JP4947753B2 - Catalyst for methacrylic acid synthesis and method for producing methacrylic acid - Google Patents

Catalyst for methacrylic acid synthesis and method for producing methacrylic acid Download PDF

Info

Publication number
JP4947753B2
JP4947753B2 JP2001188338A JP2001188338A JP4947753B2 JP 4947753 B2 JP4947753 B2 JP 4947753B2 JP 2001188338 A JP2001188338 A JP 2001188338A JP 2001188338 A JP2001188338 A JP 2001188338A JP 4947753 B2 JP4947753 B2 JP 4947753B2
Authority
JP
Japan
Prior art keywords
methacrylic acid
catalyst
primary
water
dried product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001188338A
Other languages
Japanese (ja)
Other versions
JP2003001112A (en
Inventor
奉正 辰巳
聖午 渡辺
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001188338A priority Critical patent/JP4947753B2/en
Publication of JP2003001112A publication Critical patent/JP2003001112A/en
Application granted granted Critical
Publication of JP4947753B2 publication Critical patent/JP4947753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明はメタクリル酸合成用触媒の製造方法に関し、より詳しくはメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する際に使用するメタクリル酸合成用触媒の製造方法に関する。
【0002】
【従来の技術】
メタクロレインを気相接触酸化してメタクリル酸を合成する触媒にはモリブデンおよびリンを含むヘテロポリ酸系触媒が有効であることが広く知られており、触媒の調製方法について数多くの提案がなされている。例えば、特開昭63−130143号公報には、モリブデン、リンを含む触媒スラリーを水分含有率が1%程度にまで乾燥させ、得られた固形物を再び水に分散させた後に乾燥処理を行い、続いて成形、焼成して触媒を調製する方法が開示されている。しかし、この方法で得られた触媒は工業触媒としてはメタクリル酸収率がいまだ不充分であり、工業触媒としての使用に際しては更なる収率の向上が望まれている。
【0003】
【発明が解決しようとする課題】
本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を高い収率で製造できるメタクリル酸合成用触媒の製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するため、鋭意検討を行った結果、本発明者らは、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する際に使用する触媒について、高い触媒活性およびメタクリル酸選択性を有する触媒を得ることができる新規調製法を完成させるに至った。
【0005】
すなわち本発明は、少なくともモリブデンおよびリンを含む水性スラリーから水を部分的に除去して水分含有率が3〜25重量%の乾燥物とし、この乾燥物を水に分散させて水性スラリーとし、この水性スラリーを乾燥したものを300〜500℃で焼成するメタクリル酸合成用触媒の製造方法である。触媒製造の際、乾燥物を分散させる水の質量は乾燥物の質量の1〜10倍が好ましい。また、メタクリル酸合成用触媒は次の式(1)の組成式で表される複合酸化物が好ましい。
MoabCucdefg (1)
(式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウムおよびセシウムからなる群より選ばれた少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、ヒ素、アンチモンおよびビスマスからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦3、0.01≦d≦3、0.01≦e≦3、0≦f≦3であり、gは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
【0006】
さらに本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成するメタクリル酸の製造方法において、前記のメタクリル酸合成用触媒を用いることを特徴とするメタクリル酸の製造方法である。
【0007】
【発明の実施の形態】
本発明のメタクリル酸合成用触媒は少なくともモリブデンとリンを含有する複合酸化物である。触媒には、ヘテロポリ酸またはヘテロポリ酸塩の構造が含まれていることが好ましい。
【0008】
また触媒は、モリブデンおよびリン以外にはアルカリ金属を含んでいることが好ましく、これ以外に銅、バナジウム、鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン、セリウム等を適宜含んでいてもよい。特に次の式(1)の組成式で表される複合酸化物が好ましい。
MoabCucdefg (1)
【0009】
式(1)中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウムおよびセシウムからなる群より選ばれた少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、ヒ素、アンチモンおよびビスマスからなる群より選ばれた少なくとも1種の元素を表す。
【0010】
また式(1)中、a、b、c、d、e、fおよびgは各元素の原子比を表している。a=12のとき、bは0.1≦b≦3、好ましくは0.5≦b≦3である。同様にcは0.01≦c≦3、好ましくは0.01≦c≦2である。同様にdは0.01≦d≦3、好ましくは0.01≦d≦2である。同様にeは0.01≦e≦3、好ましくは0.1≦e≦3である。同様にfは0≦f≦3であり、好ましくは0≦f≦2.5である。gは前記各成分の原子比を満足するのに必要な酸素の原子比である。
【0011】
本発明のメタクリル酸合成用触媒は、少なくともモリブデンおよびリンを含む水性スラリー(以下、一次スラリーという。)から水を部分的に除去して水分含有率が3〜25重量%の乾燥物(以下、一次乾燥物という。)とし、この一次乾燥物を水に分散させて水性スラリーとし、この水性スラリーを乾燥したものを300〜500℃で焼成して製造されたものである。
【0012】
一次スラリーは、触媒の各構成元素の原料(以下、触媒原料という。)を用いて、従来の共沈法、酸化物混合法等により調製する。一次スラリーの調製に用いる触媒原料は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を組み合わせて使用することができる。モリブデン原料としては、例えば、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。リン原料としては、例えば、リン酸、リン酸、五酸化リン、リン酸アンモニウム等が使用できる。なお、一次スラリーには必ずしも全ての触媒構成元素を含める必要はなく、少なくともモリブデンとリンを含んでいればよい。従って、この段階で加えなかった触媒原料はこれ以降の別の工程で添加すればよい。
【0013】
一次スラリーから水を部分的に除去して一次乾燥物とする方法は特に限定されず、例えば、蒸発、ろ過等の操作が挙げられる。なかでも蒸発操作が好ましい。蒸発操作には箱型乾燥機、噴霧乾燥機、ドラムドライヤー、スラリードライヤー等を用いることができる。
【0014】
得られる一次乾燥物の水分含有率は3〜25重量%とし、好ましくは5〜20重量%、特に好ましくは8〜17重量%とする。一次乾燥物の形態は特に限定されず、例えば、ペースト状、ケーク状、粉末状等が挙げられる。
【0015】
次に一次乾燥物を水に分散させて水性スラリーを得る。この際、触媒原料を追加することもできる。この際に用いる水の質量は特に限定されないが、一次乾燥物の質量の1〜10倍が好ましく、1〜7倍がより好ましく、1〜4倍が特に好ましい。
【0016】
一次スラリーからこの水性スラリーを得る操作(以下、乾燥・分散操作という。)は2度以上繰り返し行ってもよい。すなわち、このスラリーを一次スラリーとして取り扱い、水を部分的に除去して水分含有率が3〜25重量%の乾燥物とし、この乾燥物に水を加えて水性スラリーを得る操作を1回以上追加することができる。乾燥・分散操作は通常1〜10回であり、好ましくは1〜5回である。
【0017】
次に、1または2回以上の乾燥・分散操作により得られた水性スラリー(以下、二次スラリーという。)を乾燥して乾燥物(以下、二次乾燥物という。)を得る。乾燥に際しては箱型乾燥機、噴霧乾燥機、ドラムドライヤー、スラリードライヤー等を用いることができる。二次乾燥物の水分含有率は3%未満にする。
【0018】
二次乾燥物は300〜500℃で焼成する。成形触媒を製造する場合、二次乾燥物をそのまま焼成し、得られる焼成物を成形してもよいが、二次乾燥物を成形してから焼成を行う方が好ましい。成形方法は特に限定はなく、打錠成形、押出成形、造粒等の各種成形法を用いることができる。成形に際しては、成形物の比表面積、細孔容積および細孔分布を再現性よく制御する、機械的強度を高める等の目的で、例えば、硫酸バリウム、硝酸アンモニウム等の無機塩類、グラファイト等の滑剤、セルロース類、でんぷん、ポリビニルアルコール、ステアリン酸等の有機物、シリカゾル、アルミナゾル等の水酸化物ゾル、ウィスカー、ガラス繊維、炭素繊維等の無機質繊維等の添加剤や添加物を適宜添加してもよい。成形物の形状は特に限定されず、例えば、球状、円柱状、リング状、板状等が挙げられる。
【0019】
二次乾燥物またはその成形物は焼成して触媒とする。焼成の最適条件は用いる触媒原料、触媒組成、調製法によって異なるが、焼成温度は300〜500℃、好ましくは300〜450℃である。焼成は、通常、空気等の酸素含有ガス流通下および/または不活性ガス流通下で行う。焼成時間は通常0.5時間以上、好ましくは1〜40時間である。
【0020】
焼成により得られる触媒には、前述のようにヘテロポリ酸またはヘテロポリ酸塩の構造が含まれていることが好ましい。
【0021】
次に、このようにして得られた本発明の触媒を用いてメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法について説明する。
【0022】
気相接触酸化に用いる原料ガスのメタクロレイン濃度は広い範囲で変えることができるが、好ましくは1〜20容量%、特に好ましくは3〜10容量%である。原料のメタクロレインには、水、低級飽和アルデヒド等の実質的に反応に影響を与えない不純物が少量含まれている場合があるが、原料ガスにはこのようなメタクロレイン由来の不純物が含まれていてもよい。
【0023】
原料ガスには分子状酸素が含まれている必要があるが、原料ガス中の分子状酸素の量はメタクロレインの0.4〜4倍モルが好ましく、特に0.5〜3倍モルが好ましい。原料ガスの分子状酸素源には空気を用いるのが工業的に有利であるが、必要に応じて純酸素で富化した空気も使用できる。また原料ガスは、窒素、炭酸ガス等の不活性ガス、水蒸気等で希釈されていることが好ましい。
【0024】
気相接触酸化の反応圧力は常圧〜数気圧である。反応温度は、通常200〜450℃、好ましくは250〜400℃である。原料ガスと触媒の接触時間は通常1.5〜15秒、好ましくは2〜7秒である。
【0025】
【実施例】
以下に本発明を実施例および比較例を用いて説明する。ただし、実施例および比較例中の「部」は重量部を意味する。反応試験分析はガスクロマトグラフィーにより行った。一次および二次乾燥物の水分含有率はケット水分計(島津製作所社製)を用いて測定した。また、原料であるメタクロレインの転化率、生成したメタクリル酸の選択率および収率は以下のように定義される。
メタクロレイン反応率(%)=(B/A)×100
メタクリル酸選択率(%)=(C/B)×100
メタクリル酸単流収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
【0026】
[実施例1]
パラモリブデン酸アンモニウム100部を純水200部に溶解し、そこへメタバナジン酸アンモニウム2.8部、85重量%リン酸8.2部を純水30部に溶解した溶液、硝酸銅1.1部を純水30部に溶解した溶液および硝酸鉄3.8部を純水10部に溶解した溶液を順次加え、これを攪拌しながら90℃まで加熱し、液温を90℃に保ちつつ5時間加熱攪拌した後に、硝酸セシウム9.2部を純水100部に溶解した溶液をこれに加えて一次スラリーを得た。一次スラリーを加熱攪拌しながら蒸発乾固してペースト状の一次乾燥物を得た。一次乾燥物の水分含有率は11.7%であった。一次乾燥物100部を純水400部に分散して二次スラリーを得た。二次スラリーを過熱攪拌しながら再び蒸発乾固し、得られた固形物を130℃で16時間乾燥させて二次乾燥物を得た。二次乾燥物の水分含有率は1.5重量%であった。この二次乾燥物を粉砕した。こうして得られた粉体100部にグラファイト3.0部を添加し、続いて打錠成形機により、外径5mm、内径2mm、長さ5mmのリング状に成形した。得られた成形物を空気流通下に380℃で6時間焼成して触媒を得た。この触媒の酸素を除く元素の組成は、
Mo121.50.5Cu0.1Fe0.2Cs
であった。
【0027】
この触媒を反応管に充填し、メタクロレイン5%、酸素10%、水蒸気30%、窒素55%(容量%)の混合ガスを反応温度290℃、接触時間3.6秒で通じたところ、メタクロレイン反応率84.1%、メタクリル酸選択率83.5%、メタクリル酸単流収率70.2%であった。
【0028】
[実施例2]
実施例1において、一次乾燥物を得る際の蒸発乾固の時間を短縮し、水分含有率が18.2重量%の一次乾燥物を得た以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造したところ、メタクロレイン反応率83.9%、メタクリル酸選択率83.4%、メタクリル酸単流収率70.0%であった。
【0029】
[実施例3]
実施例1において、一次乾燥物を得る際の蒸発乾固の時間を延長し、水分含有率が6.1重量%の一次乾燥物を得た以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造したところ、メタクロレイン反応率84.0%、メタクリル酸選択率83.0%、メタクリル酸単流収率69.7%であった。
【0030】
[実施例4]
実施例1において、一次乾燥物を得る際の蒸発乾固の時間を実施例2よりさらに短縮し、水分含有率が22.4重量%の一次乾燥物を得た以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造したところ、メタクロレイン反応率83.7%、メタクリル酸選択率83.2%、メタクリル酸単流収率69.6%であった。
【0031】
[実施例5]
実施例1において、一次乾燥物を得る際の蒸発乾固の時間を実施例3よりさらに延長し、水分含有率が3.8重量%の一次乾燥物を得た以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造したところ、メタクロレイン反応率83.9%、メタクリル酸選択率82.9%、メタクリル酸単流収率69.6%であった。
【0032】
[実施例6]
実施例1において、一次乾燥物を分散させる純水の量を400部から600部に変更した点以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造したところ、メタクロレイン反応率83.4%、メタクリル酸選択率83.2%、メタクリル酸単流収率69.4%であった。
【0033】
[実施例7]
実施例1において、一次乾燥物を分散させる純水の量を400部から900部に変更した点以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造したところ、メタクロレイン反応率83.3%、メタクリル酸選択率83.1%、メタクリル酸単流収率69.2%であった。
【0034】
[実施例8]
実施例1において、一次スラリーから二次スラリーを得る操作(乾燥・分散操作)を繰り返し2回行った点以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造したところ、メタクロレイン反応率84.2%、メタクリル酸選択率83.7%、メタクリル酸単流収率70.5%であった。なお、2回目の乾燥・再溶解操作における一次乾燥物の水分含有率は11.7重量%であった。
【0035】
[実施例9]
実施例1において、一次スラリーから二次スラリーを得る操作(乾燥・分散操作)を繰り返し3回行った点以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造したところ、メタクロレイン反応率84.4%、メタクリル酸選択率83.6%、メタクリル酸単流収率70.6%であった。なお、2回目および3回目の乾燥・再溶解操作における一次乾燥物の水分含有率は各々11.7重量%、11.7重量%であった。
【0036】
[比較例1]
実施例1において、一次乾燥物を純水に分散して乾燥する操作を省略、すなわち一次乾燥物を130℃で16時間乾燥したものを、成形し、焼成して触媒を得た以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造した。その結果、メタクロレイン反応率82.4%、メタクリル酸選択率81.3%、メタクリル酸単流収率67.0%であり、実施例1に比べて得られる触媒の性能が低いことがわかった。
【0037】
[比較例2]
実施例1において、一次乾燥物を純水に分散する前に130℃で16時間乾燥した点以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造した。その結果、メタクロレイン反応率82.7%、メタクリル酸選択率81.3%、メタクリル酸単流収率67.2%であった。なお、一次乾燥物を130℃で16時間乾燥したものの水分含有率は1.5重量%であり、実施例1に比べて得られる触媒の性能が低いことがわかった。
【0038】
[比較例3]
実施例1において、一次乾燥物を得る際の蒸発乾固の時間を実施例4よりさらに短縮し、水分含有率が30.5重量%の一次乾燥物を得た以外は実施例1と同様に触媒を製造し、同様にしてメタクリル酸を製造した。その結果、メタクロレイン反応率82.9%、メタクリル酸選択率81.4%、メタクリル酸単流収率67.5%であり、実施例1に比べて得られる触媒の性能が低いことがわかった。
【0039】
[実施例10]
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.42部および硝酸セシウム9.20部を純水300部に加熱溶解した。これに85重量%リン酸8.71部を純水10部に溶解した溶液、ついで三酸化アンチモン5.50部を加え、攪拌しながら95℃に昇温した後、硝酸銅1.14部を純水10部に溶解した溶液を加えた。更にこの混合液を95℃で15分間攪拌して一次スラリーを得た。一次スラリーを加熱攪拌しながら蒸発乾固してペースト状の一次乾燥物を得た。一次乾燥物の水分含有率は13.1%であった。一次乾燥物100部を純水400部に分散して二次スラリーを得た。二次スラリーを加熱攪拌しながら再び蒸発乾固し、得られた固形物を130℃で16時間乾燥させて二次乾燥物を得た。二次乾燥物の水分含有率は1.5%であった。この二次乾燥物を実施例1と同様に成形および焼成して触媒を得た。この触媒の酸素を除く元素の組成は、
Mo121.60.8Cu0.1Sb0.8Cs
であった。
【0040】
この触媒を用いて実施例1と同様に反応を行ったところ、メタクロレイン反応率84.5%、メタクリル酸選択率84.8%、メタクリル酸収率71.7%であった。
【0041】
[比較例4]
実施例10において、一次乾燥物を純水に分散して乾燥する操作を省略、すなわち一次乾燥物を130℃で16時間乾燥したものを、成形し、焼成して触媒を得た以外は実施例10と同様に触媒を製造し、同様にしてメタクリル酸を製造した。その結果、メタクロレイン反応率82.8%、メタクリル酸選択率83.7%、メタクリル酸単流収率69.3%であり、実施例10に比べて得られる触媒の性能が低いことがわかった。
【0042】
[比較例5]
実施例10において、一次乾燥物を純水に分散する前に130℃で16時間乾燥した点以外は実施例10と同様に触媒を製造し、同様にしてメタクリル酸を製造した。その結果、メタクロレイン反応率83.0%、メタクリル酸選択率83.8%、メタクリル酸単流収率69.6%であった。なお、一次乾燥物を130℃で16時間乾燥したものの水分含有率は1.5重量%であり、実施例10に比べて得られる触媒の性能が低いことがわかった。
【0043】
【発明の効果】
本発明のメタクリル酸合成用触媒の製造方法により製造される触媒を用いることにより、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を高い収率で製造できる。
[0001]
BACKGROUND OF THE INVENTION
Relates to a manufacturing method of the present invention is a catalyst for methacrylic acid synthesis, and more particularly relates to a method of manufacturing a catalyze for methacrylic acid synthesis using in the synthesis of methacrylic acid by gas phase catalytic oxidation with molecular oxygen to methacrolein.
[0002]
[Prior art]
It is widely known that heteropolyacid catalysts containing molybdenum and phosphorus are effective as catalysts for synthesizing methacrylic acid by gas-phase catalytic oxidation of methacrolein, and many proposals have been made on catalyst preparation methods. . For example, in Japanese Patent Laid-Open No. 63-130143, a catalyst slurry containing molybdenum and phosphorus is dried to a moisture content of about 1%, and the obtained solid is dispersed again in water, followed by a drying treatment. Subsequently, a method for preparing a catalyst by molding and calcining is disclosed. However, the catalyst obtained by this method is still insufficient in yield of methacrylic acid as an industrial catalyst, and further improvement in yield is desired for use as an industrial catalyst.
[0003]
[Problems to be solved by the invention]
The present invention aims to provide a method for producing a catalyze for methacrylic acid synthesis can be produced at a high methacrylic acid by vapor phase catalytic oxidation yield of methacrolein with molecular oxygen.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a catalyst used for synthesizing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen has high catalytic activity and methacrylic acid. A new preparation method capable of obtaining a catalyst having acid selectivity has been completed.
[0005]
That is, the present invention partially removes water from an aqueous slurry containing at least molybdenum and phosphorus to obtain a dry product having a water content of 3 to 25% by weight, and the dry product is dispersed in water to form an aqueous slurry. a method for producing a main methacrylic acid synthesis catalyst for baked formed a material obtained by drying an aqueous slurry at 300 to 500 ° C.. In the catalyst production, the mass of water in which the dried product is dispersed is preferably 1 to 10 times the mass of the dried product. The methacrylic acid synthesis catalyst is preferably a composite oxide represented by the following composition formula (1).
Mo a P b Cu c V d X e Y f O g (1)
(Wherein Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, respectively, X represents at least one element selected from the group consisting of potassium, rubidium and cesium; Y represents iron, cobalt, nickel, arsenic, at least one element selected from antimony and bismuth scan or Ranaru group. However, a, b, c, d , e, f and g are atomic of each element Represents a ratio, and when a = 12, 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 3, 0.01 ≦ d ≦ 3, 0.01 ≦ e ≦ 3, 0 ≦ f ≦ 3, g is the atomic ratio of oxygen necessary to satisfy the atomic ratio of each component.
[0006]
Furthermore, the present invention relates to a method for producing methacrylic acid, characterized in that the above-mentioned catalyst for methacrylic acid synthesis is used in the method for producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen to synthesize methacrylic acid. is there.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst for synthesizing methacrylic acid of the present invention is a composite oxide containing at least molybdenum and phosphorus. The catalyst preferably contains a heteropolyacid or heteropolyacid salt structure.
[0008]
The catalyst preferably contains an alkali metal other than molybdenum and phosphorus, and besides this, copper, vanadium, iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese Silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum, cerium, and the like may be contained as appropriate. In particular, a composite oxide represented by the following composition formula (1) is preferable.
Mo a P b Cu c V d X e Y f O g (1)
[0009]
In formula (1), Mo, P, Cu, V and O each represent molybdenum, phosphorus, copper, vanadium and oxygen, and X represents at least one element selected from the group consisting of potassium, rubidium and cesium. , Y represents iron, cobalt, nickel, arsenic, at least one element selected from antimony and bismuth scan or Ranaru group.
[0010]
Moreover, in Formula (1), a, b, c, d, e, f, and g represent the atomic ratio of each element. When a = 12, b is 0.1 ≦ b ≦ 3, preferably 0.5 ≦ b ≦ 3. Similarly, c is 0.01 ≦ c ≦ 3, preferably 0.01 ≦ c ≦ 2. Similarly, d is 0.01 ≦ d ≦ 3, preferably 0.01 ≦ d ≦ 2. Similarly, e is 0.01 ≦ e ≦ 3, preferably 0.1 ≦ e ≦ 3. Similarly, f is 0 ≦ f ≦ 3, and preferably 0 ≦ f ≦ 2.5. g is an atomic ratio of oxygen necessary to satisfy the atomic ratio of each component.
[0011]
The catalyst for synthesizing methacrylic acid of the present invention partially removes water from an aqueous slurry containing at least molybdenum and phosphorus (hereinafter referred to as a primary slurry) and has a moisture content of 3 to 25% by weight (hereinafter referred to as a dry product). This primary dried product is dispersed in water to form an aqueous slurry, and the aqueous slurry is dried and fired at 300 to 500 ° C.
[0012]
The primary slurry is prepared by a conventional coprecipitation method, an oxide mixing method, or the like, using raw materials for the constituent elements of the catalyst (hereinafter referred to as catalyst raw materials). The catalyst raw material used for the preparation of the primary slurry is not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides and the like of each element can be used in combination. As the molybdenum raw material, for example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, or the like can be used. Examples of the phosphorus raw material that can be used include phosphoric acid, phosphoric acid, phosphorus pentoxide, and ammonium phosphate. Note that it is not always necessary to include all catalyst constituent elements in the primary slurry, as long as at least molybdenum and phosphorus are included. Therefore, the catalyst raw material not added at this stage may be added in another process thereafter.
[0013]
A method for partially removing water from the primary slurry to obtain a primary dry product is not particularly limited, and examples thereof include operations such as evaporation and filtration. Of these, the evaporation operation is preferred. For the evaporation operation, a box-type dryer, a spray dryer, a drum dryer, a slurry dryer or the like can be used.
[0014]
The water content of the obtained primary dried product is 3 to 25% by weight, preferably 5 to 20% by weight, particularly preferably 8 to 17% by weight. The form of the primary dried product is not particularly limited, and examples thereof include a paste form, a cake form, and a powder form.
[0015]
Next, the primary dry product is dispersed in water to obtain an aqueous slurry. At this time, a catalyst raw material can also be added. Although the mass of the water used in this case is not particularly limited, it is preferably 1 to 10 times, more preferably 1 to 7 times, and particularly preferably 1 to 4 times the mass of the primary dried product.
[0016]
The operation of obtaining this aqueous slurry from the primary slurry (hereinafter referred to as drying / dispersing operation) may be repeated twice or more. That is, this slurry is handled as a primary slurry, and water is partially removed to obtain a dry product having a water content of 3 to 25% by weight. The operation of adding water to the dry product to obtain an aqueous slurry is added one or more times. can do. The drying / dispersing operation is usually 1 to 10 times, preferably 1 to 5 times.
[0017]
Next, the aqueous slurry (hereinafter referred to as secondary slurry) obtained by one or more drying / dispersing operations is dried to obtain a dried product (hereinafter referred to as secondary dried product). For drying, a box dryer, spray dryer, drum dryer, slurry dryer, or the like can be used. The water content of the secondary dried product is less than 3%.
[0018]
The secondary dried product is fired at 300 to 500 ° C. In the case of producing a shaped catalyst, the secondary dried product may be calcined as it is, and the resulting calcined product may be molded. However, it is preferable that the secondary dried product is molded and then calcined. The molding method is not particularly limited, and various molding methods such as tableting molding, extrusion molding, and granulation can be used. In the molding, for the purpose of controlling the specific surface area, pore volume and pore distribution of the molded product with good reproducibility and increasing mechanical strength, for example, inorganic salts such as barium sulfate and ammonium nitrate, lubricants such as graphite, Additives and additives such as celluloses, starches, polyvinyl alcohol, stearic acid and other organic substances, hydroxide sols such as silica sol and alumina sol, whiskers, glass fibers, carbon fibers and other inorganic fibers may be added as appropriate. The shape of the molded product is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape, a ring shape, and a plate shape.
[0019]
The secondary dried product or the molded product thereof is calcined to be a catalyst. The optimum conditions for calcination vary depending on the catalyst raw material, catalyst composition and preparation method used, but the calcination temperature is 300 to 500 ° C, preferably 300 to 450 ° C. Firing is usually performed under a flow of oxygen-containing gas such as air and / or under a flow of inert gas. The firing time is usually 0.5 hours or longer, preferably 1 to 40 hours.
[0020]
The catalyst obtained by calcination preferably contains a heteropolyacid or heteropolyacid salt structure as described above.
[0021]
Next, a method of producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen using the catalyst of the present invention thus obtained will be described.
[0022]
The concentration of methacrolein in the raw material gas used for the gas phase catalytic oxidation can be varied within a wide range, but is preferably 1 to 20% by volume, particularly preferably 3 to 10% by volume. The raw material methacrolein may contain a small amount of impurities that do not substantially affect the reaction, such as water, lower saturated aldehydes, etc., but the raw material gas contains such an impurity derived from methacrolein. It may be.
[0023]
The source gas needs to contain molecular oxygen, but the amount of molecular oxygen in the source gas is preferably 0.4 to 4 times mol, more preferably 0.5 to 3 times mol of methacrolein. . Although it is industrially advantageous to use air as the molecular oxygen source of the source gas, air enriched with pure oxygen can also be used if necessary. The source gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, water vapor or the like.
[0024]
The reaction pressure for gas phase catalytic oxidation is from atmospheric pressure to several atmospheres. The reaction temperature is usually 200 to 450 ° C., preferably 250 to 400 ° C. The contact time between the source gas and the catalyst is usually 1.5 to 15 seconds, preferably 2 to 7 seconds.
[0025]
【Example】
The present invention will be described below with reference to examples and comparative examples. However, “parts” in Examples and Comparative Examples means parts by weight. Reaction test analysis was performed by gas chromatography. The moisture content of the primary and secondary dried products was measured using a ket moisture meter (manufactured by Shimadzu Corporation). Further, the conversion rate of the raw material methacrolein, the selectivity of the produced methacrylic acid and the yield are defined as follows.
Methacrolein reaction rate (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid single stream yield (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.
[0026]
[Example 1]
A solution in which 100 parts of ammonium paramolybdate is dissolved in 200 parts of pure water and 2.8 parts of ammonium metavanadate and 8.2 parts of 85 wt% phosphoric acid are dissolved in 30 parts of pure water, 1.1 parts of copper nitrate A solution prepared by dissolving 30 parts of pure water and a solution of 3.8 parts of iron nitrate in 10 parts of pure water are sequentially added, heated to 90 ° C. with stirring, and maintained for 5 hours while maintaining the liquid temperature at 90 ° C. After heating and stirring, a solution obtained by dissolving 9.2 parts of cesium nitrate in 100 parts of pure water was added thereto to obtain a primary slurry. The primary slurry was evaporated to dryness with heating and stirring to obtain a paste-like primary dry product. The moisture content of the primary dried product was 11.7%. 100 parts of the primary dried product was dispersed in 400 parts of pure water to obtain a secondary slurry. The secondary slurry was evaporated to dryness again with superheated stirring, and the resulting solid was dried at 130 ° C. for 16 hours to obtain a secondary dried product. The water content of the secondary dried product was 1.5% by weight. This secondary dried product was pulverized. To 100 parts of the powder thus obtained, 3.0 parts of graphite was added, and subsequently formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine. The obtained molded product was calcined at 380 ° C. for 6 hours under air flow to obtain a catalyst. The composition of the elements excluding oxygen in this catalyst is
Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1
Met.
[0027]
When this catalyst was filled in a reaction tube and a mixed gas of 5% methacrolein, 10% oxygen, 30% water vapor and 55% nitrogen (volume%) was passed at a reaction temperature of 290 ° C. and a contact time of 3.6 seconds, The rain reaction rate was 84.1%, the methacrylic acid selectivity was 83.5%, and the methacrylic acid single stream yield was 70.2%.
[0028]
[Example 2]
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the time for evaporation to dryness in obtaining the primary dry product was shortened and a primary dry product having a moisture content of 18.2% by weight was obtained. When methacrylic acid was produced in the same manner, the methacrolein reaction rate was 83.9%, the methacrylic acid selectivity was 83.4%, and the methacrylic acid single stream yield was 70.0%.
[0029]
[Example 3]
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the time for evaporation to dryness in obtaining the primary dry product was extended and a primary dry product having a moisture content of 6.1% by weight was obtained. When methacrylic acid was produced in the same manner, the methacrolein reaction rate was 84.0%, the methacrylic acid selectivity was 83.0%, and the methacrylic acid single-flow yield was 69.7%.
[0030]
[Example 4]
In Example 1, the time for evaporation to dryness in obtaining the primary dry product was further shortened from that in Example 2, and the primary dry product having a moisture content of 22.4% by weight was obtained in the same manner as in Example 1. When the catalyst was produced and methacrylic acid was produced in the same manner, the methacrolein reaction rate was 83.7%, the methacrylic acid selectivity was 83.2%, and the methacrylic acid single-flow yield was 69.6%.
[0031]
[Example 5]
In Example 1, the time for evaporation to dryness in obtaining the primary dried product was further extended from that in Example 3, and the primary dried product having a water content of 3.8% by weight was obtained in the same manner as in Example 1. When the catalyst was produced and methacrylic acid was produced in the same manner, the methacrolein reaction rate was 83.9%, the methacrylic acid selectivity was 82.9%, and the methacrylic acid single-flow yield was 69.6%.
[0032]
[Example 6]
In Example 1, except that the amount of pure water in which the primary dried product was dispersed was changed from 400 parts to 600 parts, a catalyst was produced in the same manner as in Example 1, and methacrylic acid was produced in the same manner. The reaction rate was 83.4%, the selectivity of methacrylic acid was 83.2%, and the single flow rate of methacrylic acid was 69.4%.
[0033]
[Example 7]
In Example 1, except that the amount of pure water in which the primary dried product was dispersed was changed from 400 parts to 900 parts, a catalyst was produced in the same manner as in Example 1, and methacrylic acid was produced in the same manner. The reaction rate was 83.3%, the selectivity of methacrylic acid was 83.1%, and the single flow rate of methacrylic acid was 69.2%.
[0034]
[Example 8]
In Example 1, except that the operation (drying / dispersing operation) for obtaining the secondary slurry from the primary slurry was repeated twice, a catalyst was produced in the same manner as in Example 1, and methacrylic acid was produced in the same manner. The methacrolein reaction rate was 84.2%, the methacrylic acid selectivity was 83.7%, and the methacrylic acid single stream yield was 70.5%. The water content of the primary dried product in the second drying / remelting operation was 11.7% by weight.
[0035]
[Example 9]
In Example 1, except that the operation of obtaining a secondary slurry from the primary slurry (drying / dispersing operation) was repeated three times, a catalyst was produced in the same manner as in Example 1, and methacrylic acid was produced in the same manner. The methacrolein reaction rate was 84.4%, the selectivity of methacrylic acid was 83.6%, and the single flow rate of methacrylic acid was 70.6%. The water content of the primary dried product in the second and third drying / remelting operations was 11.7% by weight and 11.7% by weight, respectively.
[0036]
[Comparative Example 1]
In Example 1, the operation of dispersing and drying the primary dried product in pure water was omitted, that is, except that the primary dried product was dried at 130 ° C. for 16 hours, molded and calcined to obtain a catalyst. A catalyst was produced in the same manner as in Example 1, and methacrylic acid was produced in the same manner. As a result, the methacrolein reaction rate was 82.4%, the methacrylic acid selectivity was 81.3%, and the methacrylic acid single-flow yield was 67.0%. It was found that the performance of the catalyst obtained was lower than that of Example 1. It was.
[0037]
[Comparative Example 2]
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the primary dried product was dried at 130 ° C. for 16 hours before being dispersed in pure water, and methacrylic acid was produced in the same manner. As a result, the methacrolein reaction rate was 82.7%, the methacrylic acid selectivity was 81.3%, and the methacrylic acid single stream yield was 67.2%. In addition, the moisture content of what dried the primary dried material at 130 degreeC for 16 hours is 1.5 weight%, and it turned out that the performance of the catalyst obtained compared with Example 1 is low.
[0038]
[Comparative Example 3]
In Example 1, the time for evaporation to dryness in obtaining the primary dry product was further shortened from that in Example 4, and the primary dry product having a water content of 30.5% by weight was obtained in the same manner as in Example 1. A catalyst was produced and methacrylic acid was produced in the same manner. As a result, the methacrolein reaction rate was 82.9%, the methacrylic acid selectivity was 81.4%, and the methacrylic acid single stream yield was 67.5%. It was found that the performance of the catalyst obtained was lower than that of Example 1. It was.
[0039]
[Example 10]
100 parts of ammonium paramolybdate, 4.42 parts of ammonium metavanadate and 9.20 parts of cesium nitrate were dissolved by heating in 300 parts of pure water. To this was added a solution prepared by dissolving 8.71 parts of 85 wt% phosphoric acid in 10 parts of pure water, then 5.50 parts of antimony trioxide, heated to 95 ° C. with stirring, and then added 1.14 parts of copper nitrate. A solution dissolved in 10 parts of pure water was added. Furthermore, this mixed liquid was stirred at 95 ° C. for 15 minutes to obtain a primary slurry. The primary slurry was evaporated to dryness with heating and stirring to obtain a paste-like primary dry product. The moisture content of the primary dried product was 13.1%. 100 parts of the primary dried product was dispersed in 400 parts of pure water to obtain a secondary slurry. The secondary slurry was evaporated to dryness while stirring with heating, and the obtained solid was dried at 130 ° C. for 16 hours to obtain a secondary dried product. The water content of the secondary dried product was 1.5%. This secondary dried product was molded and calcined in the same manner as in Example 1 to obtain a catalyst. The composition of the elements excluding oxygen in this catalyst is
Mo 12 P 1.6 V 0.8 Cu 0.1 Sb 0.8 Cs 1
Met.
[0040]
When this catalyst was used and reacted in the same manner as in Example 1, the methacrolein reaction rate was 84.5%, the methacrylic acid selectivity was 84.8%, and the methacrylic acid yield was 71.7%.
[0041]
[Comparative Example 4]
In Example 10, the operation of dispersing and drying the primary dried product in pure water was omitted, that is, except that the primary dried product dried at 130 ° C. for 16 hours was molded and calcined to obtain a catalyst. A catalyst was produced in the same manner as in Example 10, and methacrylic acid was produced in the same manner. As a result, the methacrolein reaction rate was 82.8%, the methacrylic acid selectivity was 83.7%, and the methacrylic acid single-flow yield was 69.3%, indicating that the performance of the catalyst obtained was lower than that of Example 10. It was.
[0042]
[Comparative Example 5]
In Example 10, a catalyst was produced in the same manner as in Example 10 except that the primary dried product was dried at 130 ° C. for 16 hours before being dispersed in pure water, and methacrylic acid was produced in the same manner. As a result, the methacrolein reaction rate was 83.0%, the methacrylic acid selectivity was 83.8%, and the single flow yield of methacrylic acid was 69.6%. In addition, the moisture content of what dried the primary dried material at 130 degreeC for 16 hours is 1.5 weight%, and it turned out that the performance of the catalyst obtained compared with Example 10 is low.
[0043]
【Effect of the invention】
By there use a catalyst prepared by the method for producing methacrylic acid synthesis catalyst of the present invention, methacrylic acid can be produced in high yields by vapor phase catalytic oxidation of methacrolein with molecular oxygen.

Claims (3)

少なくともモリブデンおよびリンを含む水性スラリーから水を部分的に除去して水分含有率が3〜25重量%の乾燥物とし、この乾燥物を水に分散させて水性スラリーとし、この水性スラリーを乾燥したものを300〜500℃で焼成するメタクリル酸合成用触媒の製造方法Water was partially removed from the aqueous slurry containing at least molybdenum and phosphorus to obtain a dry product having a water content of 3 to 25% by weight. The dry product was dispersed in water to form an aqueous slurry, and the aqueous slurry was dried. method for producing a main methacrylic acid synthesis catalyst for baked formed at 300 to 500 ° C. things. 乾燥物を分散させる水の質量が乾燥物の質量の1〜10倍であることを特徴とする請求項1記載のメタクリル酸合成用触媒の製造方法The method for producing a catalyst for methacrylic acid synthesis according to claim 1, wherein the mass of water in which the dried product is dispersed is 1 to 10 times the mass of the dried product. メタクリル酸合成用触媒が式(1)の組成式で表される複合酸化物である請求項1または2記載のメタクリル酸合成用触媒の製造方法
MoabCucdefg (1)
(式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウムおよびセシウムからなる群より選ばれた少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、ヒ素、アンチモンおよびビスマスからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦3、0.01≦d≦3、0.01≦e≦3、0≦f≦3であり、gは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
The method for producing a methacrylic acid synthesis catalyst according to claim 1 or 2, wherein the methacrylic acid synthesis catalyst is a composite oxide represented by a composition formula of formula (1).
Mo a P b Cu c V d X e Y f O g (1)
(Expressed in the formula, Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, X represents at least one element selected from potassium, rubidium and cesium or Ranaru group , Y represents iron, cobalt, nickel, arsenic, at least one element selected from antimony and bismuth scan or Ranaru group. However, a, b, c, d , e, f and g are each Represents the atomic ratio of the elements, and when a = 12, 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 3, 0.01 ≦ d ≦ 3, 0.01 ≦ e ≦ 3, 0 ≦ f ≦ 3 And g is an atomic ratio of oxygen necessary to satisfy the atomic ratio of each component.)
JP2001188338A 2001-06-21 2001-06-21 Catalyst for methacrylic acid synthesis and method for producing methacrylic acid Expired - Fee Related JP4947753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001188338A JP4947753B2 (en) 2001-06-21 2001-06-21 Catalyst for methacrylic acid synthesis and method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001188338A JP4947753B2 (en) 2001-06-21 2001-06-21 Catalyst for methacrylic acid synthesis and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2003001112A JP2003001112A (en) 2003-01-07
JP4947753B2 true JP4947753B2 (en) 2012-06-06

Family

ID=19027462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001188338A Expired - Fee Related JP4947753B2 (en) 2001-06-21 2001-06-21 Catalyst for methacrylic acid synthesis and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP4947753B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329362A (en) * 2004-05-21 2005-12-02 Mitsubishi Chemicals Corp Manufacturing method of catalyst for producing unsaturated carboxylic acid
JP4895265B2 (en) * 2005-09-16 2012-03-14 三菱レイヨン株式会社 Process for producing methacrolein and / or methacrylic acid synthesis catalyst
JP4961132B2 (en) * 2005-11-09 2012-06-27 三菱レイヨン株式会社 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP5090796B2 (en) * 2007-06-08 2012-12-05 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2012110806A (en) * 2010-11-22 2012-06-14 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130143A (en) * 1986-11-20 1988-06-02 Mitsubishi Rayon Co Ltd Preparation of oxidizing catalyst
JPH05177141A (en) * 1991-12-27 1993-07-20 Tosoh Corp Preparation of methacrylic acid
JP3826413B2 (en) * 1995-08-17 2006-09-27 住友化学株式会社 Method for producing catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH0957105A (en) * 1995-08-24 1997-03-04 Mitsubishi Rayon Co Ltd Production of catalyst for synthesizing methacrolein and methacrylic acid
JP3799660B2 (en) * 1996-05-16 2006-07-19 三菱化学株式会社 Oxidation catalyst, method for producing the same, and method for producing methacrylic acid
JP3887511B2 (en) * 1999-05-19 2007-02-28 三菱レイヨン株式会社 Catalyst production method

Also Published As

Publication number Publication date
JP2003001112A (en) 2003-01-07

Similar Documents

Publication Publication Date Title
JP2011092882A (en) Method for producing catalyst for preparation of methacrylic acid, and method for preparing methacrylic acid
KR20090082936A (en) Process for producing catalyst for methacrylic acid synthesis
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP4933709B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP4947753B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
US5349092A (en) Process for producing catalysts for synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP3797148B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
WO2019141203A1 (en) Catalyst for preparing methacrylic acid by oxidation of methacrolein and preparation method therefor
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP3668386B2 (en) Catalyst for synthesizing methacrolein and methacrylic acid and method for producing methacrolein and methacrylic acid
JP4285084B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5560596B2 (en) Method for producing a catalyst for methacrylic acid production
JP4634633B2 (en) Unsaturated carboxylic acid synthesis catalyst, preparation method thereof, and synthesis method of unsaturated carboxylic acid using the catalyst
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP4236415B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP2004188231A (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JP4301484B2 (en) Method for producing methacrylic acid
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4947753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees