JPH0924277A - Catalyst and process for preparing methacrylic acid - Google Patents

Catalyst and process for preparing methacrylic acid

Info

Publication number
JPH0924277A
JPH0924277A JP7178728A JP17872895A JPH0924277A JP H0924277 A JPH0924277 A JP H0924277A JP 7178728 A JP7178728 A JP 7178728A JP 17872895 A JP17872895 A JP 17872895A JP H0924277 A JPH0924277 A JP H0924277A
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
methacrolein
raw material
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7178728A
Other languages
Japanese (ja)
Inventor
Junya Yoshizawa
純也 吉沢
Toshiaki Ui
利明 宇井
Koichi Nagai
功一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP7178728A priority Critical patent/JPH0924277A/en
Publication of JPH0924277A publication Critical patent/JPH0924277A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To manufacture a heteropolymerization catalyst of a specified composition used for the preparation of methacrylic acid by gas phase contact oxidization by mixing a catalyst raw material into water, dissolving or suspending, heating in the state of presence of ammonium in a mixed liquid, concentrating and drying a suspension, burning the suspension in an inactive gas. SOLUTION: The heat treatment is carried out at the temperature of 80-200 deg.C for 1-24 hours in the state of the presence of ammonium in a liquid mixed with an ammonium salt and the like, and a suspension is concentrated, dried and solidified, and a dry solidified material is burnt in an inactive gas up to 400-500 deg.C to prepare a catalyst for preparing methacrylic acid. The catalyst is a partially neutralized salt of a heteropoly-acid represented by the formula. In the formula, X represents at least one kind of element selected from the group consisting of rubidium, cesium and thallium. The letters of (a), (b), (c), (d), (e), (f) and (g) represent the atomic ratio of respective elements and when b=12 is set, (a), (b), (c), (d), (e) and (f) represent the values of less than 3 not including 0 respectively, while (g) represents the value by the valences and atomic ratios of other elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は気相接触酸化による
メタクリル酸の製造に用いられるヘテロポリ酸系触媒の
改良に関する。詳しくは、メタクロレイン、イソブタン
などを分子状酸素で気相接触酸化してメタクリル酸を製
造するために用いられるヘテロポリ酸系触媒の改良に関
する。
TECHNICAL FIELD The present invention relates to an improvement in a heteropolyacid catalyst used for the production of methacrylic acid by vapor phase catalytic oxidation. Specifically, it relates to improvement of a heteropolyacid catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein, isobutane and the like with molecular oxygen.

【0002】[0002]

【従来の技術】メタクロレインを気相接触酸化しメタク
リル酸を製造するための触媒は数多く提案されており
(例えば、特開昭50−101316号公報、特開昭5
7−177347号公報、特開平4−63139号公
報、特開平5−31368号公報、特開平5−3136
8号公報、特開平6−91172号公報など)、既にそ
の一部は工業的規模の生産に用いられている。
2. Description of the Related Art Many catalysts have been proposed for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein (for example, JP-A-50-101316 and JP-A-5-101316).
7-177347, JP-A-4-63139, JP-A-5-31368, and JP-A-5-3136.
No. 8, JP-A-6-91172, etc.), a part of which is already used for industrial scale production.

【0003】またイソ酪酸の酸化脱水素(例えば、特開
昭57−72936号公報など)、イソブチルアルデヒ
ドの酸化(例えば、特開昭57−144238号公報な
ど)によるメタクリル酸を製造するための触媒もよく知
られている。さらにイソブチレンまたは第三級ブタノー
ルを酸化してメタクリル酸、メタクロレインを製造する
ための触媒(特開昭55−127328号公報など)、
最近ではイソブタンを直接酸化してメタクリル酸、メタ
クロレインを製造する触媒(特開平2−42032号公
報など)も提案されている。
A catalyst for producing methacrylic acid by oxidative dehydrogenation of isobutyric acid (for example, JP-A-57-72936) and oxidation of isobutyraldehyde (for example, JP-A-57-144238). Is also well known. Further, a catalyst for producing methacrylic acid or methacrolein by oxidizing isobutylene or tertiary butanol (for example, JP-A-55-127328),
Recently, catalysts for directly oxidizing isobutane to produce methacrylic acid and methacrolein (JP-A-2-42032, etc.) have also been proposed.

【0004】これらの反応に用いられる触媒としては、
モリブデン及びリンを主成分とするヘテロポリ酸および
その塩の構造を有するものが有効であることは知られて
おり、組成に関してはバナジウムによるモリブデンの一
部置換、銅、アンチモン、ヒ素などの助触媒成分の添
加、調製法に関しても環状アミンの使用等、種々の改良
がなされている。
The catalyst used in these reactions is
It is known that those having a structure of a heteropoly acid containing molybdenum and phosphorus as main components and salts thereof are effective, and regarding the composition, partial substitution of molybdenum with vanadium, co-catalyst components such as copper, antimony and arsenic In addition, various improvements have been made regarding the addition and preparation method of cyclic amine.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
従来の触媒は、既に実用化されているメタクロレインの
酸化においても反応収率(活性と選択性)を必ずしも充
分に満足させるものではない。例えば、アクロレインか
らアクリル酸を製造する触媒と比べ、反応の選択性が悪
いばかりでなく反応活性と寿命も悪く、従って大量の触
媒が必要となり、設備費用と触媒コストの負担が大きい
のが現状である。イソブタン、イソ酪酸などを原料とす
る場合も未だ工業化できていないのは触媒の性能が充分
でないことが大きな理由の一つである。本発明の課題は
現状の触媒を改良し、より高い反応活性、選択性を有す
る触媒を提供することにある。
However, these conventional catalysts do not always sufficiently satisfy the reaction yield (activity and selectivity) even in the oxidation of methacrolein that has already been put to practical use. For example, compared with a catalyst that produces acrylic acid from acrolein, not only the selectivity of the reaction is poor, but also the reaction activity and life are poor, and therefore a large amount of catalyst is required, and the burden of equipment cost and catalyst cost is large at present. is there. One of the major reasons why the performance of the catalyst is not sufficient is that it has not been industrialized even when using isobutane, isobutyric acid or the like as a raw material. An object of the present invention is to improve the existing catalyst and provide a catalyst having higher reaction activity and selectivity.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の課題
を達成するために、ヘテロポリ酸系の触媒の改良につい
て鋭意検討した結果、特定の触媒組成をもち特定の方法
で調製した触媒が、上記の目的を達成しうることを見い
だし、本発明に達成したものである。
Means for Solving the Problems In order to achieve the above objects, the inventors of the present invention have made extensive studies on improvement of a heteropolyacid catalyst, and as a result, found that a catalyst having a specific catalyst composition and prepared by a specific method was used. The inventors have found that the above objects can be achieved and achieved the present invention.

【0007】すなわち、本発明は一般式 PaMobV
cSbdCueXfOg(式中、P、Mo、V、Sb、
Cu、Oはそれぞれリン、モリブデン、バナジウム、ア
ンチモン、銅および酸素を表し、Xはルビジウム、セシ
ウム、及びタリウムからなる群より選ばれた少なくとも
一種の元素を表し、また添字a、b、c、d、e、f及
びgは各元素の原子比を表し、b=12としたとき、
a、c、d、e、fはそれぞれ0(ゼロ)を含まない3
以下の値をとり、gは他の元素の原子価及び原子比によ
って決まる値を表す。)で示されるヘテロポリ酸の部分
中和塩であって、触媒原料を水中に混合して溶解または
懸濁させ、混合液にアンモニウム根を存在させた状態
で、80〜200℃の温度で1〜24時間加熱処理して
調製したメタクリル酸製造用触媒である。
That is, the present invention has the general formula PaMobV
cSbdCueXfOg (in the formula, P, Mo, V, Sb,
Cu and O respectively represent phosphorus, molybdenum, vanadium, antimony, copper and oxygen, X represents at least one element selected from the group consisting of rubidium, cesium and thallium, and subscripts a, b, c and d. , E, f and g represent the atomic ratio of each element, and when b = 12,
a, c, d, e, f do not include 0 (zero) respectively 3
The following values are taken, and g represents a value determined by the valence and atomic ratio of other elements. ) Is a partially neutralized salt of a heteropoly acid, wherein the catalyst raw material is mixed and dissolved or suspended in water, and ammonium root is present in the mixed solution at a temperature of 80 to 200 ° C. A catalyst for producing methacrylic acid prepared by heating for 24 hours.

【0008】本発明の触媒の基本的な構造は従来からよ
く知られているリンモリブデン酸のルビジウム、セシウ
ム、タリウムによる部分中和塩であるが、さらに必須成
分として、バナジウム、アンチモンおよび銅を含んでい
る。これらの元素が有効であることは既に知られている
が、これらの組成と調製法の組合せによって触媒性能が
変わる。
The basic structure of the catalyst of the present invention is a conventionally well-known partially neutralized salt of phosphomolybdic acid with rubidium, cesium and thallium, but further contains vanadium, antimony and copper as essential components. I'm out. Although it is already known that these elements are effective, the combination of their composition and preparation method changes the catalytic performance.

【0009】バナジウムを含まずアンチモンを含む触媒
は、反応選択性は高いが、長時間の使用により反応率が
低下しやすい欠点を持っており工業的使用に耐えるもの
ではない。一方、アンチモンを含まずバナジウムを含む
触媒は従来の調製法では反応選択性、寿命ともにある程
度のものができるがともに充分ではない。また、バナジ
ウム、アンチモンをともに含む触媒においても従来の調
製法では反応活性、寿命とも悪いものしか得られない。
反応選択性と活性、寿命を合わせもつためには、バナジ
ウム、アンチモンをともに含みさらに本発明の特別な調
製法を用いる必要がある。また、銅は反応活性の改良の
点で必須である。その他、ヒ素、銀、鉄、コバルト、ラ
ンタン、セリウムなどを任意成分として含んでいてもよ
い。
The catalyst containing antimony but not vanadium has a high reaction selectivity, but has a drawback that the reaction rate tends to decrease with use for a long time and is not durable for industrial use. On the other hand, a catalyst containing vanadium but not antimony can provide some degree of reaction selectivity and life with conventional preparation methods, but it is not sufficient. Further, even in the case of a catalyst containing both vanadium and antimony, only a catalyst having a poor reaction activity and a short life can be obtained by the conventional preparation method.
In order to combine reaction selectivity, activity, and lifetime, it is necessary to include both vanadium and antimony and use the special preparation method of the present invention. Also, copper is essential in terms of improving reaction activity. In addition, arsenic, silver, iron, cobalt, lanthanum, cerium, etc. may be contained as optional components.

【0010】触媒調製に用いる原料としては各元素の酸
化物、硝酸塩、炭酸塩、アンモニウム塩、水酸化物、ハ
ロゲン化物などを組み合わせて使用することができる。
例えば、モリブデン原料としてはパラモリブデン酸アン
モニウム、三酸化モリブデン、塩化モリブデン等、バナ
ジウム原料としては、メタバナジン酸アンモニウム、五
酸化バナジウム、塩化バナジウム等、アンチモン原料と
しては、三酸化アンチモン、五酸化アンチモン等が使用
できる。また、後に述べる懸濁物の加熱処理の段階でア
ンモニウム根が含んでいることが必要である。よって、
アンモニウム塩を含まない場合にはアンモニア等の添加
が必要である。
As a raw material used for preparing the catalyst, a combination of oxides, nitrates, carbonates, ammonium salts, hydroxides, halides and the like of each element can be used.
For example, molybdenum raw materials include ammonium paramolybdate, molybdenum trioxide, molybdenum chloride, etc., vanadium raw materials include ammonium metavanadate, vanadium pentoxide, vanadium chloride, etc., and antimony raw materials include antimony trioxide, antimony pentoxide, etc. Can be used. Further, it is necessary that ammonium root is contained in the stage of heat treatment of the suspension described later. Therefore,
When ammonium salt is not contained, it is necessary to add ammonia or the like.

【0011】上記の原料を水中に混合して溶解または懸
濁させ、混合液にアンモニウム根を存在させた状態で、
混合液を約80〜200℃、好ましくは約100〜18
0℃で約1〜24時間、好ましくは約10〜20時間加
熱処理することにより、メタクリル酸選択率の良い触媒
となる。加熱処理の温度が約80℃より低かったり、時
間が1時間より少ないと反応が充分に進まず、メタクリ
ル酸選択率の低い触媒となる。温度が約200℃より高
くても、また時間が24時間より長くてもよいが、それ
に見合った効果は得られない。なお、水溶性の原料はあ
らかじめ別に水に溶解して用いてもよいが、粉体のまま
仕込んでも問題ない。
The above raw materials are mixed in water to dissolve or suspend them, and ammonium root is present in the mixed solution.
The mixed solution is about 80 to 200 ° C., preferably about 100 to 18
By heat-treating at 0 ° C. for about 1 to 24 hours, preferably about 10 to 20 hours, a catalyst having a high methacrylic acid selectivity can be obtained. If the temperature of the heat treatment is lower than about 80 ° C. or the time is shorter than 1 hour, the reaction does not proceed sufficiently and the catalyst has a low methacrylic acid selectivity. The temperature may be higher than about 200 ° C. or the time may be longer than 24 hours, but the corresponding effect is not obtained. The water-soluble raw material may be used by dissolving it in water separately in advance, but there is no problem if it is charged as a powder.

【0012】加熱処理して得られる懸濁液を蒸発乾固す
ると、えられた固体はX線回折、赤外吸収からP:Mo
の比が1:9のいわゆるドーソン型のヘテロポリ酸の塩
となっていることがわかる。これを空気などの酸化性ガ
ス、窒素などの不活性ガス中で、180〜350℃程度
に加熱するとP:Moの比が1:12のいわゆるケギン
型ヘテロポリ酸の塩に変化する。アンモニウム根を含ん
で調製しているのでこの段階の固体は、ヘテロポリ酸の
X成分(ルビジウム、セシウムなど)とアンモニウムと
の混合塩になっている。このままでは固体酸の性質がな
く活性が低いので焼成して活性化する必要がある。窒素
などの不活性ガス中で約400〜500℃、好ましくは
約420〜450℃の温度で焼成する。これによりほぼ
全てのアンモニウム成分が脱離しプロトン酸となり高活
性を発現する。空気中で焼成した場合は、400℃以上
ではヘテロポリ酸の分解、焼結が起こり活性が低くな
り、一方、400℃以下ではアンモニウム根が多く残る
ためにやはり活性が低い。不活性ガス中で焼成した後、
空気中で400℃以下の温度で焼成することは差し支え
ない。
When the suspension obtained by heat treatment was evaporated to dryness, the solid obtained was found to be P: Mo from X-ray diffraction and infrared absorption.
It can be seen that a salt of so-called Dawson type heteropolyacid having a ratio of 1: 9 is formed. When this is heated to about 180 to 350 ° C. in an oxidizing gas such as air or an inert gas such as nitrogen, it changes into a so-called Keggin-type heteropolyacid salt having a P: Mo ratio of 1:12. Since it is prepared by containing the ammonium root, the solid at this stage is a mixed salt of the X component of the heteropolyacid (rubidium, cesium, etc.) and ammonium. As it is, it does not have the property of a solid acid and its activity is low, so it is necessary to activate it by firing. Baking at a temperature of about 400 to 500 ° C., preferably about 420 to 450 ° C. in an inert gas such as nitrogen. As a result, almost all of the ammonium components are eliminated to form a protonic acid, which exhibits high activity. When fired in air, the heteropolyacid decomposes and sinters at 400 ° C. or higher, resulting in low activity. On the other hand, at 400 ° C. or lower, many ammonium roots remain and the activity is low. After firing in an inert gas,
There is no problem in firing in air at a temperature of 400 ° C. or lower.

【0013】本発明の触媒はメタクロレインの酸化をは
じめ種々の原料の酸化によるメタクリル酸の製造に用い
られるが、使用に当たっては触媒単味、またはアルミ
ナ、シリカ、シリコンカーバイドなどの担体に担持また
は希釈混合した形で用いられ、固定床の場合は、円柱
状、球状、リング状などに成形して用いられる。流動
床、移動床などの反応形式を用いることもできる。な
お、上記の不活性ガス中での焼成等は成形後行っても良
い。
The catalyst of the present invention is used for the production of methacrylic acid by the oxidation of various raw materials including the oxidation of methacrolein. In use, the catalyst is used alone or supported or diluted on a carrier such as alumina, silica or silicon carbide. It is used in a mixed form, and in the case of a fixed bed, it is used after being formed into a columnar shape, a spherical shape, a ring shape or the like. A reaction type such as a fluidized bed or a moving bed can also be used. The firing in the above-mentioned inert gas may be performed after molding.

【0014】本発明の触媒を用いて、メタクロレインを
気相で接触酸化してメタクリル酸を製造する場合、使用
される原料としては必ずしも純粋のメタクロレインであ
る必要はなく、イソブチレンやターシャリーブタノール
を気相接触酸化して得られたメタクロレイン含有ガスで
も、また液相法で得られたメタクロレインを気化したも
のでもよい。酸素源は純粋な酸素でもよいが、工業的に
は空気が使用される。その他の希釈ガスとしては、窒
素、二酸化炭素、一酸化炭素、水蒸気などを用いること
ができる。反応原料ガス中のメタクロレイン濃度は約1
〜10%、メタクロレインに対する酸素の比は1〜5程
度が用いられる。原料ガスの空間速度は約500〜50
00h-1の範囲、反応温度は約250〜350℃程度が
好ましい。反応圧力は通常、常圧付近または若干の加圧
下で行われる。
When methacrolein is catalytically oxidized in the gas phase to produce methacrylic acid using the catalyst of the present invention, the raw material used does not necessarily have to be pure methacrolein, but isobutylene or tertiary butanol. A methacrolein-containing gas obtained by vapor-phase catalytic oxidation of methacrolein or a vaporized methacrolein obtained by a liquid phase method may be used. The oxygen source may be pure oxygen, but industrially air is used. As other diluent gas, nitrogen, carbon dioxide, carbon monoxide, steam or the like can be used. The concentration of methacrolein in the reaction raw material gas is about 1
-10%, and a ratio of oxygen to methacrolein of about 1 to 5 is used. Space velocity of raw material gas is about 500-50
The range of 00h -1 and the reaction temperature are preferably about 250 to 350 ° C. The reaction pressure is usually around normal pressure or under slight pressure.

【0015】また本発明の触媒を用いて、イソブタンを
直接酸化してメタクリル酸、メタクロレインを製造する
場合は、原料ガス中のイソブタン濃度は約1〜85%、
酸素源としては、純酸素、酸素富化空気、空気などが用
いられる。イソブタンに対する酸素の比は約0.05〜
4が適当である。反応ガス中には水蒸気を約3〜30%
の範囲で含有させることが望ましい。原料ガス中には窒
素、二酸化炭素、一酸化炭素などが希釈ガスとして含ま
れていてもよい。この反応では活性をそれほど高くでき
ないので、未反応イソブタン及び場合により酸素は回収
して再循環される。副生メタクロレインは再循環するか
別の反応器に導きメタクリル酸まで酸化する。空間速度
は約400〜5000h-1、反応温度は約270〜40
0℃が好ましい。反応圧力は常圧または加圧で行われ
る。
When isobutane is directly oxidized using the catalyst of the present invention to produce methacrylic acid or methacrolein, the isobutane concentration in the raw material gas is about 1 to 85%,
Pure oxygen, oxygen-enriched air, air, or the like is used as the oxygen source. The ratio of oxygen to isobutane is about 0.05-
4 is appropriate. About 3 to 30% water vapor in the reaction gas
It is desirable to contain it within the range. The raw material gas may contain nitrogen, carbon dioxide, carbon monoxide or the like as a diluent gas. Unreacted isobutane and optionally oxygen are recovered and recycled, as the activity cannot be very active in this reaction. By-product methacrolein is recycled or introduced into another reactor to oxidize methacrylic acid. The space velocity is about 400 to 5000 h -1 , and the reaction temperature is about 270 to 40.
0 ° C. is preferred. The reaction pressure may be atmospheric pressure or increased pressure.

【0016】本発明の触媒は、イソ酪酸の酸化脱水素、
イソブチルアルデヒドの酸化によるメタクリル酸の製造
にも用いることができる。またイソブチレンから一段で
メタクリル酸を製造する際にも用いることが可能であ
る。これらの反応では、メタクロレインの酸化と同様な
反応条件が採用できる。
The catalyst of the present invention is oxidative dehydrogenation of isobutyric acid,
It can also be used for the production of methacrylic acid by the oxidation of isobutyraldehyde. It can also be used when producing methacrylic acid from isobutylene in a single step. In these reactions, the reaction conditions similar to the oxidation of methacrolein can be adopted.

【0017】[0017]

【発明の効果】本発明の触媒はメタクリル酸の製造にお
いて、従来の触媒より高い反応活性と選択性を有してい
る。
The catalyst of the present invention has higher reaction activity and selectivity than conventional catalysts in the production of methacrylic acid.

【0018】[0018]

【実施例】以下に実施例をあげて、本発明をさらに具体
的に説明するが、本発明はこれらの実施例によって限定
されるものではない。転化率、および選択率の定義は下
記の通りである。メタクロレイン 転化率(%)=(反応したメタクロレイン のモル数)
÷(供給したメタクロレイン のモル数)×100メタクリル 酸選択率(%)=(生成したメタクリル 酸のモル数)
÷(反応したメタクロレイン のモル数)×100
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The definitions of conversion rate and selectivity are as follows. Conversion rate of methacrolein (%) = (moles of reacted methacrolein)
÷ (Number of moles of methacrolein supplied) × 100 Methacrylic acid selectivity (%) = (Number of moles of methacrylic acid formed)
÷ (number of moles of reacted methacrolein) × 100

【0019】実施例1 40℃に加熱したイオン交換水224gに、硝酸セシウ
ム [CsNO3]38.2g、硝酸銅 [Cu(NO3 )2
3H2 O] 10.2g、リン酸水溶液 [85%−H3
4]24.2g、硝酸 [70%−HNO3 ] 25.2g
を溶解し、これをA液とした。40℃に加熱したイオン
交換水330mlにモリブデン酸アンモニウム [( NH
4)6 Mo7 24・4H2 O] 297gを溶解し、メタバ
ナジン酸アンモニウム[NH4 VO3]8.19gを懸濁
させ、これをB液とした。撹拌しているB液に、A液を
滴下した。得られた懸濁液に、三酸化アンチモン[Sb
2 3]10.2gを添加した。得られた懸濁液を密封容
器中で、120℃で17時間加熱撹拌した。得られた懸
濁液をステンレス製バットにとり電気炉中で120℃で
蒸発乾固した。得られた乾固物はドーソン型のヘテロポ
リ酸塩の構造をしている。乾固物を1000μm以下に
粉砕し、成形助剤を添加し水を加え混練し、直径5m
m、高さ5mmの円柱上に押し出し成形した。この成形
体を、90℃で乾燥後、さらに、320℃で3時間焼成
する。これを窒素気流中、435℃で3時間焼成し、さ
らに空気気流中、390℃で3時間焼成し触媒を得た。
この触媒の酸素を除く組成はP1.5 Mo120.5 Sb
0.5 Cu0.3 Cs1.4 である。
Example 1 In 224 g of ion-exchanged water heated to 40 ° C., 38.2 g of cesium nitrate [CsNO 3 ] and copper nitrate [Cu (NO 3 ) 2 .multidot.
3H 2 O] 10.2 g, phosphoric acid aqueous solution [85% -H 3 P
O 4 ] 24.2 g, nitric acid [70% -HNO 3 ] 25.2 g
Was dissolved, and this was designated as solution A. To 330 ml of deionized water heated to 40 ° C, ammonium molybdate [(NH
4) 6 Mo 7 O 24 · 4H 2 O] was dissolved 297 g, was suspended ammonium metavanadate [NH 4 VO 3] 8.19g, which was used as B solution. Solution A was added dropwise to solution B being stirred. The obtained suspension contains antimony trioxide [Sb
2 O 3 ] 10.2 g was added. The obtained suspension was heated and stirred at 120 ° C. for 17 hours in a sealed container. The obtained suspension was placed in a stainless steel vat and evaporated to dryness at 120 ° C. in an electric furnace. The dried product thus obtained has a Dawson-type heteropolyacid salt structure. The dry solid is pulverized to 1000 μm or less, a molding aid is added, water is added, and the mixture is kneaded.
It was extruded and molded on a cylinder of m and a height of 5 mm. The formed body is dried at 90 ° C. and then baked at 320 ° C. for 3 hours. This was calcined in a nitrogen stream at 435 ° C for 3 hours and further in an air stream at 390 ° C for 3 hours to obtain a catalyst.
The composition of this catalyst excluding oxygen is P 1.5 Mo 12 V 0.5 Sb.
It is 0.5 Cu 0.3 Cs 1.4 .

【0020】この触媒9gを内径15mmのガラス製反
応管に充填し、メタクロレイン4mol%、酸素12m
ol%、水蒸気17mol%、残りが窒素からなる組成
の原料ガスを空間速度(STP基準)670h-1で反応
管を通じ、反応温度290℃で活性試験を行った。その
結果、定常状態に達した時点で、メタクロレイン転化率
93.6%、メタクリル酸選択率81.1%、メタクリ
ル酸収率75.9%であった。条件を振らしてメタクロ
レイン転化率90%時のメタクリル酸選択率を求めると
83.1%であった。
9 g of this catalyst was filled in a glass reaction tube having an inner diameter of 15 mm, and 4 mol% of methacrolein and 12 m of oxygen were filled.
An activity test was carried out at a reaction temperature of 290 ° C. through a reaction tube with a raw material gas having a composition of ol%, water vapor 17 mol%, and the balance nitrogen at a space velocity (STP standard) of 670 h −1 . As a result, when the steady state was reached, the conversion of methacrolein was 93.6%, the selectivity of methacrylic acid was 81.1%, and the yield of methacrylic acid was 75.9%. When the conditions were varied, the methacrylic acid selectivity at a methacrolein conversion rate of 90% was calculated to be 83.1%.

【0021】比較例1 三酸化アンチモンを用いなかった以外は、実施例1と同
様にして触媒を調製した。その触媒の酸素を除く組成は
1.5 Mo120.5 Cu0.3 Cs1.44である。実施例1
と同じ活性試験の結果はメタクロレイン転化率97.
7%、メタクロレイン選択率70.2%、メタクリル酸
収率68.5%、メタクロレイン転化率90%時のメタ
クリル酸選択率は75.2%であった。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that antimony trioxide was not used. The composition of the catalyst excluding oxygen is P 1.5 Mo 12 V 0.5 Cu 0.3 Cs 1.44 . Example 1
The result of the same activity test as that of methacrolein conversion was 97.
7%, methacrolein selectivity 70.2%, methacrylic acid yield 68.5%, and methacrylic acid selectivity at a methacrolein conversion rate of 90% was 75.2%.

【0022】比較例2 イオン交換水350gにリン酸水溶液 [85%−H3
4]4.6gを加え、さらにモリブドバナドリン酸 [H
4 1 Mo111 40・18H2 O] 115gと三酸化
アンチモン [Sb2 3]3.64gを加え、100℃で
14時間環流し溶解した。この溶液を13℃まで冷却
し、これをA液とした。13℃に冷却したイオン交換水
250gに、硝酸セシウム[ CsNO3]13.7g、硝
酸銅 [Cu(NO3)2 ・3H2 0] 3.62g、硝酸ア
ンモニウム [NH4 NO3]10.4gを溶解し、これを
B液とした。A液にB液を滴下し、65℃で減圧濃縮し
た。得られた乾固物をステンレス製バットにとり電気炉
中で120℃で乾燥した。成形工程、焼成工程は実施例
1と同様とした。この触媒の酸素を除く組成はP1.5
121.1 Sb0.5 Cu0.3 Cs1.4 である。実施例1
と同じ活性試験の結果は、メタクロレイン転化率35.
2%、メタクロレイン選択率85.8%、メタクリル酸
収率30.2%であった。
Comparative Example 2 A solution of phosphoric acid [85% -H 3 P in 350 g of ion-exchanged water]
O 4 ] 4.6g was added, and molybdovanadolinic acid [H
115 g of 4 P 1 Mo 11 V 1 O 40 · 18H 2 O] and 3.64 g of antimony trioxide [Sb 2 O 3 ] were added, and refluxed at 100 ° C. for 14 hours to dissolve. This solution was cooled to 13 ° C. and designated as solution A. To 250 g of ion-exchanged water cooled to 13 ° C., 13.7 g of cesium nitrate [CsNO 3 ], 3.62 g of copper nitrate [Cu (NO 3 ) 2 .3H 2 0], and 10.4 g of ammonium nitrate [NH 4 NO 3 ]. It was dissolved and this was designated as solution B. Solution B was added dropwise to solution A and concentrated under reduced pressure at 65 ° C. The obtained dried solid matter was placed in a stainless steel vat and dried at 120 ° C. in an electric furnace. The molding step and firing step were the same as in Example 1. The composition of this catalyst excluding oxygen is P 1.5 M.
o 12 V 1.1 Sb 0.5 Cu 0.3 Cs 1.4 . Example 1
The result of the same activity test as that of methacrolein conversion is 35.
2%, methacrolein selectivity was 85.8%, and methacrylic acid yield was 30.2%.

【0023】実施例2 硝酸 [70%−HNO3]添加量を12.6gにした以外
は実施例1と同様にして触媒を調製した。その触媒の酸
素を除く組成はP1.5 Mo120.5 Sb0.5 Cu0.3
1.4 である。実施例1と同じ活性試験の結果は、メタ
クロレイン転化率97.3%、メタクロレイン選択率7
3.5%、メタクリル酸収率71.5%、メタクロレイ
ン転化率90%時のメタクリル酸選択率は78.5%で
あった。
Example 2 A catalyst was prepared in the same manner as in Example 1 except that the addition amount of nitric acid [70% -HNO 3 ] was changed to 12.6 g. The composition of the catalyst excluding oxygen is P 1.5 Mo 12 V 0.5 Sb 0.5 Cu 0.3 C.
s 1.4 . The results of the same activity test as in Example 1 show that the conversion of methacrolein is 97.3% and the selectivity of methacrolein is 7
The methacrylic acid selectivity was 78.5% when the methacrylic acid yield was 3.5%, the methacrylic acid yield was 71.5%, and the methacrolein conversion rate was 90%.

【0024】実施例3 硝酸 [70%−HNO3 ] 添加量を37.8gにした以
外は実施例1と同様にして触媒を調製した。その触媒の
酸素を除く組成はP1.5 Mo120.5 Sb0.5 Cu0.3
Cs1.4 である。実施例1と同じ活性試験の結果は、メ
タクロレイン転化率92.8%、メタクロレイン選択率
83.7%、メタクリル酸収率77.7%、メタクロレ
イン転化率90%時のメタクリル酸選択率は85.2%
であった。
Example 3 A catalyst was prepared in the same manner as in Example 1 except that the amount of nitric acid [70% -HNO 3 ] added was 37.8 g. The composition of the catalyst excluding oxygen is P 1.5 Mo 12 V 0.5 Sb 0.5 Cu 0.3.
It is Cs 1.4 . The results of the same activity test as in Example 1 were: methacrolein conversion 92.8%, methacrolein selectivity 83.7%, methacrylic acid yield 77.7%, methacrylic acid selectivity at methacrolein conversion 90%. Is 85.2%
Met.

【0025】実施例4 得られた懸濁液を密封容器中で、135℃で49時間加
熱撹拌した以外は実施例1と同様にして触媒を調製し
た。その触媒の酸素を除く組成はP1.5 Mo120.5
0.5 Cu0.3 Cs1.4 である。実施例1と同じ活性試
験の結果は、メタクロレイン転化率90.3%、メタク
ロレイン選択率84.1%、メタクリル酸収率76.0
%、メタクロレイン転化率90%時のメタクリル酸選択
率は84.2%であった。
Example 4 A catalyst was prepared in the same manner as in Example 1 except that the obtained suspension was heated and stirred at 135 ° C. for 49 hours in a sealed container. The composition of the catalyst excluding oxygen is P 1.5 Mo 12 V 0.5 S
b 0.5 Cu 0.3 Cs 1.4 . The results of the same activity test as in Example 1 were: methacrolein conversion 90.3%, methacrolein selectivity 84.1%, methacrylic acid yield 76.0.
%, The methacrylic acid selectivity at a methacrolein conversion rate of 90% was 84.2%.

【0026】実施例5 得られた懸濁液を密封容器中で、160℃で17時間加
熱撹拌した以外は実施例1と同様にして触媒を調製し
た。その触媒の酸素を除く組成はP1.5 Mo120.5
0.5 Cu0.3 Cs1.4 である。実施例1と同じ活性試
験の結果は、メタクロレイン転化率95.7%、メタク
ロレイン選択率81.5%、メタクリル酸収率78.0
%、メタクロレイン転化率90%時のメタクリル酸選択
率は83.4%であった。
Example 5 A catalyst was prepared in the same manner as in Example 1 except that the obtained suspension was heated and stirred in a sealed container at 160 ° C. for 17 hours. The composition of the catalyst excluding oxygen is P 1.5 Mo 12 V 0.5 S
b 0.5 Cu 0.3 Cs 1.4 . The results of the same activity test as in Example 1 showed that the conversion of methacrolein was 95.7%, the selectivity of methacrolein was 81.5%, and the yield of methacrylic acid was 78.0.
%, The methacrylic acid selectivity at a methacrolein conversion rate of 90% was 83.4%.

【0027】実施例6 得られた懸濁液を密封容器中で、120℃で70時間加
熱撹拌した以外は実施例1と同様にして触媒を調製し
た。その触媒の酸素を除く組成はP1.5 Mo120.5
0.5 Cu0.3 Cs1.4 である。実施例1と同じ活性試
験の結果は、メタクロレイン転化率94.2%、メタク
ロレイン選択率80.8%、メタクリル酸収率76.1
%、メタクロレイン転化率90%時のメタクリル酸選択
率は80.0%であった。
Example 6 A catalyst was prepared in the same manner as in Example 1 except that the obtained suspension was heated and stirred at 120 ° C. for 70 hours in a sealed container. The composition of the catalyst excluding oxygen is P 1.5 Mo 12 V 0.5 S
b 0.5 Cu 0.3 Cs 1.4 . The results of the same activity test as in Example 1 show that the conversion of methacrolein is 94.2%, the selectivity of methacrolein is 80.8%, and the yield of methacrylic acid is 76.1.
%, The methacrylic acid selectivity at a methacrolein conversion rate of 90% was 80.0%.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式 PaMobVcSbdCueX
fOg(式中、P、Mo、V、Sb、Cu、Oはそれぞ
れリン、モリブデン、バナジウム、アンチモン、銅およ
び酸素を表し、Xはルビジウム、セシウム及びタリウム
からなる群より選ばれた少なくとも一種の元素を表し、
また添字a、b、c、d、e、f及びgは各元素の原子
比を表し、b=12としたとき、a、c、d、e、fは
それぞれ0(ゼロ)を含まない3以下の値をとり、gは
他の元素の原子価及び原子比によって決まる値を表
す。)で示されるヘテロポリ酸の部分中和塩であって、
触媒原料を水中に混合して溶解または懸濁させ、混合液
にアンモニウム根を存在させた状態で、80〜200℃
の温度で1〜24時間加熱処理し、懸濁液を濃縮乾固
し、乾固物を不活性ガス中で400〜500℃の温度で
焼成して調製したメタクリル酸製造用触媒。
1. The general formula PaMobVcSbdCueX
fOg (wherein P, Mo, V, Sb, Cu and O represent phosphorus, molybdenum, vanadium, antimony, copper and oxygen, respectively, and X represents at least one element selected from the group consisting of rubidium, cesium and thallium. Represents
The subscripts a, b, c, d, e, f and g represent the atomic ratio of each element. When b = 12, a, c, d, e and f do not include 0 (zero). The following values are taken, and g represents a value determined by the valence and atomic ratio of other elements. ) Is a partially neutralized salt of a heteropoly acid,
The catalyst raw material is mixed in water to be dissolved or suspended, and in the state where ammonium root is present in the mixed solution, 80 to 200 ° C.
The catalyst for methacrylic acid production prepared by heat-treating at a temperature of 1 to 24 hours, concentrating the suspension to dryness, and calcining the dried solid at a temperature of 400 to 500 ° C. in an inert gas.
【請求項2】 請求項1記載の触媒の存在下に、メタク
ロレインを分子状酸素で気相接触酸化することを特徴と
するメタクリル酸の製造方法。
2. A method for producing methacrylic acid, which comprises subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst according to claim 1.
【請求項3】 反応原料ガス中のメタクロレイン濃度が
1〜10%、メタクロレインに対する酸素の比が1〜
5、反応原料ガスの空間速度が500〜5000h-1
反応温度が250〜350℃で行う請求項2記載のメタ
クリル酸の製造方法。
3. The methacrolein concentration in the reaction raw material gas is 1 to 10%, and the ratio of oxygen to methacrolein is 1 to 1.
5, the space velocity of the reaction raw material gas is 500 to 5000 h -1 ,
The method for producing methacrylic acid according to claim 2, wherein the reaction temperature is 250 to 350 ° C.
JP7178728A 1995-07-14 1995-07-14 Catalyst and process for preparing methacrylic acid Pending JPH0924277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7178728A JPH0924277A (en) 1995-07-14 1995-07-14 Catalyst and process for preparing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7178728A JPH0924277A (en) 1995-07-14 1995-07-14 Catalyst and process for preparing methacrylic acid

Publications (1)

Publication Number Publication Date
JPH0924277A true JPH0924277A (en) 1997-01-28

Family

ID=16053544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7178728A Pending JPH0924277A (en) 1995-07-14 1995-07-14 Catalyst and process for preparing methacrylic acid

Country Status (1)

Country Link
JP (1) JPH0924277A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130541A (en) * 2005-11-09 2007-05-31 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2008284508A (en) * 2007-05-21 2008-11-27 Sumitomo Chemical Co Ltd Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2010142687A (en) * 2008-12-16 2010-07-01 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing unsaturated carboxylic acid
EP2204234A1 (en) 2005-03-29 2010-07-07 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
WO2014157040A1 (en) * 2013-03-28 2014-10-02 日本化薬株式会社 Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204234A1 (en) 2005-03-29 2010-07-07 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
JP2007130541A (en) * 2005-11-09 2007-05-31 Mitsubishi Rayon Co Ltd Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2008284508A (en) * 2007-05-21 2008-11-27 Sumitomo Chemical Co Ltd Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2010142687A (en) * 2008-12-16 2010-07-01 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing unsaturated carboxylic acid
WO2014157040A1 (en) * 2013-03-28 2014-10-02 日本化薬株式会社 Catalyst for methacrylic acid production, method for producing same, and method for producing methacrylic acid
JPWO2014157040A1 (en) * 2013-03-28 2017-02-16 日本化薬株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Similar Documents

Publication Publication Date Title
JP4900449B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4081824B2 (en) Acrylic acid production method
JPH081005A (en) Production of catalyst for production of mathacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2001114726A (en) Production process for methacrylic acid
JPS5824417B2 (en) Propylene Mataha Isobutylene Color Acrylic Sant Methacrylic Sanno Seizouhou
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH09299803A (en) Oxidation catalyst, manufacture thereof and preparation of methacrylic acid
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JPH05237388A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
US4042623A (en) Method of manufacturing methacrylic acid and an oxidation catalyst
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3316880B2 (en) Method for producing catalyst for producing methacrylic acid
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JPH052374B2 (en)