JP4811977B2 - Method for producing catalyst for synthesis of methacrylic acid - Google Patents

Method for producing catalyst for synthesis of methacrylic acid Download PDF

Info

Publication number
JP4811977B2
JP4811977B2 JP2001186214A JP2001186214A JP4811977B2 JP 4811977 B2 JP4811977 B2 JP 4811977B2 JP 2001186214 A JP2001186214 A JP 2001186214A JP 2001186214 A JP2001186214 A JP 2001186214A JP 4811977 B2 JP4811977 B2 JP 4811977B2
Authority
JP
Japan
Prior art keywords
parts
solid
methacrylic acid
molybdenum
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001186214A
Other languages
Japanese (ja)
Other versions
JP2003001111A (en
Inventor
聖午 渡辺
奉正 辰巳
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001186214A priority Critical patent/JP4811977B2/en
Publication of JP2003001111A publication Critical patent/JP2003001111A/en
Application granted granted Critical
Publication of JP4811977B2 publication Critical patent/JP4811977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する際に使用するメタクリル酸合成用触媒の製造方法に関する。
【0002】
【従来の技術】
メタクロレインの気相接触酸化によりメタクリル酸を合成する際に用いる代表的な触媒であるモリブデンおよびリンを主成分とする触媒の製造方法としては、例えば、特開昭50−101316号公報、特開昭53−37614号公報、特開昭54−103819号公報、特開昭57−120547号公報、特開昭60−239439号公報、特開平2−240043号公報等に記載の方法が知られている。これらの文献に記載されている触媒の製造方法は、各金属成分を含む一種類の水性スラリーを乾燥し、成形した後、焼成するというものであるが、この方法で得られる触媒は、活性およびメタクリル酸への選択性が工業触媒としては不十分である。
【0003】
一方、特開平5−177141号公報には、モリブデン、リンおよびセシウムを含むヘテロポリ酸系触媒を調製する際に、モリブデン、リンおよびセシウムを含むヘテロポリ酸塩の懸濁液に、モリブデンおよびリンを含みセシウムを含まない液状の触媒原料を添加する方法が開示されている。同公報では、この方法により製造された触媒は、モリブデン、リンおよびセシウムを含むヘテロポリ酸塩の結晶粒子表面をセシウムを含まないヘテロポリ酸が覆った構造を有していると推定している。しかしながら、このような方法で製造した触媒をもってしても、活性およびメタクリル酸への選択性が工業触媒としては不十分である。
【0004】
【発明が解決しようとする課題】
本発明は、活性およびメタクリル酸への選択性に優れたメタクリル酸合成用触媒の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、少なくともモリブデン、リンおよびX(Xは、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。)を含む固形物Aと、少なくともモリブデンおよびリンを含みXを含まない固形物Bを乾式混合した後、成形し、得られた成形物を300〜500℃で焼成するメタクリル酸合成用触媒の製造方法である。
【0006】
【発明の実施の形態】
固形物Aは、少なくともモリブデン、リンおよびXを含む固形物である。ここでXは、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。固形物Aの調製法は特に限定されないが、例えば、共沈法、蒸発乾固法、酸化物混合法等の種々の方法を用いることができる。特に、少なくともモリブデン、リンおよびXを含む水性スラリーを乾燥することにより調製することが好ましい。この際、該水性スラリーの乾燥方法は特に限定はなく、使用する乾燥機としては、例えば、箱型乾燥機、噴霧乾燥機、ドラムドライヤー、スラリードライヤー等を挙げることができる。なお、固形物Aは実質的に固形物であればよく、水分を含んでいても差し支えない。固形物Aの形態も特に限定されないが、粉体状が特に好ましい。また、固形物Aの調製過程において、300℃以上で熱処理する工程が含まれていないことが望ましい。固形物Aは通常ヘテロポリ酸塩の構造をしているが、必ずしもヘテロポリ酸塩の構造を有している必要はない。
【0007】
固形物Aの調製に用いる原料は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を組み合わせて使用することができる。モリブデン原料としては、例えば、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。リン原料としては、例えば、リン酸、亜リン酸、酸化リン、五塩化リン等が使用できる。
【0008】
固形物Aは、少なくともモリブデン、リンおよびXを含有する複合酸化物であれば特に限定されないが、その好ましい元素組成は次の式(2)で表される。
MoCu (2)
式(2)中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素、Yは鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦3、0.01≦d≦3、1≦e≦5、好ましくは1.5≦e≦4、0≦f≦3であり、gは前記各成分の原子比を満足するのに必要な酸素の原子比である。
【0009】
固形物Bの調製法は特に限定されないが、固形物Aと同様に共沈法、蒸発乾固法、酸化物混合法等の種々の方法を用いることができる。特に、少なくともモリブデンおよびリンを含みXを含まない水性スラリーを乾燥することにより調製することが好ましい。この際、該水性スラリーの乾燥方法は特に限定はなく、固形物Aと同様に箱型乾燥機、噴霧乾燥機、ドラムドライヤー、スラリードライヤー等を用いることができる。なお、固形物Bは実質的に固形物であればよく、水分を含んでいても差し支えない。また、その形態も特に限定されないが、粉体状が特に好ましい。また、その調製過程において300℃以上で熱処理する工程が含まれていないことが望ましい。また、固形物Bは必ずしもヘテロポリ酸またはヘテロポリ酸塩の構造を有している必要はない。
【0010】
固形物Bの調製に用いる原料は特に限定されず、固形物Aと同様に各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を組み合わせて使用することができる。モリブデン原料としては、例えば、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。リン原料としては、例えば、リン酸、亜リン酸、酸化リン、五塩化リン等が使用できる。
【0011】
固形物Bは、少なくともモリブデンおよびリンを含有し、前記Xを含まない複合酸化物であれば特に限定されないが、その好ましい元素組成は次の式(3)で表される。
MoCu (3)
式(3)中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、 Yは鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦3、0.01≦d≦3、0≦f≦3であり、gは前記各成分の原子比を満足するのに必要な酸素の原子比である。
【0012】
前記固形物Aと前記固形物Bの混合は乾式、すなわち実質的に液状媒体を用いないで実施する。乾式で混合する方法は特に限定されないが、粉体状の固形物Aと粉体状の固形物Bを粉体用混合器を用いてできるだけ均一になるように物理的に混合する方法が好ましい。このようにして得られた混合物のバルクの好ましい元素組成は次の式(4)で表される。
MoCu (4)
式(4)中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素、Yは鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦3、0.01≦d≦3、0.01≦e≦3、0≦f≦3であり、gは前記各成分の原子比を満足するのに必要な酸素の原子比である。
【0013】
前記の固形物Aと固形物Bの乾式混合物は次いで成形する。成形方法は特に限定はなく、打錠成形、押出成形、造粒等の各種成形法を用いることができる。成形に際しては、成形物の比表面積、細孔容積および細孔分布を再現性よく制御する、機械的強度を高める等の目的で、例えば、硫酸バリウム、硝酸アンモニウム等の無機塩類、グラファイト等の滑剤、セルロース類、でんぷん、ポリビニルアルコール、ステアリン酸等の有機物、シリカゾル、アルミナゾル等の水酸化物ゾル、ウィスカー、ガラス繊維、炭素繊維等の無機質繊維等の添加剤や添加物を適宜添加してもよい。成形物の形状は特に限定されず、例えば、球状、円柱状、リング状、板状等が挙げられる。
【0014】
このようにして得られた成形物は300〜500℃で焼成される。焼成は、通常、空気等の酸素含有ガス流通下および/または不活性ガス流通下で行う。焼成時間は特に限定されないが、通常は0.5時間以上、好ましくは1〜40時間である。焼成により得られる触媒には、ヘテロポリ酸またはヘテロポリ酸塩の構造が含まれていることが好ましい。
【0015】
このようにして製造された触媒の各成分の存在状態、殊にXの存在状態は複雑であることから明確ではない。しかしながら、少なくともモリブデン、リンおよびXを含む固形物Aと少なくともモリブデンおよびリンを含みXを含まない固形物Bを乾式で混合していることから、特開平5−177141号公報に記載された方法で製造された触媒の構造、すなわち、モリブデン、リンおよびXを含むヘテロポリ酸塩の結晶粒子表面をXを含まないヘテロポリ酸が覆った構造とは相違している。
【0016】
次に、このようにして得られた本願発明の触媒を用いてメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法について説明する。
気相接触酸化に用いる原料ガスのメタクロレイン濃度は広い範囲で変えることができるが、好ましくは1〜20容量%、特に好ましくは3〜10容量%である。原料のメタクロレインには、水、低級飽和アルデヒド等の実質的に反応に影響を与えない不純物が少量含まれている場合があるが、原料ガスにはこのようなメタクロレイン由来の不純物が含まれていてもよい。
【0017】
原料ガスには分子状酸素が含まれている必要があるが、原料ガス中の分子状酸素の量はメタクロレインの0.4〜4倍モルが好ましく、特に0.5〜3倍モルが好ましい。原料ガスの分子状酸素源には空気を用いるのが工業的に有利であるが、必要に応じて純酸素で富化した空気も使用できる。また原料ガスは、窒素、炭酸ガス等の不活性ガス、水蒸気等で希釈されていることが好ましい。
気相接触酸化の反応圧力は常圧〜数気圧である。反応温度は、通常200〜450℃、好ましくは250〜400℃である。原料ガスと触媒の接触時間は通常1〜9秒、好ましくは2〜6秒である。
【0018】
【実施例】
以下に本願発明を実施例および比較例を用いて説明する。ただし、実施例および比較例中の「部」は重量部を意味する。反応試験分析はガスクロマトグラフィーにより行った。また、原料であるメタクロレインの転化率、生成したメタクリル酸の選択率および収率は以下のように定義される。
メタクロレイン反応率(%)=(B/A)×100
メタクリル酸選択率(%)=(C/B)×100
メタクリル酸収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
【0019】
[実施例1]
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.4部および硝酸カリウム14.4部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、更に硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に硝酸ビスマス6.9部に60%硝酸7.0部および純水40部を加えた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部および二酸化セリウム1.6部を加えた。得られた水性スラリーを加熱攪拌しながら蒸発乾固した後、130℃で16時間乾燥し、続いて粉砕することにより粉体状の固形物A−1を得た。この固形物A−1の酸素を除く元素の組成は、Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2であった。
【0020】
別に、パラモリブデン酸アンモニウム100部およびメタバナジン酸アンモニウム4.4部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、更に硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に硝酸ビスマス6.9部に60%硝酸7.0部および純水40部を加えた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部および二酸化セリウム1.6部を加えた。得られた水性スラリーを加熱攪拌しながら蒸発乾固した後、130℃で16時間乾燥し、続いて粉砕することにより粉体状の固形物B−1を得た。この固形物B−1の酸素を除く元素の組成は、Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2であった。
【0021】
次に、28部の固形物A−1と50部の固形物B−1とをよく混合した後、グラファイト2.3部を添加してさらによく混合した。この混合物を打錠成形機により、外径5mm、内径2mm、長さ5mmのリング状に成形し、得られた成形物を空気流通下に380℃で5時間焼成して触媒を製造した。この触媒の酸素を除く元素の組成は、Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2であった。
【0022】
この触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%及び窒素55容量%からなる原料ガスを反応温度290℃、接触時間3.6秒で通じたところ、メタクロレイン反応率91.5%、メタクリル酸選択率88.9%、メタクリル酸収率81.3%であった。
【0023】
[実施例2]
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.4部および硝酸カリウム9.6部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、更に硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に硝酸ビスマス6.9部に60%硝酸7.0部および純水40部を加えた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部および二酸化セリウム1.6部を加えた。得られた水性スラリーを加熱攪拌しながら蒸発乾固した後、130℃で16時間乾燥し、続いて粉砕することにより粉体状の固形物A−2を得た。この固形物A−2の酸素を除く元素の組成は、Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2であった。また、実施例1と同様にして粉体状の固形物B−1を得た。
【0024】
次に、50部の固形物A−2と46部の固形物B−1とをよく混合した後、グラファイト2.9部を添加してさらによく混合した。この混合物を打錠成形機により、外径5mm、内径2mm、長さ5mmのリング状に成形し、得られた成形物を空気流通下に380℃で5時間焼成して触媒を製造した。この触媒の酸素を除く元素の組成は、Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2であった。
【0025】
この触媒を用いて実施例1と同様に反応を行ったところ、メタクロレイン反応率91.6%、メタクリル酸選択率89.0%、メタクリル酸収率81.5%であった。
【0026】
[比較例1]
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.4部および硝酸カリウム4.8部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、更に硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に硝酸ビスマス6.9部に60%硝酸7.0部および純水40部を加えた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部および二酸化セリウム1.6部を加えた。得られた水性スラリーを加熱攪拌しながら蒸発乾固した後、130℃で16時間乾燥し、続いて粉砕することにより粉体状の固形物A−3を得た。
【0027】
次に、100部の固形物A−3にグラファイト3部を添加してよく混合した。この混合物を打錠成形機により、外径5mm、内径2mm、長さ5mmのリング状に成形し、得られた成形物を空気流通下に380℃で5時間焼成して触媒を製造した。この触媒の酸素を除く元素の組成は、実施例1および2と同じMo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2であった。
【0028】
この触媒を用いて実施例1と同様に反応を行ったところ、メタクロレイン反応率90.0%、メタクリル酸選択率88.2%、メタクリル酸収率79.4%であった。
【0029】
[比較例2]
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.4部および硝酸カリウム2.4部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、更に硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に硝酸ビスマス6.9部に60%硝酸7.0部および純水40部を加えた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部および二酸化セリウム1.6部を加えた。得られた水性スラリーを加熱攪拌しながら蒸発乾固した後、130℃で16時間乾燥し、続いて粉砕することにより粉体状の固形物A−4を得た。この固形物A−4の酸素を除く元素の組成は、Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.20.5であった。また、実施例1と同様にして固形物A−1を得た。
【0030】
次に、20部の固形物A−1と109部の固形物A−4とをよく混合した後、グラファイト2.9部を添加してさらによく混合した。この混合物を打錠成形機により、外径5mm、内径2mm、長さ5mmのリング状に成形し、得られた成形物を空気流通下に380℃で5時間焼成して触媒を製造した。この触媒の酸素を除く元素の組成は、Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2であった。
【0031】
この触媒を用いて実施例1と同様に反応を行ったところ、メタクロレイン反応率90.3%、メタクリル酸選択率88.5%、メタクリル酸収率79.9%であった。
【0032】
[比較例3]
実施例1と同様にして調製した固形物A−1を100部を80℃の純水200部に懸濁させて懸濁液Cを得た。
【0033】
別に、パラモリブデン酸アンモニウム100部およびメタバナジン酸アンモニウム4.4部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、更に硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に硝酸ビスマス6.9部に60%硝酸7.0部および純水40部を加えた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部および二酸化セリウム1.6部を加えた。得られた水性スラリーに203部の前記懸濁液Cを混合し、加熱攪拌しながら蒸発乾固した後、130℃で16時間乾燥し、続いて粉砕することにより粉体状の固形物を得た。
【0034】
次に、この固形物100部にグラファイト3部を添加してよく混合した。この混合物を打錠成形機により、外径5mm、内径2mm、長さ5mmのリング状に成形し、得られた成形物を空気流通下に380℃で5時間焼成して触媒を製造した。この触媒の酸素を除く元素の組成は、Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2であった。
【0035】
この触媒を用いて実施例1と同様に反応を行ったところ、メタクロレイン反応率90.4%、メタクリル酸選択率88.5%、メタクリル酸収率80.0%であった。
【0036】
[実施例3]
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム2.8部および硝酸セシウム27.6部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、100℃で30分間攪拌した。得られた水性スラリーを並流式噴霧乾燥機により、乾燥機入口温度300℃、スラリー噴霧用回転盤20000回転/分の条件で乾燥することにより粉体状の固形物A−5を得た。この固形物A−5の酸素を除く元素の組成は、Mo121.50.5Cu0.3Fe0.4Mg0.15Zn0.1Csであった。
【0037】
別に、パラモリブデン酸アンモニウム100部およびメタバナジン酸アンモニウム2.8部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、攪拌しながら95℃に昇温した。次いで硝酸銅5.1部、硝酸第二鉄11.4部、硝酸亜鉛2.1部および硝酸マグネシウム2.7部を純水120部に溶解した溶液を加えた。更にこの混合液を100℃で30分間攪拌した。得られた水性スラリーを並流式噴霧乾燥機により、乾燥機入口温度300℃、スラリー噴霧用回転盤20000回転/分の条件で乾燥することにより粉体状の固形物B−2を得た。この固形物B−2の酸素を除く元素の組成は、Mo121.50.5Cu0.3Fe0.4Mg0.15Zn0.1であった。
【0038】
次に、30部の固形物A−5と50部の固形物B−2とをよく混合した後、グラファイト2.4部を添加してさらによく混合した。この混合物を打錠成形機により、外径5mm、内径2mm、長さ3mmのリング状に成形し、得られた成形物を空気流通下に380℃で5時間焼成して触媒を製造した。この触媒の酸素を除く元素の組成は、Mo121.50.5Cu0.3Fe0.4Mg0.15Zn0.1Csであった。
【0039】
この触媒を用いて実施例1と同様に反応を行ったところ、メタクロレイン反応率88.9%、メタクリル酸選択率86.6%、メタクリル酸収率77.0%であった。
【0040】
[比較例4]
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム2.8部および硝酸セシウム9.2部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、攪拌しながら95℃に昇温した。次いで硝酸銅3.4部、硝酸第二鉄7.6部、硝酸亜鉛1.4部および硝酸マグネシウム1.8部を純水80部に溶解した溶液を加えた。更にこの混合液を100℃で30分間攪拌した。得られた水性スラリーを並流式噴霧乾燥機により、乾燥機入口温度300℃、スラリー噴霧用回転盤20000回転/分の条件で乾燥することにより粉体状の固形物A−6を得た。
【0041】
次に、100部の固形物A−6にグラファイト3部を添加してよく混合した。この混合物を打錠成形機により、外径5mm、内径2mm、長さ3mmのリング状に成形し、得られた成形物を空気流通下に380℃で5時間焼成して触媒を製造した。この触媒の酸素を除く元素の組成は、Mo121.50.5Cu0.3Fe0.4Mg0.15Zn0.1Csであった。
【0042】
この触媒を用いて実施例1と同様に反応を行ったところ、メタクロレイン反応率87.4%、メタクリル酸選択率85.8%、メタクリル酸収率75.0%であった。
【0043】
【発明の効果】
本発明によれば、活性およびメタクリル酸への選択性に優れたメタクリル酸合成用触媒を製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a catalyst for synthesizing methacrylic acid used when synthesizing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen.
[0002]
[Prior art]
As a method for producing a catalyst mainly composed of molybdenum and phosphorus, which are typical catalysts used for synthesizing methacrylic acid by vapor phase catalytic oxidation of methacrolein, for example, JP-A-50-101316 Known are the methods described in JP-A-53-37614, JP-A-54-103819, JP-A-57-120547, JP-A-60-239439, JP-A-2-240043, and the like. Yes. The method for producing a catalyst described in these documents is to dry one type of aqueous slurry containing each metal component, mold it, and calcin it, but the catalyst obtained by this method is active and The selectivity to methacrylic acid is insufficient as an industrial catalyst.
[0003]
On the other hand, in JP-A-5-177141, when preparing a heteropolyacid catalyst containing molybdenum, phosphorus and cesium, the suspension of the heteropolyacid salt containing molybdenum, phosphorus and cesium contains molybdenum and phosphorus. A method of adding a liquid catalyst raw material not containing cesium is disclosed. In this publication, it is presumed that the catalyst produced by this method has a structure in which the surface of crystal particles of a heteropolyacid salt containing molybdenum, phosphorus and cesium is covered with a heteropolyacid containing no cesium. However, even with a catalyst produced by such a method, the activity and selectivity to methacrylic acid are insufficient as an industrial catalyst.
[0004]
[Problems to be solved by the invention]
An object of this invention is to provide the manufacturing method of the catalyst for methacrylic acid synthesis | combination excellent in activity and selectivity to methacrylic acid.
[0005]
[Means for Solving the Problems]
The present invention includes a solid A containing at least molybdenum, phosphorus and X (X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium), and at least molybdenum and phosphorus. This is a method for producing a catalyst for synthesizing methacrylic acid, in which a solid B containing no X is dry-mixed and then molded, and the resulting molded product is calcined at 300 to 500 ° C.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The solid A is a solid containing at least molybdenum, phosphorus and X. Here, X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. Although the preparation method of the solid substance A is not specifically limited, For example, various methods, such as a coprecipitation method, the evaporation-drying method, and an oxide mixing method, can be used. In particular, it is preferable to prepare by drying an aqueous slurry containing at least molybdenum, phosphorus and X. At this time, the drying method of the aqueous slurry is not particularly limited, and examples of the dryer to be used include a box-type dryer, a spray dryer, a drum dryer, and a slurry dryer. In addition, the solid substance A should just be a solid substance substantially, and even if it contains a water | moisture content, it does not interfere. The form of the solid A is not particularly limited, but a powder form is particularly preferable. Moreover, it is desirable that the process of heat treatment at 300 ° C. or higher is not included in the preparation process of the solid A. The solid A usually has a heteropolyacid salt structure, but does not necessarily have a heteropolyacid salt structure.
[0007]
The raw material used for preparation of the solid substance A is not specifically limited, Nitrate, carbonate, acetate, ammonium salt, an oxide, a halide, etc. of each element can be used in combination. As the molybdenum raw material, for example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, or the like can be used. As the phosphorus raw material, for example, phosphoric acid, phosphorous acid, phosphorus oxide, phosphorus pentachloride and the like can be used.
[0008]
The solid A is not particularly limited as long as it is a composite oxide containing at least molybdenum, phosphorus, and X, but a preferable element composition thereof is represented by the following formula (2).
Mo a P b Cu c V d X e Y f O g (2)
In formula (2), Mo, P, Cu, V and O each represent molybdenum, phosphorus, copper, vanadium and oxygen, and X is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium , Y is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium And at least one element selected from the group consisting of sulfur, selenium, tellurium, lanthanum and cerium. However, a, b, c, d, e, f and g represent atomic ratios of the respective elements. When a = 12, 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 3, 0.01 ≦ d ≦ 3, 1 ≦ e ≦ 5, preferably 1.5 ≦ e ≦ 4, and 0 ≦ f ≦ 3, and g is an atomic ratio of oxygen necessary to satisfy the atomic ratio of each component.
[0009]
Although the preparation method of the solid substance B is not specifically limited, Like the solid substance A, various methods, such as a coprecipitation method, the evaporation-drying method, and an oxide mixing method, can be used. In particular, it is preferable to prepare by drying an aqueous slurry containing at least molybdenum and phosphorus and not containing X. At this time, the drying method of the aqueous slurry is not particularly limited, and a box-type dryer, a spray dryer, a drum dryer, a slurry dryer and the like can be used in the same manner as the solid A. In addition, the solid substance B should just be a solid substance substantially, and even if it contains a water | moisture content, it does not interfere. Further, the form is not particularly limited, but powder is particularly preferable. Moreover, it is desirable that the preparation process does not include a step of heat treatment at 300 ° C. or higher. Further, the solid B does not necessarily have a heteropolyacid or heteropolyacid salt structure.
[0010]
The raw material used for preparation of the solid substance B is not specifically limited, Like the solid substance A, nitrate, carbonate, acetate, ammonium salt, an oxide, a halide, etc. of each element can be used in combination. As the molybdenum raw material, for example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, or the like can be used. As the phosphorus raw material, for example, phosphoric acid, phosphorous acid, phosphorus oxide, phosphorus pentachloride and the like can be used.
[0011]
The solid material B is not particularly limited as long as it is a composite oxide containing at least molybdenum and phosphorus and not containing the X, but a preferable element composition thereof is represented by the following formula (3).
Mo a P b Cu c V d Y f O g (3)
In formula (3), Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, respectively, Y represents iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium At least one element selected from the group consisting of tungsten, manganese, silver, boron, silicon, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium Represents. However, a, b, c, d, e, f and g represent atomic ratios of the respective elements. When a = 12, 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 3, 0.01 ≦ d ≦ 3 and 0 ≦ f ≦ 3, and g is an atomic ratio of oxygen necessary to satisfy the atomic ratio of each component.
[0012]
The solid A and the solid B are mixed in a dry manner, that is, substantially without using a liquid medium. A method of mixing in a dry method is not particularly limited, but a method of physically mixing the powdered solid A and the powdered solid B using a powder mixer so as to be as uniform as possible is preferable. The preferable elemental composition of the bulk of the mixture thus obtained is represented by the following formula (4).
Mo a P b Cu c V d X e Y f O g (4)
In formula (4), Mo, P, Cu, V and O each represent molybdenum, phosphorus, copper, vanadium and oxygen, and X is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium , Y is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium And at least one element selected from the group consisting of sulfur, selenium, tellurium, lanthanum and cerium. However, a, b, c, d, e, f and g represent atomic ratios of the respective elements. When a = 12, 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 3, 0.01 ≦ d ≦ 3, 0.01 ≦ e ≦ 3, 0 ≦ f ≦ 3, and g is an atomic ratio of oxygen necessary to satisfy the atomic ratio of each component.
[0013]
The dry mixture of solid A and solid B is then shaped. The molding method is not particularly limited, and various molding methods such as tableting molding, extrusion molding, and granulation can be used. In the molding, for the purpose of controlling the specific surface area, pore volume and pore distribution of the molded product with good reproducibility and increasing mechanical strength, for example, inorganic salts such as barium sulfate and ammonium nitrate, lubricants such as graphite, Additives and additives such as celluloses, starches, polyvinyl alcohol, stearic acid and other organic substances, hydroxide sols such as silica sol and alumina sol, whiskers, glass fibers, carbon fibers and other inorganic fibers may be added as appropriate. The shape of the molded product is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape, a ring shape, and a plate shape.
[0014]
The molded product thus obtained is fired at 300 to 500 ° C. Firing is usually performed under a flow of oxygen-containing gas such as air and / or under a flow of inert gas. Although baking time is not specifically limited, Usually, it is 0.5 hour or more, Preferably it is 1 to 40 hours. The catalyst obtained by calcination preferably contains a heteropolyacid or heteropolyacid salt structure.
[0015]
The existence state of each component of the catalyst thus produced, particularly the existence state of X, is not clear because it is complicated. However, since the solid A containing at least molybdenum, phosphorus and X and the solid B containing at least molybdenum and phosphorus and not X are mixed in a dry process, the method described in JP-A-5-177141 is used. It is different from the structure of the produced catalyst, that is, the structure in which the surface of the crystal particles of the heteropolyacid salt containing molybdenum, phosphorus and X is covered with the heteropolyacid containing no X.
[0016]
Next, a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen using the catalyst of the present invention thus obtained will be described.
The concentration of methacrolein in the raw material gas used for the gas phase catalytic oxidation can be varied within a wide range, but is preferably 1 to 20% by volume, particularly preferably 3 to 10% by volume. The raw material methacrolein may contain a small amount of impurities that do not substantially affect the reaction, such as water, lower saturated aldehydes, etc., but the raw material gas contains such an impurity derived from methacrolein. It may be.
[0017]
The source gas needs to contain molecular oxygen, but the amount of molecular oxygen in the source gas is preferably 0.4 to 4 times mol, more preferably 0.5 to 3 times mol of methacrolein. . Although it is industrially advantageous to use air as the molecular oxygen source of the source gas, air enriched with pure oxygen can also be used if necessary. The source gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, water vapor or the like.
The reaction pressure for gas phase catalytic oxidation is from atmospheric pressure to several atmospheres. The reaction temperature is usually 200 to 450 ° C., preferably 250 to 400 ° C. The contact time between the raw material gas and the catalyst is usually 1 to 9 seconds, preferably 2 to 6 seconds.
[0018]
【Example】
Hereinafter, the present invention will be described using examples and comparative examples. However, “parts” in Examples and Comparative Examples means parts by weight. Reaction test analysis was performed by gas chromatography. Further, the conversion rate of the raw material methacrolein, the selectivity of the produced methacrylic acid and the yield are defined as follows.
Methacrolein reaction rate (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid yield (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.
[0019]
[Example 1]
100 parts of ammonium paramolybdate, 4.4 parts of ammonium metavanadate and 14.4 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of pure water to 6.9 parts of bismuth nitrate was added to the mixed solution, and then the temperature was raised to 95 ° C. To this was added a solution of 2.2 parts of 60% arsenic acid in 10 parts of pure water, followed by 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide. The obtained aqueous slurry was evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and then pulverized to obtain a powdery solid A-1. The composition of the element excluding oxygen in the solid A-1 was Mo 12 P 1.5 V 0.8 Cu 0.1 Sb 0.3 Bi 0.3 As 0.2 Ce 0.2 K 3 . .
[0020]
Separately, 100 parts of ammonium paramolybdate and 4.4 parts of ammonium metavanadate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of pure water to 6.9 parts of bismuth nitrate was added to the mixed solution, and then the temperature was raised to 95 ° C. To this was added a solution of 2.2 parts of 60% arsenic acid in 10 parts of pure water, followed by 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide. The obtained aqueous slurry was evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and then pulverized to obtain a powdery solid B-1. The composition of the element excluding oxygen in the solid B-1 was Mo 12 P 1.5 V 0.8 Cu 0.1 Sb 0.3 Bi 0.3 As 0.2 Ce 0.2 .
[0021]
Next, 28 parts of solid A-1 and 50 parts of solid B-1 were mixed well, and then 2.3 parts of graphite was added and further mixed. This mixture was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine, and the resulting molded product was calcined at 380 ° C. for 5 hours under air flow to produce a catalyst. The composition of the elements excluding oxygen in this catalyst was Mo 12 P 1.5 V 0.8 Cu 0.1 Sb 0.3 Bi 0.3 As 0.2 Ce 0.2 K 1 .
[0022]
When this catalyst was filled in a reaction tube and a raw material gas consisting of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor and 55% by volume of nitrogen was passed at a reaction temperature of 290 ° C. and a contact time of 3.6 seconds, The methacrolein reaction rate was 91.5%, the methacrylic acid selectivity was 88.9%, and the methacrylic acid yield was 81.3%.
[0023]
[Example 2]
100 parts of ammonium paramolybdate, 4.4 parts of ammonium metavanadate and 9.6 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of pure water to 6.9 parts of bismuth nitrate was added to the mixed solution, and then the temperature was raised to 95 ° C. To this was added a solution of 2.2 parts of 60% arsenic acid in 10 parts of pure water, followed by 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide. The obtained aqueous slurry was evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and then pulverized to obtain a powdery solid A-2. The composition of elements except oxygen of the solid A-2 was Mo 12 P 1.5 V 0.8 Cu 0.1 Sb 0.3 Bi 0.3 As 0.2 Ce 0.2 K 2 . Moreover, it carried out similarly to Example 1, and obtained the powdery solid B-1.
[0024]
Next, 50 parts of solid A-2 and 46 parts of solid B-1 were mixed well, and then 2.9 parts of graphite was added and further mixed. This mixture was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine, and the resulting molded product was calcined at 380 ° C. for 5 hours under air flow to produce a catalyst. The composition of the elements excluding oxygen in this catalyst was Mo 12 P 1.5 V 0.8 Cu 0.1 Sb 0.3 Bi 0.3 As 0.2 Ce 0.2 K 1 .
[0025]
When this catalyst was used for the same reaction as in Example 1, the methacrolein reaction rate was 91.6%, the methacrylic acid selectivity was 89.0%, and the methacrylic acid yield was 81.5%.
[0026]
[Comparative Example 1]
100 parts of ammonium paramolybdate, 4.4 parts of ammonium metavanadate and 4.8 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of pure water to 6.9 parts of bismuth nitrate was added to the mixed solution, and then the temperature was raised to 95 ° C. To this was added a solution of 2.2 parts of 60% arsenic acid in 10 parts of pure water, followed by 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide. The obtained aqueous slurry was evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and then pulverized to obtain a powdery solid A-3.
[0027]
Next, 3 parts of graphite was added to 100 parts of solid A-3 and mixed well. This mixture was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine, and the resulting molded product was calcined at 380 ° C. for 5 hours under air flow to produce a catalyst. The composition of the elements excluding oxygen in this catalyst is the same as in Examples 1 and 2 Mo 12 P 1.5 V 0.8 Cu 0.1 Sb 0.3 Bi 0.3 As 0.2 Ce 0.2 K 1 Met.
[0028]
When this catalyst was used for the same reaction as in Example 1, the methacrolein reaction rate was 90.0%, the methacrylic acid selectivity was 88.2%, and the methacrylic acid yield was 79.4%.
[0029]
[Comparative Example 2]
100 parts of ammonium paramolybdate, 4.4 parts of ammonium metavanadate and 2.4 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of pure water to 6.9 parts of bismuth nitrate was added to the mixed solution, and then the temperature was raised to 95 ° C. To this was added a solution of 2.2 parts of 60% arsenic acid in 10 parts of pure water, followed by 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide. The obtained aqueous slurry was evaporated to dryness with heating and stirring, dried at 130 ° C. for 16 hours, and then pulverized to obtain a powdery solid A-4. The composition of the element excluding oxygen in this solid A-4 is Mo 12 P 1.5 V 0.8 Cu 0.1 Sb 0.3 Bi 0.3 As 0.2 Ce 0.2 K 0.5 there were. Moreover, it carried out similarly to Example 1, and obtained solid substance A-1.
[0030]
Next, 20 parts of solid A-1 and 109 parts of solid A-4 were mixed well, and then 2.9 parts of graphite was added and further mixed. This mixture was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine, and the resulting molded product was calcined at 380 ° C. for 5 hours under air flow to produce a catalyst. The composition of the elements excluding oxygen in this catalyst was Mo 12 P 1.5 V 0.8 Cu 0.1 Sb 0.3 Bi 0.3 As 0.2 Ce 0.2 K 1 .
[0031]
Using this catalyst, the reaction was carried out in the same manner as in Example 1. As a result, the methacrolein reaction rate was 90.3%, the methacrylic acid selectivity was 88.5%, and the methacrylic acid yield was 79.9%.
[0032]
[Comparative Example 3]
100 parts of the solid A-1 prepared in the same manner as in Example 1 was suspended in 200 parts of pure water at 80 ° C. to obtain a suspension C.
[0033]
Separately, 100 parts of ammonium paramolybdate and 4.4 parts of ammonium metavanadate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of pure water to 6.9 parts of bismuth nitrate was added to the mixed solution, and then the temperature was raised to 95 ° C. To this was added a solution of 2.2 parts of 60% arsenic acid in 10 parts of pure water, followed by 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide. 203 parts of the suspension C was mixed with the resulting aqueous slurry, evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and then pulverized to obtain a powdery solid. It was.
[0034]
Next, 3 parts of graphite was added to 100 parts of this solid and mixed well. This mixture was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine, and the resulting molded product was calcined at 380 ° C. for 5 hours under air flow to produce a catalyst. The composition of the elements excluding oxygen in this catalyst was Mo 12 P 1.5 V 0.8 Cu 0.1 Sb 0.3 Bi 0.3 As 0.2 Ce 0.2 K 1 .
[0035]
When this catalyst was used and reacted in the same manner as in Example 1, the methacrolein reaction rate was 90.4%, the methacrylic acid selectivity was 88.5%, and the methacrylic acid yield was 80.0%.
[0036]
[Example 3]
100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate and 27.6 parts of cesium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution obtained by dissolving 8.2 parts of 85% phosphoric acid in 10 parts of pure water was added, and the mixture was stirred at 100 ° C. for 30 minutes. The obtained aqueous slurry was dried by a co-current type spray dryer under the conditions of a dryer inlet temperature of 300 ° C. and a slurry spraying rotary disk of 20000 rpm, and thus a powdery solid A-5 was obtained. The composition of elements except oxygen of the solid A-5 was Mo 12 P 1.5 V 0.5 Cu 0.3 Fe 0.4 Mg 0.15 Zn 0.1 Cs 3.
[0037]
Separately, 100 parts of ammonium paramolybdate and 2.8 parts of ammonium metavanadate were dissolved in 400 parts of pure water. While stirring this, a solution prepared by dissolving 8.2 parts of 85% phosphoric acid in 10 parts of pure water was added, and the temperature was raised to 95 ° C. while stirring. Next, a solution obtained by dissolving 5.1 parts of copper nitrate, 11.4 parts of ferric nitrate, 2.1 parts of zinc nitrate and 2.7 parts of magnesium nitrate in 120 parts of pure water was added. The mixture was further stirred at 100 ° C. for 30 minutes. The obtained aqueous slurry was dried by a co-current type spray dryer under the conditions of a dryer inlet temperature of 300 ° C. and a slurry spraying rotary disk of 20000 rpm, so that a powdery solid B-2 was obtained. The composition of the element excluding oxygen in this solid B-2 was Mo 12 P 1.5 V 0.5 Cu 0.3 Fe 0.4 Mg 0.15 Zn 0.1 .
[0038]
Next, 30 parts of solid A-5 and 50 parts of solid B-2 were mixed well, and then 2.4 parts of graphite was added and further mixed. This mixture was formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 3 mm by a tableting machine, and the obtained molded product was calcined at 380 ° C. for 5 hours under air flow to produce a catalyst. The composition of the element excluding oxygen in this catalyst was Mo 12 P 1.5 V 0.5 Cu 0.3 Fe 0.4 Mg 0.15 Zn 0.1 Cs 1 .
[0039]
When this catalyst was used for the same reaction as in Example 1, the methacrolein reaction rate was 88.9%, the methacrylic acid selectivity was 86.6%, and the methacrylic acid yield was 77.0%.
[0040]
[Comparative Example 4]
100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate and 9.2 parts of cesium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution prepared by dissolving 8.2 parts of 85% phosphoric acid in 10 parts of pure water was added, and the temperature was raised to 95 ° C. while stirring. Next, a solution of 3.4 parts of copper nitrate, 7.6 parts of ferric nitrate, 1.4 parts of zinc nitrate and 1.8 parts of magnesium nitrate in 80 parts of pure water was added. The mixture was further stirred at 100 ° C. for 30 minutes. The obtained aqueous slurry was dried by a co-current type spray dryer under the conditions of a dryer inlet temperature of 300 ° C. and a slurry spraying rotary disk of 20000 rpm, so that a powdery solid A-6 was obtained.
[0041]
Next, 3 parts of graphite was added to 100 parts of solid A-6 and mixed well. This mixture was formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 3 mm by a tableting machine, and the obtained molded product was calcined at 380 ° C. for 5 hours under air flow to produce a catalyst. The composition of the element excluding oxygen in this catalyst was Mo 12 P 1.5 V 0.5 Cu 0.3 Fe 0.4 Mg 0.15 Zn 0.1 Cs 1 .
[0042]
When this catalyst was used in the same manner as in Example 1, the methacrolein reaction rate was 87.4%, the methacrylic acid selectivity was 85.8%, and the methacrylic acid yield was 75.0%.
[0043]
【The invention's effect】
According to the present invention, a catalyst for synthesizing methacrylic acid excellent in activity and selectivity to methacrylic acid can be produced.

Claims (5)

少なくともモリブデン、リンおよびX(Xは、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。)を含む固形物Aと、少なくともモリブデンおよびリンを含みXを含まない固形物Bを乾式混合した後、成形し、得られた成形物を300〜500℃で焼成するメタクリル酸合成用触媒の製造方法。Solid A containing at least molybdenum, phosphorus and X (X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium), and containing at least molybdenum and phosphorus and not containing X A method for producing a catalyst for synthesizing methacrylic acid, wherein the solid B is dry-mixed and then molded, and the resulting molded product is fired at 300 to 500 ° C. 固形物Aが、少なくともモリブデン、リンおよびXを含む水性スラリーを乾燥して得られたものであることを特徴とする請求項1記載のメタクリル酸合成用触媒の製造方法。2. The method for producing a methacrylic acid synthesis catalyst according to claim 1, wherein the solid A is obtained by drying an aqueous slurry containing at least molybdenum, phosphorus and X. 固形物Bが、少なくともモリブデン、リンを含みXを含まない水性スラリーを乾燥して得られたものであることを特徴とする請求項1または2記載のメタクリル酸合成用触媒の製造方法。The method for producing a catalyst for synthesizing methacrylic acid according to claim 1 or 2, wherein the solid B is obtained by drying an aqueous slurry containing at least molybdenum and phosphorus and not X. 固形物Aに含まれるモリブデンとXの原子比が、12:1.5〜12:4であることを特徴とする請求項1〜3のいずれかに記載のメタクリル酸合成用触媒の製造方法。The method for producing a catalyst for synthesizing methacrylic acid according to any one of claims 1 to 3 , wherein the atomic ratio of molybdenum and X contained in the solid A is 12: 1.5 to 12: 4. 焼成して得られるメタクリル酸合成用触媒が式(1)で表される複合酸化物である請求項1〜4のいずれかに記載のメタクリル酸合成用触媒の製造方法。
MoCu (1)
(式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素、Yは鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦3、0.01≦d≦3、0.01≦e≦3、0≦f≦3であり、gは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
Method for producing methacrylic acid synthesis catalyst according to any one of claims 1 to 4, which is a composite oxide catalyze a methacrylic acid synthesis obtained fired is represented by the formula (1).
Mo a P b Cu c V d X e Y f O g (1)
(Wherein Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, respectively, X is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, Y Is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur Represents at least one element selected from the group consisting of selenium, tellurium, lanthanum and cerium, where a, b, c, d, e, f and g represent the atomic ratio of each element, and a = 12 In this case, 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 3, 0.01 ≦ d ≦ 3, 0.01 ≦ e ≦ 3, 0 ≦ f ≦ In it, g is the atomic ratio of oxygen required to satisfy the atomic ratio of the respective components.)
JP2001186214A 2001-06-20 2001-06-20 Method for producing catalyst for synthesis of methacrylic acid Expired - Lifetime JP4811977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186214A JP4811977B2 (en) 2001-06-20 2001-06-20 Method for producing catalyst for synthesis of methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001186214A JP4811977B2 (en) 2001-06-20 2001-06-20 Method for producing catalyst for synthesis of methacrylic acid

Publications (2)

Publication Number Publication Date
JP2003001111A JP2003001111A (en) 2003-01-07
JP4811977B2 true JP4811977B2 (en) 2011-11-09

Family

ID=19025679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186214A Expired - Lifetime JP4811977B2 (en) 2001-06-20 2001-06-20 Method for producing catalyst for synthesis of methacrylic acid

Country Status (1)

Country Link
JP (1) JP4811977B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2897350B1 (en) * 2006-02-14 2008-05-16 Centre Nat Rech Scient PREPARATION OF A COMPOUND COMPRISING THE ASSOCIATION OF TWO CRYSTALLINE PHASES
JP5090796B2 (en) * 2007-06-08 2012-12-05 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4900449B2 (en) * 2009-10-30 2012-03-21 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5691252B2 (en) * 2010-06-10 2015-04-01 三菱レイヨン株式会社 Method for producing heteropolyacid catalyst for production of methacrylic acid, and method for producing methacrylic acid
JP4900532B2 (en) * 2011-10-14 2012-03-21 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
KR102216827B1 (en) * 2016-09-14 2021-02-17 미쯔비시 케미컬 주식회사 Catalyst for producing methacrylic acid and method for producing the same, and method for producing methacrylic acid and methacrylic acid ester

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3734403B2 (en) * 1999-04-27 2006-01-11 住友化学株式会社 Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4269437B2 (en) * 1999-10-12 2009-05-27 住友化学株式会社 Method for producing methacrylic acid
JP2002095972A (en) * 2000-09-21 2002-04-02 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid, method for producing the catalyst, and method for producing methacrylic acid

Also Published As

Publication number Publication date
JP2003001111A (en) 2003-01-07

Similar Documents

Publication Publication Date Title
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP3797148B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
WO2019141203A1 (en) Catalyst for preparing methacrylic acid by oxidation of methacrolein and preparation method therefor
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP4285084B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4947753B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP3790080B2 (en) Catalyst for synthesizing methacrolein and methacrylic acid, and method for producing methacrolein and methacrylic acid
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5362370B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP4236415B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JP4875480B2 (en) Method for producing metal-containing catalyst
JP4017864B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JPH0615178A (en) Preparation of catalyst for production of methacrylic acid
JP4947756B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP3797146B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2003154273A (en) Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid
JP4301484B2 (en) Method for producing methacrylic acid
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron
JP5070089B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same
WO2000072964A1 (en) Catalyst for methacrylic acid production and process for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

R151 Written notification of patent or utility model registration

Ref document number: 4811977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term