JPH1071333A - Manufacture of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents
Manufacture of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acidInfo
- Publication number
- JPH1071333A JPH1071333A JP8231009A JP23100996A JPH1071333A JP H1071333 A JPH1071333 A JP H1071333A JP 8231009 A JP8231009 A JP 8231009A JP 23100996 A JP23100996 A JP 23100996A JP H1071333 A JPH1071333 A JP H1071333A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- selectivity
- dried
- parts
- air atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プロピレン、イソ
ブチレン、三級ブタノール(以下TBAと略す)または
メチル第三級ブチルエーテル(以下MTBEと略す)を
気相接触酸化して、不飽和アルデヒドおよび不飽和カル
ボン酸を合成する際に使用する触媒の製造法に関する。The present invention relates to an aldehyde, an unsaturated aldehyde and an unsaturated aldehyde obtained by subjecting propylene, isobutylene, tertiary butanol (hereinafter abbreviated as TBA) or methyl tertiary butyl ether (hereinafter abbreviated as MTBE) to gas-phase catalytic oxidation. The present invention relates to a method for producing a catalyst used for synthesizing a carboxylic acid.
【0002】[0002]
【従来の技術】従来、プロピレンを気相接触酸化してア
クロレインおよびアクリル酸を製造する際に用いられる
触媒や、イソブチレン、TBAまたはMTBEを気相接
触酸化してメタクロレインおよびメタクリル酸を製造す
る際に用いられる触媒の組成およびその製造法に関し
て、多数の方法が提案されている。2. Description of the Related Art Conventionally, a catalyst used for producing acrolein and acrylic acid by gas-phase catalytic oxidation of propylene and a catalyst used for producing methacrolein and methacrylic acid by gas-phase catalytic oxidation of isobutylene, TBA or MTBE. Numerous methods have been proposed for the composition of the catalyst used in the method and the method for producing the same.
【0003】触媒の製造法に関するものとして、触媒の
細孔を制御して触媒性能を向上させる目的で、触媒調製
時にアニリン、メチルアミン、ペンタエリトリット等の
種々の有機化合物を添加する方法(特開昭58−981
43号公報、特開平3−109946号公報)、澱粉を
添加する方法(特開昭63−315147号公報、特開
平4−4048号公報)等が提案されている。これらの
方法は、有機化合物を熱処理により除去することで触媒
に細孔を発現させ、使用する有機化合物の大きさを変え
ることで細孔径の大きさを制御できる。[0003] As a method for producing a catalyst, a method of adding various organic compounds such as aniline, methylamine, and pentaerythritol at the time of catalyst preparation for the purpose of controlling the pores of the catalyst and improving the catalyst performance (particularly 58-981
No. 43, JP-A-3-109946), a method of adding starch (JP-A-63-315147, JP-A-4-4048) and the like have been proposed. In these methods, pores are developed in the catalyst by removing the organic compound by heat treatment, and the size of the pore diameter can be controlled by changing the size of the organic compound used.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、これら
の方法では、熱処理により有機物が除去された触媒成型
体は、熱処理前と比べて、機械的強度が著しく低下す
る。このような触媒成型体は、反応器に落下充填する際
に破損するため、工業的に使用することが困難である。
そのため、触媒を反応器に落下充填する際に、十分な強
度を有する触媒の製造法を開発することが望まれてい
る。However, in these methods, the catalyst molded body from which the organic substances have been removed by the heat treatment has a significantly lower mechanical strength than before the heat treatment. Such a molded catalyst is damaged when it is dropped and filled in a reactor, so that it is difficult to use it industrially.
Therefore, it is desired to develop a method for producing a catalyst having sufficient strength when the catalyst is dropped and filled into a reactor.
【0005】本発明は、プロピレン、イソブチレン、T
BAまたはMTBEを分子状酸素を用いて気相接触酸化
して、不飽和アルデヒドおよび不飽和カルボン酸を製造
するにあたり、触媒を反応器に落下充填する際に十分な
強度を有し、かつ、優れた反応率および選択率を有する
触媒の製造法を提供することを目的とする。The present invention relates to propylene, isobutylene, T
In producing gas-phase catalytic oxidation of BA or MTBE using molecular oxygen to produce unsaturated aldehydes and unsaturated carboxylic acids, the catalyst has sufficient strength when dropping and filling a catalyst into a reactor, and has an excellent property. It is an object of the present invention to provide a method for producing a catalyst having a high conversion and selectivity.
【0006】[0006]
【課題を解決するための手段】本発明は、触媒の構成元
素として少なくともモリブデン、ビスマスおよび鉄を含
む触媒の製造法において、触媒の構成元素を含む混合溶
液または水性スラリーを乾燥し、空気雰囲気下に400
〜700℃で焼成した後、湿式賦型することを特徴とす
る、プロピレン、イソブチレン、TBAまたはMTBE
を分子状酸素を用いて気相接触酸化して、不飽和アルデ
ヒドおよび不飽和カルボン酸を合成するための触媒の製
造法である。According to the present invention, there is provided a method for producing a catalyst containing at least molybdenum, bismuth and iron as constituent elements of a catalyst. To 400
Propylene, isobutylene, TBA or MTBE, characterized by being subjected to wet shaping after firing at ~ 700 ° C.
Is a method for producing a catalyst for synthesizing an unsaturated aldehyde and an unsaturated carboxylic acid by subjecting the compound to gas-phase catalytic oxidation using molecular oxygen.
【0007】[0007]
【発明の実施の形態】本発明の方法により調製される触
媒は、触媒の構成元素として少なくともモリブデン、ビ
スマスおよび鉄を含むものであれば特に制限されない
が、例えば、一般式 MoaBibFecAdXeYfZgSihOi (式中Mo、Bi、Fe、SiおよびOはそれぞれモリ
ブデン、ビスマス、鉄、ケイ素および酸素を示し、Aは
コバルトおよびニッケルからなる群より選ばれた少なく
とも1種の元素を示し、Xはクロム、鉛、マンガン、カ
ルシウム、マグネシウム、ニオブ、銀、バリウム、ス
ズ、タンタルおよび亜鉛からなる群より選ばれた少なく
とも1種の元素を示し、Yはリン、硼素、硫黄、セレ
ン、テルル、セリウム、タングステン、アンチモンおよ
びチタンからなる群より選ばれた少なくとも1種の元素
を示し、Zはリチウム、ナトリウム、カリウム、ルビジ
ウム、セシウムおよびタリウムからなる群より選ばれた
少なくとも1種の元素を示す。a、b、c、d、e、
f、g、hおよびiは各元素の原子比率を表し、a=1
2のときb=0.01〜3、c=0.01〜5、d=1
〜12、e=0〜8、f=0〜5、g=0.001〜
2、h=0〜20であり、iは前記各成分の原子価を満
足するのに必要な酸素原子数である。)で表される組成
を有する触媒等が挙げられる。DETAILED DESCRIPTION OF THE INVENTION The catalysts prepared by the method of the present invention, at least comprising the elements molybdenum catalyst is not particularly limited as long as it contains bismuth and iron, for example, the general formula Mo a Bi b Fe c a d X e Y f Z g Si h O i ( wherein Mo, Bi, Fe, Si and O each represents molybdenum, bismuth, iron, silicon and oxygen, a is selected from the group consisting of cobalt and nickel X represents at least one element, X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum, and zinc; Z represents at least one element selected from the group consisting of boron, sulfur, selenium, tellurium, cerium, tungsten, antimony, and titanium; Represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium, a, b, c, d, e,
f, g, h and i represent the atomic ratio of each element, and a = 1
In the case of 2, b = 0.01-3, c = 0.01-5, d = 1
-12, e = 0-8, f = 0-5, g = 0.001
2, h = 0 to 20, and i is the number of oxygen atoms required to satisfy the valence of each component. And the like.
【0008】触媒の各構成元素の原料としては、各元素
の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモ
ニウム塩、ハロゲン化物等を組み合わせて使用すること
ができる。モリブデン原料としては、例えば、パラモリ
ブデン酸アンモニウム、モリブデン酸、三酸化モリブデ
ン等が挙げられる。As the raw materials for the constituent elements of the catalyst, oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides and the like of the respective elements can be used in combination. Examples of the molybdenum raw material include ammonium paramolybdate, molybdic acid, molybdenum trioxide, and the like.
【0009】触媒の構成元素を含む混合溶液または水性
スラリーは、触媒原料と水を混合することにより調製さ
れる。この混合溶液または水性スラリーは、大部分の水
を除去された後、乾燥される。乾燥には、比較的分布の
狭い粒径分布をもつ乾燥粉を得ることができる装置を用
いることが好ましく、例えば、スラリードライヤー、ス
プレドライヤーまたはドラムドライヤー等が挙げられ
る。出来上がった乾燥粉は流動性を有することが好まし
く、そのため、乾燥温度は100〜300℃が好まし
い。A mixed solution or an aqueous slurry containing the constituent elements of the catalyst is prepared by mixing a catalyst raw material and water. The mixed solution or aqueous slurry is dried after removing most of the water. For drying, it is preferable to use an apparatus capable of obtaining a dry powder having a relatively narrow particle size distribution, and examples thereof include a slurry dryer, a spray dryer, and a drum dryer. The resulting dried powder preferably has fluidity, and therefore the drying temperature is preferably 100 to 300 ° C.
【0010】触媒を活性化するため、乾燥粉は空気雰囲
気下で熱処理される。この熱処理の工程は焼成と呼ばれ
る。焼成温度は400〜700℃の範囲であればよく、
好ましくは430〜650℃、特に好ましくは450〜
600℃である。焼成方法は特に限定されないが、例え
ば、マッフル炉等のバッチ式熱処理法、ロータリーキル
ン等を用いた連続式熱処理法等が挙げられる。焼成時間
は0.1〜10時間の範囲であればよく、好ましくは
0.15〜8時間、特に好ましくは0.3〜7時間であ
る。[0010] To activate the catalyst, the dry powder is heat treated in an air atmosphere. This heat treatment step is called firing. The firing temperature may be in the range of 400 to 700 ° C,
Preferably 430-650 ° C., particularly preferably 450-650 ° C.
600 ° C. The firing method is not particularly limited, and examples thereof include a batch heat treatment method such as a muffle furnace and a continuous heat treatment method using a rotary kiln. The firing time may be in the range of 0.1 to 10 hours, preferably 0.15 to 8 hours, particularly preferably 0.3 to 7 hours.
【0011】得られた焼成粉には、バインダーを加え
る。この際、賦型補強剤を適宜添加しても良い。この焼
成粉とバインダーの混合物は湿式賦型法により成形加工
された後、再び80〜120℃で乾燥される。[0011] A binder is added to the obtained calcined powder. At this time, a shaping reinforcing agent may be appropriately added. The mixture of the calcined powder and the binder is formed by a wet molding method and then dried again at 80 to 120 ° C.
【0012】この際に用いられるバインダーは特に制限
されないが、100〜350℃の熱処理により除去でき
る有機物が好ましい。このようなバインダーとしては、
例えば、ゼラチン、セルロース、メチルセルロース、エ
チルセルロース、ヒドロキシプロピルセルロース等が挙
げられる。また、賦型補強剤としては、例えば、珪藻
土、シリカゾル、シリカゲル、ベントナイト、カオリ
ン、ガラス繊維、アスベスト、セラミック繊維、カーボ
ン繊維等が挙げられる。The binder used at this time is not particularly limited, but an organic substance which can be removed by heat treatment at 100 to 350 ° C. is preferable. As such a binder,
For example, gelatin, cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose and the like can be mentioned. Examples of the shaping reinforcing agent include diatomaceous earth, silica sol, silica gel, bentonite, kaolin, glass fiber, asbestos, ceramic fiber, carbon fiber, and the like.
【0013】湿式賦型法としては、一般に知られている
押出し成型法、製丸法、転動造粒法、担持法等が好まし
い。なかでも、押出し成型法は、リング状、円柱状、星
型等の様々な形状に賦型することができるので、特に好
ましい。As the wet shaping method, a generally known extrusion molding method, rounding method, rolling granulation method, supporting method and the like are preferable. Among them, the extrusion molding method is particularly preferable because it can be formed into various shapes such as a ring shape, a column shape, and a star shape.
【0014】このようにして得られた賦型触媒は、固定
床反応器に落下充填される。反応に先立ち、バインダー
として添加したゼラチン、セルロース、メチルセルロー
ス、エチルセルロース、ヒドロキシプロピルセルロース
等の有機物を除去する目的で、反応器に充填した賦型触
媒の熱処理を行ってもよい。この際、熱処理は150〜
350℃で行うことが好ましい。また、熱処理は適当な
ガスを流通させながら行うことが好ましく、工業的には
空気や窒素の使用が有利である。バインダーを除去した
後の触媒は強度が低下するので、賦型触媒の熱処理は、
賦型触媒を固定床反応器に充填した後に行うことが重要
である。The shaped catalyst thus obtained is dropped and filled in a fixed bed reactor. Prior to the reaction, the shaped catalyst filled in the reactor may be subjected to a heat treatment in order to remove organic substances such as gelatin, cellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose added as a binder. At this time, the heat treatment is 150 ~
It is preferable to carry out at 350 ° C. Further, the heat treatment is preferably carried out while flowing an appropriate gas, and the use of air or nitrogen is advantageous industrially. Since the strength of the catalyst after removing the binder is reduced, the heat treatment of the shaped catalyst is
It is important to do this after filling the shaped catalyst into the fixed bed reactor.
【0015】本発明の方法により調製された触媒を用い
て、プロピレン、イソブチレン、TBAまたはMTBE
を分子状酸素により気相接触酸化して、不飽和アルデヒ
ドおよび不飽和カルボン酸を製造する際、触媒層に供給
する原料ガス中のプロピレン、イソブチレン、TBAま
たはMTBE対酸素のモル比は1:0.5〜3が好まし
い。酸素の供給源は純酸素ガスでもよいが、工業的には
空気の使用が有利である。原料ガスには、プロピレン、
イソブチレン、TBAまたはMTBEおよび酸素以外に
水蒸気や不活性ガスを含んでもよい。不活性ガスは反応
に関与しないものであれば特に制限されないが、工業的
には窒素の使用が有利である。反応圧力は常圧〜数気圧
の範囲が好ましく、反応温度は250〜400℃の範囲
が好ましい。Using the catalyst prepared by the process of the present invention, propylene, isobutylene, TBA or MTBE
Is subjected to gas phase catalytic oxidation with molecular oxygen to produce unsaturated aldehydes and unsaturated carboxylic acids, the molar ratio of propylene, isobutylene, TBA or MTBE to oxygen in the raw material gas supplied to the catalyst layer is 1: 0. 0.5 to 3 are preferred. The source of oxygen may be pure oxygen gas, but the use of air is industrially advantageous. The raw material gas is propylene,
Water vapor or an inert gas may be contained in addition to isobutylene, TBA or MTBE and oxygen. The inert gas is not particularly limited as long as it does not participate in the reaction, but the use of nitrogen is industrially advantageous. The reaction pressure is preferably in the range of normal pressure to several atmospheres, and the reaction temperature is preferably in the range of 250 to 400 ° C.
【0016】この反応により製造される不飽和アルデヒ
ドおよび不飽和カルボン酸とは、原料がプロピレンの場
合には、アクロレインおよびアクリル酸を、原料がイソ
ブチレン、TBAまたはMTBEの場合には、メタクロ
レインおよびメタクリル酸を指す。The unsaturated aldehyde and unsaturated carboxylic acid produced by this reaction include acrolein and acrylic acid when the raw material is propylene, and methacrolein and methacrylic when the raw material is isobutylene, TBA or MTBE. Refers to acids.
【0017】[0017]
【実施例】以下、本発明の実施例を示す。下記実施例お
よび比較例中の「部」は重量部を意味する。組成式中
の、Mo、Bi、Fe、Co、Ni、Mg、Zn、W、
Sb、K、CsおよびSiは、それぞれモリブデン、ビ
スマス、鉄、コバルト、ニッケル、マグネシウム、亜
鉛、タングステン、アンチモン、カリウム、セシウムお
よびケイ素を表す。Embodiments of the present invention will be described below. "Parts" in the following Examples and Comparative Examples means parts by weight. In the composition formula, Mo, Bi, Fe, Co, Ni, Mg, Zn, W,
Sb, K, Cs and Si represent molybdenum, bismuth, iron, cobalt, nickel, magnesium, zinc, tungsten, antimony, potassium, cesium and silicon, respectively.
【0018】充填粉化率は、賦型触媒を水平方向に対し
て垂直に設置した反応器の上部より落下充填した後、反
応器下部より触媒を回収し、以下の定義に従って算出し
た。The filling and pulverization rate was calculated according to the following definition by dropping and filling the shaped catalyst from the upper part of the reactor installed vertically to the horizontal direction, and then collecting the catalyst from the lower part of the reactor.
【0019】 充填粉化率(%)=(a−b)/a×100 式中のaおよびbの意味は以下の通りである。Filling powder ratio (%) = (ab) / a × 100 The meanings of a and b in the formula are as follows.
【0020】a:落下充填した賦型触媒の重量 b:回収した触媒のうち14メッシュのふるいを通過し
なかった重量 反応の分析はガスクロマトグラフィーにより行った。原
料の反応率、生成される不飽和アルデヒドの選択率およ
び不飽和カルボン酸の選択率は以下の定義に従って算出
した。A: Weight of the shaped catalyst dropped and filled b: Weight of the recovered catalyst that did not pass through a 14-mesh sieve The reaction was analyzed by gas chromatography. The conversion of the raw materials, the selectivity of the unsaturated aldehyde to be produced and the selectivity of the unsaturated carboxylic acid were calculated according to the following definitions.
【0021】 原料の反応率(%) = B/A×100 不飽和アルデヒドの選択率(%) = C/B×100 不飽和カルボン酸の選択率(%) = D/B×100 式中のA、B、CおよびDの意味は以下の通りである。Reaction rate of raw material (%) = B / A × 100 Selectivity of unsaturated aldehyde (%) = C / B × 100 Selectivity of unsaturated carboxylic acid (%) = D / B × 100 The meanings of A, B, C and D are as follows.
【0022】A:供給した原料のモル数 B:反応した原料のモル数 C:生成した不飽和アルデヒドのモル数 D:生成した不飽和カルボン酸のモル数 [実施例1]水1000部にパラモリブデン酸アンモニ
ウム500部、パラタングステン酸アンモニウム12.
3部および硝酸カリウム1.4部を加え加熱撹拌した
(A液)。別に水600部に60重量%硝酸41.9部
を加え、均一にした後、硝酸ビスマス103.0部を加
え溶解した。これに硝酸第二鉄95.3部、硝酸コバル
ト309.0部および硝酸亜鉛7.0部を順次加え、更
に水400部を加え溶解した(B液)。A液にB液を加
えて水性スラリーとした後、三酸化アンチモン24.1
部を加え加熱撹拌し、スプレー乾燥機を使用して平均粒
径50.5μmの球状粒子を得た。この球状粒子をロー
タリーキルンを用いて空気雰囲気下500℃で6時間焼
成して触媒粉を得た。得られた触媒粉の酸素以外の元素
の組成は、 Mo12Bi0.9Fe1.0Co4.5Zn0.1W0.2Sb0.7K
0.06 であった。A: Number of moles of supplied raw material B: Number of moles of reacted raw material C: Number of moles of unsaturated aldehyde generated D: Number of moles of unsaturated carboxylic acid generated [Example 1] 11. 500 parts of ammonium molybdate, ammonium paratungstate
3 parts and 1.4 parts of potassium nitrate were added and heated and stirred (Solution A). Separately, 41.9 parts of 60% by weight nitric acid was added to 600 parts of water to make the mixture uniform, and 103.0 parts of bismuth nitrate was added and dissolved. To this, 95.3 parts of ferric nitrate, 309.0 parts of cobalt nitrate and 7.0 parts of zinc nitrate were sequentially added, and 400 parts of water was further added to dissolve (solution B). Solution B was added to Solution A to form an aqueous slurry, and then antimony trioxide 24.1 was used.
The resulting mixture was heated and stirred, and spherical particles having an average particle size of 50.5 μm were obtained using a spray dryer. The spherical particles were calcined at 500 ° C. for 6 hours in an air atmosphere using a rotary kiln to obtain a catalyst powder. The composition of elements other than oxygen in the obtained catalyst powder is Mo 12 Bi 0.9 Fe 1.0 Co 4.5 Zn 0.1 W 0.2 Sb 0.7 K
0.06 .
【0023】この触媒粉500部に対して、メチルセル
ロース15部および水150部を添加し、混合および混
練りを行い、オーガー式押出し機を用いて外径6mm、
内径3mm、長さ5mmの形状に成型した。この押出し
成型触媒を熱風乾燥機にて105℃で2時間乾燥した。
この触媒の充填粉化率を測定したところ、充填粉化率は
0.15%であった。To 500 parts of the catalyst powder, 15 parts of methylcellulose and 150 parts of water were added, mixed and kneaded, and the outer diameter was 6 mm using an auger extruder.
It was molded into a shape having an inner diameter of 3 mm and a length of 5 mm. This extruded catalyst was dried at 105 ° C. for 2 hours using a hot air dryer.
When the packing and powdering ratio of this catalyst was measured, the packing and powdering ratio was 0.15%.
【0024】この成型触媒をステンレス製の固定床反応
管に充填し、空気流通下300℃で1時間熱処理した
後、プロピレン5%、酸素12%、水蒸気10%および
窒素73%(容量%)の原料ガスを接触時間3.6秒で
触媒層を通過させ、310℃で反応させた。The molded catalyst was filled in a stainless fixed-bed reaction tube, and heat-treated at 300 ° C. for 1 hour in an air flow. After that, 5% of propylene, 12% of oxygen, 10% of water vapor and 73% of nitrogen (by volume) were added. The raw material gas was passed through the catalyst layer for a contact time of 3.6 seconds and reacted at 310 ° C.
【0025】その結果、プロピレンの反応率99.2
%、アクロレインの選択率89.9%、アクリル酸の選
択率6.9%であった。As a result, the conversion of propylene was 99.2.
%, Acrolein selectivity was 89.9%, and acrylic acid selectivity was 6.9%.
【0026】[実施例2]実施例1において、ロータリ
ーキルンを用いて空気雰囲気下450℃で6時間焼成を
行った以外は、実施例1と同様にして成型および反応を
行った。Example 2 Molding and reaction were carried out in the same manner as in Example 1 except that calcination was performed at 450 ° C. for 6 hours in an air atmosphere using a rotary kiln.
【0027】その結果、この触媒の充填粉化率は0.1
6%であった。また、プロピレンの反応率99.5%、
アクロレインの選択率89.8%、アクリル酸の選択率
6.5%であった。As a result, the powdered powder ratio of this catalyst was 0.1
6%. Also, the reaction rate of propylene is 99.5%,
The selectivity for acrolein was 89.8% and the selectivity for acrylic acid was 6.5%.
【0028】[実施例3]実施例1において、ロータリ
ーキルンを用いて空気雰囲気下520℃で3時間焼成を
行い、かつ、反応温度を330℃とした以外は、実施例
1と同様にして成型および反応を行った。Example 3 Molding and molding were performed in the same manner as in Example 1 except that the mixture was calcined in an air atmosphere at 520 ° C. for 3 hours using a rotary kiln and the reaction temperature was set to 330 ° C. The reaction was performed.
【0029】その結果、この触媒の充填粉化率は0.1
3%であった。また、プロピレンの反応率98.8%、
アクロレインの選択率89.7%、アクリル酸の選択率
6.2%であった。As a result, the powdered powder ratio of this catalyst was 0.1
3%. The conversion of propylene is 98.8%,
The selectivity for acrolein was 89.7% and the selectivity for acrylic acid was 6.2%.
【0030】[比較例1]実施例1において、スプレー
乾燥機を使用して製造した球状粒子を、ロータリーキル
ンを用いて空気雰囲気下300℃で1時間焼成し、実施
例1と同様に湿式賦型および乾燥したものを反応管に充
填し、空気流通下500℃で6時間熱処理した後、実施
例1と同様の条件で反応を行った。[Comparative Example 1] In Example 1, the spherical particles produced by using the spray dryer were fired at 300 ° C for 1 hour in an air atmosphere using a rotary kiln, and wet molding was performed in the same manner as in Example 1. The dried product was filled in a reaction tube, and heat-treated at 500 ° C. for 6 hours under a flow of air, and then reacted under the same conditions as in Example 1.
【0031】その結果、この触媒の充填粉化率は6.2
4%であり、充填粉化率の測定のために回収した触媒中
には、破損や粉化したものが多く見られた。また、プロ
ピレンの反応率99.1%、アクロレインの選択率8
9.0%、アクリル酸の選択率6.3%であった。As a result, the powdered packing ratio of this catalyst was 6.2.
It was 4%, and many of the catalysts recovered for the measurement of the powdering ratio were damaged or powdered. The conversion of propylene was 99.1% and the selectivity of acrolein was 8%.
The selectivity to acrylic acid was 9.0%, and the selectivity to acrylic acid was 6.3%.
【0032】[比較例2]実施例1において、ロータリ
ーキルンを用いて空気雰囲気下750℃で6時間焼成を
行った以外は、実施例1と同様にして成型および反応を
行った。[Comparative Example 2] Molding and reaction were performed in the same manner as in Example 1 except that firing was performed at 750 ° C for 6 hours in an air atmosphere using a rotary kiln.
【0033】その結果、この触媒の充填粉化率は0.1
2%であった。また、プロピレンの反応率92.0%、
アクロレインの選択率84.5%、アクリル酸の選択率
4.9%であり、実施例1に対して、プロピレンの反応
率、アクロレインの選択率およびアクリル酸の選択率は
大幅に低下した。As a result, the powdered powder ratio of this catalyst was 0.1
2%. Also, the reaction rate of propylene is 92.0%,
The selectivity for acrolein was 84.5% and the selectivity for acrylic acid was 4.9%. Compared with Example 1, the conversion of propylene, the selectivity of acrolein, and the selectivity of acrylic acid were significantly reduced.
【0034】[比較例3]実施例1において、ロータリ
ーキルンを用いて空気雰囲気下350℃で6時間焼成を
行った以外は、実施例1と同様にして成型および反応を
行った。[Comparative Example 3] Molding and reaction were performed in the same manner as in Example 1 except that calcination was performed at 350 ° C for 6 hours in an air atmosphere using a rotary kiln.
【0035】その結果、この触媒の充填粉化率は0.1
1%であった。また、プロピレンの反応率99.1%、
アクロレインの選択率86.5%、アクリル酸の選択率
5.3%であり、実施例1に対して、アクロレインの選
択率およびアクリル酸の選択率は低下した。As a result, the powdered packing ratio of this catalyst was 0.1
1%. Also, the reaction rate of propylene is 99.1%,
The selectivity of acrolein was 86.5% and the selectivity of acrylic acid was 5.3%. Compared with Example 1, the selectivity of acrolein and the selectivity of acrylic acid were lower.
【0036】[実施例4]水400部に60重量%硝酸
42部を加え均一溶液とした後、硝酸ビスマス68.7
部を加え溶解した。これに硝酸ニッケル274.5部お
よび三酸化アンチモン24.1部を順次加え溶解、分散
させた。この混合液に28重量%アンモニア水165部
を加え白色沈殿物と青色の溶液を得た。これを加熱撹拌
して、大部分の水分を蒸発させた。得られたスラリー状
の物質を120℃で16時間乾燥した後、750℃で2
時間熱処理し、微粉砕してビスマス−ニッケル−アンチ
モン化合物の微粉末を得た。Example 4 42 parts of 60% by weight nitric acid was added to 400 parts of water to form a uniform solution, and bismuth nitrate was 68.7.
Was added and dissolved. To this, 274.5 parts of nickel nitrate and 24.1 parts of antimony trioxide were sequentially added and dissolved and dispersed. 165 parts of 28% by weight aqueous ammonia was added to this mixture to obtain a white precipitate and a blue solution. This was heated and stirred to evaporate most of the water. The obtained slurry substance was dried at 120 ° C. for 16 hours, and then dried at 750 ° C. for 2 hours.
The mixture was heat-treated for a long time and pulverized to obtain a fine powder of a bismuth-nickel-antimony compound.
【0037】水1000部にパラモリブデン酸アンモニ
ウム500部、パラタングステン酸アンモニウム12.
3部および硝酸セシウム20.7部を加え、加熱撹拌し
た(A液)。11. 500 parts of ammonium paramolybdate and 1000 parts of ammonium paratungstate in 1000 parts of water.
3 parts and 20.7 parts of cesium nitrate were added, and heated and stirred (Solution A).
【0038】別に、水700部に硝酸第二鉄190.7
部、硝酸コバルト150.6部および硝酸マグネシウム
121.0部を順次加え溶解した(B液)。Separately, ferric nitrate (190.7) was added to 700 parts of water.
, 150.6 parts of cobalt nitrate and 121.0 parts of magnesium nitrate were sequentially added and dissolved (Solution B).
【0039】A液にB液を加えてスラリー状にした後、
20重量%シリカゾル354.5部および前記のビスマ
ス−ニッケル−アンチモン化合物の微粉末を加えて加熱
撹拌したものを、スプレー乾燥機により乾燥し、平均粒
径51.3μmの中空の球状粒子を得た。この球状粒子
を、ロータリーキルンを用いて空気雰囲気下500℃で
4時間焼成し、触媒粉を得た。得られた触媒粉の酸素以
外の元素の組成は、Mo12Bi0.6Fe2.0Co2.2Ni
4.0Mg2.0W0.2Sb0.7Cs0.45Si5.0であった。After adding the liquid B to the liquid A to form a slurry,
354.5 parts of 20% by weight silica sol and the above-mentioned bismuth-nickel-antimony compound fine powder were added and heated and stirred, and dried by a spray dryer to obtain hollow spherical particles having an average particle diameter of 51.3 μm. . The spherical particles were calcined at 500 ° C. for 4 hours in an air atmosphere using a rotary kiln to obtain a catalyst powder. The composition of elements other than oxygen in the obtained catalyst powder is Mo 12 Bi 0.6 Fe 2.0 Co 2.2 Ni
4.0 Mg 2.0 W 0.2 Sb 0.7 Cs 0.45 Si 5.0 .
【0040】この触媒粉500部に対して、メチルセル
ロース15部および水150部を添加し、混合および混
練りを行い、オーガー式押出し機を用いて外径6mm、
内径3mm、長さ5mmの形状に成型した。この押出し
成型触媒を熱風乾燥機にて105℃で2時間乾燥した。
この触媒の充填粉化率を測定したところ、充填粉化率は
0.14%であった。To 500 parts of the catalyst powder, 15 parts of methylcellulose and 150 parts of water were added, mixed and kneaded, and the outer diameter was 6 mm using an auger type extruder.
It was molded into a shape having an inner diameter of 3 mm and a length of 5 mm. This extruded catalyst was dried at 105 ° C. for 2 hours using a hot air dryer.
When the packing and powdering ratio of this catalyst was measured, the packing and powdering ratio was 0.14%.
【0041】この成型触媒をステンレス製の固定床反応
管に充填し、空気流通下300℃で1時間熱処理した
後、イソブチレン5%、酸素12%、水蒸気10%およ
び窒素73%(容量%)の原料ガスを接触時間3.6秒
で触媒層を通過させ、350℃で反応させた。The molded catalyst was filled in a stainless steel fixed bed reaction tube, and heat-treated at 300 ° C. for 1 hour in an air flow. Then, isobutylene 5%, oxygen 12%, steam 10% and nitrogen 73% (vol%) were used. The raw material gas was passed through the catalyst layer for a contact time of 3.6 seconds and reacted at 350 ° C.
【0042】その結果、イソブチレンの反応率97.8
%、メタクロレインの選択率89.9%、メタクリル酸
の選択率3.8%であった。As a result, the conversion of isobutylene was 97.8.
%, Methacrolein selectivity was 89.9%, and methacrylic acid selectivity was 3.8%.
【0043】[実施例5]実施例4において、ロータリ
ーキルンを用いて空気雰囲気下450℃で4時間焼成を
行った以外は、実施例4と同様にして成型および反応を
行った。Example 5 Molding and reaction were carried out in the same manner as in Example 4 except that calcination was performed in an air atmosphere at 450 ° C. for 4 hours using a rotary kiln.
【0044】その結果、この触媒の充填粉化率は0.1
6%であった。また、イソブチレンの反応率97.7
%、メタクロレインの選択率89.8%、メタクリル酸
の選択率3.7%であった。As a result, the powdered packing ratio of this catalyst was 0.1
6%. The reaction rate of isobutylene is 97.7.
%, Methacrolein selectivity was 89.8%, and methacrylic acid selectivity was 3.7%.
【0045】[実施例6]実施例4において、ロータリ
ーキルンを用いて空気雰囲気下520℃で3時間焼成を
行った以外は、実施例4と同様にして成型および反応を
行った。Example 6 Molding and reaction were carried out in the same manner as in Example 4 except that calcination was performed at 520 ° C. for 3 hours in an air atmosphere using a rotary kiln.
【0046】その結果、この触媒の充填粉化率は0.1
4%であった。また、イソブチレンの選択率97.5
%、メタクロレインの選択率89.7%、メタクリル酸
の選択率3.5%であった。As a result, the powdered packing ratio of this catalyst was 0.1
4%. Further, the selectivity of isobutylene is 97.5.
%, Methacrolein selectivity was 89.7%, and methacrylic acid selectivity was 3.5%.
【0047】[比較例4]実施例4において、スプレー
乾燥機を使用して製造した球状粒子を、ロータリーキル
ンを用いて空気雰囲気下300℃で1時間焼成し、実施
例4と同様に湿式賦型および乾燥したものを反応管に充
填し、空気流通下500℃で4時間熱処理した後、実施
例4と同様の条件で反応を行った。[Comparative Example 4] In Example 4, the spherical particles produced by using a spray dryer were calcined at 300 ° C for 1 hour in an air atmosphere using a rotary kiln, and wet molding was performed in the same manner as in Example 4. Then, the dried product was filled in a reaction tube, and heat-treated at 500 ° C. for 4 hours under a flow of air, and then reacted under the same conditions as in Example 4.
【0048】その結果、この触媒の充填粉化率は7.5
%であり、充填粉化率の測定のために回収した触媒中に
は、破損や粉化したものが多く見られた。また、イソブ
チレンの反応率97.1%、メタクロレインの選択率8
9.0%、メタクリル酸の選択率3.1%であった。As a result, the powdered packing ratio of this catalyst was 7.5.
%, And many of the catalysts that were broken or powdered were found in the catalyst recovered for the measurement of the filling powdering ratio. The reaction rate of isobutylene was 97.1%, and the selectivity of methacrolein was 8%.
The selectivity to methacrylic acid was 3.1% and the methacrylic acid was 3.1%.
【0049】[比較例5]実施例4において、ロータリ
ーキルンを用いて空気雰囲気下750℃で6時間焼成を
行った以外は、実施例4と同様にして成型および反応を
行った。Comparative Example 5 Molding and reaction were carried out in the same manner as in Example 4 except that calcination was performed at 750 ° C. for 6 hours in an air atmosphere using a rotary kiln.
【0050】その結果、この触媒の充填粉化率は0.1
4%であった。また、イソブチレンの反応率91.6
%、メタクロレインの選択率84.1%、メタクリル酸
の選択率2.0%であり、実施例4に対して、イソブチ
レンの反応率およびメタクロレインの選択率は大幅に低
下した。As a result, the powdered packing ratio of this catalyst was 0.1
4%. The reaction rate of isobutylene was 91.6.
%, The selectivity of methacrolein was 84.1%, and the selectivity of methacrylic acid was 2.0%. Compared with Example 4, the conversion of isobutylene and the selectivity of methacrolein were significantly reduced.
【0051】[比較例6]実施例4において、ロータリ
ーキルンを用いて空気雰囲気下350℃で6時間焼成を
行った以外は、実施例4と同様にして成型および反応を
行った。[Comparative Example 6] Molding and reaction were performed in the same manner as in Example 4 except that calcination was performed in an air atmosphere at 350 ° C for 6 hours using a rotary kiln.
【0052】その結果、この触媒の充填粉化率は0.1
5%であった。また、イソブチレンの反応率97.1
%、メタクロレインの選択率85.1%、メタクリル酸
の選択率2.2%であり、実施例4に対して、メタクロ
レインの選択率が低下した。As a result, the powdered packing ratio of this catalyst was 0.1
5%. The reaction rate of isobutylene was 97.1.
%, The selectivity of methacrolein was 85.1%, and the selectivity of methacrylic acid was 2.2%. The selectivity of methacrolein was lower than that of Example 4.
【0053】[実施例7]実施例4の触媒を用い、原料
をTBAに変え、その他は実施例4と同様にして反応を
行った。Example 7 Using the catalyst of Example 4, the reaction was carried out in the same manner as in Example 4 except that the raw material was changed to TBA.
【0054】その結果、TBAの反応率100%、メタ
クロレインの選択率87.5%、メタクリル酸の選択率
2.8%であった。As a result, the conversion of TBA was 100%, the selectivity of methacrolein was 87.5%, and the selectivity of methacrylic acid was 2.8%.
【0055】[比較例7]比較例5の触媒を用い、原料
をTBAに変え、その他は実施例4と同様にして反応を
行った。Comparative Example 7 Using the catalyst of Comparative Example 5, the reaction was carried out in the same manner as in Example 4 except that the raw material was changed to TBA.
【0056】その結果、TBAの反応率100%、メタ
クロレインの選択率75.5%、メタクリル酸の選択率
2.3%であった。As a result, the conversion of TBA was 100%, the selectivity of methacrolein was 75.5%, and the selectivity of methacrylic acid was 2.3%.
【0057】[0057]
【発明の効果】プロピレン、イソブチレン、TBAまた
はMTBEを分子状酸素を用いて気相接触酸化して、不
飽和アルデヒドおよび不飽和カルボン酸を製造するにあ
たり、触媒を反応器に落下充填する際に十分な強度を有
し、かつ、優れた反応率および選択率を有する触媒が得
られた。According to the present invention, in the case where propylene, isobutylene, TBA or MTBE is subjected to gas-phase catalytic oxidation using molecular oxygen to produce unsaturated aldehydes and unsaturated carboxylic acids, a sufficient amount of catalyst is required for dropping and filling the reactor. A catalyst having excellent strength and excellent conversion and selectivity was obtained.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 27/14 9155−4H C07C 27/14 Z 57/05 2115−4H 57/05 // C07C 47/22 8114−4H 47/22 A 8114−4H J ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location C07C 27/14 9155-4H C07C 27/14 Z 57/05 2115-4H 57/05 // C07C 47 / 22 8114-4H 47/22 A 8114-4H J
Claims (1)
デン、ビスマスおよび鉄を含む触媒の製造法において、
触媒の構成元素を含む混合溶液または水性スラリーを乾
燥し、空気雰囲気下に400〜700℃で焼成した後、
湿式賦型することを特徴とする、プロピレン、イソブチ
レン、三級ブタノールまたはメチル第三級ブチルエーテ
ルを分子状酸素を用いて気相接触酸化して、不飽和アル
デヒドおよび不飽和カルボン酸を合成するための触媒の
製造法。1. A method for producing a catalyst containing at least molybdenum, bismuth and iron as constituent elements of the catalyst,
After drying the mixed solution or the aqueous slurry containing the constituent elements of the catalyst and calcining at 400 to 700 ° C. in an air atmosphere,
Characterized by wet shaping, propylene, isobutylene, tertiary butanol or methyl tertiary butyl ether is subjected to gas phase catalytic oxidation using molecular oxygen to synthesize unsaturated aldehydes and unsaturated carboxylic acids. Method for producing catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8231009A JPH1071333A (en) | 1996-08-30 | 1996-08-30 | Manufacture of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8231009A JPH1071333A (en) | 1996-08-30 | 1996-08-30 | Manufacture of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1071333A true JPH1071333A (en) | 1998-03-17 |
Family
ID=16916824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8231009A Pending JPH1071333A (en) | 1996-08-30 | 1996-08-30 | Manufacture of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1071333A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003057366A1 (en) * | 2001-12-28 | 2003-07-17 | Mitsubishi Rayon Co., Ltd. | Method for preparing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, catalyst prepared by the method, and method for synthesis of unsaturated aldehyde and unsaturated carboxylic acid using the catalyst |
JP2006218434A (en) * | 2005-02-14 | 2006-08-24 | Mitsubishi Rayon Co Ltd | Method for re-filling with molded body |
JP2008221032A (en) * | 2007-03-08 | 2008-09-25 | Nippon Shokubai Co Ltd | Method of manufacturing multiple oxide catalyst, and method of manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid by using the catalyst |
-
1996
- 1996-08-30 JP JP8231009A patent/JPH1071333A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003057366A1 (en) * | 2001-12-28 | 2003-07-17 | Mitsubishi Rayon Co., Ltd. | Method for preparing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, catalyst prepared by the method, and method for synthesis of unsaturated aldehyde and unsaturated carboxylic acid using the catalyst |
US7387982B2 (en) | 2001-12-28 | 2008-06-17 | Mitsubishi Rayon Co., Ltd. | Method of producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and catalyst prepared by this method |
CN100404133C (en) * | 2001-12-28 | 2008-07-23 | 三菱丽阳株式会社 | Method of producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by this method, and method of synthesizing unsaturated aldehyde and unsaturated ca |
JP2006218434A (en) * | 2005-02-14 | 2006-08-24 | Mitsubishi Rayon Co Ltd | Method for re-filling with molded body |
JP2008221032A (en) * | 2007-03-08 | 2008-09-25 | Nippon Shokubai Co Ltd | Method of manufacturing multiple oxide catalyst, and method of manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid by using the catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4683508B2 (en) | COMPOSITE METAL OXIDE MATERIAL, PROCESS FOR PRODUCING THE SAME, METHOD OF USING THE SAME, CATALYST CONTAINING THE SAME AND METHOD OF USING THE CATALYST | |
JP3476307B2 (en) | Method for filling catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid | |
JP4242597B2 (en) | Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst | |
JP4995373B2 (en) | Reaction tube, method for producing catalyst, method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP6653871B2 (en) | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid | |
JP4863436B2 (en) | Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JP2003201261A (en) | Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by the same method and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid by using the same catalyst | |
JP5548132B2 (en) | Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst | |
JP4225530B2 (en) | Process for producing methacrolein and methacrylic acid synthesis catalyst | |
JP5344753B2 (en) | Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP3268900B2 (en) | Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JPH1071333A (en) | Manufacture of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid | |
JP7156506B2 (en) | Molded catalyst, molded catalyst for producing methacrolein and/or methacrylic acid, and method for producing methacrolein and/or methacrylic acid | |
JP2015120133A (en) | Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst | |
JP3370548B2 (en) | Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid | |
JP2011115681A (en) | Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid | |
JPH05253480A (en) | Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid | |
JPH044048A (en) | Production of catalyst for synthesizing unsaturated aldehyde and unsaturated acid | |
JP3347246B2 (en) | Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JP3313968B2 (en) | Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JPH10114689A (en) | Production of metacrolein, methacrilic acid and 1,3-butadiene | |
JP2008149263A (en) | Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron | |
JP4464734B2 (en) | Method for producing catalyst for synthesis of unsaturated carboxylic acid, catalyst for synthesis of unsaturated carboxylic acid, and method for synthesis of unsaturated carboxylic acid | |
JP3313863B2 (en) | Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JP2003001112A (en) | Catalyst for synthesizing methacrylic acid and method for manufacuring methacrylic acid |