JP2004188231A - Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid - Google Patents

Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid Download PDF

Info

Publication number
JP2004188231A
JP2004188231A JP2002334785A JP2002334785A JP2004188231A JP 2004188231 A JP2004188231 A JP 2004188231A JP 2002334785 A JP2002334785 A JP 2002334785A JP 2002334785 A JP2002334785 A JP 2002334785A JP 2004188231 A JP2004188231 A JP 2004188231A
Authority
JP
Japan
Prior art keywords
catalyst
producing
methacrylic acid
oxidizing gas
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002334785A
Other languages
Japanese (ja)
Other versions
JP4200744B2 (en
Inventor
Junya Yoshizawa
純也 吉沢
Koichi Nagai
功一 永井
Toshiaki Ui
利明 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002334785A priority Critical patent/JP4200744B2/en
Publication of JP2004188231A publication Critical patent/JP2004188231A/en
Application granted granted Critical
Publication of JP4200744B2 publication Critical patent/JP4200744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a catalyst for producing methacrylic acid having excellent catalyst life and to provide a method for producing the methacrylic acid with good productivity over a long period of time using the thus obtained catalyst for producing the methacrylic acid. <P>SOLUTION: A catalyst precursor is subjected to the first firing process at 400 to 500°C under an atmosphere of non-oxidative gas and then to the second firing process at 300 to 400°C under an atmosphere of oxidative gas. The two firing processes are carried out under the condition where the non-oxidative gas contains at least 0.01 vol.% of moisture content or the oxidative gas contains at least 3 vol.% of moisture content. Thereby, the catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum is produced. A compound selected from methacrolein, isobutylaldehyde, isobutane and isobutyric acid is subjected to a gas phase catalytic oxidation reaction in the presence of the catalyst to produce the methacrylic acid. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、メタクリル酸製造用触媒を製造する方法と、この方法により得られた触媒を用いて、メタクロレイン等の原料からメタクリル酸を製造する方法に関するものである。
【0002】
【従来の技術】
従来、メタクロレイン等の気相接触酸化反応によりメタクリル酸を製造する際に用いる触媒としては、ヘテロポリ酸やその塩からなるものが有効であることが知られている。この触媒は、通常、触媒原料の水性混合液を乾燥することにより得られる触媒前駆体を、焼成することにより製造され、この焼成条件としては、例えば、酸素濃度5容量%未満の不活性ガス中で400〜550℃にて焼成する方法(特許文献1参照)、0.05〜3容量%のアンモニアおよび/または水蒸気を含む空気等のガスの流通下に300〜500℃にて焼成する方法(特許文献2参照)、非酸化性ガスの雰囲気下に150〜400℃にて焼成する方法(特許文献3参照)、不活性ガス中で400〜500℃にて焼成する方法(特許文献4参照)、0.1〜10容量%の酸素を含むガスの流通下に350〜395℃にて焼成する方法(特許文献5参照)等が提案されている。
【0003】
【特許文献1】
特開昭57−165040号公報
【特許文献2】
特開昭58−61833号公報
【特許文献3】
特開昭59−66349号公報
【特許文献4】
特開平4−63139号公報
【特許文献5】
特開平9−75740号公報
【0004】
【発明が解決しようとする課題】
しかしながら、これら従来の方法により得られるメタクリル酸製造用触媒は、触媒活性の持続性、すなわち触媒寿命が必ずしも十分なものではなかった。そこで、本発明の目的は、優れた触媒寿命を有するメタクリル酸製造用触媒を製造しうる方法を提供することにある。また、本発明のもう一つの目的は、こうして得られたメタクリル酸製造用触媒を用いて、長期間に渡り生産性良くメタクリル酸を製造しうる方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は鋭意研究を行った結果、触媒前駆体を特定のガス・温度条件からなる多段焼成に付すこと、具体的には、第一段の焼成を非酸化性ガスの雰囲気下で、第二段の焼成を酸化性ガスの雰囲気下で行い、かつその少なくとも一方に所定量の水分を含有させることにより、上記目的を達成できることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、リンおよびモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、触媒前駆体を非酸化性ガスの雰囲気下に400〜500℃で焼成した後、酸化性ガスの雰囲気下に300〜400℃で焼成することからなり、前記非酸化性ガスが少なくとも0.01容量%の水分を含むか、または前記酸化性ガスが少なくとも3容量%の水分を含むことを特徴とする、メタクリル酸製造用触媒の製造方法に係るものである。
【0007】
また、本発明は、上記の方法によって得られる触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタンおよびイソ酪酸から選ばれる化合物を気相接触酸化反応に付すことを特徴とする、メタクリル酸の製造方法に係るものである。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明が製造の対象とするメタクリル酸製造用触媒は、リンおよびモリブデンを必須とするヘテロポリ酸化合物からなるものであり、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。中でも、ヘテロポリ酸の酸性塩(部分中和塩)からなるものが好ましく、さらに好ましくはケギン型ヘテロポリ酸の酸性塩からなるものである。
【0009】
上記触媒には、リンおよびモリブデン以外の元素として、バナジウムが含まれるのが望ましく、また、カリウム、ルビジウム、セシウムおよびタリウムから選ばれる少なくとも1種の元素(以下、X元素ということがある)や、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタンおよびセリウムから選ばれる少なくとも1種の元素(以下、Y元素ということがある)が含まれるのが望ましい。通常、モリブデン12原子に対して、リン、バナジウム、X元素およびY元素が、それぞれ3原子以下の割合で含まれるヘテロポリ酸化合物が、好適に用いられる。
【0010】
上記触媒の原料としては、通常、上記触媒に含まれる各元素を含む化合物、例えば、各元素のオキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が、所望の原子比を満たすような割合で用いられる。例えば、リンを含む化合物としては、リン酸、リン酸塩等が用いられ、モリブデンを含む化合物としては、モリブデン酸、モリブデン酸塩、酸化モリブデン、塩化モリブデン等が用いられ、バナジウムを含む化合物としては、バナジン酸、バナジン酸塩、酸化バナジウム、塩化バナジウム等が用いられる。また、X元素を含む化合物としては、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられ、Y元素を含む化合物としては、オキソ酸、オキソ酸塩、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられる。
【0011】
本発明の触媒の製造方法は、上記の触媒原料から調製される触媒前駆体を、特定のガス・温度条件からなる多段焼成に付すことにより行われる。この触媒前駆体は、通常、触媒原料を水中で混合して水溶液または水性スラリーを得、次いでこの水性混合液を乾燥することにより調製することができ、例えば、該乾燥物を成形したものであってもよいし、該乾燥物を熱処理(前焼成)した後、成形したものであってもよいし、該乾燥物を成形した後、熱処理したものであってもよい。ここで、水性混合液の乾燥は、スプレードライヤー等を用いた噴霧乾燥により行うのが好ましく、乾燥物の成形は、必要に応じて成形助剤を用いて、円柱状、球状、リング状等にするのが好ましい。また、乾燥物の熱処理は、酸化性ガスまたは非酸化性ガスの雰囲気下に、180〜350℃程度の温度で行うのが望ましい。
【0012】
触媒前駆体の調製方法としては、触媒原料としてアンモニウム化合物を用いたり、アンモニアやアンモニウム塩を添加したりして、アンモニウム根を含む水性混合液を得、これを乾燥した後、熱処理してから成形するか、成形してから熱処理するのが望ましい。これらの処方によれば、乾燥物としてドーソン型ヘテロポリ酸塩からなる触媒前駆体を得ることができ、次いでその熱処理により、ドーソン型からケギン型への転移反応が起こって、ケギン型ヘテロポリ酸塩からなる触媒前駆体を得ることができる。こうして得られた触媒前駆体は、本発明による多段焼成に対し、特に好適な対象となる。
【0013】
以上のようにして得られる触媒前駆体を、非酸化性ガスの雰囲気下に特定温度で第一段焼成した後、酸化性ガスの雰囲気下に特定温度で第二段焼成する。この際、前段の非酸化性ガスに所定量の水分を存在させるか、または後段の酸化性ガスに所定量の水分を存在させる。これにより、優れた触媒寿命を有するメタクリル酸製造用触媒を製造することができる。
【0014】
第一段焼成に用いられる非酸化性ガスとしては、例えば、窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガスが挙げられる。また、第二段焼成に用いられる酸化性ガスとしては、例えば、酸素を1〜21容量%の濃度で含む酸素含有ガスが挙げられ、この酸素源としては、通常、空気や純酸素が用いられる。
【0015】
第一段焼成の温度は、400〜500℃であり、好ましくは420〜450℃である。また第二段焼成の温度は、300〜400℃であり、好ましくは350〜400℃である。第一段焼成の温度が400℃未満であると、表面酸点の発現が十分でないため、得られる触媒の活性が十分にならないことがあり、一方でその温度が500℃を越えると、触媒が分解・焼結しやすいため、得られる触媒の活性が十分にならないことがある。また、第二段焼成の温度が300℃未満であると、触媒寿命の向上効果が十分でないことがあり、一方でその温度が400℃を越えると、触媒が分解・焼結しやすいため、得られる触媒の活性が十分にならないことがある。なお、第一段焼成および第二段焼成の時間は、それぞれ適宜調整されるが、通常それぞれ、1〜20時間程度である。
【0016】
第一段焼成における非酸化性ガス中に水分を存在させる場合、その水分量は、少なくとも0.01容量%とする。この水分濃度は、好ましくは0.1容量%以上、さらに好ましくは0.5容量%以上であり、また、通常50容量%以下である。このように、第一段焼成における非酸化性ガス中に特定量の水分を含ませることによって、得られる触媒の寿命を伸ばすことができる。
【0017】
一方、第二段焼成における酸化性ガス中に水分を存在させる場合、その水分量は少なくとも3容量%とする。この水分濃度は、好ましくは5容量%以上、さらに好ましくは10容量%以上であり、また、通常50容量%以下である。このように、第二段焼成における酸化性ガス中に特定量の水分を含ませることによっても、得られる触媒の寿命を伸ばすことができる。
【0018】
第一段焼成の非酸化性ガス中に上記した所定量の水分を含ませておき、その後の第二段焼成における酸化性ガス中にも上記した所定量の水分を含ませておくのも有効である。
【0019】
第一段焼成の非酸化性ガス中に所定量の水分を存在させること、および/または、第二段焼成の酸化性ガス中に所定量の水分を存在させることによって、得られる触媒の寿命が延びる理由は、必ずしも定かでないが、本発明者等は、水分の存在下で焼成を行うことによって、熱安定性の高い表面酸点や骨格を有するヘテロポリ酸化合物が増加するものと推定している。
【0020】
以上のようにして得られた触媒は、メタクリル酸製造用の触媒として優れた触媒寿命を有し、該触媒を用いて、メタクロレイン、イソブチルアルデヒド、イソブタン、イソ酪酸等の原料化合物を気相接触酸化反応させることにより、メタクリル酸を長期間に渡り生産性良く製造することができる。メタクリル酸の製造は、通常、固定床多環式反応器に触媒を充填し、これに原料化合物と酸素を含む原料ガスを供給することにより行われるが、流動床や移動床のような反応形式を採用することもできる。酸素源としては、通常、空気が用いられ、また原料ガス中には、原料化合物および酸素以外の成分として、窒素、二酸化炭素、一酸化炭素、水蒸気等が含まれうる。
【0021】
例えば、メタクロレインを原料として用いる場合、通常、原料ガス中のメタクロレイン濃度は1〜10容量%、メタクロレインに対する酸素のモル比は1〜5、空間速度は500〜5000h−1(標準状態基準)、反応温度は250〜350℃、反応圧力は0.1〜0.3MPa、の条件下に反応が行われる。なお、原料のメタクロレインは必ずしも高純度の精製品である必要はなく、例えば、イソブチレンやt−ブチルアルコールの気相接触酸化反応により得られたメタクロレインを含む反応生成ガスを用いることもできる。
【0022】
また、イソブタンを原料として用いる場合、通常、原料ガス中のイソブタン濃度は1〜85容量%、水蒸気濃度は3〜30容量%、イソブタンに対する酸素のモル比は0.05〜4、空間速度は400〜5000h−1(標準状態基準)、反応温度は250〜400℃、反応圧力は0.1〜1MPa、の条件下に反応が行われる。イソ酪酸やイソブチルアルデヒドを原料として用いる場合には、通常、メタクロレインを原料として用いる場合と、ほぼ同様の反応条件が採用される。
【0023】
【実施例】
以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。なお、各例で使用した空気は、水分2容量%(大気相当)を含み、これにスチームを混合して水分濃度を調整した。また、各例で使用した窒素は、実質的に水分を含まず、これにスチームを混合して水分濃度を調整した。
【0024】
実施例1〜6、比較例1
(a)触媒の調製
40℃に加熱したイオン交換水224kgに、硝酸セシウム[CsNO]38.2kg、85重量%オルトリン酸24.2kg、および70重量%硝酸25.2kgを溶解し、これをA液とした。一方、40℃に加熱したイオン交換水330kgに、モリブデン酸アンモニウム4水和物[(NHMo24・4HO]kgを溶解した後、メタバナジン酸アンモニウム[NHVO]8.19kgを懸濁させ、これをB液とした。A液とB液をそれぞれ50℃に調整し、攪拌下、B液にA液を滴下した後、密閉容器中で120℃にて8.5時間攪拌し、次いで、三酸化アンチモン[Sb]10.2kgおよび硝酸銅3水和物[Cu(NO・3HO]10.2kgを、イオン交換水23kgに懸濁させて添加した後、密封容器中で120℃にて5時間攪拌した。こうして得られたスラリーをスプレードライヤーにて乾燥し、ドーソン型ヘテロポリ酸塩からなる触媒前駆体粉末を得た。この粉末100重量部に対して、セラミックファイバー[東芝モノフラックス(株)製、FIBERFRAX RFC400SL]4重量部、硝酸アンモニウム13重量部、およびイオン交換水9重量部を加えて混練し、直径5mm、高さ5mmの円柱状に押出成形した。この成形体を、温度90℃、湿度35%RHにて3時間乾燥した後、空気気流中で220℃にて22時間、空気気流中で250℃にて1時間の順に熱処理(前焼成)して、ケギン型ヘテロポリ酸塩からなる触媒前駆体とした。次いで、この前駆体を、表1に示す水分濃度の窒素/スチーム混合ガス(1)の気流中で、435℃にて3時間焼成した後、表1に示す水分濃度の空気/スチーム混合ガス(2)の気流中で、390℃にて3時間焼成して、触媒を得た。この触媒は、リン、モリブデン、バナジウム、アンチモン、銅およびセシウムをそれぞれ1.5、12、0.5、0.5、0.3および1.4の原子比で含むケギン型ヘテロポリ酸の酸性塩からなるものであった。
【0025】
(b)活性試験
以上のようにして得られた触媒9gを、内径15mmのガラス製マイクロリアクターに充填し、この中に、メタクロレイン、空気、スチームおよび窒素を混合して調製したメタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%の組成の原料ガスを、空間速度670h−1で供給して、炉温(マイクロリアクターを加熱するための炉の温度。)280℃にて反応を行い、反応開始から1時間経過時のメタクロレイン転化率とメタクリル酸選択率を求めた。次に、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して、炉温355℃にて反応を行い、触媒を強制劣化させた後、再度、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して、炉温280℃にて反応を行い、この反応開始から1時間経過時のメタクロレイン転化率とメタクリル酸選択率を求めた。強制劣化前後でのメタクロレイン転化率とメタクリル酸選択率を表1に示す。
【0026】
【表1】

Figure 2004188231
【0027】
本発明によれば、触媒活性の持続性、すなわち触媒寿命の点で優れるメタクリル酸製造用触媒を製造することができ、こうして得られる触媒を用いることにより、メタクリル酸を長期間に渡り生産性良く製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid from a raw material such as methacrolein using the catalyst obtained by this method.
[0002]
[Prior art]
Conventionally, it has been known that a catalyst comprising a heteropolyacid or a salt thereof is effective as a catalyst used for producing methacrylic acid by a gas-phase catalytic oxidation reaction such as methacrolein. This catalyst is usually produced by calcining a catalyst precursor obtained by drying an aqueous mixed solution of catalyst raw materials. The calcining conditions include, for example, an inert gas having an oxygen concentration of less than 5% by volume. Baking at 400 to 550 ° C. (see Patent Literature 1), and baking at 300 to 500 ° C. under a flow of a gas such as air containing 0.05 to 3% by volume of ammonia and / or steam ( Patent Document 2), a method of firing at 150 to 400 ° C. in an atmosphere of a non-oxidizing gas (see Patent Document 3), and a method of firing at 400 to 500 ° C. in an inert gas (see Patent Document 4) And a method of firing at 350 to 395 ° C. under a flow of a gas containing 0.1 to 10% by volume of oxygen (see Patent Document 5).
[0003]
[Patent Document 1]
JP-A-57-165040 [Patent Document 2]
JP-A-58-61833 [Patent Document 3]
JP-A-59-66349 [Patent Document 4]
JP-A-4-63139 [Patent Document 5]
JP-A-9-75740
[Problems to be solved by the invention]
However, the catalysts for producing methacrylic acid obtained by these conventional methods do not always have sufficient catalytic activity, that is, sufficient catalyst life. Therefore, an object of the present invention is to provide a method capable of producing a catalyst for producing methacrylic acid having an excellent catalyst life. Another object of the present invention is to provide a method capable of producing methacrylic acid with high productivity over a long period of time using the methacrylic acid producing catalyst thus obtained.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive research and found that the catalyst precursor is subjected to multi-stage calcination consisting of specific gas and temperature conditions.Specifically, the first stage calcination is performed in a non-oxidizing gas atmosphere. The present inventors have found that the above object can be achieved by performing the second-stage calcination in an atmosphere of an oxidizing gas and adding a predetermined amount of water to at least one of them, thereby completing the present invention.
[0006]
That is, the present invention relates to a method for producing a methacrylic acid production catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum, wherein the catalyst precursor is calcined at 400 to 500 ° C. in an atmosphere of a non-oxidizing gas and then oxidized. Baking at 300 to 400 ° C. in an atmosphere of an oxidizing gas, wherein the non-oxidizing gas contains at least 0.01% by volume of moisture, or the oxidizing gas contains at least 3% by volume of moisture. And a method for producing a catalyst for producing methacrylic acid.
[0007]
Further, the present invention provides a method for producing methacrylic acid, which comprises subjecting a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid to a gas phase catalytic oxidation reaction in the presence of a catalyst obtained by the above method. Pertains to the method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. The catalyst for producing methacrylic acid to be produced by the present invention is composed of a heteropolyacid compound essentially containing phosphorus and molybdenum, and may be composed of a free heteropolyacid, or may be composed of a salt of a heteropolyacid. It may be. Among them, those composed of an acid salt of a heteropolyacid (partially neutralized salt) are preferred, and those composed of an acidic salt of a Keggin-type heteropolyacid are more preferred.
[0009]
The catalyst desirably contains vanadium as an element other than phosphorus and molybdenum, and at least one element selected from potassium, rubidium, cesium and thallium (hereinafter sometimes referred to as element X), It is desirable that at least one element selected from copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum, and cerium (hereinafter sometimes referred to as Y element) is contained. Usually, a heteropolyacid compound containing phosphorus, vanadium, element X, and element Y in a proportion of 3 atoms or less with respect to 12 molybdenum atoms is preferably used.
[0010]
As the raw material of the catalyst, a compound containing each element contained in the catalyst, for example, an oxo acid, an oxo acid salt, an oxide, a nitrate, a carbonate, a hydroxide, a halide, or the like of each element is preferably used. Is used in such a ratio as to satisfy the atomic ratio of For example, as the compound containing phosphorus, phosphoric acid, phosphate, or the like is used.As the compound containing molybdenum, molybdic acid, molybdate, molybdenum oxide, molybdenum chloride, or the like is used, and as the compound containing vanadium, , Vanadic acid, vanadate, vanadium oxide, vanadium chloride and the like are used. Examples of the compound containing the element X include oxides, nitrates, carbonates, hydroxides, and halides, and examples of the compound containing the element Y include oxo acids, oxo salts, nitrates, carbonates, and water. Oxides, halides and the like are used.
[0011]
The method for producing a catalyst of the present invention is carried out by subjecting a catalyst precursor prepared from the above catalyst raw material to multistage calcination under specific gas and temperature conditions. This catalyst precursor can be usually prepared by mixing the catalyst raw materials in water to obtain an aqueous solution or an aqueous slurry, and then drying the aqueous mixed solution, for example, by molding the dried product. The dried product may be heat-treated (pre-baked) and then molded, or the dried product may be molded and then heat-treated. Here, the drying of the aqueous mixed solution is preferably performed by spray drying using a spray dryer or the like, and the forming of the dried product is performed, if necessary, using a forming aid, into a columnar shape, a spherical shape, a ring shape, or the like. Is preferred. The heat treatment of the dried product is desirably performed at a temperature of about 180 to 350 ° C. in an atmosphere of an oxidizing gas or a non-oxidizing gas.
[0012]
As a method for preparing a catalyst precursor, an ammonium compound is used as a catalyst raw material, or an ammonia or ammonium salt is added to obtain an aqueous mixed solution containing an ammonium root, which is dried, heat-treated, and then molded. Or heat treatment after molding. According to these formulations, a catalyst precursor consisting of a Dawson-type heteropolyacid salt can be obtained as a dried product, and then, by the heat treatment, a transition reaction from the Dawson-type to the Keggin-type occurs, and the Keggin-type heteropolyacid salt is converted from the Keggin-type heteropolyacid salt. Can be obtained. The catalyst precursor thus obtained is a particularly suitable object for the multi-stage calcination according to the present invention.
[0013]
After the catalyst precursor obtained as described above is subjected to the first-stage firing at a specific temperature in a non-oxidizing gas atmosphere, the second-stage firing is performed at a specific temperature in an oxidizing gas atmosphere. At this time, a predetermined amount of moisture is made to exist in the first-stage non-oxidizing gas, or a certain amount of water is made to exist in the second-stage oxidizing gas. Thereby, a catalyst for producing methacrylic acid having an excellent catalyst life can be produced.
[0014]
Examples of the non-oxidizing gas used in the first-stage firing include an inert gas such as nitrogen, carbon dioxide, helium, and argon. Examples of the oxidizing gas used in the second-stage baking include an oxygen-containing gas containing oxygen at a concentration of 1 to 21% by volume. As the oxygen source, air or pure oxygen is usually used. .
[0015]
The first stage firing temperature is 400 to 500 ° C, preferably 420 to 450 ° C. The second stage firing temperature is 300 to 400 ° C, preferably 350 to 400 ° C. If the temperature of the first-stage calcination is lower than 400 ° C., the surface acid sites are not sufficiently expressed, and thus the activity of the obtained catalyst may not be sufficient. Since the catalyst is easily decomposed and sintered, the activity of the obtained catalyst may not be sufficient. If the temperature of the second stage firing is lower than 300 ° C., the effect of improving the catalyst life may not be sufficient. On the other hand, if the temperature exceeds 400 ° C., the catalyst is liable to decompose and sinter. The activity of the resulting catalyst may not be sufficient. In addition, the time of the first-stage firing and the second-stage firing are appropriately adjusted, but each is usually about 1 to 20 hours.
[0016]
When water is present in the non-oxidizing gas in the first-stage firing, the water content is at least 0.01% by volume. The water concentration is preferably 0.1% by volume or more, more preferably 0.5% by volume or more, and is usually 50% by volume or less. As described above, by including a specific amount of water in the non-oxidizing gas in the first-stage calcination, the life of the obtained catalyst can be extended.
[0017]
On the other hand, when moisture is present in the oxidizing gas in the second-stage firing, the moisture content is at least 3% by volume. This water concentration is preferably 5% by volume or more, more preferably 10% by volume or more, and is usually 50% by volume or less. As described above, by including a specific amount of water in the oxidizing gas in the second-stage firing, the life of the obtained catalyst can be extended.
[0018]
It is also effective to include the above-mentioned predetermined amount of water in the non-oxidizing gas of the first-stage firing, and to also contain the above-mentioned predetermined amount of water in the oxidizing gas of the subsequent second-stage firing. It is.
[0019]
The presence of a predetermined amount of water in the non-oxidizing gas of the first-stage calcination and / or the presence of a predetermined amount of water in the oxidizing gas of the second-stage calcination increases the life of the catalyst obtained. The reason for the extension is not necessarily clear, but the present inventors presume that by performing calcination in the presence of moisture, the number of heteropolyacid compounds having a high heat stable surface acid point or skeleton increases. .
[0020]
The catalyst obtained as described above has an excellent catalyst life as a catalyst for the production of methacrylic acid, and using the catalyst, gas-phase contact of starting compounds such as methacrolein, isobutyraldehyde, isobutane, and isobutyric acid. By performing the oxidation reaction, methacrylic acid can be produced with high productivity over a long period of time. The production of methacrylic acid is usually carried out by charging a fixed bed polycyclic reactor with a catalyst and supplying a raw material gas containing a raw material compound and oxygen to the catalyst. Can also be adopted. Air is usually used as the oxygen source, and the source gas may contain nitrogen, carbon dioxide, carbon monoxide, water vapor, and the like as components other than the source compound and oxygen.
[0021]
For example, when methacrolein is used as a raw material, the concentration of methacrolein in the raw material gas is usually 1 to 10% by volume, the molar ratio of oxygen to methacrolein is 1 to 5, and the space velocity is 500 to 5000 h -1 (standard state standard). ), The reaction is carried out under the conditions of a reaction temperature of 250 to 350 ° C. and a reaction pressure of 0.1 to 0.3 MPa. The raw material methacrolein does not necessarily need to be a purified product of high purity. For example, a reaction product gas containing methacrolein obtained by a gas phase catalytic oxidation reaction of isobutylene or t-butyl alcohol can be used.
[0022]
When isobutane is used as a raw material, the isobutane concentration in the raw material gas is usually 1 to 85% by volume, the water vapor concentration is 3 to 30% by volume, the molar ratio of oxygen to isobutane is 0.05 to 4, and the space velocity is 400. The reaction is performed under the conditions of 〜5000 h −1 (based on a standard state), a reaction temperature of 250 to 400 ° C., and a reaction pressure of 0.1 to 1 MPa. In the case where isobutyric acid or isobutyraldehyde is used as a raw material, generally the same reaction conditions as in the case where methacrolein is used as a raw material are employed.
[0023]
【Example】
Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto. The air used in each example contained 2% by volume of water (corresponding to the atmosphere), and steam was mixed with the air to adjust the water concentration. The nitrogen used in each example did not substantially contain moisture, and steam was mixed with the nitrogen to adjust the moisture concentration.
[0024]
Examples 1 to 6, Comparative Example 1
(A) Preparation of catalyst 38.2 kg of cesium nitrate [CsNO 3 ], 24.2 kg of 85% by weight orthophosphoric acid, and 25.2 kg of 70% by weight nitric acid were dissolved in 224 kg of ion-exchanged water heated to 40 ° C. Solution A was used. Meanwhile, ion exchange water 330kg heated to 40 ° C., ammonium tetrahydrate molybdate was dissolved [(NH 4) 6 Mo 7 O 24 · 4H 2 O] kg, ammonium metavanadate [NH 4 VO 3] 8.19 kg was suspended, and this was used as solution B. Solution A and solution B were each adjusted to 50 ° C., and solution A was added dropwise to solution B with stirring, and the mixture was stirred at 120 ° C. for 8.5 hours in a closed container, and then antimony trioxide [Sb 2 O 3 ] and 10.2 kg of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] suspended in 23 kg of ion-exchanged water were added, and then added at 120 ° C. in a sealed container. Stir for 5 hours. The slurry thus obtained was dried with a spray drier to obtain a catalyst precursor powder comprising a Dawson-type heteropolyacid salt. To 100 parts by weight of this powder, 4 parts by weight of a ceramic fiber [manufactured by Toshiba Monoflux Co., Ltd., FIBERFRAX RFC400SL], 13 parts by weight of ammonium nitrate, and 9 parts by weight of ion-exchanged water were added and kneaded. It was extruded into a 5 mm cylindrical shape. The formed body is dried at a temperature of 90 ° C. and a humidity of 35% RH for 3 hours, and then heat-treated (pre-baked) in an air stream at 220 ° C. for 22 hours and in an air stream at 250 ° C. for 1 hour. Thus, a catalyst precursor comprising a Keggin-type heteropolyacid salt was obtained. Next, this precursor was calcined at 435 ° C. for 3 hours in an air flow of a nitrogen / steam mixed gas (1) having a water concentration shown in Table 1, and then an air / steam mixed gas ( The catalyst was obtained by calcining at 390 ° C. for 3 hours in the airflow of 2). This catalyst is an acidic salt of a Keggin-type heteropolyacid containing phosphorus, molybdenum, vanadium, antimony, copper and cesium in an atomic ratio of 1.5, 12, 0.5, 0.5, 0.3 and 1.4, respectively. It consisted of
[0025]
(B) Activity test 9 g of the catalyst obtained as described above was filled in a glass microreactor having an inner diameter of 15 mm, and methacrolein, air, steam and nitrogen were mixed therein. %, Molecular oxygen of 12% by volume, and steam of 17% by volume at a space velocity of 670 h −1 and a reaction at a furnace temperature of 280 ° C. (furnace temperature for heating the microreactor). The conversion of methacrolein and the selectivity of methacrylic acid after one hour from the start of the reaction were determined. Next, a raw material gas having the same composition as above is supplied at the same space velocity as above, a reaction is performed at a furnace temperature of 355 ° C., and the catalyst is forcibly degraded. The reaction was carried out at a furnace temperature of 280 ° C. at the same space velocity as above, and the conversion of methacrolein and the selectivity of methacrylic acid one hour after the start of the reaction were determined. Table 1 shows the conversion of methacrolein and the selectivity of methacrylic acid before and after forced deterioration.
[0026]
[Table 1]
Figure 2004188231
[0027]
According to the present invention, it is possible to produce a catalyst for producing methacrylic acid excellent in sustainability of catalyst activity, that is, in terms of catalyst life, and by using the catalyst thus obtained, methacrylic acid can be produced with high productivity over a long period of time. Can be manufactured.

Claims (6)

リンおよびモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、触媒前駆体を非酸化性ガスの雰囲気下に400〜500℃で焼成した後、酸化性ガスの雰囲気下に300〜400℃で焼成することからなり、前記非酸化性ガスが少なくとも0.01容量%の水分を含むか、または前記酸化性ガスが少なくとも3容量%の水分を含むことを特徴とする、メタクリル酸製造用触媒の製造方法。A method for producing a catalyst for producing methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum, wherein the catalyst precursor is calcined at 400 to 500 ° C. in an atmosphere of a non-oxidizing gas, and then fired in an atmosphere of an oxidizing gas. Methacrylic acid, characterized in that the non-oxidizing gas contains at least 0.01% by volume of water or the oxidizing gas contains at least 3% by volume of water A method for producing a catalyst for acid production. リンおよびモリブデンを含むヘテロポリ酸化合物が、さらにバナジウムを含む請求項1記載の方法。The method of claim 1, wherein the heteropolyacid compound comprising phosphorus and molybdenum further comprises vanadium. リンおよびモリブデンを含むヘテロポリ酸化合物が、さらに、カリウム、ルビジウム、セシウムおよびタリウムから選ばれる元素を含む請求項2記載の方法。The method according to claim 2, wherein the heteropolyacid compound containing phosphorus and molybdenum further contains an element selected from potassium, rubidium, cesium and thallium. リンおよびモリブデンを含むヘテロポリ酸化合物が、さらに、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタンおよびセリウムから選ばれる元素を含む請求項2または3記載の方法。4. The method according to claim 2, wherein the heteropolyacid compound containing phosphorus and molybdenum further contains an element selected from copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium. 非酸化性ガスが少なくとも0.01容量%の水分を含み、かつ酸化性ガスが少なくとも3容量%の水分を含む請求項1〜4のいずれかに記載の方法。A method according to any of the preceding claims, wherein the non-oxidizing gas comprises at least 0.01% by volume of water and the oxidizing gas comprises at least 3% by volume of water. 触媒前駆体を非酸化性ガスの雰囲気下に400〜500℃で第一段焼成し、次いで酸化性ガスの雰囲気下に300〜400℃で第二段焼成し、かつ、前記非酸化性ガスが少なくとも0.01容量%の水分を含むか、または前記酸化性ガスが少なくとも3容量%の水分を含む条件にて前記二段階の焼成を行うことにより、リンおよびモリブデンを含むヘテロポリ酸化合物からなる触媒を製造し、この触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタンおよびイソ酪酸から選ばれる化合物を気相接触酸化反応に付すことを特徴とする、メタクリル酸の製造方法。The catalyst precursor is fired in a first stage at 400 to 500 ° C. in an atmosphere of a non-oxidizing gas, and then fired in a second stage at 300 to 400 ° C. in an atmosphere of an oxidizing gas. A catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum by performing the two-stage calcination under the condition that at least 0.01% by volume of water is contained or the oxidizing gas contains at least 3% by volume of moisture. And subjecting a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid to a gas phase catalytic oxidation reaction in the presence of the catalyst.
JP2002334785A 2002-10-15 2002-11-19 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid Expired - Fee Related JP4200744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334785A JP4200744B2 (en) 2002-10-15 2002-11-19 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002300082 2002-10-15
JP2002334785A JP4200744B2 (en) 2002-10-15 2002-11-19 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2004188231A true JP2004188231A (en) 2004-07-08
JP4200744B2 JP4200744B2 (en) 2008-12-24

Family

ID=32774356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334785A Expired - Fee Related JP4200744B2 (en) 2002-10-15 2002-11-19 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP4200744B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104155A1 (en) * 2005-03-29 2006-10-05 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
WO2006121100A1 (en) * 2005-05-12 2006-11-16 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2007260588A (en) * 2006-03-29 2007-10-11 Sumitomo Chemical Co Ltd Method for producing catalyst for methacrylic acid production and method for producing methacrylic acid
JP2008284508A (en) * 2007-05-21 2008-11-27 Sumitomo Chemical Co Ltd Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2011078975A (en) * 2010-11-26 2011-04-21 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
JP2011152543A (en) * 2011-04-28 2011-08-11 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
DE102012010194A1 (en) 2011-05-25 2012-11-29 Sumitomo Chemical Co., Ltd. Preparing catalyst, useful to prepare methacrylic acid, comprises first calcination of catalyst precursor comprising heteropolyacid compound containing phosphorus and molybdenum, second calcination of obtained calcined product and cooling
JPWO2021166099A1 (en) * 2020-02-19 2021-08-26

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272151A (en) * 2005-03-29 2006-10-12 Nippon Kayaku Co Ltd Catalyst for producing methacrylic acid and method for manufacturing the catalyst
EP1867387A1 (en) * 2005-03-29 2007-12-19 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
WO2006104155A1 (en) * 2005-03-29 2006-10-05 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
EP1867387A4 (en) * 2005-03-29 2009-09-02 Nippon Kayaku Kk Catalyst for producing methacrylic acid and method for preparation thereof
US8716523B2 (en) 2005-03-29 2014-05-06 Nippon Kayaku Kabushiki Kaisha Catalyst for use in production of methacrylic acid and method for manufacturing the same
US8017547B2 (en) 2005-05-12 2011-09-13 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
WO2006121100A1 (en) * 2005-05-12 2006-11-16 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2006314923A (en) * 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd Manufacturing method of catalyst for producing methacrylic acid
US8148291B2 (en) 2005-05-12 2012-04-03 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
JP2007260588A (en) * 2006-03-29 2007-10-11 Sumitomo Chemical Co Ltd Method for producing catalyst for methacrylic acid production and method for producing methacrylic acid
JP2008284508A (en) * 2007-05-21 2008-11-27 Sumitomo Chemical Co Ltd Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2011078975A (en) * 2010-11-26 2011-04-21 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
JP2011152543A (en) * 2011-04-28 2011-08-11 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
DE102012010194A1 (en) 2011-05-25 2012-11-29 Sumitomo Chemical Co., Ltd. Preparing catalyst, useful to prepare methacrylic acid, comprises first calcination of catalyst precursor comprising heteropolyacid compound containing phosphorus and molybdenum, second calcination of obtained calcined product and cooling
JPWO2021166099A1 (en) * 2020-02-19 2021-08-26

Also Published As

Publication number Publication date
JP4200744B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4715712B2 (en) A method for regenerating a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP4957628B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4900449B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008212779A (en) Method for producing molybdenum-, bismuth-, iron-, and silica-containing composite oxide catalyst
JP5335490B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2009248034A (en) Method of regenerating methacrylic-acid preparation catalyst, and method of producing methacrylic acid
JP2007260588A (en) Method for producing catalyst for methacrylic acid production and method for producing methacrylic acid
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5793345B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH09299803A (en) Oxidation catalyst, manufacture thereof and preparation of methacrylic acid
JP4352856B2 (en) A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JPH09299802A (en) Manufacture of oxidation catalyst and preparation of methacrylic acid
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP3797146B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4900532B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214499B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees