JP4933709B2 - Method for producing catalyst for synthesis of unsaturated carboxylic acid - Google Patents

Method for producing catalyst for synthesis of unsaturated carboxylic acid Download PDF

Info

Publication number
JP4933709B2
JP4933709B2 JP2001293231A JP2001293231A JP4933709B2 JP 4933709 B2 JP4933709 B2 JP 4933709B2 JP 2001293231 A JP2001293231 A JP 2001293231A JP 2001293231 A JP2001293231 A JP 2001293231A JP 4933709 B2 JP4933709 B2 JP 4933709B2
Authority
JP
Japan
Prior art keywords
catalyst
carboxylic acid
unsaturated carboxylic
molding
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001293231A
Other languages
Japanese (ja)
Other versions
JP2003093882A (en
Inventor
正英 近藤
誠一 河藤
啓幸 内藤
徹 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001293231A priority Critical patent/JP4933709B2/en
Publication of JP2003093882A publication Critical patent/JP2003093882A/en
Application granted granted Critical
Publication of JP4933709B2 publication Critical patent/JP4933709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、不飽和アルデヒドを分子状酸素を用いて気相接触酸化し、それに対応する不飽和カルボン酸を合成する際に用いられる、少なくともモリブデン及びバナジウムを含む不飽和カルボン酸合成用触媒、その製造方法、およびその触媒を用いた不飽和カルボン酸の合成方法に関する。
【0002】
【従来の技術】
従来、不飽和アルデヒドを気相接触酸化して、それに対応する不飽和カルボン酸を製造する際に用いられる触媒やその製造方法については、数多くの提案がなされている。このような触媒の多くは、少なくともモリブデンおよびバナジウムを含む組成を有しており、工業的には、このような組成の成形触媒が使用される。これらは、その成形方法により押出成形触媒や担持成形触媒等に分類される。通常、押出成形触媒は、触媒成分を含む粒子を混練りし押出成形する工程を経て製造され、担持成形触媒は、触媒成分を含む粉体を担体に担持させる工程を経て製造される。
押出成形触媒に関しては、例えば、混練りの際にアルコール等の有機化合物を添加する方法(特開平5−309273号公報、特開平6−15178号公報)や、触媒を押出成形した後、凍結する方法(特開平5−309274号公報)等が提案されている。こちらはいずれも一段成形による製造方法である。
【0003】
【発明が解決しようとする課題】
しかしながら、これら公知の方法で得られる触媒は、触媒活性、目的生成物選択性などの点で工業用触媒としてまだ不十分である。更に、触媒製造における歩留まりという点においてもまだ不十分である。よって、一般に工業的見地から、不飽和カルボン酸合成用触媒およびその製造方法の更なる改良が望まれている。
【0004】
本発明は、上記課題を解決するためになされたもので、触媒活性、不飽和カルボン酸選択性に優れた不飽和カルボン酸合成用触媒、及びその触媒の簡便で歩留まりに優れた製造方法、そして、この触媒を用いて高収率で不飽和カルボン酸を合成する方法を提供する。
【0005】
【課題を解決するための手段】
通常、工業触媒の製造では、生産性や歩留まりの観点から、少ない製造工程数が好まれる。しかし、本発明者らは鋭意検討の結果、逆に工程数を増やすことで、触媒性能や触媒製造の歩留まりが向上することを見出した。
本発明の不飽和カルボン酸合成用触媒の製造方法は、不飽和アルデヒドを分子状酸素を用いて気相接触酸化し、それに対応する不飽和カルボン酸を合成する際に用いられる、モリブデン及びバナジウムを含む押出成形触媒の製造方法において、触媒成分を含む粒子と液体とを混合したものを成形して1次成形品を得る1次成形工程と、1次成形工程の後に、更に、ピストン成形機で1次成形品を最終形状に成形する2次成形工程とを有することを特徴とする。
また、上記1次成形品が、2次成形工程において使用されるピストン成形機のシリンダー径の0.5倍以上1倍未満の径をもつ円柱状であることが望ましい。
上記一次成形品の比重が、1.5〜3.5kg/Lであることが望ましい。
また、上記触媒成分を含む粒子が、触媒成分を含むスラリーをスプレー乾燥したものであることが望ましい。
上記触媒成分を含む粒子の平均粒子圧壊強度が、9.8×10 5〜9.8×10-2Nであることが望ましい。
上記触媒成分を含む粒子の嵩比重が、0.5〜1.8kg/Lであることが望ましい。
また、2次成形のピストン成形機で1次成形品を最終形状に成形する際に、真空脱気を行わないことが望ましい。
また、1次成形の触媒成分を含む粒子と液体とを混合したものを成形する際に、スクリュー押出機を用いて成形することが望ましい。
本発明の不飽和カルボン酸合成用触媒は、上述した製造方法により製造されたものであることを特徴とする。
また、触媒の形状がリング状であり、その外径が15mm以下であることが望ましい。
本発明の不飽和カルボン酸の合成方法は、上記不飽和カルボン酸合成用触媒を用いて、不飽和アルデヒドを分子状酸素により気相酸化することを特徴とする。
【0006】
【発明の実施の形態】
本発明の不飽和カルボン酸合成用触媒は、後述する製造方法によって製造される押出成形触媒であって、反応原料である不飽和アルデヒドを分子状酸素により気相接触酸化して、不飽和カルボン酸を合成するために用いられるものである。
上記不飽和カルボン酸合成用触媒は、触媒成分として少なくともモリブデン及びバナジウムを含む触媒である。また、モリブデン及びバナジウム以外の触媒成分としては、鉄、コバルト、クロム、アルミニウム、ストロンチウム、ゲルマニウム、ホウ素、ヒ素、セレン、銀、ケイ素、ナトリウム、テルル、リチウム、アンチモン、リン、カリウム、バリウム、マグネシウム、チタン、マンガン、銅、亜鉛、ジルコニウム、ニオブ、タングステン、タンタル、カルシウム、スズ、ビスマス、ガリウム、セリウム、ランタン、ルビジウム、セシウム、タリウム等が挙げられる。
【0007】
押出成形触媒である、本発明の不飽和カルボン酸合成用触媒は、(1)触媒成分を含む粒子を製造する工程、(2)得られた触媒成分を含む粒子等を混練りする工程、(3)得られた混練り品を押出成形する工程、(4)触媒成形体を乾燥する工程を経て製造される。以下、各工程について詳しく述べる。
本発明の(1)触媒成分を含む粒子を製造する工程において、その製造方法は、特に限定されず、種々の公知の方法が適用される。通常の方法としては、モリブデン及びバナジウムを含有する水性スラリーを乾燥し、必要に応じて更に粉砕して粒子状にする方法が用いられる。
水性スラリーに溶解する触媒成分の原料としては、上記触媒成分である元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物等が使用される。例えば、モリブデンを触媒成分とする原料としては、パラモリブデン酸アンモニウム、三酸化モリブデン等が挙げられる。また触媒成分の原料としては、各元素に対して1種類を用いてもよいし、2種類以上を用いてもよい。
少なくともモリブデン及びバナジウムを含む水性スラリーを製造する方法としては、特に限定されず、成分の著しい偏在を伴わない限り、従来からよく知られている沈殿法、酸化物混合法等の種々の方法が用いられる。
このようにして製造された水性スラリーを乾燥して粒子状にする方法としては、特に限定されず、例えば、スプレー乾燥機を用いて乾燥する方法、スラリードライヤーを用いて乾燥する方法、ドラムドライヤーを用いて乾燥する方法、蒸発乾固して塊状の乾燥物を粉砕する方法等が適用される。中でも、乾燥と同時に粒子が得られること、得られる粒子の形状が整った球形であることから、スプレー乾燥機を用いて乾燥する方法が望ましい。
この際、乾燥条件として、スプレー乾燥機の入口温度を100〜500℃、出口温度を100℃以上、より好ましくは105〜200℃に設定するとよい。
このようにして得られた乾燥粒子は、必要に応じて、200〜500℃で熱処理(焼成)してもよい。焼成条件は、特に限定されないが、焼成は、通常、酸素、空気または窒素流通下で行われる。また、焼成時間は目的とする触媒によって適宜設定される。
【0008】
触媒成分を含む粒子を潰さずに成形を行った場合、触媒成分を含む粒子の平均粒子直径は、大きくなると成形後の粒子間に大きな空隙、すなわち、大きな細孔が形成されて選択率が向上する傾向があり、小さくなると単位体積当たりの粒子同士の接触点が増加するので、得られる触媒成形体の機械的強度が向上する傾向がある。従って、触媒の選択率と機械的強度のバランスを考慮すると、10μm〜150μmが好ましく、20〜60μmが更に好ましい。また、この範囲の中でも、特に25〜45μmが好ましい。
また、前記触媒成分を含む粒子は、その嵩比重が0.5〜1.8kg/Lの範囲が好ましく、0.7〜1.1kg/Lの範囲が更に好ましい。また、この範囲の中でも、特に0.8〜1.0kg/Lが特に好ましい。それは、触媒成分を含む粒子の嵩比重が、0.5kg/Lより小さいと、成形に耐えうる十分な強度が得られない場合が多く、成形の際に粒子が潰れてしまう。1.8kg/Lより大きいと、活性、選択性が低下することがある。ここで、嵩比重とは、JISK6721記載の方法で測定したものである。
また、その平均粒子圧壊強度が、9.8×10-5〜9.8×10-2Nの範囲が好ましく、9.8×10-4〜9.8×10-2Nの範囲が更に好ましい。また、この範囲の中でも9.8×10-4〜9.8×10-3Nが特に好ましい。平均粒子圧壊強度が、9.8×10-5Nより小さいと、成形の際に粒子が潰れてしまう。9.8×10-2Nより大きいと、活性、選択性が低下することがある。
【0009】
次に、(2)得られた触媒成分を含む粒子等を混練りする工程では、(1)の工程で得られた粒子と、液体とを混合したものを混練りし混練品とする。
この工程で用いられる液体としては、水やアルコールが好ましい。このようなアルコールとしては、エタノール、メチルアルコール、プロピルアルコール、ブチルアルコール等の低級アルコールが挙げられる。これらの液体は1種を用いてもよいし、2種以上を組み合わせて用いてもよいが、ここでは少なくとも一部にアルコールを使用するのがより好ましい。
液体の使用量は、粒子の種類や大きさ、液体の種類等により適宜選択されるが、通常は(1)の工程で得られた乾燥粒子または焼成粒子100質量部に対して5〜65質量部であり、15〜55質量部が好ましく、25〜45質量部が更に好ましい。また、この範囲の中でも30〜40質量部が特に好ましい。
【0010】
また(2)の工程においては、触媒成分を含む粒子と液体との混合物に、有機バインダー等の成形助剤を加えると、強度が向上するため好ましい。このような成形助剤としては、メチルセルロース、エチルセルロース、カルボキシルメチルセルロース、カルボキシルメチルセルロースナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシブチルメチルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等を挙げることができる。
この他に、上記混合物に、従来公知の添加剤を加えてもよく、このような添加剤としては、グラファイトやケイソウ土などの無機化合物、ガラス繊維、セラミックファイバーや炭素繊維などの無機ファイバー等が挙げられる。
上記のようにして得られた粒子と液体とを混合したものを混練りする装置としては、特に限定されず、双腕型の攪拌羽根を使用するバッチ式の混練り機、軸回転往復式やセルフクリーニング型等の連続式の混練り機等が使用できるが、混練り品の状態を確認しながら混練りを行うことができる点では、バッチ式が好ましい。また、混練りの終点は、通常は時間、目視または手触りによって判断される。
【0011】
(3)得られた混練り品を押出成形する工程では、(2)の工程で得られた混練り品を押出成形するが、本発明は、この工程において、触媒成分を含む粒子と液体とを混合した混練り品を成形して1次成形品を得る1次成形工程と、1次成形工程の後に、更に、ピストン成形機で1次成形品を最終形状に成形する2次成形工程との2度の成形を行うことに特徴がある。
このように成形することで、押出時の曲がり等が少なくなり、製品の歩留まりが向上する。また、均一な力で成形を行うことができ、余分な空気が混入することも少ないため、均一な成形体ができ、最終的な触媒を反応管に充填したときの粉化率は低下し選択率が向上する。また、混練り品を(スクリュー押出機等で)直接最終形状に押出成形する場合と比べて、よりスムーズに押出成形ができるため、成形中の触媒粒子に余分な負荷を与えず、触媒粒子を破壊しないソフトな成形ができ、最終的な触媒中に好ましい細孔が発現することから、触媒活性、不飽和カルボン酸の選択性に優れた触媒が得られるという利点もある。
まず、(2)の工程で得られた混練り品は、押出機やプレス機等の装置によって1次成形品に成形される(1次成形)。ここでは、混練りと1次成形を連続(ワンパス)で行えるような装置を用いることもできる。ここでは、混練りの状態を確認しながら混練りができる点と、生産性の面からバッチ式の混練り機で混練りを行い、スクリュー押出機で1次成形を行うことが望ましい。
このようにして製造された1次成形品の形状は、特に限定されないが、1次成形品の形状が、2次成形を行うピストン成形機のシリンダー径の0.5倍以上1未満の径を有する円柱状であることが好ましく、ピストン成形機のシリンダー径の0.8倍以上1未満の径を有する円柱状は更に好ましい。その径がピストン成形機のシリンダー径の0.5倍未満の場合、2次成形時に余分な空気が入り易くなること、1次成形の回数が増えること、および触媒粒子への負荷が大きくなることから好ましくない。その径がピストン成形機のシリンダー径の1倍以上の場合、ピストン成形機に1次成形品を充填することが困難になる。
また、製造された1次成形品の比重は、大きいほど最終的な触媒の強度は大きくなり、比重が小さいほど最終的な触媒の選択性は向上する。従って、最終的な触媒の強度および選択性を考慮すると、1次成形品の比重は、1.5〜3.5kg/Lの範囲、特に2.0〜2.9kg/Lの範囲であることが好ましい。また、この範囲の中でも2.2〜2.7kg/Lが特に好ましい。ここで、比重とは水分を含んだ1次成形品の重量を1次成形品の体積で除して算出した値である。
【0012】
次に、1次成形によって得られた1次成形品は、ピストン成形機により最終形状に成形される(2次成形)。
2次成形のピストン成形機による1次成形品を成形する際は、触媒の細孔容積を減じないよう真空脱気を行わないのが好ましい。
また、押出成形による成形体の形状としては、特に限定されず、リング状、円柱状、星型状などの任意の形状に成形することができる。ここで、2次成形後の触媒の形状は、特に制限されないが、本発明はソフトな成形ができるため、通常の方法では触媒粒子への負荷が比較的大きいリング状、特に外径15mm以下のリング状に好適である。また、外径3mm以上のリング状に好適である。なお、リング状とは別名「中空円筒状」と呼ばれるものである。
外径が10mmより大きいと、最終的な触媒の活性、選択性が低下する場合がある。
【0013】
次に、(4)触媒成形体を乾燥する工程では、(3)の工程で得られた触媒成形体を乾燥し、必要に応じて、触媒成形体を焼成して触媒(製品)を得る。
乾燥方法としては、特に限定されず、一般的に知られている熱風乾燥、湿度乾燥、遠赤外線乾燥またはマイクロ波乾燥などの方法が任意に用いられる。乾燥条件は、目的とする含水率とすることができれば適宜選択される。
そして、乾燥成形品は通常焼成されるが、(1)の工程で粒子を焼成しており、かつ有機バインダー等を使用していない場合は、焼成を省略することも可能である。従って、必要に応じて、乾燥成形品を焼成する。例えば、有機バインダー等を使用する場合は、工程の簡便さから(1)の工程での焼成を行わず、(4)の工程で焼成するほうが好ましい。焼成条件については、特に限定はなく、公知の焼成条件を適用することができる。通常は200〜600℃の温度範囲で行われる。
【0014】
このような不飽和カルボン酸合成用触媒の製造方法にあっては、(2)の工程で得られた混練り品を1次成形した後、更に、ピストン成形機により2次成形を行うことにより、シリンダー内に余分な空間が少なくなるため、余分な空気の混入を少なくすることができる。
余分な空気の混入が少ないと、押出時の曲がり等が少なくなるため、製品の歩留まりが向上し工業的に有益である。また、余分な空気の混入が少ないこと、及びピストンにより均一な力で成形ができることから均一な成形体ができる。そして、最終的な触媒として、均一な成形体を後述の不飽和カルボン酸を合成する際に用いられる反応管に充填すると、極端に強度の小さい成形体がないため粉化率を低下させることができる。
ここで、粉化率は以下のように定義される。成形触媒1000gを水平方向に対して垂直に設置した内径2.75cm、長さ6mのステンレス製円筒容器上部より落下させて容器内に充填した後、容器底部より成形触媒を回収する。回収された成形触媒のうち、目開き1.19mmのふるいを通過しないものがXgであったとすると、
粉化率(%)={(100−X)/100}×100
そして、粉化率が低下すると、圧損が小さくなるため選択率の高い触媒を得られる。また、混練り品を直接押出し成形する場合と比べて、よりスムーズに押出成形ができるため、成形中の触媒粒子に余分な負荷を与えず触媒粒子を破壊しないソフトな成形ができ、最終的な触媒中に好ましい細孔が発現することから、触媒活性、不飽和カルボン酸の選択性に優れた触媒が得られるという利点もある。
【0015】
また、上記工程(1)において、触媒成分を含む粒子が、触媒成分を含むスラリーをスプレー乾燥したものであれば、乾燥と同時に粒子が得られるので、触媒成分を含む粒子の製造が容易であり、また、得られる粒子の形状が整った球状をしているので、粒子間の細孔を制御しやすいという利点がある。
また、触媒成分を含む粒子の平均粒子直径が10μm〜150μmであれば、選択率および機械的強度のバランスに優れている。
また、触媒成分を含む粒子の平均粒子圧壊強度が、9.8×10 5〜9.8×10-2Nであれば、成形する際の取り扱い性と、触媒性能の面において利点がある。
また、触媒成分を含む粒子の嵩比重が、0.5〜1.8kg/Lであれば、成形する際の取り扱い性と、触媒の性能の面において利点がある。
また、触媒成分を含む粒子と液体とを混合したものを成形する際に、スクリュー押出機を用いて成形すれば、1次成形を連続して行うことができるので生産性面で有利になる。
また、1次成形品が、2次成形工程において使用されるピストン成形機のシリンダー径の0.5倍以上1倍未満の径をもつ円柱状であれば、ピストン成形機のシリンダー内に余分な空間が少なくなるため、2次成形時に余分な空気の混入を防ぐことができる。
また、シリンダー内の体積を有効に使えるため、同量の成形品を製造する場合に、1次成形、2次成形の回数を減らすことができ、生産性が向上するという利点もある。1次成形、2次成形の回数を減らすことは、触媒粒子への機械的な負荷を減らすことになるため、細孔の制御の点で有利になる。
【0016】
本発明の不飽和カルボン酸合成用触媒は、上述の製造方法により製造されたものであるので、触媒活性および選択性に優れている。
また、触媒の形状がリング状であり、その外径が10mm以下であれば、触媒活性、選択性が向上するという利点がある。
【0017】
本発明の不飽和カルボン酸の合成方法では、ステンレス製などの反応管に本発明の触媒を充填し、触媒層を形成する。そして、触媒の存在下に、反応原料である不飽和アルデヒドと分子状酸素を含む原料ガスとを気相接触酸化して、それに対応する不飽和カルボン酸の合成を促す。
反応原料である不飽和アルデヒドは、1種類を用いても、2種類以上を組み合わせて用いてもよい。また、原料ガス中の不飽和アルデヒドの濃度は広い範囲で変えることができるが、1〜20容量%が適当であり、特に3〜10容量%が好ましい。原料の不飽和アルデヒドは、水、低級飽和アルデヒド等の不純物を少量含んでいても良く、これらの不純物は反応に実質的な影響を与えない。
分子状酸素源としては、空気を用いることが経済的であるが、必要ならば純酸素で富化した空気も用いうる。原料ガス中の酸素濃度は、不飽和アルデヒドに対するモル比で規定され、この値は0.3〜4、特に0.4〜2.5が好ましい。原料ガスは反応原料と分子状酸素以外に水を含んでいることが好ましく、また不活性ガスで希釈して用いることが好ましい。反応圧力は常圧から数100kPaまでが好ましい。反応温度は200〜430℃の範囲で選ぶことができるが、特に220〜400℃の範囲が好ましい。
また、反応管内において、触媒はシリカ、アルミナ、シリカ−アルミナ、シリコンカーバイト、チタニア、マグネシア、セラミックボールやステンレス鋼等の不活性担体で希釈されていてもよい。
【0018】
不飽和カルボン酸合成用触媒による不飽和カルボン酸の製造例として、アクロレインの酸化によるアクリル酸の製造や、メタクロレインの酸化によるメタクリル酸の製造等が挙げられる。
アクロレインの酸化によるアクリル酸の製造に適する触媒としては、一般式
Moa bcd ef
(ここで式中Mo、V及びOはそれぞれモリブデン、バナジウム及び酸素を示し、Aは鉄、コバルト、クロム、アルミニウム及びストロンチウムからなる群より選ばれた少なくとも一種の元素を示し、Xはゲルマニウム、ホウ素、ヒ素、セレン、銀、ケイ素、ナトリウム、テルル、リチウム、アンチモン、リン、カリウム、及びバリウムからなる群より選ばれた少なくとも1種の元素を示し、Yは、マグネシウム、チタン、マンガン、銅、亜鉛、ジルコニウム、ニオブ、タングステン、タンタル、カルシウム、スズ及びビスマスからなる群より選ばれた少なくとも1種の元素を示す。また、a、b、c、d、eは各元素の原子比率を表し、a=12のときb=0.01〜6、c=0〜5、d=0〜10、e=0〜5であり、fは前記各成分の原子価を満足するのに必要な酸素原子数である。)で表される組成を有するものが挙げられる。
【0019】
また、メタクロレインの酸化によるメタクリル酸の製造に適する触媒としては、一般式
g MohiCujklm n
(ここで式中P、Mo、V、Cu及びOはそれぞれリン、モリブデン、バナジウム、銅及び酸素を示し、Xはアンチモン、ビスマス、ヒ素、ゲルマニウム、ジルコニウム、テルル、セレン、ケイ素、タングステン、ホウ素及び銀からなる群より選ばれた少なくとも1種の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、マンガン、コバルト、バリウム、ガリウム、セリウム及びランタンからなる群より選ばれた少なくとも1種の元素を示し、Zはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種の元素を示し、で表される組成g、h、i、j、k、l、mは各元素の原子比率を表し、h=12のときg=0.5〜3、i=0.01〜3、j=0〜2、k=0〜3、l=0〜3、m=0.01〜3であり、nは前記各成分の原子価を満足するのに必要な酸素原子数である。)を有するものが挙げられる。
【0020】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。
なお、実施例および比較例中の「部」は質量部であり、混練りにはバッチ式の双腕型の攪拌羽根を備えた混練り機を使用した。また、原料ガスおよび反応ガスの分析はガスクロマトグラフィーによって行った。
実施例及び比較例中の原料不飽和アルデヒドの反応率(以下、反応率という)、生成する不飽和カルボン酸の選択率は次式により算出した。
反応率(%)=A/B×100
不飽和カルボン酸の選択率(%)=C/A×100
ここで、Aは反応した原料不飽和アルデヒドのモル数、Bは供給した原料不飽和アルデヒドのモル数、Cは、生成した不飽和カルボン酸のモル数である。
また、触媒成分を含む粒子の嵩比重および1次成形品の比重は、以下のようにして測定した。
嵩比重:JISK6721記載の方法で測定した。
比重:水分を含んだ1次成形品の重量を1次成形品の体積で除して算出した。
粒子圧壊強度:微小圧縮試験機(島津製作所社製、MCTM−200)で測定した。平均粒子圧壊強度は30個の粒子を測定した平均値である。
【0021】
(実施例1)
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム3.9部及び硝酸カリウム4.8部を純水400部に溶解した。これを攪拌しながらこれに85%リン酸8.2部を純水10部に溶解した溶液を加え、更に硝酸銅1.1部を純水10部に溶解した溶液を加え混合液とした。次に硝酸ビスマス6.9部に60%硝酸7.0部及び純水40部を加え、得られた硝酸ビスマスの均一溶液を前記混合液に加えて、これを95℃に昇温した。これに60%ヒ酸3.3部を純水10部に溶解した溶液を加え、続いて、三酸化アンチモン2.8部を加えた後、15分間攪拌しスラリーとした。そして、得られた触媒成分を含む水性スラリーをスプレー乾燥機を用いて乾燥し、平均粒径38μmの触媒成分を含む乾燥球状粒子とした。
ここで、この乾燥球状粒子の平均粒子圧壊強度は3.9×10-3N、嵩比重は0.87kg/Lであった。
このようにして得られた乾燥球状粒子500部に対してメチルセルロース15部を加え、乾式混合した。ここに純水170部を混合し、混練り機で粘土状物質になるまで混合した後、不定形の混練り品をスクリュー式押出し成形機を用いて押し出し成形し、直径45mm、長さ280mmの円柱状とした。ここで、この1次成形品の比重は2.30kg/Lであった。次いで、この1次成形品を直径50mm、長さ300mmのシリンダーを有するピストン式押出し成形機を用いて押し出し成形し、外径6mm、内径2mm、長さ5mmのリング状の触媒成形体を得た。なお、成形の際には真空脱気を行わなかった。
得られた触媒成形体を130℃で6時間乾燥し、次いで空気流通下に380℃で5時間熱処理して最終焼成品を得た。
得られた触媒成形体の酸素以外の元素の組成(以下同じ)は、P1.5Mo120.7Cu0.1Sb0.4Bi0.3As0.31であった。
この触媒成形体をステンレス製反応管に充填し、メタクロレイン5%、酸素10%、水蒸気30%及び窒素55(容量%)の原料ガスを接触時間3.6秒にて触媒層を通過させ、290℃で反応させた。その結果、メタクロレインの反応率91.3%、メタクリル酸の選択率88.3%であった。
【0022】
(実施例2)
実施例1において、水性スラリーの乾燥にスプレー乾燥機を用いずに、水性スラリーを加熱攪拌しながら蒸発乾固した後、得られた固形物を130℃で6時間乾燥後、粉砕して触媒成分を含む乾燥粒子を得た点以外は、実施例1と同様に触媒成形体を製造し、反応を行った。ここでの1次成形品の比重は2.39kg/Lであった。実施例1と同様に触媒成形体を製造し、反応を行った。最終焼成品を用いた反応結果は、メタクロレインの反応率91.0%、メタクリル酸の選択率88.1%であった。
(比較例1)
実施例1において、不定形の混練り品をスクリュー式押出し成形機を用いて押し出し成形し、外径6mm、内径2mm、長さ5mmのリング状の触媒成形体を得た点以外は、実施例2と同様に触媒成形体を製造し、反応を行った。その反応結果は、メタクロレインの反応率89.8%、メタクリル酸の選択率87.7%であったが、押し出し成形の際、押出し品が曲がって出てしまうことがあり、所望の形状を有する成形品の歩留まりが低下した。
【0023】
(実施例3)
三酸化モリブデン100部、五酸化バナジウム4.2部、85%リン酸6.7部を純水800部に溶解し、溶液した。これを還流下で3時間加熱攪拌した後、これに酸化銅0.5部、酸化第一鉄0.9部及びほう酸0.8部を加え、再び還流下で2時間加熱攪拌した。これを50℃まで冷却し、これに二酸化ゲルマニウム1.8部を20%水酸化セシウム43.4部に溶解したものを加え、15分間攪拌した。続いて、硝酸アンモニウム10部を純水30部に溶解したものを加え、15分間攪拌し水性スラリーを得た。
得られた触媒成分を含む水性スラリーをスプレー乾燥機を用いて平均粒径35μmの触媒成分を含む乾燥球状粒子とした。
ここで、この乾燥球状粒子の平均粒子圧壊強度は4.9×10-3N、嵩比重は0.97kg/Lであった。
このようにして得られた乾燥球状粒子500部に対してメチルセルロース15部を加え、乾式混合した。ここにエタノール175部を混合し、混練り機で粘土状物質になるまで混合した後、不定形の混練り品をスクリュー式押出し成形機を用いて押し出し成形し、直径45mm、長さ280mmの円柱状とした。ここで、この1次成形品の比重は2.25kg/Lであった。次いで、この1次成形品を直径50mm、長さ300mmのシリンダーを有するピストン式押出し成形機を用いて押し出し成形し、外径6mm、内径2mm、長さ5mmのリング状の触媒成形体を得た。なお、成形の際には真空脱気を行わなかった。
得られた触媒成形体を130℃で6時間乾燥し、次いで空気流通下に380℃で5時間熱処理して最終焼成品を得た。
得られた触媒成形体の酸素以外の元素の組成(以下同じ)は、P1Mo120.8Ge0.30.2Cu0.1Fe0.2Cs1であった。
この触媒成形体をステンレス製反応管に充填し、メタクロレイン5%、酸素10%、水蒸気30%及び窒素55(容量%)の原料ガスを接触時間3.6秒にて触媒層を通過させ、275℃で反応させた。その結果、メタクロレインの反応率93.4%、メタクリル酸の選択率87.6%であった。
【0024】
(比較例2)
実施例3おいて、不定形の混練り品を直接ピストン式押出し成形機に充填して押し出し成形し、外径6mm、内径2mm、長さ5mmのリング状の触媒成形体を得た点以外は、実施例3と同様に触媒成形体を製造し反応を行った。最終焼成品を用いた反応結果は、メタクロレインの反応率92.3%、メタクリル酸の選択率87.2%であったが、押出しの際に空気が混入してしまい、所望の形状にならない成形品の割合が多くなり、歩留まりが低下した。
(比較例3)
比較例2おいて、ピストン成形機での押し出し成形の際に真空脱気を行い、外径6mm、内径2mm、長さ5mmのリング状の触媒成形体を得た点以外は、比較例2と同様に触媒成形体を製造し、反応を行った。その反応結果は、メタクロレインの反応率92.0%、メタクリル酸の選択率87.1%であった。
【0025】
(実施例4)
パラモリブデン酸アンモニウム100部、パラタングステン酸アンモニウム6.2部及びメタバナジン酸アンモニウム17.2部を純水1000部に溶解した。これに硝酸第二鉄9.5部を純水200部に溶解した溶液を加え、さらに硝酸コバルト6.9部を純水200部に溶解した溶液、硝酸マンガン1.4部を純水200部に溶解した溶液を順次加えた。続いて、一般式Na2O・2.2SiO2・2.2H2Oで表される水ガラス3.9部を純水30部に溶解した溶液を加え、さらに20%シリカゾル49.6部を加えてスラリーを得た。
得られた触媒成分を含むスラリーをスプレー乾燥機を用いて平均粒径40μmの触媒成分を含む乾燥球状粒子とした。
ここで、この乾燥球状粒子の平均粒子圧壊強度は1.1×10-2N、嵩比重は0.95kg/Lであった。
このようにして得られた触媒焼成物500部に対して、メチルセルロース15部を加え、乾式混合した。ここに純水180部を混合し、混練り機で粘土状物質になるまで混合し混練り品を得た後、不定形の混練り品をスクリュー式押出し成形機を用いて押し出し成形し、直径45mm、長さ280mmの円柱状とした。ここで、この1次成形品の比重は2.21kg/Lであった。次いで、この1次成形品を直径50mm、長さ300mmのシリンダーを有するピストン式押出し成形機を用いて押し出し成形し、外径6mm、内径2mm、長さ5mmのリング状の触媒成形体を得た。なお、成形の際には真空脱気を行わなかった。
得られた触媒成形体を130℃で6時間乾燥し、次いで空気流通下に380℃で5時間熱処理して最終焼成品を得た。
得られた触媒成形体の酸素以外の元素の組成(以下同じ)は、Mo123.1Fe0.5Si4.3Na0.7Co0.5Mn0.10.5であった。
この触媒成形体をステンレス製反応管に充填し、アクロレイン5%、酸素10%、水蒸気30%及び窒素55(容量%)の原料ガスを接触時間3.6秒にて触媒層を通過させ、270℃で反応させた。その結果、アクロレインの反応率99.8%、アクリル酸の選択率95.6%であった。
【0026】
(比較例4)
実施例4おいて、不定形の混練り品を直接ピストン式押出し成形機に充填して押し出し成形し、外径6mm、内径2mm、長さ5mmのリング状の触媒成形体を得た点以外は、実施例3と同様に触媒成形体を製造し、反応を行った。最終焼成品を用いた反応結果は、アクロレインの反応率98.6%、アクリル酸の選択率95.1%であったが、押し出しの際に空気が入ってしまい、所望の形状にならない成形品の割合が多くなり、歩留まりが低下した。
【0027】
実施例1〜4で得た最終焼成品は、反応率および選択性が高く、且つその製造方法は、歩留まりに優れていた。一方、比較例1〜4で得た最終焼成品は反応率や選択性が低い。また、比較例1、2及び4については、所望の形状にならない成形品の割合が多くなり、歩留まりが低下した。そのため、工業的には適さないと判明した。
【0028】
【発明の効果】
以上説明したように、本発明の不飽和カルボン酸合成用触媒の製造方法は、触媒成分を含む粒子と液体とを混合したものを成形して1次成形品を得る1次成形工程と、1次成形工程の後に、更に、ピストン成形機で1次成形品を最終形状に成形する2次成形工程とを有する製造方法であるので、製品の歩留まりが向上し、触媒活性および選択性に優れた触媒が得られる。
また、1次成形品が、2次成形工程において使用されるピストン成形機のシリンダー径の0.5倍以上1倍未満の径をもつ円柱状であれば、2次成形の際に、余分な空気の混入が少なくなる点、1次成形の回数が少なくなる点、及び触媒粒子への負荷が小さくなる点で有利である。
また、1次成形品の比重が、1.5〜3.5kg/Lであれば、最終的に製造される触媒が、その機械的強度と高い選択性とをバランス良く有する。
また、触媒成分を含む粒子が、触媒成分を含むスラリーをスプレー乾燥したものであれば、粒子を潰さずに成形した場合に、粒子間の細孔を制御しやすいという効果がある。
また、触媒成分を含む粒子の平均粒子圧壊強度が、9.8×10 5〜9.8×10-2Nであれば、成形する際の取り扱い性と触媒性能の面において利点がある。
また、触媒成分を含む粒子の嵩比重が、0.5〜1.8kg/Lであれば、成形する際の取り扱い性と触媒性能の面において利点がある。
2次成形のピストン成形機で1次成形品を最終形状に成形する際に、真空脱気を行わないと、触媒の細孔容積を減じることなく選択性が向上する。
1次成形の触媒成分を含む粒子と液体とを混合したものを成形する際に、スクリュー押出機を用いて成形すれば、生産性の面で有利になる。
本発明の不飽和カルボン酸合成用触媒は、本発明の不飽和カルボン酸合成用触媒の製造方法により製造されたものであるので、触媒活性および選択性に優れている。
また、触媒の形状がリング状であり、その外径が10mm以下であれば、活性、選択性が向上するという利点がある。
本発明の不飽和カルボン酸の合成方法によれば、本発明の不飽和カルボン酸合成用触媒を用いて、不飽和アルデヒドを分子状酸素により気相酸化するので、目的の生成物を高収率で得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for synthesizing an unsaturated carboxylic acid containing at least molybdenum and vanadium, which is used in the gas phase catalytic oxidation of an unsaturated aldehyde using molecular oxygen and synthesizing the corresponding unsaturated carboxylic acid, The present invention relates to a production method and a synthesis method of an unsaturated carboxylic acid using the catalyst.
[0002]
[Prior art]
Conventionally, many proposals have been made on catalysts and production methods used in producing unsaturated carboxylic acids corresponding to gas phase catalytic oxidation of unsaturated aldehydes. Many of such catalysts have a composition containing at least molybdenum and vanadium, and a shaped catalyst having such a composition is used industrially. These are classified into an extrusion molding catalyst, a supported molding catalyst, and the like according to the molding method. Usually, an extrusion-molded catalyst is produced through a process of kneading particles containing a catalyst component and extrusion molding, and a supported molded catalyst is produced through a process of supporting a powder containing a catalyst component on a carrier.
Regarding the extrusion molding catalyst, for example, a method of adding an organic compound such as alcohol during kneading (JP-A-5-309273, JP-A-6-15178) or freezing after extrusion of the catalyst is performed. A method (JP-A-5-309274) has been proposed. This is a manufacturing method by one-stage molding.
[0003]
[Problems to be solved by the invention]
However, the catalysts obtained by these known methods are still insufficient as industrial catalysts in terms of catalyst activity, target product selectivity and the like. Furthermore, the yield in catalyst production is still insufficient. Therefore, in general, from the industrial point of view, further improvement of the unsaturated carboxylic acid synthesis catalyst and its production method is desired.
[0004]
The present invention has been made in order to solve the above problems, a catalyst for synthesizing unsaturated carboxylic acid having excellent catalytic activity and selectivity for unsaturated carboxylic acid, and a simple and excellent production method of the catalyst, and The present invention provides a method for synthesizing an unsaturated carboxylic acid in a high yield using this catalyst.
[0005]
[Means for Solving the Problems]
Usually, in the manufacture of industrial catalysts, a small number of manufacturing steps is preferred from the viewpoint of productivity and yield. However, as a result of intensive studies, the present inventors have found that the catalyst performance and the yield of catalyst production are improved by increasing the number of steps.
The method for producing an unsaturated carboxylic acid synthesis catalyst of the present invention comprises the step of subjecting an unsaturated aldehyde to vapor phase catalytic oxidation using molecular oxygen and synthesizing the corresponding unsaturated carboxylic acid, molybdenum and vanadium. In a manufacturing method of an extrusion molding catalyst including, a primary molding step for obtaining a primary molded product by molding a mixture of particles containing a catalyst component and a liquid, and after the primary molding step, a piston molding machine And a secondary molding step of molding the primary molded product into a final shape.
Moreover, it is desirable that the primary molded product has a columnar shape having a diameter of 0.5 times or more and less than 1 times the cylinder diameter of a piston molding machine used in the secondary molding process.
The specific gravity of the primary molded product is desirably 1.5 to 3.5 kg / L.
Moreover, it is desirable that the particles containing the catalyst component are those obtained by spray drying a slurry containing the catalyst component.
The average particle crushing strength of the particles containing the catalyst component is 9.8 × 10- Five~ 9.8 × 10-2N is desirable.
The bulk specific gravity of the particles containing the catalyst component is desirably 0.5 to 1.8 kg / L.
Further, it is desirable not to perform vacuum deaeration when forming a primary molded product into a final shape with a secondary molding machine.
Further, when molding a mixture of particles containing a catalyst component for primary molding and a liquid, it is desirable to mold using a screw extruder.
The catalyst for synthesizing an unsaturated carboxylic acid of the present invention is manufactured by the above-described manufacturing method.
Moreover, it is desirable that the catalyst has a ring shape and an outer diameter of 15 mm or less.
The method for synthesizing an unsaturated carboxylic acid according to the present invention is characterized in that the unsaturated aldehyde is vapor-phase oxidized with molecular oxygen using the unsaturated carboxylic acid synthesis catalyst.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The unsaturated carboxylic acid synthesis catalyst of the present invention is an extrusion-molded catalyst produced by a production method to be described later, wherein an unsaturated aldehyde as a reaction raw material is subjected to gas phase catalytic oxidation with molecular oxygen to produce an unsaturated carboxylic acid. Is used to synthesize.
The unsaturated carboxylic acid synthesis catalyst is a catalyst containing at least molybdenum and vanadium as catalyst components. As catalyst components other than molybdenum and vanadium, iron, cobalt, chromium, aluminum, strontium, germanium, boron, arsenic, selenium, silver, silicon, sodium, tellurium, lithium, antimony, phosphorus, potassium, barium, magnesium, Examples include titanium, manganese, copper, zinc, zirconium, niobium, tungsten, tantalum, calcium, tin, bismuth, gallium, cerium, lanthanum, rubidium, cesium, and thallium.
[0007]
The unsaturated carboxylic acid synthesis catalyst of the present invention, which is an extrusion-molded catalyst, includes (1) a step of producing particles containing a catalyst component, (2) a step of kneading particles containing the obtained catalyst component, and the like ( 3) It is manufactured through a step of extruding the obtained kneaded product, and (4) a step of drying the catalyst molded body. Hereinafter, each step will be described in detail.
In the step of producing particles containing the catalyst component (1) of the present invention, the production method is not particularly limited, and various known methods are applied. As a normal method, a method is used in which an aqueous slurry containing molybdenum and vanadium is dried and further pulverized to form particles as necessary.
As the raw material of the catalyst component dissolved in the aqueous slurry, the oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides and the like of the above-described catalyst components are used. For example, as a raw material using molybdenum as a catalyst component, ammonium paramolybdate, molybdenum trioxide, and the like can be given. Moreover, as a raw material of a catalyst component, one type may be used for each element, or two or more types may be used.
The method for producing an aqueous slurry containing at least molybdenum and vanadium is not particularly limited, and various known methods such as a precipitation method and an oxide mixing method are used as long as the components are not significantly unevenly distributed. It is done.
The method for drying the aqueous slurry thus produced to form particles is not particularly limited, and examples thereof include a method of drying using a spray dryer, a method of drying using a slurry dryer, and a drum dryer. A method of drying using a method, a method of pulverizing a lump of dried material by evaporation to dryness, and the like are applied. Among them, a method of drying using a spray dryer is desirable because particles can be obtained simultaneously with drying, and the obtained particles have a spherical shape.
In this case, as drying conditions, the spray dryer may be set to an inlet temperature of 100 to 500 ° C. and an outlet temperature of 100 ° C. or higher, more preferably 105 to 200 ° C.
The dry particles thus obtained may be heat-treated (fired) at 200 to 500 ° C. as necessary. The firing conditions are not particularly limited, but firing is usually performed under a flow of oxygen, air, or nitrogen. The firing time is appropriately set depending on the target catalyst.
[0008]
When molding without crushing particles containing catalyst components, the larger the average particle diameter of the particles containing catalyst components, the larger the voids, that is, the larger pores formed between the molded particles, improving the selectivity. When it becomes small, the contact point between the particles per unit volume increases, so that the mechanical strength of the obtained catalyst compact tends to be improved. Therefore, when considering the balance between the selectivity of the catalyst and the mechanical strength, it is preferably 10 μm to 150 μm, more preferably 20 to 60 μm. Moreover, 25-45 micrometers is especially preferable among this range.
Further, the particle containing the catalyst component preferably has a bulk specific gravity in the range of 0.5 to 1.8 kg / L, and more preferably in the range of 0.7 to 1.1 kg / L. Further, in this range, 0.8 to 1.0 kg / L is particularly preferable. That is, if the bulk specific gravity of the particles containing the catalyst component is less than 0.5 kg / L, sufficient strength that can withstand the molding is often not obtained, and the particles are crushed during the molding. If it is greater than 1.8 kg / L, the activity and selectivity may decrease. Here, the bulk specific gravity is measured by the method described in JISK6721.
The average particle crushing strength is 9.8 × 10-Five~ 9.8 × 10-2A range of N is preferred, 9.8 × 10-Four~ 9.8 × 10-2The range of N is more preferable. Also, within this range, 9.8 × 10-Four~ 9.8 × 10-3N is particularly preferred. Average particle crushing strength is 9.8 × 10-FiveIf it is smaller than N, the particles are crushed during molding. 9.8 × 10-2When it is larger than N, the activity and selectivity may be lowered.
[0009]
Next, (2) in the step of kneading the particles containing the catalyst component obtained, the mixture of the particles obtained in the step (1) and the liquid is kneaded to obtain a kneaded product.
The liquid used in this step is preferably water or alcohol. Examples of such alcohols include lower alcohols such as ethanol, methyl alcohol, propyl alcohol, and butyl alcohol. These liquids may be used singly or in combination of two or more, but it is more preferable to use alcohol at least partially here.
The amount of the liquid used is appropriately selected depending on the type and size of the particles, the type of the liquid, and the like. 15 to 55 parts by mass, preferably 25 to 45 parts by mass. Moreover, 30-40 mass parts is especially preferable within this range.
[0010]
In the step (2), it is preferable to add a molding aid such as an organic binder to a mixture of particles containing a catalyst component and a liquid because the strength is improved. Examples of such molding aids include methylcellulose, ethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxybutylmethylcellulose, ethylhydroxyethylcellulose, hydroxypropylcellulose and the like. Can do.
In addition, a conventionally known additive may be added to the above mixture. Examples of such additives include inorganic compounds such as graphite and diatomaceous earth, glass fibers, inorganic fibers such as ceramic fibers and carbon fibers, and the like. Can be mentioned.
The apparatus for kneading the mixture of particles and liquid obtained as described above is not particularly limited, and is a batch-type kneader using a twin-arm type stirring blade, a shaft rotary reciprocating type, A continuous kneading machine such as a self-cleaning type can be used, but the batch type is preferable in that kneading can be performed while checking the state of the kneaded product. The end point of kneading is usually determined by time, visual observation or touch.
[0011]
(3) In the step of extruding the obtained kneaded product, the kneaded product obtained in the step (2) is extrusion-molded. In this step, the present invention includes particles containing a catalyst component, a liquid, A primary molding process to form a primary molded product by molding a kneaded product mixed with a secondary molding process after the primary molding process and further molding the primary molded product into a final shape with a piston molding machine; This is characterized in that the molding is performed twice.
By forming in this way, bending at the time of extrusion is reduced and the yield of products is improved. In addition, molding can be performed with a uniform force, and excess air is less likely to be mixed in. As a result, a uniform molded body can be formed, and the powdering rate when the final catalyst is filled into the reaction tube is reduced. The rate is improved. In addition, compared to the case where the kneaded product is directly extruded into the final shape (with a screw extruder or the like), the extrusion can be carried out more smoothly, so that no extra load is applied to the catalyst particles during molding. Soft molding that does not break can be performed, and preferable pores are expressed in the final catalyst. Therefore, there is an advantage that a catalyst having excellent catalytic activity and selectivity of unsaturated carboxylic acid can be obtained.
First, the kneaded product obtained in the step (2) is formed into a primary molded product by an apparatus such as an extruder or a press (primary molding). Here, an apparatus capable of performing kneading and primary forming continuously (one pass) can also be used. Here, it is desirable to perform kneading with a batch-type kneader and primary molding with a screw extruder from the viewpoint of kneading while confirming the kneading state and productivity.
The shape of the primary molded product thus manufactured is not particularly limited, but the shape of the primary molded product has a diameter of 0.5 times or more and less than 1 of the cylinder diameter of a piston molding machine that performs secondary molding. A cylindrical shape having a diameter of 0.8 times to less than 1 of the cylinder diameter of the piston molding machine is more preferable. If the diameter is less than 0.5 times the cylinder diameter of the piston molding machine, excess air will easily enter during secondary molding, the number of primary moldings will increase, and the load on the catalyst particles will increase. Is not preferable. When the diameter is more than 1 times the cylinder diameter of the piston molding machine, it is difficult to fill the piston molding machine with the primary molded product.
Moreover, the strength of the final catalyst increases as the specific gravity of the manufactured primary molded article increases, and the selectivity of the final catalyst improves as the specific gravity decreases. Therefore, considering the strength and selectivity of the final catalyst, the specific gravity of the primary molded product should be in the range of 1.5 to 3.5 kg / L, particularly in the range of 2.0 to 2.9 kg / L. Is preferred. Further, in this range, 2.2 to 2.7 kg / L is particularly preferable. Here, the specific gravity is a value calculated by dividing the weight of the primary molded product containing moisture by the volume of the primary molded product.
[0012]
Next, the primary molded product obtained by the primary molding is molded into a final shape by a piston molding machine (secondary molding).
When molding a primary molded product by a secondary molding machine, it is preferable not to perform vacuum deaeration so as not to reduce the pore volume of the catalyst.
In addition, the shape of the molded body by extrusion molding is not particularly limited, and the molded body can be molded into an arbitrary shape such as a ring shape, a column shape, or a star shape. Here, the shape of the catalyst after the secondary molding is not particularly limited. However, since the present invention can be softly molded, in a normal method, the load on the catalyst particles is relatively large, particularly an outer diameter of 15 mm or less. Suitable for ring shape. Moreover, it is suitable for a ring shape having an outer diameter of 3 mm or more. The ring shape is also called “hollow cylindrical shape”.
If the outer diameter is larger than 10 mm, the final catalyst activity and selectivity may be lowered.
[0013]
Next, in the step (4) of drying the catalyst molded body, the catalyst molded body obtained in the step (3) is dried, and if necessary, the catalyst molded body is fired to obtain a catalyst (product).
The drying method is not particularly limited, and generally known methods such as hot air drying, humidity drying, far-infrared drying, or microwave drying are arbitrarily used. The drying conditions are appropriately selected as long as the desired moisture content can be achieved.
The dried molded article is usually fired, but if the particles are fired in the step (1) and no organic binder or the like is used, the firing can be omitted. Accordingly, the dried molded product is fired as necessary. For example, when an organic binder or the like is used, it is preferable not to perform the baking in the step (1) but to perform the baking in the step (4) because of the simplicity of the process. There are no particular limitations on the firing conditions, and known firing conditions can be applied. Usually, it is performed in a temperature range of 200 to 600 ° C.
[0014]
In such a method for producing an unsaturated carboxylic acid synthesis catalyst, the kneaded product obtained in the step (2) is subjected to primary molding and further subjected to secondary molding with a piston molding machine. Since there is less extra space in the cylinder, extra air can be reduced.
When there is little mixing of excess air, the bending at the time of extrusion is reduced, which improves the product yield and is industrially beneficial. In addition, a uniform molded body can be obtained because there is little mixing of excess air and the piston can be molded with a uniform force. And, as a final catalyst, filling a uniform molded body into a reaction tube used when synthesizing an unsaturated carboxylic acid described later can reduce the powdering rate because there is no extremely strong molded body. it can.
Here, the powdering rate is defined as follows. After dropping 1000 g of the molded catalyst from the top of a stainless steel cylindrical container having an inner diameter of 2.75 cm and a length of 6 m installed perpendicular to the horizontal direction, the molded catalyst is recovered from the bottom of the container. If the recovered molded catalyst that does not pass through a sieve with an opening of 1.19 mm was Xg,
Powdering rate (%) = {(100−X) / 100} × 100
And when a powdering rate falls, since a pressure loss becomes small, a catalyst with a high selectivity can be obtained. In addition, compared to the case of directly extruding the kneaded product, the extrusion can be performed more smoothly, so that a soft molding that does not destroy the catalyst particles without giving an extra load to the catalyst particles during molding can be achieved. Since preferable pores are expressed in the catalyst, there is an advantage that a catalyst excellent in catalytic activity and selectivity of unsaturated carboxylic acid can be obtained.
[0015]
In addition, in the above step (1), if the particles containing the catalyst component are those obtained by spray-drying the slurry containing the catalyst component, the particles can be obtained simultaneously with the drying. Therefore, the production of the particles containing the catalyst component is easy. In addition, since the obtained particles have a spherical shape, the pores between the particles are easily controlled.
Moreover, if the average particle diameter of the particle | grains containing a catalyst component is 10 micrometers-150 micrometers, it is excellent in the balance of a selectivity and mechanical strength.
The average particle crushing strength of the particles containing the catalyst component is 9.8 × 10- Five~ 9.8 × 10-2If it is N, there are advantages in terms of handleability during molding and catalyst performance.
Moreover, if the bulk specific gravity of the particle | grains containing a catalyst component is 0.5-1.8 kg / L, there exists an advantage in the surface of the handleability at the time of shaping | molding, and the performance of a catalyst.
Further, when molding a mixture of particles containing a catalyst component and a liquid, if molding is performed using a screw extruder, primary molding can be performed continuously, which is advantageous in terms of productivity.
In addition, if the primary molded product has a cylindrical shape with a diameter of 0.5 to 1 less than the cylinder diameter of the piston molding machine used in the secondary molding process, there is an excess in the cylinder of the piston molding machine. Since space is reduced, extra air can be prevented from being mixed during secondary molding.
Further, since the volume in the cylinder can be used effectively, there is an advantage that productivity can be improved because the number of primary molding and secondary molding can be reduced when the same amount of molded product is manufactured. Reducing the number of primary molding and secondary molding is advantageous in terms of pore control because it reduces the mechanical load on the catalyst particles.
[0016]
Since the unsaturated carboxylic acid synthesis catalyst of the present invention is manufactured by the above-described manufacturing method, it has excellent catalytic activity and selectivity.
Moreover, if the shape of a catalyst is ring shape and the outer diameter is 10 mm or less, there exists an advantage that a catalyst activity and selectivity improve.
[0017]
In the method for synthesizing an unsaturated carboxylic acid of the present invention, the catalyst of the present invention is filled in a reaction tube made of stainless steel or the like to form a catalyst layer. Then, in the presence of the catalyst, an unsaturated aldehyde as a reaction raw material and a raw material gas containing molecular oxygen are subjected to gas phase catalytic oxidation to promote synthesis of the corresponding unsaturated carboxylic acid.
The unsaturated aldehyde which is a reaction raw material may be used alone or in combination of two or more. Moreover, although the density | concentration of unsaturated aldehyde in source gas can be changed in the wide range, 1-20 volume% is suitable, and 3-10 volume% is especially preferable. The raw material unsaturated aldehyde may contain a small amount of impurities such as water and lower saturated aldehyde, and these impurities do not substantially affect the reaction.
As the molecular oxygen source, it is economical to use air, but if necessary, air enriched with pure oxygen can also be used. The oxygen concentration in the raw material gas is defined by a molar ratio with respect to the unsaturated aldehyde, and this value is preferably 0.3 to 4, particularly 0.4 to 2.5. The raw material gas preferably contains water in addition to the reaction raw material and molecular oxygen, and is preferably diluted with an inert gas. The reaction pressure is preferably from normal pressure to several hundred kPa. The reaction temperature can be selected in the range of 200 to 430 ° C, but the range of 220 to 400 ° C is particularly preferable.
In the reaction tube, the catalyst may be diluted with an inert carrier such as silica, alumina, silica-alumina, silicon carbide, titania, magnesia, ceramic balls or stainless steel.
[0018]
Examples of the production of unsaturated carboxylic acid using an unsaturated carboxylic acid synthesis catalyst include production of acrylic acid by oxidation of acrolein, production of methacrylic acid by oxidation of methacrolein, and the like.
Suitable catalysts for the production of acrylic acid by oxidation of acrolein include general formula
MoaVb Ac XdYe Of
(Wherein Mo, V and O represent molybdenum, vanadium and oxygen, respectively, A represents at least one element selected from the group consisting of iron, cobalt, chromium, aluminum and strontium, and X represents germanium and boron. Represents at least one element selected from the group consisting of arsenic, selenium, silver, silicon, sodium, tellurium, lithium, antimony, phosphorus, potassium, and barium, and Y represents magnesium, titanium, manganese, copper, zinc And at least one element selected from the group consisting of zirconium, niobium, tungsten, tantalum, calcium, tin, and bismuth, wherein a, b, c, d, and e represent the atomic ratio of each element; = 12, b = 0.01 to 6, c = 0 to 5, d = 0 to 10, e = 0 to 5, and f is Is a number of oxygen atoms required to satisfy the child value. Include those having a composition represented by).
[0019]
As a catalyst suitable for the production of methacrylic acid by oxidation of methacrolein, a general formula
Pg Moh ViCuj Xk Yl ZmOn
(Wherein P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, selenium, silicon, tungsten, boron and Y represents at least one element selected from the group consisting of silver, and Y represents at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, manganese, cobalt, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and the compositions g, h, i, j, k, l, and m represented by It represents an atomic ratio. When h = 12, g = 0.5-3, i = 0.01-3, j = 0-2, k = 0-3, l = 0-3, m = 0.0 A to 3, n is include those having the a number of oxygen atoms required to satisfy the valence of each component.).
[0020]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
In the examples and comparative examples, “part” is part by mass, and a kneader equipped with a batch type double-arm type stirring blade was used for kneading. In addition, the analysis of the raw material gas and the reaction gas was performed by gas chromatography.
The reaction rate of the raw material unsaturated aldehyde in the examples and comparative examples (hereinafter referred to as the reaction rate) and the selectivity of the unsaturated carboxylic acid to be produced were calculated by the following equations.
Reaction rate (%) = A / B × 100
Selectivity of unsaturated carboxylic acid (%) = C / A × 100
Here, A is the number of moles of the reacted raw material unsaturated aldehyde, B is the number of moles of the supplied raw material unsaturated aldehyde, and C is the number of moles of the generated unsaturated carboxylic acid.
Moreover, the bulk specific gravity of the particle | grains containing a catalyst component and the specific gravity of a primary molded product were measured as follows.
Bulk specific gravity: Measured by the method described in JISK6721.
Specific gravity: Calculated by dividing the weight of the primary molded product containing moisture by the volume of the primary molded product.
Particle Crushing Strength: Measured with a micro compression tester (manufactured by Shimadzu Corporation, MCTM-200). The average particle crushing strength is an average value obtained by measuring 30 particles.
[0021]
Example 1
100 parts of ammonium paramolybdate, 3.9 parts of ammonium metavanadate and 4.8 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added thereto, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added to obtain a mixed solution. Next, 7.0 parts of 60% nitric acid and 40 parts of pure water were added to 6.9 parts of bismuth nitrate, and the obtained uniform solution of bismuth nitrate was added to the mixed solution, which was heated to 95 ° C. A solution prepared by dissolving 3.3 parts of 60% arsenic acid in 10 parts of pure water was added thereto, followed by addition of 2.8 parts of antimony trioxide, followed by stirring for 15 minutes to form a slurry. The obtained aqueous slurry containing the catalyst component was dried using a spray dryer to obtain dry spherical particles containing a catalyst component having an average particle size of 38 μm.
Here, the average particle crushing strength of the dry spherical particles is 3.9 × 10-3N and bulk specific gravity were 0.87 kg / L.
15 parts of methylcellulose was added to 500 parts of the dried spherical particles thus obtained, and dry mixed. 170 parts of pure water was mixed here and mixed with a kneader until it became a clay-like substance, and then the amorphous kneaded product was extruded using a screw-type extruder and had a diameter of 45 mm and a length of 280 mm. A cylindrical shape was used. Here, the specific gravity of the primary molded product was 2.30 kg / L. Next, this primary molded product was extruded using a piston-type extrusion molding machine having a cylinder having a diameter of 50 mm and a length of 300 mm, and a ring-shaped catalyst molded body having an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 5 mm was obtained. . Note that vacuum deaeration was not performed during molding.
The obtained catalyst molded body was dried at 130 ° C. for 6 hours, and then heat-treated at 380 ° C. for 5 hours under air flow to obtain a final fired product.
The composition of elements other than oxygen (hereinafter the same) of the obtained catalyst molded body is P1.5Mo12V0.7Cu0.1Sb0.4Bi0.3As0.3K1Met.
The catalyst molded body was filled in a stainless steel reaction tube, and a raw material gas of 5% methacrolein, 10% oxygen, 30% water vapor and 55% (volume%) was passed through the catalyst layer at a contact time of 3.6 seconds. The reaction was performed at 290 ° C. As a result, the reaction rate of methacrolein was 91.3% and the selectivity of methacrylic acid was 88.3%.
[0022]
(Example 2)
In Example 1, the aqueous slurry was evaporated to dryness while heating and stirring without drying the aqueous slurry, and the resulting solid was dried at 130 ° C. for 6 hours and then pulverized to obtain catalyst components. A catalyst molded body was produced and reacted in the same manner as in Example 1 except that dry particles containing were obtained. The specific gravity of the primary molded product here was 2.39 kg / L. A catalyst molded body was produced and reacted in the same manner as in Example 1. As a result of the reaction using the final baked product, the reaction rate of methacrolein was 91.0% and the selectivity of methacrylic acid was 88.1%.
(Comparative Example 1)
In Example 1, except that the amorphous kneaded product was extruded using a screw-type extrusion molding machine to obtain a ring-shaped catalyst molded body having an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 5 mm. In the same manner as in No. 2, a catalyst molded body was produced and reacted. The reaction results were methacrolein reaction rate of 89.8% and methacrylic acid selectivity of 87.7%. However, during extrusion, the extruded product may be bent and the desired shape is obtained. The yield of the molded product was reduced.
[0023]
(Example 3)
100 parts of molybdenum trioxide, 4.2 parts of vanadium pentoxide, and 6.7 parts of 85% phosphoric acid were dissolved in 800 parts of pure water and dissolved. After heating and stirring for 3 hours under reflux, 0.5 part of copper oxide, 0.9 part of ferrous oxide and 0.8 part of boric acid were added thereto, and the mixture was again heated and stirred under reflux for 2 hours. This was cooled to 50 ° C., 1.8 parts of germanium dioxide dissolved in 43.4 parts of 20% cesium hydroxide was added thereto, and the mixture was stirred for 15 minutes. Subsequently, 10 parts of ammonium nitrate dissolved in 30 parts of pure water was added and stirred for 15 minutes to obtain an aqueous slurry.
The obtained aqueous slurry containing the catalyst component was made into dry spherical particles containing a catalyst component having an average particle diameter of 35 μm using a spray dryer.
Here, the average particle crushing strength of the dry spherical particles is 4.9 × 10-3N and bulk specific gravity were 0.97 kg / L.
15 parts of methylcellulose was added to 500 parts of the dried spherical particles thus obtained, and dry mixed. 175 parts of ethanol was mixed here and mixed with a kneader until it became a clay-like substance, and then the amorphous kneaded product was extruded using a screw-type extruder, and a circle having a diameter of 45 mm and a length of 280 mm was obtained. It was columnar. Here, the specific gravity of the primary molded product was 2.25 kg / L. Next, this primary molded product was extruded using a piston-type extrusion molding machine having a cylinder having a diameter of 50 mm and a length of 300 mm, and a ring-shaped catalyst molded body having an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 5 mm was obtained. . Note that vacuum deaeration was not performed during molding.
The obtained catalyst molded body was dried at 130 ° C. for 6 hours, and then heat-treated at 380 ° C. for 5 hours under air flow to obtain a final fired product.
The composition of elements other than oxygen (hereinafter the same) of the obtained catalyst molded body is P1Mo12V0.8Ge0.3B0.2Cu0.1Fe0.2Cs1Met.
The catalyst molded body was filled in a stainless steel reaction tube, and a raw material gas of 5% methacrolein, 10% oxygen, 30% water vapor and 55% (volume%) was passed through the catalyst layer at a contact time of 3.6 seconds. The reaction was performed at 275 ° C. As a result, the reaction rate of methacrolein was 93.4%, and the selectivity of methacrylic acid was 87.6%.
[0024]
(Comparative Example 2)
In Example 3, except that the irregular shaped kneaded product was directly filled into a piston-type extrusion molding machine and extruded to obtain a ring-shaped catalyst molded body having an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 5 mm. A catalyst molded body was produced and reacted in the same manner as in Example 3. As a result of the reaction using the final baked product, the reaction rate of methacrolein was 92.3% and the selectivity of methacrylic acid was 87.2%. However, air was mixed during extrusion, and the desired shape was not obtained. The ratio of molded products increased and the yield decreased.
(Comparative Example 3)
Comparative Example 2 is the same as Comparative Example 2 except that vacuum deaeration was performed during extrusion molding with a piston molding machine to obtain a ring-shaped catalyst molded body having an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 5 mm. Similarly, a catalyst molded body was produced and reacted. As a result of the reaction, the reaction rate of methacrolein was 92.0%, and the selectivity of methacrylic acid was 87.1%.
[0025]
Example 4
100 parts of ammonium paramolybdate, 6.2 parts of ammonium paratungstate and 17.2 parts of ammonium metavanadate were dissolved in 1000 parts of pure water. To this was added a solution prepared by dissolving 9.5 parts of ferric nitrate in 200 parts of pure water, and further a solution prepared by dissolving 6.9 parts of cobalt nitrate in 200 parts of pure water, and 1.4 parts of manganese nitrate in 200 parts of pure water. The solution dissolved in was sequentially added. Subsequently, the general formula Na2O ・ 2.2SiO2・ 2.2H2A solution prepared by dissolving 3.9 parts of water glass represented by O in 30 parts of pure water was added, and 49.6 parts of 20% silica sol was further added to obtain a slurry.
The obtained slurry containing the catalyst component was dried spherical particles containing a catalyst component having an average particle size of 40 μm using a spray dryer.
Here, the average particle crushing strength of the dry spherical particles is 1.1 × 10 6.-2N and bulk specific gravity were 0.95 kg / L.
15 parts of methylcellulose was added to 500 parts of the catalyst calcined product thus obtained and dry mixed. 180 parts of pure water was mixed here and mixed with a kneader until it became a clay-like substance to obtain a kneaded product, and then the amorphous kneaded product was extruded using a screw type extrusion molding machine. The column shape was 45 mm and the length was 280 mm. Here, the specific gravity of the primary molded product was 2.21 kg / L. Next, this primary molded product was extruded using a piston-type extrusion molding machine having a cylinder having a diameter of 50 mm and a length of 300 mm, and a ring-shaped catalyst molded body having an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 5 mm was obtained. . Note that vacuum deaeration was not performed during molding.
The obtained catalyst molded body was dried at 130 ° C. for 6 hours, and then heat-treated at 380 ° C. for 5 hours under air flow to obtain a final fired product.
The composition of the elements other than oxygen (hereinafter the same) of the obtained molded catalyst is Mo.12V3.1Fe0.5Si4.3Na0.7Co0.5Mn0.1W0.5Met.
This catalyst compact was filled into a stainless steel reaction tube, and a raw material gas of 5% acrolein, 10% oxygen, 30% water vapor and 55% (volume%) was passed through the catalyst layer at a contact time of 3.6 seconds. The reaction was carried out at ° C. As a result, the reaction rate of acrolein was 99.8% and the selectivity of acrylic acid was 95.6%.
[0026]
(Comparative Example 4)
In Example 4, except that an irregular shaped kneaded product was directly filled into a piston-type extrusion molding machine and extruded to obtain a ring-shaped catalyst molded body having an outer diameter of 6 mm, an inner diameter of 2 mm, and a length of 5 mm. Then, a catalyst molded body was produced and reacted in the same manner as in Example 3. As a result of the reaction using the final baked product, the reaction rate of acrolein was 98.6% and the selectivity of acrylic acid was 95.1%. However, air was introduced during extrusion, and the molded product did not have the desired shape. The ratio increased and the yield decreased.
[0027]
The final baked products obtained in Examples 1 to 4 had a high reaction rate and selectivity, and the production method was excellent in yield. On the other hand, the final baked products obtained in Comparative Examples 1 to 4 have a low reaction rate and selectivity. Moreover, about the comparative examples 1, 2, and 4, the ratio of the molded article which does not become a desired shape increased, and the yield fell. Therefore, it turned out that it is not industrially suitable.
[0028]
【The invention's effect】
As described above, the method for producing an unsaturated carboxylic acid synthesis catalyst of the present invention includes a primary molding step of molding a mixture of particles containing a catalyst component and a liquid to obtain a primary molded product, After the next molding step, the production method further includes a secondary molding step in which the primary molded product is molded into a final shape with a piston molding machine, so that the yield of the product is improved and the catalytic activity and the selectivity are excellent. A catalyst is obtained.
Further, if the primary molded product has a cylindrical shape having a diameter not less than 0.5 times and less than 1 times the cylinder diameter of the piston molding machine used in the secondary molding process, an extra portion is required during the secondary molding. This is advantageous in that the mixing of air is reduced, the number of times of primary molding is reduced, and the load on the catalyst particles is reduced.
Further, when the specific gravity of the primary molded product is 1.5 to 3.5 kg / L, the finally produced catalyst has a good balance between its mechanical strength and high selectivity.
Moreover, if the particle | grains containing a catalyst component are what spray-dried the slurry containing a catalyst component, when shape | molding without crushing particle | grains, there exists an effect that the pore between particle | grains is easy to control.
The average particle crushing strength of the particles containing the catalyst component is 9.8 × 10- Five~ 9.8 × 10-2If it is N, there is an advantage in terms of handleability and catalyst performance during molding.
Moreover, if the bulk specific gravity of the particle | grains containing a catalyst component is 0.5-1.8 kg / L, there exists an advantage in the surface of the handleability at the time of shaping | molding, and a catalyst performance.
When vacuum degassing is not performed when the primary molded product is molded into a final shape by a secondary molding machine, selectivity is improved without reducing the pore volume of the catalyst.
When molding a mixture of particles containing catalyst components for primary molding and a liquid, molding using a screw extruder is advantageous in terms of productivity.
Since the unsaturated carboxylic acid synthesis catalyst of the present invention is produced by the method for producing an unsaturated carboxylic acid synthesis catalyst of the present invention, it is excellent in catalytic activity and selectivity.
Moreover, if the shape of a catalyst is ring shape and the outer diameter is 10 mm or less, there exists an advantage that activity and selectivity improve.
According to the method for synthesizing an unsaturated carboxylic acid of the present invention, the unsaturated aldehyde is vapor-phase oxidized with molecular oxygen using the unsaturated carboxylic acid synthesis catalyst of the present invention. Can be obtained at

Claims (8)

不飽和アルデヒドを分子状酸素を用いて気相接触酸化し、それに対応する不飽和カルボン酸を合成する際に用いられる、モリブデン及びバナジウムを含む押出成形触媒の製造方法において、
触媒成分を含む粒子と液体とを混合したものを成形して1次成形品を得る1次成形工程と、1次成形工程の後に、更に、ピストン成形機で1次成形品を最終形状に成形する2次成形工程とを有することを特徴とする不飽和カルボン酸合成用触媒の製造方法。
In a method for producing an extrusion catalyst containing molybdenum and vanadium, which is used in the gas phase catalytic oxidation of an unsaturated aldehyde using molecular oxygen and the corresponding unsaturated carboxylic acid is synthesized,
A primary molding process to obtain a primary molded product by molding a mixture of particles containing catalyst components and a liquid. After the primary molding process, the primary molded product is further molded into a final shape with a piston molding machine. A process for producing an unsaturated carboxylic acid synthesis catalyst.
前記1次成形品が、2次成形工程において使用されるピストン成形機のシリンダー径の0.5倍以上1倍未満の径をもつ円柱状であることを特徴とする請求項1記載の不飽和カルボン酸合成用触媒の製造方法。  2. The unsaturated body according to claim 1, wherein the primary molded product has a cylindrical shape having a diameter of 0.5 to 1 times the cylinder diameter of a piston molding machine used in the secondary molding process. A method for producing a carboxylic acid synthesis catalyst. 前記1次成形品の比重が、1.5〜3.5kg/Lであることを特徴とする請求項1または2に記載の不飽和カルボン酸合成用触媒の製造方法。  The method for producing an unsaturated carboxylic acid synthesis catalyst according to claim 1 or 2, wherein the primary molded product has a specific gravity of 1.5 to 3.5 kg / L. 前記触媒成分を含む粒子が、触媒成分を含むスラリーをスプレー乾燥したものであることを特徴とする請求項1〜3のいずれかに記載の不飽和カルボン酸合成用触媒の製造方法。  The method for producing an unsaturated carboxylic acid synthesis catalyst according to any one of claims 1 to 3, wherein the particles containing the catalyst component are those obtained by spray drying a slurry containing the catalyst component. 前記触媒成分を含む粒子の平均粒子圧壊強度が、9.8×10‐5〜9.8×10-2Nであることを特徴とする請求項1〜4のいずれかに記載の不飽和カルボン酸合成用触媒の製造方法。5. The unsaturated carboxylic acid according to claim 1, wherein an average particle crushing strength of the particles containing the catalyst component is 9.8 × 10 −5 to 9.8 × 10 −2 N. A method for producing a catalyst for acid synthesis. 前記触媒成分を含む粒子の嵩比重が、0.5〜1.8kg/Lであることを特徴とする請求項1〜5のいずれかに記載の不飽和カルボン酸合成用触媒の製造方法。  The bulk specific gravity of the particle | grains containing the said catalyst component is 0.5-1.8 kg / L, The manufacturing method of the catalyst for unsaturated carboxylic acid synthesis | combination in any one of Claims 1-5 characterized by the above-mentioned. 2次成形のピストン成形機で1次成形品を最終形状に成形する際に、真空脱気を行わないことを特徴とする請求項1〜6のいずれかに記載のカルボン酸合成用触媒の製造方法。  The production of a catalyst for carboxylic acid synthesis according to any one of claims 1 to 6, wherein vacuum degassing is not performed when the primary molded product is molded into a final shape by a secondary molding machine. Method. 1次成形の触媒成分を含む粒子と液体とを混合したものを成形する際に、スクリュー押出機を用いて成形することを特徴とする請求項1〜7のいずれかに記載の不飽和カルボン酸合成用触媒の製造方法。  The unsaturated carboxylic acid according to any one of claims 1 to 7, wherein the unsaturated carboxylic acid is molded using a screw extruder when molding a mixture of particles containing a catalyst component for primary molding and a liquid. A method for producing a catalyst for synthesis.
JP2001293231A 2001-09-26 2001-09-26 Method for producing catalyst for synthesis of unsaturated carboxylic acid Expired - Lifetime JP4933709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293231A JP4933709B2 (en) 2001-09-26 2001-09-26 Method for producing catalyst for synthesis of unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293231A JP4933709B2 (en) 2001-09-26 2001-09-26 Method for producing catalyst for synthesis of unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2003093882A JP2003093882A (en) 2003-04-02
JP4933709B2 true JP4933709B2 (en) 2012-05-16

Family

ID=19115068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293231A Expired - Lifetime JP4933709B2 (en) 2001-09-26 2001-09-26 Method for producing catalyst for synthesis of unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP4933709B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070369A1 (en) * 2002-02-19 2003-08-28 Mitsubishi Rayon Co., Ltd. Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid and process for producing the same
JP2005211796A (en) * 2004-01-29 2005-08-11 Mitsubishi Chemicals Corp Method of producing multiple-oxide catalyst having uniform strength
JP4889083B2 (en) * 2005-09-01 2012-02-29 旭化成ケミカルズ株式会社 Oxide catalyst for producing methacrolein, method for producing the catalyst, and method for producing methacrolein using the catalyst
JP5030438B2 (en) * 2006-02-28 2012-09-19 三菱レイヨン株式会社 Method for producing catalyst and method for producing methacrylic acid
JP4848813B2 (en) * 2006-03-29 2011-12-28 住友化学株式会社 A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP5473744B2 (en) * 2010-04-21 2014-04-16 三菱レイヨン株式会社 Method for producing a catalyst for methacrylic acid production
KR101860595B1 (en) 2011-04-11 2018-05-23 미쯔비시 케미컬 주식회사 Method for preparing catalyst for production of methacrylic acid
CN105934315B (en) * 2014-02-05 2019-05-14 三菱化学株式会社 The manufacturing method of extrusion molding body
WO2017145985A1 (en) * 2016-02-24 2017-08-31 三菱ケミカル株式会社 Multi-hole extrusion die, method for producing metal compound extrusion-molded body, method for producing catalyst extrusion-molded body for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
KR102242609B1 (en) * 2016-06-21 2021-04-20 미쯔비시 케미컬 주식회사 Method for producing catalyst for methacrylic acid production, method for producing methacrylic acid, and method for producing methacrylic acid ester
EP4219003A1 (en) * 2020-09-24 2023-08-02 Nippon Kayaku Kabushiki Kaisha Catalyst precursor, catalyst using same, production method for compound and production method for catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3930533C1 (en) * 1989-09-13 1991-05-08 Degussa Ag, 6000 Frankfurt, De
JP2574948B2 (en) * 1990-02-08 1997-01-22 株式会社日本触媒 Method for producing methacrylic acid
JP3313863B2 (en) * 1993-12-28 2002-08-12 三菱レイヨン株式会社 Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP3690939B2 (en) * 1999-06-07 2005-08-31 三菱レイヨン株式会社 Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP3790080B2 (en) * 2000-01-25 2006-06-28 三菱レイヨン株式会社 Catalyst for synthesizing methacrolein and methacrylic acid, and method for producing methacrolein and methacrylic acid
JP2002292284A (en) * 2001-04-03 2002-10-08 Mitsubishi Chemicals Corp Compound metal oxide catalyst and method for gaseous phase catalytic oxidizing reaction using the same

Also Published As

Publication number Publication date
JP2003093882A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
KR20060099509A (en) Method for the production of annular-shaped super catalysts
JP4933709B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP2016539936A (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
KR100783994B1 (en) Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
KR100904578B1 (en) Method for preparing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, catalyst prepared by the method, and method for synthesis of unsaturated aldehyde and unsaturated carboxylic acid using the catalyst
JP4515769B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing the same
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP4634633B2 (en) Unsaturated carboxylic acid synthesis catalyst, preparation method thereof, and synthesis method of unsaturated carboxylic acid using the catalyst
JP3936055B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and / or unsaturated carboxylic acid and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP4601196B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst
JP4947753B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP2012206107A (en) Method for manufacturing catalyst
JP2009213970A (en) Method for manufacturing catalyst for synthesizing unsaturated carboxylic acid
JP4464734B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid, catalyst for synthesis of unsaturated carboxylic acid, and method for synthesis of unsaturated carboxylic acid
JP2004130261A (en) Method of manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JPS60150834A (en) Preparation for synthesizing catalyst of methacrylic acid
JP3313863B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP5462300B2 (en) Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP2010207803A (en) Compound oxide catalyst
JP2008302313A (en) Catalyst for producing methacrylic acid, method for manufacturing the same, and method for manufacturing methacrylic acid
JP3313968B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2009090200A (en) Method for manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JPH1071333A (en) Manufacture of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JPH09117664A (en) Preparation of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R151 Written notification of patent or utility model registration

Ref document number: 4933709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250