdate.

A成分原料としては、これらに限定されないが、成分元素(バナジウム、亜鉛、マンガン、鉄、コバルト及びニッケル)の水酸化物、塩化物、硫酸塩、硝酸塩、酸化物又は酢酸塩等が挙げられる。好ましくは、バナジウムを含有する化合物であり、例えばバナジン酸、バナジン酸アンモニウム(メタバナジン酸アンモニウム)といったバナジン酸塩(メタバナジン酸塩)、酸化バナジウム、塩化バナジウム等が挙げられ、特に硫酸バナジルが好ましい。   Examples of the component A raw material include, but are not limited to, hydroxides, chlorides, sulfates, nitrates, oxides or acetates of component elements (vanadium, zinc, manganese, iron, cobalt, and nickel). Preferably, it is a compound containing vanadium, and examples thereof include vanadate (metavanadate) such as vanadate and ammonium vanadate (ammonium metavanadate), vanadium oxide, vanadium chloride and the like, and vanadyl sulfate is particularly preferable.

B成分原料としては、これらに限定されないが、成分元素(ビスマス、亜鉛、マンガン、鉄、コバルト及びニッケル)の水酸化物、塩化物、硫酸塩、硝酸塩、酸化物又は酢酸塩等が挙げられる。好ましくは、ビスマスを含有する化合物であり、特に水酸化ビスマスや硝酸ビスマスが好ましい。   Examples of the component B raw material include, but are not limited to, hydroxides, chlorides, sulfates, nitrates, oxides or acetates of component elements (bismuth, zinc, manganese, iron, cobalt, and nickel). A compound containing bismuth is preferable, and bismuth hydroxide and bismuth nitrate are particularly preferable.

X、Y及び/又はZ成分原料を添加する場合、添加する工程は特に制限されず、水熱合成前後や焼成時に適宜添加すればよい。X、Y及びZ成分原料としては、成分元素の水酸化物、塩化物、硫酸塩、硝酸塩、酸化物又は酢酸塩等が挙げられる。   When X, Y and / or Z component raw materials are added, the step of adding is not particularly limited, and may be added as appropriate before and after hydrothermal synthesis or during firing. Examples of the X, Y and Z component raw materials include hydroxides, chlorides, sulfates, nitrates, oxides or acetates of the component elements.

水熱合成とは、高温高圧水の存在下で、物質の合成及び結晶を育成する方法のことである。本発明においては、水熱合成は、例えばスラリー液をオートクレーブに仕込んで行う。反応は、空気中で行うこともできるが、反応開始前にオートクレーブ内を空気の代わりに一部あるいは全量を窒素、ヘリウム等の不活性ガスで置換して行うのが好ましい。水熱合成の反応温度は、通常80℃〜200℃、反応時間は通常1〜100時間である。オートクレーブ内の圧力は、好ましくは飽和蒸気圧であり、水熱合成中攪拌を行っても良い。水熱合成終了後、固体物質をそのまま乾燥しても良いが、未反応物質が、メタクロレインからメタクリル酸を製造する際に悪影響を与えるおそれがあるため、水熱合成により得られた固体物質はろ過、洗浄することがより好ましい。こうして得られた生成物は、このままでも本発明の触媒として使用可能であるが、焼成処理を行うことが好ましい。焼成処理は窒素、ヘリウム等不活性ガス中で200℃以上、好ましくは300〜500℃で0.5〜10時間行う。   Hydrothermal synthesis is a method for synthesizing substances and growing crystals in the presence of high-temperature high-pressure water. In the present invention, the hydrothermal synthesis is performed, for example, by charging the slurry liquid into an autoclave. Although the reaction can be carried out in air, it is preferred to carry out by replacing part or all of the inside of the autoclave with an inert gas such as nitrogen or helium instead of air before starting the reaction. The reaction temperature of hydrothermal synthesis is usually 80 ° C to 200 ° C, and the reaction time is usually 1 to 100 hours. The pressure in the autoclave is preferably a saturated vapor pressure, and stirring may be performed during hydrothermal synthesis. After completion of hydrothermal synthesis, the solid substance may be dried as it is, but since the unreacted substance may adversely affect the production of methacrylic acid from methacrolein, the solid substance obtained by hydrothermal synthesis is More preferably, it is filtered and washed. The product thus obtained can be used as it is as the catalyst of the present invention, but is preferably subjected to a calcination treatment. The baking treatment is carried out in an inert gas such as nitrogen or helium at 200 ° C. or higher, preferably 300 to 500 ° C. for 0.5 to 10 hours.

このようにして得られた本発明の触媒は、そのまま本発明の触媒とすることができるが、粉砕して使用することが好ましい。本発明の触媒は、固定床、流動床、移動床等のいずれの反応様式にも適用できるが、固定床の場合、好ましくはシリカ、アルミナ、シリコンカーバイド等の球状担体に粉末状の複合金属酸化物を担持成型した被覆触媒、粉末状の複合金属酸化物を打錠成型等の成型機で成型した触媒とすることができる。また、流動床、移動床反応器には、耐摩耗性を向上させるためにさらにシリカ成分等を添加して調製した数十ミクロン程度の均一な触媒の使用が有利となる。   The catalyst of the present invention thus obtained can be used as it is as the catalyst of the present invention, but is preferably used after being pulverized. The catalyst of the present invention can be applied to any reaction mode such as a fixed bed, a fluidized bed, and a moving bed. A coated catalyst in which a product is supported and molded, or a catalyst in which a powdered composite metal oxide is molded by a molding machine such as tableting molding can be used. For fluidized bed and moving bed reactors, it is advantageous to use a uniform catalyst of about several tens of microns prepared by adding a silica component or the like to improve wear resistance.

本発明の触媒は、メタクロレインから接触気相酸化によるメタクリル酸の製造に使用される。メタクロレインからメタクリル酸を製造する接触気相酸化反応における原料ガス組成は、特に限定されないが、メタクロレイン:酸素:水蒸気:希釈ガス=1:0.1〜10:0〜30:0〜60(モル比)で実施することが好ましい。ここで、希釈ガスとしては、窒素、炭酸ガス等が好ましい。接触気相酸化反応は、加圧下又は減圧下で実施しても良いが、一般的には大気圧付近の圧力で実施するのが好ましい。反応温度は通常200〜400℃、好ましくは220〜350℃で実施される。原料ガスの供給量は、空間速度(SV)にして通常100〜100000hr−1、好ましくは400〜30000hr−1である。 The catalyst of the present invention is used for the production of methacrylic acid from methacrolein by catalytic gas phase oxidation. The raw material gas composition in the catalytic gas phase oxidation reaction for producing methacrylic acid from methacrolein is not particularly limited, but methacrolein: oxygen: water vapor: diluted gas = 1: 0.1 to 10: 0 to 30: 0 to 60 ( (Molar ratio) is preferable. Here, as dilution gas, nitrogen, carbon dioxide gas, etc. are preferable. The catalytic gas phase oxidation reaction may be carried out under pressure or under reduced pressure, but generally it is preferably carried out at a pressure near atmospheric pressure. The reaction temperature is generally 200 to 400 ° C, preferably 220 to 350 ° C. The supply amount of the raw material gas is usually 100~100000Hr -1 in the space velocity (SV), preferably 400~30000hr -1.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、その趣旨を越えない限り、以下の実施例に限定されるものではない。
なお、以下の実施例におけるメタクロレインの転化率及びメタクリル酸収率は、それぞれ次の通り定義される。
メタクロレインの転化率(モル%)=(反応したメタクロレインのモル数)/(供給したメタクロレインのモル数)×100
メタクリル酸収率(モル%)=(生成したメタクリル酸のモル数)/(供給したメタクロレインのモル数)×100
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
In the following Examples, methacrolein conversion and methacrylic acid yield are defined as follows.
Conversion rate of methacrolein (mol%) = (number of moles of reacted methacrolein) / (number of moles of supplied methacrolein) × 100
Methacrylic acid yield (mol%) = (moles of methacrylic acid produced) / (moles of methacrolein supplied) × 100

実施例1
(触媒の調製)
蒸留水20mlにモリブデン酸アンモニウム1.471gを室温で溶解した。また、別の容器で蒸留水20mlに硫酸バナジルn水和物0.5365gを溶解し、その水溶液を上記のモリブデン水溶液に添加して充分に攪拌するとスラリー状に変化した。また、これとは別の容器に硝酸ビスマス五水和物0.68gをグリセリンと蒸留水の混合液(体積比1:1)1.7mlに溶解したものを用意した。その水溶液を、上記のスラリー液を3分間撹拌させたものに添加し、さらに7分間撹拌した。28%アンモニア水溶液を用いてスラリー液のpHを4.0に調節した。スラリー液を窒素ガスで10分間バブリングした後に、このスラリー液を残渣がないように蒸留水でビーカーを洗浄しながら内容量100mLのオートクレーブへ移し、175℃で48時間加熱撹拌を行った。得られた生成物は室温まで放冷した後に、ろ過・水洗(20mL×3)を行い、80℃で終夜乾燥を行うことにより、顆粒状の生成物を得た。
Example 1
(Preparation of catalyst)
1.471 g of ammonium molybdate was dissolved in 20 ml of distilled water at room temperature. In another container, 0.5365 g of vanadyl sulfate n-hydrate was dissolved in 20 ml of distilled water, and the resulting aqueous solution was added to the above-mentioned molybdenum aqueous solution and stirred sufficiently to change into a slurry state. Further, another container prepared by dissolving 0.68 g of bismuth nitrate pentahydrate in 1.7 ml of a mixed solution of glycerin and distilled water (volume ratio 1: 1) was prepared. The aqueous solution was added to the slurry obtained by stirring the slurry solution for 3 minutes, and further stirred for 7 minutes. The pH of the slurry was adjusted to 4.0 using a 28% aqueous ammonia solution. After bubbling the slurry liquid with nitrogen gas for 10 minutes, this slurry liquid was transferred to an autoclave having an internal volume of 100 mL while washing the beaker with distilled water so that there was no residue, and heated and stirred at 175 ° C. for 48 hours. The resulting product was allowed to cool to room temperature, filtered, washed with water (20 mL × 3), and dried at 80 ° C. overnight to obtain a granular product.

生成した顆粒を、蛍光X線分析法及び元素分析法を用いて組成分析したところ、バナジウムの原子比を1.0としたときにモリブデンの原子比が2.9、ビスマスの原子比が0.7、窒素の原子比が0.8であり、Mo9.83.6Bi2.5(NH2.942の触媒組成であった。また、X線回折(Cu−Kα線を使用)測定結果を図1に示す。2θ値で7.7°、23.2°、25.4°、26.5°、29.8°にピークが現れたことを確認した。
生成したサンプルを、空気流通下において300℃で6時間かけて本焼成し、蛍光X線分析法及び元素分析法を用いて組成分析したところ、バナジウムの原子比を1.0としたときにモリブデンの原子比が3.1、ビスマスの原子比が0.9、窒素の原子比が0.8であり、組成式はMo11.23.6Bi3.2(NH2.940であった。また、X線回折(Cu−Kα線を使用)測定結果を図2に示す。2θ値で7.7°、23.5°、25.6°、26.8°、30.1°にピークが現れたことを確認した。
The composition of the produced granule was analyzed using X-ray fluorescence analysis and elemental analysis. As a result, when the atomic ratio of vanadium was 1.0, the atomic ratio of molybdenum was 2.9 and the atomic ratio of bismuth was 0.00. 7. The atomic ratio of nitrogen was 0.8, and the catalyst composition was Mo 9.8 V 3.6 Bi 2.5 (NH 4 ) 2.9 O 42 . The X-ray diffraction (using Cu-Kα ray) measurement results are shown in FIG. It was confirmed that peaks appeared at 7.7 °, 23.2 °, 25.4 °, 26.5 °, and 29.8 ° as 2θ values.
The produced sample was calcined at 300 ° C. for 6 hours under air flow, and composition analysis was performed using X-ray fluorescence analysis and elemental analysis. When the atomic ratio of vanadium was 1.0, molybdenum was obtained. The atomic ratio is 3.1, the atomic ratio of bismuth is 0.9, the atomic ratio of nitrogen is 0.8, and the composition formula is Mo 11.2 V 3.6 Bi 3.2 (NH 4 ) 2.9 O 40 . Moreover, the X-ray diffraction (Cu-Kα ray is used) measurement result is shown in FIG. It was confirmed that peaks appeared at 7.7 °, 23.5 °, 25.6 °, 26.8 °, and 30.1 ° as 2θ values.

(触媒評価試験)
本焼成後の顆粒3.45gを粉砕した石英砂6.90gと均一に混ぜた。これを球状多孔質アルミナ担体(粒径4.0mm)20.6gと混合した後に、内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)1200hr−1、反応浴温度290℃で反応成績の測定を行った。評価試験の結果を表1に示す。
(Catalyst evaluation test)
3.45 g of the granulated granule was uniformly mixed with 6.90 g of pulverized quartz sand. This was mixed with 20.6 g of a spherical porous alumina support (particle size: 4.0 mm) and then filled into a stainless steel reaction tube having an inner diameter of 18.4 mm, and the raw material gas composition (molar ratio) methacrolein: oxygen: water vapor: nitrogen = The reaction results were measured at 1: 2: 4: 18.6, space velocity (SV) 1200 hr-1, and reaction bath temperature 290 ° C. The results of the evaluation test are shown in Table 1.

比較例1
実施例1と同じ組成の原料(モリブデン酸アンモニウム20.37g、硫酸バナジルn水和物9.79g、硝酸ビスマス五水和物13.42g)を量りとり、物理的に混合した顆粒を調製した。得られたサンプルを、蛍光X線分析法を用いて組成分析したところ、バナジウムの原子比を1.0としたときにモリブデンの原子比が2.8、ビスマスの原子比が0.6であり、実施例1で得られたサンプルとほぼ同一組成を持っていることを確認した。また、X線回折(Cu−Kα線を使用)測定結果を図2に示す。2θ値で7.7°、25.4°、26.5°、29.8°にピークを確認できなかったため、この比較用のサンプルはε−ケギン型ヘテロポリ酸構造を有していないことを確認した。
(触媒評価試験)
触媒評価試験は、実施例1と同一の条件で行った。評価試験の結果を表1に示す。この結果よりε−ケギン型ヘテロポリ酸の構造を有していることがメタクリル酸生成反応に有意であることを確認した。
Comparative Example 1
Raw materials having the same composition as in Example 1 (20.37 g of ammonium molybdate, 9.79 g of vanadyl sulfate n hydrate, 13.42 g of bismuth nitrate pentahydrate) were weighed and physically mixed granules were prepared. When the composition of the obtained sample was analyzed using X-ray fluorescence analysis, the atomic ratio of molybdenum was 2.8 and the atomic ratio of bismuth was 0.6 when the atomic ratio of vanadium was 1.0. It was confirmed that the sample had almost the same composition as the sample obtained in Example 1. Moreover, the X-ray diffraction (Cu-Kα ray is used) measurement result is shown in FIG. Since peaks at 7.7 °, 25.4 °, 26.5 °, and 29.8 ° could not be confirmed as 2θ values, it was confirmed that this comparative sample did not have an ε-Keggin type heteropolyacid structure. confirmed.
(Catalyst evaluation test)
The catalyst evaluation test was performed under the same conditions as in Example 1. The results of the evaluation test are shown in Table 1. From this result, it was confirmed that having a structure of ε-Keggin type heteropolyacid was significant for the methacrylic acid formation reaction.

実施例2
(触媒の調製)
仕込み量を400倍にしたこと以外は、実施例1と同様の手法で生成物の調合、ろ過・水洗、乾燥工程を行った。この工程で得られた顆粒125.0gに強度向上剤(セラミック繊維)13.3gを均一に混合し、球状多孔質アルミナ担体(粒径4.5mm)200gに純水をバインダーとして転動造粒法により被覆成形した。得られた成形物を空気流通下において300℃で6時間かけて本焼成を行い目的とする被覆触媒を得た。この被覆触媒を、蛍光X線分析法及び元素分析法を用いて組成分析したところ、バナジウムの原子比を1.0としたときにモリブデンの原子比が3.2、ビスマスの原子比が0.7、窒素の原子比が1.1であり、組成式はMo11.53.6Bi2.5(NH4.040であった。X線回折(Cu−Kα線を使用)を測定したところ、図2に示す実施例1と同じようなグラフを示し、2θ値で7.7°、23.2°、25.4°、26.5°、29.8°にピークを確認したため、この本発明のサンプルはε−ケギン型ヘテロポリ酸構造を有していることを確認した。
Example 2
(Preparation of catalyst)
Product preparation, filtration / water washing, and drying steps were performed in the same manner as in Example 1 except that the amount charged was 400 times. 15.0 g of a strength improver (ceramic fiber) is uniformly mixed with 125.0 g of the granules obtained in this step, and rolling granulation using 200 g of a spherical porous alumina carrier (particle size 4.5 mm) as a binder with pure water. The coating was molded by the method. The obtained molded product was subjected to main calcination at 300 ° C. for 6 hours under air flow to obtain a target coated catalyst. This coated catalyst was subjected to composition analysis using X-ray fluorescence analysis and elemental analysis. As a result, when the atomic ratio of vanadium was 1.0, the atomic ratio of molybdenum was 3.2 and the atomic ratio of bismuth was 0.00. 7. The atomic ratio of nitrogen was 1.1, and the compositional formula was Mo 11.5 V 3.6 Bi 2.5 (NH 4 ) 4.0 O 40 . When X-ray diffraction (using Cu—Kα ray) was measured, the same graph as in Example 1 shown in FIG. 2 was obtained, and the 2θ values were 7.7 °, 23.2 °, 25.4 °, 26 Since the peaks were confirmed at .5 ° and 29.8 °, it was confirmed that the sample of the present invention had an ε-Keggin type heteropolyacid structure.

(触媒評価試験)
実施例2で得られた被覆触媒41.2mlを内径18.4mmのステンレス反応管に充填し、原料ガス組成(モル比)メタクロレイン:酸素:水蒸気:窒素=1:2:4:18.6、空間速度(SV)300hr−1、反応浴温度290℃で反応成績の測定を行った。評価試験の結果を下記の表1に記載する。ε−ケギン型ヘテロポリ酸構造を有する顆粒を被覆成形することでメタクリル酸生成反応により有意であることを確認した。
(Catalyst evaluation test)
A stainless steel reaction tube having an inner diameter of 18.4 mm was filled with 41.2 ml of the coated catalyst obtained in Example 2, and the raw material gas composition (molar ratio) methacrolein: oxygen: water vapor: nitrogen = 1: 2: 4: 18.6. The reaction results were measured at a space velocity (SV) of 300 hr-1 and a reaction bath temperature of 290 ° C. The results of the evaluation test are shown in Table 1 below. It was confirmed that the granule having the ε-Keggin type heteropolyacid structure was formed by coating, and the methacrylic acid formation reaction was significant.

Figure 2016168591
Figure 2016168591

Claims (6)

メタクロレインを分子状酸素又は分子状酸素含有ガスの存在下で接触気相酸化してメタクリル酸を製造するためのメタクリル酸製造用触媒であって、
下記一般式(I)で表され、
Mo (I)
(式中、Moはモリブデンであり、
Aはバナジウム、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素であり、
Bはビスマス、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素であり、
Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも一種の元素であり、
Yはリン、ヒ素、アンチモン、ゲルマニウム、ビスマス及びセレンからなる群より選ばれる少なくとも1種の元素であり、
Zは鉄、クロム、ニッケル、コバルト、マンガン、亜鉛、錫、銀、パラジウム、ロジウム、ルテニウム、テルル、タングステン、ケイ素、アルミニウム、セリウム、マグネシウム、ホウ素及びアンモニウムからなる群より選ばれる少なくとも1種の元素又はイオンであり、
a、b、c、d、e及びfは、各元素の原子比をそれぞれ表し、b=1のとき、0<a<5.0、0<c<2.0、0≦d<3.0、0≦e<1.0、0≦f<2.0であり、gは各元素の酸化状態により定まる数である)
Cu−Kα線を使用した粉末X線回折パターンにおいて、2θの値が7.7°±0.3°、23.2°±0.3°、25.4°±0.3°、26.5°±0.3°及び29.8°±0.3°に回折ピークを有する、ε−ケギン型ヘテロポリ酸構造を有する、メタクリル酸製造用触媒。
A catalyst for producing methacrylic acid for producing methacrylic acid by catalytic gas phase oxidation of methacrolein in the presence of molecular oxygen or a molecular oxygen-containing gas,
It is represented by the following general formula (I),
Mo a A b B c X d Y e Z f O g (I)
(Wherein Mo is molybdenum,
A is at least one element selected from the group consisting of vanadium, zinc, manganese, iron, cobalt and nickel;
B is at least one element selected from the group consisting of bismuth, zinc, manganese, iron, cobalt and nickel;
X is at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium;
Y is at least one element selected from the group consisting of phosphorus, arsenic, antimony, germanium, bismuth and selenium,
Z is at least one element selected from the group consisting of iron, chromium, nickel, cobalt, manganese, zinc, tin, silver, palladium, rhodium, ruthenium, tellurium, tungsten, silicon, aluminum, cerium, magnesium, boron, and ammonium. Or an ion,
a, b, c, d, e, and f represent the atomic ratio of each element. When b = 1, 0 <a <5.0, 0 <c <2.0, 0 ≦ d <3. 0, 0 ≦ e <1.0, 0 ≦ f <2.0, and g is a number determined by the oxidation state of each element)
In the powder X-ray diffraction pattern using Cu-Kα rays, the values of 2θ are 7.7 ° ± 0.3 °, 23.2 ° ± 0.3 °, 25.4 ° ± 0.3 °, 26. A catalyst for producing methacrylic acid having an ε-Keggin type heteropolyacid structure having diffraction peaks at 5 ° ± 0.3 ° and 29.8 ° ± 0.3 °.
Aがバナジウムである、請求項1に記載のメタクリル酸製造用触媒。   The catalyst for methacrylic acid production according to claim 1, wherein A is vanadium. Bがビスマスである、請求項1又は2に記載のメタクリル酸製造用触媒。   The catalyst for methacrylic acid production according to claim 1 or 2, wherein B is bismuth. 下記工程を含むことを特徴とする、請求項1〜3のいずれか一項に記載のメタクリル酸製造用触媒の製造方法:
工程(A):モリブデンを含有する化合物;バナジウム、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素を含有する化合物;並びにビスマス、亜鉛、マンガン、鉄、コバルト及びニッケルからなる群より選ばれる少なくとも一種の元素を含有する化合物;必要によりリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも一種の元素を含有する化合物;必要によりリン、ヒ素、アンチモン、ゲルマニウム、ビスマス及びセレンからなる群より選ばれる少なくとも1種の元素を含有する化合物;並びに必要により鉄、クロム、ニッケル、コバルト、マンガン、亜鉛、錫、銀、パラジウム、ロジウム、ルテニウム、テルル、タングステン、ケイ素、アルミニウム、セリウム、マグネシウム、ホウ素及びアンモニウムからなる群より選ばれる少なくとも1種の元素又はイオンを含有する化合物を、水と混合し、これらの化合物の水溶液又は水分散体を調製する工程、
工程(B):工程(A)で得られた水溶液又は水分散体を用いて、水熱合成により固形分を得る工程、
工程(C):工程(B)で得られた固形分を焼成する工程。
The manufacturing method of the catalyst for methacrylic acid manufacture as described in any one of Claims 1-3 characterized by including the following process:
Step (A): a compound containing molybdenum; a compound containing at least one element selected from the group consisting of vanadium, zinc, manganese, iron, cobalt and nickel; and bismuth, zinc, manganese, iron, cobalt and nickel A compound containing at least one element selected from the group consisting of: a compound containing at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium if necessary; phosphorus, arsenic, antimony, if necessary A compound containing at least one element selected from the group consisting of germanium, bismuth and selenium; and, if necessary, iron, chromium, nickel, cobalt, manganese, zinc, tin, silver, palladium, rhodium, ruthenium, tellurium, tungsten, Silicon Miniumu, cerium, magnesium, at least one element or compound containing ions selected from the group consisting of boron and ammonium, mixed with water to prepare an aqueous solution or aqueous dispersion of these compounds process,
Step (B): A step of obtaining a solid content by hydrothermal synthesis using the aqueous solution or aqueous dispersion obtained in Step (A),
Step (C): A step of baking the solid content obtained in the step (B).
水熱合成における温度が80℃〜200℃であり、圧力が該温度における飽和蒸気圧である、請求項4に記載のメタクリル酸製造用触媒の製造方法。   The manufacturing method of the catalyst for methacrylic acid production of Claim 4 whose temperature in hydrothermal synthesis is 80 to 200 degreeC, and whose pressure is the saturated vapor pressure in this temperature. 請求項1〜3のいずれか1項に記載のメタクリル酸製造用触媒の存在下で、メタクロレインの分子状酸素又は分子状酸素含有ガスによる接触気相酸化反応を行うことを特徴とする、メタクリル酸の製造方法。   4. Methacrylic acid is subjected to a catalytic gas phase oxidation reaction with molecular oxygen or a molecular oxygen-containing gas in the presence of the catalyst for producing methacrylic acid according to any one of claims 1 to 3. Acid production method.
JP2016046697A 2015-03-11 2016-03-10 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid Active JP6653871B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015048456 2015-03-11
JP2015048456 2015-03-11

Publications (2)

Publication Number Publication Date
JP2016168591A true JP2016168591A (en) 2016-09-23
JP6653871B2 JP6653871B2 (en) 2020-02-26

Family

ID=56982961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016046697A Active JP6653871B2 (en) 2015-03-11 2016-03-10 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP6653871B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107297216A (en) * 2017-06-01 2017-10-27 中国科学院过程工程研究所 Molybdovanaphosphoric acid class nanocatalyst prepared by a kind of hydro-thermal method
CN112805090A (en) * 2018-09-18 2021-05-14 三菱化学株式会社 Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid and methacrylic acid ester
CN114471596A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Catalyst for preparing acrylic acid and method for preparing catalyst
WO2023182426A1 (en) * 2022-03-24 2023-09-28 三菱ケミカル株式会社 Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid and methacrylic acid esters using catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107297216A (en) * 2017-06-01 2017-10-27 中国科学院过程工程研究所 Molybdovanaphosphoric acid class nanocatalyst prepared by a kind of hydro-thermal method
CN112805090A (en) * 2018-09-18 2021-05-14 三菱化学株式会社 Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid and methacrylic acid ester
CN114471596A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Catalyst for preparing acrylic acid and method for preparing catalyst
CN114471596B (en) * 2020-10-27 2023-09-29 中国石油化工股份有限公司 Catalyst for preparing acrylic acid and method for preparing catalyst
WO2023182426A1 (en) * 2022-03-24 2023-09-28 三菱ケミカル株式会社 Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid and methacrylic acid esters using catalyst

Also Published As

Publication number Publication date
JP6653871B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP5483818B2 (en) Fluid bed catalyst for acrylonitrile production and process for producing acrylonitrile
JP6668207B2 (en) Catalyst for acrylic acid production
JP6653871B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
US8034737B2 (en) Catalyst for producing acrylonitrile and process for producing acrylonitrile
JP5210834B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP4588533B2 (en) Catalyst for acrylonitrile synthesis
US7229945B2 (en) Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JPWO2010038677A1 (en) Catalyst for producing acrolein and / or acrylic acid and method for producing acrolein and / or acrylic acid using the catalyst
JP2004298873A (en) Mixed metal oxide catalyst for producing unsaturated aldehyde from olefin
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP5548132B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP4285084B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JP4875480B2 (en) Method for producing metal-containing catalyst
CN106881128B (en) Heteropolyacid salt catalyst, preparation method and application thereof
JPH0615178A (en) Preparation of catalyst for production of methacrylic acid
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JPWO2019188955A1 (en) Catalyst for unsaturated carboxylic acid production
JPWO2018110126A1 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid, and α, β-unsaturated Method for producing carboxylic acid ester
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6653871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250