JPH09299803A - Oxidation catalyst, manufacture thereof and preparation of methacrylic acid - Google Patents

Oxidation catalyst, manufacture thereof and preparation of methacrylic acid

Info

Publication number
JPH09299803A
JPH09299803A JP8122022A JP12202296A JPH09299803A JP H09299803 A JPH09299803 A JP H09299803A JP 8122022 A JP8122022 A JP 8122022A JP 12202296 A JP12202296 A JP 12202296A JP H09299803 A JPH09299803 A JP H09299803A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
water
producing
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8122022A
Other languages
Japanese (ja)
Other versions
JP3799660B2 (en
Inventor
Takako Kamo
卓子 加茂
Tsutomu Teshigawara
力 勅使河原
Yukio Sakai
幸雄 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP12202296A priority Critical patent/JP3799660B2/en
Publication of JPH09299803A publication Critical patent/JPH09299803A/en
Application granted granted Critical
Publication of JP3799660B2 publication Critical patent/JP3799660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heteropoly acid based catalyst having high reaction reactivity and selectivity and long catalytic life by producing an oxidation catalyst from an oxide containing phosphorus and molybdenum and a polyelemental oxide containing antimony together with one or more element selected from cerium, zirconium, etc. SOLUTION: This oxidation catalyst is a heteropoly acid type catalyst used for methacrylic acid production by gas-phase oxidation of methacrolein, t- butanol, etc., by bringing them into contact with molecular oxygen and the oxidation catalyst is produced from an oxide containing phosphorus, molybdenum, etc., and a polyelemental oxide containing antimony together with one or more element selected form cerium, etc. That is, solid substances obtained by drying a solution or a suspension produced by dissolving or suspending the catalyst raw materials in water are calcined at 150-300 deg.C and then the resultant calcined substances are kneaded with 0.2-0.8 times by wt. ammonia water containing 0.2-0.8 times by wt. water or 0.015-0.1 times by wt. ammonium hydroxide and after that, the polyelemental oxide is added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化触媒及びその
製造方法並びに該触媒によるメタクリル酸の製造方法に
関する。詳しくは、本発明は、メタクロレイン、t−ブ
タノール、イソブタン、イソブテン等を分子状酸素によ
り気相接触酸化してメタクリル酸を製造するために用い
られるヘテロポリ酸系触媒及びその製造方法並びに該触
媒によるメタクリル酸の製造方法に関する。
TECHNICAL FIELD The present invention relates to an oxidation catalyst, a method for producing the same, and a method for producing methacrylic acid by the catalyst. More specifically, the present invention relates to a heteropolyacid catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein, t-butanol, isobutane, isobutene, etc. with molecular oxygen, a method for producing the same, and the catalyst. The present invention relates to a method for producing methacrylic acid.

【0002】[0002]

【従来の技術】メタクロレインを気相接触酸化してメタ
クリル酸を製造する触媒としてリンモリブデン酸等のよ
うなケギン構造を有するヘテロポリ酸化合物が有効であ
ることは従来から知られている。しかしながら、Mo−
V系触媒によるアクロレインからアクリル酸への気相接
触酸化が、工業レベルで99%以上の転化率及び97%
以上の選択率で三年以上に亘り安定な運転実績を達成し
ているのと比較すると、メタクリル酸の製造については
未だ著しく低いレベルに留まっている。このため、反応
活性、メタクリル酸選択性、触媒寿命の改善或いは触媒
製造の安定性を求め、触媒組成、調製方法、乾燥方法、
焼成方法、触媒形状等に精力的な研究開発が行われてお
り、いろいろな提案がこれ迄になされている。
2. Description of the Related Art It has been conventionally known that a heteropolyacid compound having a Keggin structure such as phosphomolybdic acid is effective as a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein. However, Mo-
Vapor-phase catalytic oxidation of acrolein to acrylic acid with V-based catalysts has an industrial conversion rate of 99% or higher and 97%.
Compared with achieving stable operation results for more than three years with the above selectivity, the production of methacrylic acid is still at a significantly low level. Therefore, the reaction composition, the selectivity of methacrylic acid, the improvement of the catalyst life or the stability of the catalyst production are required, and the catalyst composition, the preparation method, the drying method,
Energetic research and development has been conducted on the calcination method, catalyst shape, etc., and various proposals have been made so far.

【0003】例えば、触媒組成については特開昭55−
39236号公報を初めとする多くの特許公報の触媒構
成元素として実質的にはVが必須であると共に、アルカ
リ金属、アルカリ土類金属、遷移金属、希土類金属等多
くの元素が触媒性能向上に有効であることが記載されて
いる。特開昭61−5043号公報、特開昭61−72
33号公報及び特開平3−21346号公報には、特定
のCe化合物が有効であることが示され、又、特開平3
−238051号公報には特定のBi原料が有効である
ことが示されている。
For example, regarding the composition of the catalyst, JP-A-55-
V is essentially essential as a catalyst constituent element of many patent publications including 39236 publication, and many elements such as alkali metal, alkaline earth metal, transition metal, and rare earth metal are effective for improving catalyst performance. Is described. JP-A-61-5043 and JP-A-61-72
33 and JP-A-3-21346 show that a specific Ce compound is effective, and JP-A-3-21346.
No. 238051 discloses that specific Bi raw materials are effective.

【0004】特開平6−91172号公報には、触媒成
分の中、SbとMo、Cu又はVとを予め焼成して複合
酸化物として使用することにより高い触媒性能が得られ
ると記載されている。また、触媒の調製方法、例えば、
触媒原料の溶解混合加熱工程、触媒原料の特定、アンモ
ニウム及び硝酸量の制御等(特開昭61−283352
号公報、特開平3−238050号公報、特開平6−8
6932号公報、特開平6−86933号公報)につい
ても、多くの提案がなされている。
Japanese Unexamined Patent Publication (Kokai) No. 6-91172 describes that high catalytic performance can be obtained by pre-calcining Sb and Mo, Cu or V among the catalyst components to use as a complex oxide. . Also, a method for preparing the catalyst, for example,
A step of dissolving and mixing and heating the catalyst raw material, specifying the catalyst raw material, controlling the amount of ammonium and nitric acid, etc. (JP-A-61-283352)
JP, JP-A-3-238050, JP, 6-8
Many proposals have been made also in Japanese Patent No. 6932 and Japanese Patent Laid-Open No. 6-86933.

【0005】特開平4−7037号公報、特開平4−1
6242号公報には、触媒原料を溶解混合した溶液のp
Hを酸性に保ち、且つ溶液を85℃以上に加熱すること
によりケギン型のヘテロポリ酸を作り、次いで溶液を8
0℃以下に冷却した後にアルカリイオン及びアンモニウ
ムイオン或いはピリジン等の塩基を添加し、酸素濃度5
%以上のガスで焼成する方法が提案されている。
Japanese Unexamined Patent Publication No. 4-7037 and Japanese Unexamined Patent Publication No. 4-1
No. 6242 discloses p of a solution prepared by dissolving and mixing catalyst raw materials.
A Keggin-type heteropolyacid is prepared by keeping H acidic and heating the solution to 85 ° C. or higher.
After cooling to 0 ° C or lower, alkali ions and ammonium ions or a base such as pyridine is added to give an oxygen concentration of 5
A method of firing with a gas of not less than 100% has been proposed.

【0006】特開平6−86932号公報にはNH4
Mo=(6〜18)/12及びNO 3 /Mo=(0.1
〜5)/1となるように溶液中のアンモニア及び硝酸根
量を制御し、更にオートクレーブ中110〜200℃と
いう特殊な条件で溶液中でドーソン型のヘテロポリ酸を
生成させ、不活性ガス雰囲気中焼成することが記載され
ている。特開平6−86933号公報には、硫酸根の共
存がドーソン型のヘテロポリ酸の生成に有効でこの場合
オートクレーブ加熱は必ずしも必要ではないと記載され
ている。
In JP-A-6-86932, NH is disclosed.Four/
Mo = (6-18) / 12 and NO Three/Mo=(0.1
~ 5) / 1 ammonia and nitrate in the solution so that
The amount is controlled, and further 110-200 ℃ in the autoclave
Under these special conditions, the Dawson-type heteropoly acid was added to the solution.
Described to produce and bake in an inert gas atmosphere
ing. Japanese Patent Application Laid-Open No. 6-86933 discloses that a sulfate group
Is effective for the production of Dawson-type heteropolyacid.
It is stated that autoclave heating is not always necessary.
ing.

【0007】特開昭63−130143号公報には、乾
燥固形物を固形物に対し1〜10倍の水に再分散させる
ことにより触媒性能が向上すると述べられている。触媒
の焼成も、触媒性能に大きな影響があり、酸素濃度及び
焼成温度の制御(特開昭56−161841号公報、特
開平3−238050号公報)、アンモニア・水蒸気の
制御(特開昭58−67643号公報)、不活性ガス中
での焼成(特開昭57−165040号公報)等につい
ていろいろ提案されている。
Japanese Patent Laid-Open No. 63-130143 describes that the catalyst performance is improved by redispersing a dry solid matter in water in an amount of 1 to 10 times the solid matter. The calcination of the catalyst also has a great influence on the catalyst performance, and the control of the oxygen concentration and the calcination temperature (JP-A-56-161841, JP-A-3-238050) and the control of ammonia / steam (JP-A-58-58). 67643), firing in an inert gas (JP-A-57-165040), and the like.

【0008】一方、表面積、細孔の制御を目的として例
えばピリジン・キノリンの添加(特開昭57−1714
44号公報、特開昭60−209258号公報)、活性
炭の添加(特開平6−374号公報)、アルコール・ア
ルデヒド・有機酸の添加(特開平6−15178号公
報)等について提案がなされている。
On the other hand, for the purpose of controlling the surface area and pores, for example, the addition of pyridine / quinoline (JP-A-57-1714).
44, JP-A-60-209258), addition of activated carbon (JP-A-6-374), addition of alcohol / aldehyde / organic acid (JP-A-6-15178), and the like. There is.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、これま
で提案されている触媒はいずれも反応成績が十分でな
い、生産性が低い、触媒の経時低下が大きい、反応温度
が高い、或いは触媒の調製法の再現性に欠ける等の問題
点を有し、工業用触媒として十分な性能とは言えず、更
なる改良が望まれている。本発明の課題は、メタクロレ
インの気相酸化によるメタクリル酸の製造に用いられ
る、より高い反応活性と選択性と長い触媒寿命を持つヘ
テロポリ酸系触媒及びその製造方法並びに該触媒による
メタクリル酸の製造方法を提供することにある。
However, none of the catalysts proposed hitherto has sufficient reaction results, low productivity, large deterioration with time of the catalyst, high reaction temperature, or catalyst preparation methods. It has problems such as lack of reproducibility and cannot be said to have sufficient performance as an industrial catalyst, and further improvement is desired. An object of the present invention is to use a heteropolyacid catalyst having a higher reaction activity and selectivity and a longer catalyst life, which is used for the production of methacrylic acid by gas phase oxidation of methacrolein, a method for producing the same, and the production of methacrylic acid by the catalyst. To provide a method.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために脂肪族炭化水素を分子状酸素により気
相で接触酸化して不飽和カルボン酸を製造するのに使用
するリン、モリブデン及びアルカリ金属又はタリウムを
含む触媒について鋭意検討した結果、アンチモンとセリ
ウム、ジルコニウム及びビスマスから選ばれた一種以上
の元素とからなる多元酸化物を併用することにより高い
反応活性と選択性及び長い触媒寿命を持つ酸化触媒が得
られることを見出し、特に、触媒原料を水に溶解或いは
懸濁させた溶液を乾燥し、次いで150〜300℃で予
備焼成した後、予備焼成物に対し0.2〜0.8重量倍
の水又はアンモニア水を加えて混練する工程において多
元酸化物を添加し、更に酸素濃度を制御した不活性ガス
で焼成することにより高い反応活性と選択性及び長い触
媒寿命を持つ触媒が得られることを見出し、本発明を完
成するに至った。
In order to solve the above-mentioned problems, the present inventors use the phosphorus which is used for producing an unsaturated carboxylic acid by catalytically oxidizing an aliphatic hydrocarbon with molecular oxygen in the gas phase. As a result of intensive studies on a catalyst containing molybdenum, molybdenum and an alkali metal or thallium, high reaction activity and selectivity and longevity can be obtained by using a multi-component oxide composed of antimony and one or more elements selected from cerium, zirconium and bismuth. It was found that an oxidation catalyst having a catalyst life can be obtained, and in particular, a solution prepared by dissolving or suspending a catalyst raw material in water is dried, and then precalcined at 150 to 300 ° C. ~ 0.8 weight times of water or ammonia water is added in the step of kneading, multi-component oxides are added, and further firing with an inert gas whose oxygen concentration is controlled It found that catalyst is obtained with a high reaction activity and selectivity and long catalyst life Ri, and have completed the present invention.

【0011】即ち、本発明は、 1.リン、モリブデン及びアルカリ金属又はタリウムを
含有する酸化物並びにアンチモンとセリウム、ジルコニ
ウム及びビスマスから選ばれた一種以上の元素とからな
る多元酸化物よりなる酸化触媒。 2.前記触媒を製造するに当り、リン、モリブデン及び
アルカリ金属又はタリウムを含有する酸化物の原料を水
に溶解或いは懸濁させた溶液を乾燥し、次いで得られた
固形物を150〜300℃で予備焼成し、該予備焼成物
について0.2〜0.8重量倍の水又は0.015〜
0.1重量倍の水酸化アンモニウムを含む0.2〜0.
8重量倍のアンモニア水により混練処理すると共に式
(II)の多元酸化物を添加する1項に記載の触媒の製造
方法及び 3.1又は2項に記載の酸化触媒の存在下、メタクロレ
インを気相酸化することを特徴とするメタクリル酸の製
造方法、にある。以下、本発明を詳細に説明する。
That is, the present invention provides: An oxidation catalyst comprising an oxide containing phosphorus, molybdenum and an alkali metal or thallium, and a multi-component oxide comprising antimony and one or more elements selected from cerium, zirconium and bismuth. 2. In producing the catalyst, a solution of an oxide raw material containing phosphorus, molybdenum and an alkali metal or thallium dissolved or suspended in water is dried, and then the obtained solid is preliminarily stored at 150 to 300 ° C. Calcination, and 0.2 to 0.8 times by weight of water or 0.015 to
0.2 to 0.1 containing 0.1 times by weight ammonium hydroxide.
In the presence of the oxidation catalyst according to item 3.1 or 2, the method for producing the catalyst according to item 1 above, which comprises kneading with 8 times by weight aqueous ammonia and adding the multicomponent oxide of the formula (II), and methacrolein A method for producing methacrylic acid, which is characterized by performing gas phase oxidation. Hereinafter, the present invention will be described in detail.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(1)酸化触媒 本発明の酸化触媒は、リン、モリブデン及びアルカリ金
属又はタリウムを含有する酸化物並びにアンチモンとセ
リウム、ジルコニウム及びビスマスから選ばれた一種以
上の元素とからなる多元酸化物よりなるものであり、好
ましくは、一般式(I)
(1) Oxidation catalyst The oxidation catalyst of the present invention comprises an oxide containing phosphorus, molybdenum and an alkali metal or thallium, and a multi-element oxide containing antimony and one or more elements selected from cerium, zirconium and bismuth. And preferably of the general formula (I)

【0013】[0013]

【化3】 Pa Mob C Bad Sbe Cuf g h i (I)Embedded image P a Mo b V C B a d Sb e Cu f X g Y h O i (I)

【0014】(式中、Xは、K、Rb、Cs及びTlよ
りなる群から選ばれた一種以上の元素を表わし、Yは、
Bi、Mn、Cr、Zr、Co、Ce、Zn、Fe及び
Niよりなる群から選ばれた一種以上の元素を表わし、
添字a、c、d、e、f、g、h及びiはb=12とし
たときの各元素の原子比を表わし、a=0.1〜5、c
=0〜5、d=0〜5、e=0〜5、f=0〜2、g=
0.1〜3、h=0〜2、iは他の元素の原子価及び原
子比によって決まる値である)で表わされる酸化物及び
一般式(II)
(Wherein X represents one or more elements selected from the group consisting of K, Rb, Cs and Tl, and Y represents
Represents one or more elements selected from the group consisting of Bi, Mn, Cr, Zr, Co, Ce, Zn, Fe and Ni,
The subscripts a, c, d, e, f, g, h and i represent the atomic ratio of each element when b = 12, and a = 0.1-5, c
= 0-5, d = 0-5, e = 0-5, f = 0-2, g =
0.1 to 3, h = 0 to 2, i is a value determined by the valence and atomic ratio of other elements) and an oxide represented by the general formula (II)

【0015】[0015]

【化4】Sbj k m (II)Embedded image Sb j Z k O m (II)

【0016】(式中、Zは、Ce、Zr及びBiから選
ばれた一種以上の元素を表わし、添字j、k及びmは、
j=1としたときの各元素の原子比を表わし、k=0.
1〜0.5、mは他の元素の原子価及び原子比によって
決まる値である)で表わされる多元酸化物3〜80重量
%(対全触媒重量)よりなるヘテロポリ酸系触媒であ
る。
(Wherein Z represents one or more elements selected from Ce, Zr and Bi, and the subscripts j, k and m are
Representing the atomic ratio of each element when j = 1, k = 0.
1 to 0.5, m is a value determined by the valence and atomic ratio of other elements), and is a heteropolyacid catalyst composed of 3 to 80% by weight (based on the total catalyst weight) of a multicomponent oxide.

【0017】(2)酸化触媒の製造方法 本発明の酸化触媒の好適な製造方法としては、式(II)
の多元酸化物以外の全ての触媒原料を水に溶解或いは懸
濁させた溶液を乾燥し、次いで得られた固形物を150
〜350℃で予備焼成した後、該予備焼成物にその0.
2〜0.8重量倍の水又はアンモニア水を加えて混練処
理すると共に好ましくはこの処理工程において式(II)
のSb−Z多元酸化物(Z=Ce、Zr、Bi)を全触
媒重量の3〜80重量%、好ましくは5〜50重量%添
加し、混練した固体を乾燥した後、0.1〜5容量%の
酸素を含む不活性ガス流通下350〜450℃で焼成す
る方法が挙げられる。
(2) Method for Producing Oxidation Catalyst As a preferred method for producing the oxidation catalyst of the present invention, the formula (II)
The solution obtained by dissolving or suspending all the catalyst raw materials other than the multi-component oxide in
After pre-baking at .about.350.degree.
2 to 0.8 times by weight of water or ammonia water is added to perform a kneading treatment, and preferably in this treatment step, the formula (II) is used.
Sb-Z multi-component oxide (Z = Ce, Zr, Bi) is added in an amount of 3 to 80% by weight, preferably 5 to 50% by weight based on the total weight of the catalyst, and the kneaded solid is dried. Examples include a method of firing at 350 to 450 ° C. under a flow of an inert gas containing oxygen by volume.

【0018】前記Sb−Z多元酸化物はSb原料及びC
e、Zr及びBiから選ばれた一種以上の金属の原料に
水を加えて混練した後、通常法で乾燥を行いその後熱処
理することにより調製する。使用する原料に特に制限は
ない。Sb原料としては、酸化アンチモン、塩化アンチ
モン等が挙げられ、特に酸化アンチモンが好ましい。Z
原料としては炭酸塩、水酸化物、酸化物等が挙げられる
が、特に炭酸塩が好ましい。処理は400〜1200℃
が適当であり、特に600〜1000℃が好ましい。処
理温度が低すぎると、複合効果が明らかではなく、高す
ぎると酸化物の凝集により触媒成分としての分散性が低
下する惧れがある。Z/Sb比は0.1〜1.0、好ま
しくは0.2〜0.6の範囲である。Zの割合が低いと
混合酸化物の複合効果が明らかではなく、高すぎるとZ
の単独の酸化物が生成する。熱処理後にZSb2 4
ような特定の結晶構造を採る必要はない。Sb−Z多元
酸化物を添加することにより、触媒性能が顕著に向上す
るが、その理由については必ずしも明らかではない。S
b−Z多元酸化物を酸化物を添加することにより、触媒
の再酸化過程が促進されること、及び結晶構造が安定化
され、その結果、ヘテロポリ酸の凝集が抑制されること
が考えられる。
The Sb-Z multi-component oxide is Sb raw material and C
Water is added to a raw material of one or more metals selected from e, Zr, and Bi, and the mixture is kneaded, followed by drying by a conventional method and then heat treatment. There are no particular restrictions on the raw materials used. Examples of the Sb raw material include antimony oxide and antimony chloride, and antimony oxide is particularly preferable. Z
Examples of the raw material include carbonates, hydroxides and oxides, and carbonates are particularly preferable. Processing is 400-1200 ℃
Is suitable, and 600 to 1000 ° C. is particularly preferable. If the treatment temperature is too low, the combined effect is not clear, and if it is too high, the dispersibility as a catalyst component may be deteriorated due to the aggregation of oxides. The Z / Sb ratio is in the range of 0.1 to 1.0, preferably 0.2 to 0.6. If the proportion of Z is low, the combined effect of the mixed oxides is not clear, and if it is too high, Z
A single oxide of is formed. It is not necessary to adopt a specific crystal structure like ZSb 2 O 4 after heat treatment. Although the catalytic performance is remarkably improved by adding the Sb-Z multi-component oxide, the reason is not always clear. S
It is considered that the addition of the bZ multi-component oxide to the oxide promotes the reoxidation process of the catalyst and stabilizes the crystal structure, and as a result, suppresses the aggregation of the heteropolyacid.

【0019】Sb−Z多元酸化物以外の触媒成分の金属
成分原料として、モリブデンについてはパラモリブデン
酸アンモニウム、モリブデン酸、酸化モリブデン等、バ
ナジウムについてはメタバナジン酸アンモニウム、酸化
バナジウム、シュウ酸バナジル等、リンについては正リ
ン酸、メタリン酸、五酸化リン、ピロリン酸、リン酸ア
ンモニウム等、銅については硝酸銅、硫酸銅、塩化第一
銅、塩化第二銅等、アンチモンについては酸化アンチモ
ン、塩化アンチモン等の化合物が使用可能である。その
他の金属についても酸化物及び焼成により酸化物となり
得る水酸化物、硝酸塩、酢酸塩、シュウ酸塩、炭酸塩、
塩化物等の化合物が使用可能であるが、中でも硝酸塩が
好適である。また、モリブデンとリンの原料としてリン
モリブデン酸、リンモリブデン酸アンモニウム等のヘテ
ロポリ酸を使用することもできる。
As metal component raw materials for catalyst components other than Sb-Z multi-component oxides, ammonium paraparamolybdate, molybdic acid, molybdenum oxide, etc. for molybdenum, ammonium metavanadate, vanadium oxide, vanadyl oxalate, etc. for vanadium, phosphorus For orthophosphoric acid, metaphosphoric acid, phosphorus pentoxide, pyrophosphate, ammonium phosphate, etc., for copper, copper nitrate, copper sulfate, cuprous chloride, cupric chloride, etc., for antimony, antimony oxide, antimony chloride, etc. Compounds of can be used. Regarding other metals, oxides, hydroxides that can be converted into oxides by firing, nitrates, acetates, oxalates, carbonates,
Compounds such as chlorides can be used, but among them, nitrates are preferable. Further, a heteropolyacid such as phosphomolybdic acid or ammonium phosphomolybdate can be used as a raw material for molybdenum and phosphorus.

【0020】全ての触媒原料を水に溶解或いは懸濁させ
た溶液を40〜100℃で0.5〜24時間、好ましく
は50〜90℃で1〜6時間の間攪拌しながら加温す
る。この範囲より、低温或いは、短時間では高い選択性
が得られず、高温、長時間では活性が低下する惧れがあ
る。この混合溶液にシリカ、ケイソウ土、セライト、等
の担体成分を加えることもできる。加温処理を終了した
混合溶液は通常の方法で乾燥される。一般的には100
〜250℃に保った熱風乾燥機中で蒸発乾固させる。
A solution prepared by dissolving or suspending all catalyst raw materials in water is heated at 40 to 100 ° C. for 0.5 to 24 hours, preferably at 50 to 90 ° C. for 1 to 6 hours while stirring. From this range, high selectivity may not be obtained at low temperature or short time, and activity may decrease at high temperature and long time. A carrier component such as silica, diatomaceous earth, or celite may be added to this mixed solution. The mixed solution that has undergone the heating treatment is dried by a usual method. Generally 100
Evaporate to dryness in a hot air dryer maintained at ~ 250 ° C.

【0021】得られた固形物は150〜350℃、好ま
しくは200〜300℃の温度条件下で空気を流通して
予備焼成を行う。この予備焼成物に対しその0.2〜
2.0重量倍の水とSb−Z多元酸化物を加えて混練す
る。水の量が0.2重量倍より少ないと混練が十分でな
い惧れがあり、2重量倍を越えると触媒成分の不必要な
溶解により触媒性能の低下を招く惧れがある。ここで使
用する水については、特に限定されるものではないが、
脱イオン水、蒸留水等のように、不要な金属イオンを含
有しないものが好ましい。
The solid thus obtained is prebaked by circulating air under the temperature condition of 150 to 350 ° C, preferably 200 to 300 ° C. 0.2 to this pre-baked product
2.0 weight times of water and Sb-Z multi-component oxide are added and kneaded. If the amount of water is less than 0.2 times by weight, the kneading may be insufficient, and if it exceeds 2 times by weight, the catalyst performance may be deteriorated due to unnecessary dissolution of the catalyst component. The water used here is not particularly limited,
Water that does not contain unnecessary metal ions, such as deionized water and distilled water, is preferable.

【0022】また、水に替えて水酸化アンモニウムの量
が予備焼成物に対し0.015〜0.1重量倍の水酸化
アンモニウムを含む0.2〜0.8重量倍のアンモニア
水を加えて、予備焼成物が中性ないしアルカリ性になる
ように混練処理することにより、より高性能の触媒を得
ることができるため、特に好ましい。水酸化アンモニウ
ムの量が0.015重量倍より少ないとアンモニア添加
の効果が明確ではなく、0.1重量倍を越えると初期活
性が低下すると共に触媒の安定性が損なわれる惧れがあ
る。混練を終了した触媒成分は通常の方法で乾燥され
る。
Further, in place of water, 0.2 to 0.8 weight times ammonia water containing ammonium hydroxide in an amount of 0.015 to 0.1 weight times the amount of ammonium hydroxide is added to the pre-sintered product. The kneading treatment so that the preliminarily calcined product becomes neutral or alkaline makes it possible to obtain a catalyst with higher performance, which is particularly preferable. If the amount of ammonium hydroxide is less than 0.015 times by weight, the effect of adding ammonia is not clear, and if it exceeds 0.1 times by weight, the initial activity may decrease and the stability of the catalyst may be impaired. The catalyst component which has been kneaded is dried by a usual method.

【0023】担持触媒として使用する場合は、必要に応
じ、得られた混練物に水を加えて粘度を調節し、アルミ
ナ、シリコンカーバイド等の担体に適当な方法で担持し
て使用することができる。乾燥した触媒成分は、粉砕
後、錠剤成型する。この他ペースト状にて押し出し成型
後、乾燥する等一般の成型法を任意に選ぶこともでき
る。触媒の形状に特に制限はなく、球、シリンダー、ペ
レット、リング等の形状を反応器の形式、条件等を考慮
し最適なものを選ぶことができるが、通常使用される多
管式固定床反応器で使用する場合にはリングの形状が好
ましい結果を与える。
When used as a supported catalyst, water can be added to the obtained kneaded product to adjust the viscosity, if necessary, and it can be used by supporting it on a carrier such as alumina or silicon carbide by an appropriate method. . The dried catalyst component is crushed and then tableted. In addition to this, a general molding method such as extrusion molding in a paste form and drying can be arbitrarily selected. There is no particular limitation on the shape of the catalyst, and the shape of sphere, cylinder, pellet, ring, etc. can be selected in consideration of the reactor type, conditions, etc. The shape of the ring gives favorable results when used in vessels.

【0024】用いる触媒原料、触媒組成、調製法によっ
て最適条件は異なるが、一般的には300〜500℃で
1〜24時間、好ましくは350〜450℃で2〜12
時間焼成することにより触媒の活性化を行う。焼成は、
酸素濃度を0.1〜5容量%、好ましくは0.2〜2容
量%に制御した不活性ガスの流通下で行う。酸素濃度が
0.1%容量より少ないとアンモニアの脱離を十分に行
うためには、触媒自体が不安定となるような高温を必要
としたり、或いは適切な温度で処理する場合には著しく
長時間を必要とする等の問題がある。5%容量を越える
と一部のアンモニアが触媒上で燃焼するために、焼成の
制御が困難となり、場合によっては触媒成分の分解によ
り三酸化モリブデンが多量に生成し触媒性能を著しく低
下させる惧れがある。
Optimum conditions vary depending on the catalyst raw material, catalyst composition and preparation method used, but generally 300 to 500 ° C. for 1 to 24 hours, preferably 350 to 450 ° C. for 2 to 12
The catalyst is activated by firing for a time. Firing
It is carried out under an inert gas flow whose oxygen concentration is controlled to 0.1 to 5% by volume, preferably 0.2 to 2% by volume. If the oxygen concentration is less than 0.1% by volume, in order to sufficiently desorb ammonia, a high temperature at which the catalyst itself becomes unstable is required, or when the treatment is carried out at an appropriate temperature, it is extremely long. There is a problem that it takes time. If it exceeds 5% by volume, some of the ammonia burns on the catalyst, making it difficult to control the calcination, and in some cases, the decomposition of the catalyst components causes a large amount of molybdenum trioxide to be produced, which may significantly reduce the catalytic performance. There is.

【0025】(3)メタクリル酸の製造方法 本発明の触媒は、通常の接触酸化反応に使用できるが、
特にメタクリル酸の製造方法に採用した場合に、200
〜400℃程度の反応温度及び0.5〜10気圧程度の
反応圧力で、水蒸気の存在下に反応を行うことが好まし
い。反応原料のメタクロレインとしては、例えば、メタ
クロレインの製造目的でイソブテン又はt−ブタノール
を接触酸化して得られる生成ガスをそのまま用いてもよ
いし、或いは、該生成ガスを精製してメタクロレインを
他のガスより分離してから用いてもよい。
(3) Method for producing methacrylic acid The catalyst of the present invention can be used for ordinary catalytic oxidation reaction,
Especially when it is adopted in the method for producing methacrylic acid,
It is preferable to carry out the reaction in the presence of water vapor at a reaction temperature of about 400 ° C. and a reaction pressure of about 0.5 to 10 atm. As the methacrolein of the reaction raw material, for example, a product gas obtained by catalytically oxidizing isobutene or t-butanol for the purpose of producing methacrolein may be used as it is, or the product gas may be purified to produce methacrolein. It may be used after being separated from other gases.

【0026】酸化に用いる酸素源としては、一般に空気
が使用されるが、酸素(分子状酸素)、酸素を二酸化炭
素、窒素等の不活性ガスで希釈した混合ガスを使用して
も勿論差支えない。水蒸気、反応原料、酸素等の混合ガ
ス(以下、反応混合ガスという)を触媒に流通するが、
接触時間は通常1〜20秒程度が適当である。反応混合
ガスの組成としては、例えばメタクロレイン1モルに対
して分子状酸素0.2〜4モル、水蒸気1〜20モルが
使用される。
Air is generally used as the oxygen source for the oxidation, but of course oxygen (molecular oxygen), a mixed gas obtained by diluting oxygen with an inert gas such as carbon dioxide or nitrogen may be used. . A mixed gas of water vapor, a reaction raw material, oxygen and the like (hereinafter referred to as a reaction mixed gas) flows through the catalyst,
The appropriate contact time is usually about 1 to 20 seconds. As the composition of the reaction mixed gas, for example, 0.2 to 4 mol of molecular oxygen and 1 to 20 mol of water vapor are used with respect to 1 mol of methacrolein.

【0027】その他、この接触酸化反応は、本発明の主
旨に反しない限り、通常のメタクロレイン酸化に関する
知見を参考にして行うことができる。本発明で得られる
酸化触媒は、イソ酪酸の酸化脱水素、イソブチルアルデ
ヒドの酸化によるメタクリル酸の製造にも用いることが
できる。また、イソブチレンから一段でメタクリル酸を
製造する際にも用いることが可能である。これらの反応
では、メタクロレインの酸化と同様な反応条件が採用で
きる。
In addition, this catalytic oxidation reaction can be carried out with reference to the usual knowledge about methacrolein oxidation unless it goes against the gist of the present invention. The oxidation catalyst obtained in the present invention can also be used for oxidative dehydrogenation of isobutyric acid and production of methacrylic acid by oxidation of isobutyraldehyde. It can also be used when producing methacrylic acid from isobutylene in a single step. In these reactions, the reaction conditions similar to the oxidation of methacrolein can be adopted.

【0028】[0028]

【実施例】以下、本発明を実施例、比較例を挙げて更に
具体的に説明するが、本発明は、その要旨を越えない限
り実施例に限定されるものではない。なお、転化率、選
択率及び収率は下式により求め、モル基準で表示した。
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the examples as long as the gist thereof is not exceeded. The conversion rate, selectivity and yield were determined by the following formulas and displayed on a molar basis.

【0029】[0029]

【数1】転化率(%)=[(反応したメタクロレインの
モル数)/(供給したメタクロレインのモル数)]×1
00
## EQU1 ## Conversion (%) = [(moles of reacted methacrolein) / (moles of supplied methacrolein)] × 1
00

【0030】[0030]

【数2】選択率(%)=[(生成したメタクリル酸のモ
ル数)/(反応したメタクロレインのモル数)]×10
## EQU2 ## Selectivity (%) = [(moles of methacrylic acid formed) / (moles of reacted methacrolein)] × 10
0

【0031】[0031]

【数3】収率(%)=[(生成したメタクリル酸のモル
数)/(供給したメタクロレインのモル数)]×100
## EQU3 ## Yield (%) = [(moles of methacrylic acid produced) / (moles of methacrolein fed)] × 100

【0032】実施例1 (Sb−Ce酸化物調製)酸化セリウム120g、酸化
アンチモン237g及び純水300gをニーダーで混合
する。130℃のオーブン中で10時間乾燥した後、先
ず600℃で3時間空気焼成し、次いで800℃で2時
間空気焼成する。得られた酸化物を粉砕して使用した。
Example 1 (Preparation of Sb-Ce oxide) 120 g of cerium oxide, 237 g of antimony oxide and 300 g of pure water were mixed with a kneader. After being dried in an oven at 130 ° C. for 10 hours, it is first air-baked at 600 ° C. for 3 hours, and then air-baked at 800 ° C. for 2 hours. The obtained oxide was crushed and used.

【0033】(触媒調製)純水580mlにパラモリブ
デン酸アンモニウム212gとメタバナジン酸アンモニ
ウム11.7gを加え60℃に加温した。攪拌しながら
リン酸23g、硝酸セシウム9.75g、硝酸銅4.8
3gを含む水溶液を加え、次いで三酸化アンチモン1
4.5gを加え、80℃まで昇温し、その後2時間、8
0℃に保った。得られたスラリー容器は250℃に保っ
たオーブン中で10時間かけて乾燥及び予備焼成を行っ
た。得られた固体135gに純水60mlとSb−Ce
酸化物15gを加え20分間混練を行い、その後130
℃に保ったオーブン中で乾燥を行った。得られた固体を
外径5mmの円柱形に打錠成型し、酸素を0.6容量%
含む窒素流通下、400℃で6時間焼成し、触媒を得
た。得られた触媒の組成は各成分の原子比で90重量%
・Mo122 1 Sb1 Cu0.2 Cs0.5 /10重量%
・Sb7 Ce3 である。(但し、O、H、N原子を除
く)
(Catalyst preparation) 212 g of ammonium paramolybdate and 11.7 g of ammonium metavanadate were added to 580 ml of pure water and heated to 60 ° C. With stirring, 23 g of phosphoric acid, 9.75 g of cesium nitrate, 4.8 of copper nitrate
Add an aqueous solution containing 3 g, then antimony trioxide 1
4.5 g was added, the temperature was raised to 80 ° C., and then 2 hours, 8
It was kept at 0 ° C. The obtained slurry container was dried and prebaked in an oven maintained at 250 ° C. for 10 hours. To the obtained solid 135 g, pure water 60 ml and Sb-Ce
Add 15g of oxide and knead for 20 minutes, then 130
Drying was performed in an oven kept at ° C. The obtained solid was tablet-molded into a cylindrical shape with an outer diameter of 5 mm, and oxygen was added at 0.6% by volume.
It was calcined at 400 ° C. for 6 hours under a nitrogen flow containing nitrogen to obtain a catalyst. The composition of the obtained catalyst is 90% by weight in terms of atomic ratio of each component.
・ Mo 12 P 2 V 1 Sb 1 Cu 0.2 Cs 0.5 / 10% by weight
-Sb 7 Ce 3 . (However, O, H, N atoms are excluded)

【0034】(接触酸化反応)この触媒30mlをステ
ンレス製反応管(内径18mm)に充填し、ナイター浴
を介して加熱し、メタクロレインの接触酸化を行った。
原料ガスはメタクロレイン5モル%、酸素12モル%、
水蒸気30モル%、窒素53モル%の混合ガスであり、
これを常圧下、反応温度290℃、空間速度1400/
時で反応させた。その結果メタクロレイン転化率89.
6%、メタクリル酸選択率79.2%、メタクリル酸収
率71.1%であった。
(Catalytic Oxidation Reaction) 30 ml of this catalyst was filled in a stainless steel reaction tube (inner diameter 18 mm) and heated through a niter bath to carry out catalytic oxidation of methacrolein.
Source gas is methacrolein 5 mol%, oxygen 12 mol%,
A mixed gas of 30 mol% steam and 53 mol% nitrogen,
Under normal pressure, the reaction temperature was 290 ° C. and the space velocity was 1400 /
Reacted at time. As a result, the methacrolein conversion rate was 89.
6%, methacrylic acid selectivity was 79.2%, and methacrylic acid yield was 71.1%.

【0035】比較例1 Sb−Ce酸化物を加えないこと以外は実施例1と同様
に触媒を調製し、反応評価を行った。その結果メタクロ
レイン転化率89.2%、メタクリル酸選択率78.5
%、メタクリル酸収率69.3%であった。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that the Sb-Ce oxide was not added, and the reaction was evaluated. As a result, the conversion of methacrolein was 89.2% and the selectivity of methacrylic acid was 78.5.
%, And the yield of methacrylic acid was 69.3%.

【0036】比較例2〜3 Sb−Ce酸化物の代りに実施例1で使用したSb−C
e酸化物に含まれるのと同じ量の酸化セリウム(比較例
2)、酸化アンチモン(比較例3)を加えること以外は
実施例1と同様に触媒を調製し、反応評価を行った。結
果を表1に示す。
Comparative Examples 2-3 Sb-C used in Example 1 instead of Sb-Ce oxide
A catalyst was prepared in the same manner as in Example 1 except that the same amounts of cerium oxide (Comparative Example 2) and antimony oxide (Comparative Example 3) as those contained in the e oxide were added, and the reaction was evaluated. The results are shown in Table 1.

【0037】比較例4 Sb−Ce酸化物を他の触媒原料の溶解混合工程で同時
に添加すること以外は実施例1と同様に触媒を調製し、
反応評価を行った。その結果メタクロレイン転化率8
4.6%、メタクリル酸選択率80.8%、メタクリル
酸収率68.3%であった。
Comparative Example 4 A catalyst was prepared in the same manner as in Example 1 except that Sb-Ce oxide was added at the same time in the step of dissolving and mixing other catalyst raw materials.
The reaction was evaluated. As a result, the conversion of methacrolein was 8
The methacrylic acid selectivity was 4.6%, the methacrylic acid selectivity was 80.8%, and the methacrylic acid yield was 68.3%.

【0038】実施例2〜3 Sb−Ce酸化物の代りにSb−Zr(実施例2)及び
Sb−Bi(実施例3)を使用すること以外は実施例1
と同様に触媒を調製し、反応評価を行った。結果を表1
に示す。
Examples 2 to 3 Example 1 except that Sb-Zr (Example 2) and Sb-Bi (Example 3) were used in place of the Sb-Ce oxide.
A catalyst was prepared in the same manner as in, and the reaction was evaluated. Table 1 shows the results
Shown in

【0039】実施例4 混練工程において脱イオン水の代りに表1に記載のアン
モニア水を使用すること以外は実施例1と同様に触媒を
調製し、反応評価を行った。結果を表1に示す。
Example 4 A catalyst was prepared in the same manner as in Example 1 except that the ammonia water shown in Table 1 was used instead of deionized water in the kneading step, and the reaction was evaluated. The results are shown in Table 1.

【0040】実施例5〜6 Sb−Ce酸化物の代りにSb−Zr(実施例5)及び
Sb−Bi(実施例6)を使用すること以外は実施例4
と同様に触媒を調製し、反応評価を行った。結果を表1
に示す。
Examples 5-6 Example 4 except that Sb-Zr (Example 5) and Sb-Bi (Example 6) were used in place of the Sb-Ce oxide.
A catalyst was prepared in the same manner as in, and the reaction was evaluated. Table 1 shows the results
Shown in

【0041】実施例7 加えるSb−Ce酸化物の量が全触媒重量の70重量%
となるようにSb−Ce−Si酸化物の添加量を増や
し、混練に添加する水の量を増やす以外は実施例1と同
様に触媒を調製し、反応評価を行った。結果を表1に示
す。
Example 7 The amount of Sb-Ce oxide added is 70% by weight of the total catalyst weight.
A catalyst was prepared in the same manner as in Example 1 except that the amount of Sb-Ce-Si oxide added was increased so that the amount of water added to the kneading was increased, and the reaction was evaluated. The results are shown in Table 1.

【0042】比較例5 Sb−Ce酸化物の代りにSb−Cuを使用すること以
外は実施例7と同様に触媒を調製し、反応評価を行っ
た。結果を表1に示す。
Comparative Example 5 A catalyst was prepared in the same manner as in Example 7 except that Sb-Cu was used instead of the Sb-Ce oxide, and the reaction was evaluated. The results are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】本発明の酸化触媒は、メタクロレインの
気相酸化によるメタクリル酸の製造において、従来公知
の触媒系より、高い反応活性と選択性及び長い触媒寿命
を持つ。
INDUSTRIAL APPLICABILITY The oxidation catalyst of the present invention has higher reaction activity and selectivity and longer catalyst life than conventionally known catalyst systems in the production of methacrylic acid by vapor phase oxidation of methacrolein.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リン、モリブデン及びアルカリ金属又は
タリウムを含有する酸化物並びにアンチモンとセリウ
ム、ジルコニウム及びビスマスから選ばれた一種以上の
元素とからなる多元酸化物よりなる酸化触媒。
1. An oxidation catalyst comprising an oxide containing phosphorus, molybdenum and an alkali metal or thallium and a multi-component oxide comprising antimony and one or more elements selected from cerium, zirconium and bismuth.
【請求項2】 一般式(I) 【化1】 Pa Mob C Bad Sbe Cuf g h i (I) (式中、Xは、K、Rb、Cs及びTlよりなる群から
選ばれた一種以上の元素を表わし、Yは、Bi、Mn、
Cr、Zr、Co、Ce、Zn、Fe及びNiよりなる
群から選ばれた一種以上の元素を表わし、添字a、c、
d、e、f、g、h及びiはb=12としたときの各元
素の原子比を表わし、a=0.1〜5、c=0〜5、d
=0〜5、e=0〜5、f=0〜2、g=0.1〜3、
h=0〜2、iは他の元素の原子価及び原子比によって
決まる値である)で表わされる酸化物及び一般式(II) 【化2】Sbj k m (II) (式中、Zは、Ce、Zr及びBiから選ばれた一種以
上の元素を表わし、添字j、k及びmは、j=1とした
ときの各元素の原子比を表わし、k=0.1〜0.5、
mは他の元素の原子価及び原子比によって決まる値であ
る)で表わされる多元酸化物3〜80重量%(対全触媒
重量)よりなる請求項1に記載の触媒。
Wherein in the general formula (I) ## STR1 ## P a Mo b V C Ba d Sb e Cu f X g Y h O i (I) ( wherein, X is, K, Rb, than Cs and Tl Represents one or more elements selected from the group consisting of: Y is Bi, Mn,
Represents one or more elements selected from the group consisting of Cr, Zr, Co, Ce, Zn, Fe and Ni, with subscripts a, c,
d, e, f, g, h and i represent the atomic ratio of each element when b = 12, and a = 0.1-5, c = 0-5, d
= 0 to 5, e = 0 to 5, f = 0 to 2, g = 0.1 to 3,
h = 0 to 2, i is a value determined by the valence and atomic ratio of other elements) and an oxide represented by the general formula (II): Sb j Z k O m (II) (wherein , Z represents one or more elements selected from Ce, Zr and Bi, and the subscripts j, k and m represent the atomic ratio of each element when j = 1, and k = 0.1 to 0. .5,
The catalyst according to claim 1, which comprises 3 to 80% by weight (based on the total catalyst weight) of a multi-component oxide represented by (m is a value determined by the valence and atomic ratio of other elements).
【請求項3】 前記触媒を製造するに当り、リン、モリ
ブデン及びアルカリ金属又はタリウムを含有する酸化物
の原料を水に溶解或いは懸濁させた水溶液を乾燥し、次
いで得られた固形物を150〜350℃で予備焼成した
後、該予備焼成物にその0.2〜0.8重量倍の水及び
式(II)の多元酸化物を添加し、混練することを特徴と
する請求項1又は2記載の触媒の製造方法。
3. In producing the catalyst, an aqueous solution obtained by dissolving or suspending a raw material of an oxide containing phosphorus, molybdenum and an alkali metal or thallium in water is dried, and then the obtained solid matter is added to 150 2. Preliminary calcination at ˜350 ° C., and then 0.2 to 0.8 times its weight of water and the multicomponent oxide of formula (II) are added to the precalcined product, and kneading is performed. 2. The method for producing the catalyst according to 2.
【請求項4】 前記触媒を製造するに当り、リン、モリ
ブデン及びアルカリ金属又はタリウムを含有する酸化物
の原料を水に溶解或いは懸濁させた溶液を乾燥し、次い
で得られた固形物を150〜300℃で予備焼成し、該
予備焼成物についてその0.015〜0.1重量倍の水
酸化アンモニウムを含む0.2〜0.8重量倍のアンモ
ニア水により混練処理すると共に式(II)の多元酸化物
を添加する請求項1ないし3のいずれか1項に記載の触
媒の製造方法。
4. In producing the catalyst, a solution obtained by dissolving or suspending a raw material of an oxide containing phosphorus, molybdenum and an alkali metal or thallium in water is dried, and then the obtained solid matter is added to 150 wt. Pre-calcined at ˜300 ° C., and kneading the pre-calcined product with 0.2 to 0.8 weight times ammonia water containing 0.015 to 0.1 weight times ammonium hydroxide and formula (II) The method for producing a catalyst according to any one of claims 1 to 3, wherein the multi-component oxide is added.
【請求項5】 式(II)の多元酸化物の添加及び水又は
アンモニア水による混練処理後、乾燥した前記混練物を
0.1〜5容量%の酸素を含む不活性ガス中で350〜
450℃の温度範囲で焼成する請求項1ないし4のいず
れか1項に記載の触媒の製造方法。
5. After the addition of the multi-component oxide of the formula (II) and the kneading treatment with water or ammonia water, the dried kneaded product is heated in an inert gas containing 0.1 to 5% by volume of oxygen in an amount of 350 to
The method for producing the catalyst according to claim 1, wherein the calcination is performed in a temperature range of 450 ° C. 5.
【請求項6】 請求項1ないし5に記載の酸化触媒の存
在下、メタクロレインを気相酸化することを特徴とする
メタクリル酸の製造方法。
6. A method for producing methacrylic acid, which comprises subjecting methacrolein to gas phase oxidation in the presence of the oxidation catalyst according to claim 1.
JP12202296A 1996-05-16 1996-05-16 Oxidation catalyst, method for producing the same, and method for producing methacrylic acid Expired - Fee Related JP3799660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12202296A JP3799660B2 (en) 1996-05-16 1996-05-16 Oxidation catalyst, method for producing the same, and method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12202296A JP3799660B2 (en) 1996-05-16 1996-05-16 Oxidation catalyst, method for producing the same, and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JPH09299803A true JPH09299803A (en) 1997-11-25
JP3799660B2 JP3799660B2 (en) 2006-07-19

Family

ID=14825656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12202296A Expired - Fee Related JP3799660B2 (en) 1996-05-16 1996-05-16 Oxidation catalyst, method for producing the same, and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP3799660B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239388A (en) * 2001-02-20 2002-08-27 Mitsubishi Rayon Co Ltd Catalyst for use in producing methacrolein and/or methacrylic acid, method for manufacturing the same and method for manufacturing methacrolein and/or methacrylic acid
US6476259B2 (en) * 1999-04-27 2002-11-05 Nippon Shokubai Co., Ltd. Catalysts for methacrylic acid production and process for producing methacrylic acid
JP2003001112A (en) * 2001-06-21 2003-01-07 Mitsubishi Rayon Co Ltd Catalyst for synthesizing methacrylic acid and method for manufacuring methacrylic acid
WO2006104155A1 (en) * 2005-03-29 2006-10-05 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
FR2897350A1 (en) * 2006-02-14 2007-08-17 Centre Nat Rech Scient PREPARATION OF A COMPOUND INCLUDING THE ASSOCIATION OF TWO CRYSTALLINE PHASES
JP2007260588A (en) * 2006-03-29 2007-10-11 Sumitomo Chemical Co Ltd Method for producing catalyst for methacrylic acid production and method for producing methacrylic acid
EP1880761A1 (en) * 2005-05-12 2008-01-23 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2011078975A (en) * 2010-11-26 2011-04-21 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
CN112805088A (en) * 2018-08-16 2021-05-14 西北大学 Multi-element heterostructure nanoparticles and methods of making the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180055154A (en) 2016-11-16 2018-05-25 주식회사 엘지화학 Preparation method of catalyst

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476259B2 (en) * 1999-04-27 2002-11-05 Nippon Shokubai Co., Ltd. Catalysts for methacrylic acid production and process for producing methacrylic acid
JP2002239388A (en) * 2001-02-20 2002-08-27 Mitsubishi Rayon Co Ltd Catalyst for use in producing methacrolein and/or methacrylic acid, method for manufacturing the same and method for manufacturing methacrolein and/or methacrylic acid
JP4629886B2 (en) * 2001-02-20 2011-02-09 三菱レイヨン株式会社 Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP2003001112A (en) * 2001-06-21 2003-01-07 Mitsubishi Rayon Co Ltd Catalyst for synthesizing methacrylic acid and method for manufacuring methacrylic acid
EP1867387A4 (en) * 2005-03-29 2009-09-02 Nippon Kayaku Kk Catalyst for producing methacrylic acid and method for preparation thereof
WO2006104155A1 (en) * 2005-03-29 2006-10-05 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
JP2006272151A (en) * 2005-03-29 2006-10-12 Nippon Kayaku Co Ltd Catalyst for producing methacrylic acid and method for manufacturing the catalyst
US8716523B2 (en) 2005-03-29 2014-05-06 Nippon Kayaku Kabushiki Kaisha Catalyst for use in production of methacrylic acid and method for manufacturing the same
EP1867387A1 (en) * 2005-03-29 2007-12-19 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
EP2540393A1 (en) * 2005-05-12 2013-01-02 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
TWI394615B (en) * 2005-05-12 2013-05-01 Nippon Kayaku Kk Production method of catalyst for manufacturing methacrylic acid
EP1880761A1 (en) * 2005-05-12 2008-01-23 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
EP1880761A4 (en) * 2005-05-12 2012-04-04 Nippon Kayaku Kk Method for preparing catalyst for production of methacrylic acid
US8148291B2 (en) 2005-05-12 2012-04-03 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
US8017547B2 (en) 2005-05-12 2011-09-13 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
US8207080B2 (en) 2006-02-14 2012-06-26 Centre National De La Recherche Scientifique (C.N.R.S.) Preparing a compound comprising a combination of two crystal phases
WO2007093702A3 (en) * 2006-02-14 2007-10-04 Centre Nat Rech Scient Compound comprising the combination od a first phosphomolybdenum crystal phase and a second crystal phase, and use thereof as alkane oxidation catalyst
JP2009526730A (en) * 2006-02-14 2009-07-23 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Production of compounds containing a combination of two crystalline phases
FR2897350A1 (en) * 2006-02-14 2007-08-17 Centre Nat Rech Scient PREPARATION OF A COMPOUND INCLUDING THE ASSOCIATION OF TWO CRYSTALLINE PHASES
JP2007260588A (en) * 2006-03-29 2007-10-11 Sumitomo Chemical Co Ltd Method for producing catalyst for methacrylic acid production and method for producing methacrylic acid
JP2011078975A (en) * 2010-11-26 2011-04-21 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
CN112805088A (en) * 2018-08-16 2021-05-14 西北大学 Multi-element heterostructure nanoparticles and methods of making the same
US11591449B2 (en) 2018-08-16 2023-02-28 Northwestern University Polyelemental heterostructure nanoparticles and methods of making the same
CN112805088B (en) * 2018-08-16 2024-06-07 西北大学 Multielement heterostructure nanoparticle and preparation method thereof

Also Published As

Publication number Publication date
JP3799660B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP3943284B2 (en) Acrylic acid production method
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JP2009248035A (en) Method of regenerating methacrylic-acid preparation catalyst, and method of producing methacrylic acid
US5166119A (en) Preparation of catalysts for producing methacrolein and methacrylic acid
JP3799660B2 (en) Oxidation catalyst, method for producing the same, and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JP5793345B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
KR100865654B1 (en) Catalysts for methacrylic acid production and process for producing methacrylic acid
JPH09290162A (en) Production of oxidation catalyst and production of methacrylic acid
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JP4352856B2 (en) A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JPH0686933A (en) Production of catalyst for producing methacrylic acid
JP2944463B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the catalyst
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JPH0924277A (en) Catalyst and process for preparing methacrylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees