JPH10114689A - Production of metacrolein, methacrilic acid and 1,3-butadiene - Google Patents

Production of metacrolein, methacrilic acid and 1,3-butadiene

Info

Publication number
JPH10114689A
JPH10114689A JP8285921A JP28592196A JPH10114689A JP H10114689 A JPH10114689 A JP H10114689A JP 8285921 A JP8285921 A JP 8285921A JP 28592196 A JP28592196 A JP 28592196A JP H10114689 A JPH10114689 A JP H10114689A
Authority
JP
Japan
Prior art keywords
parts
butadiene
nitrate
added
selectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8285921A
Other languages
Japanese (ja)
Inventor
Kenichi Miyagi
健一 宮氣
Koichi Yoshida
康一 吉田
Motomu Okita
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP8285921A priority Critical patent/JPH10114689A/en
Publication of JPH10114689A publication Critical patent/JPH10114689A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain ethacrolein, methacrylic acid and 1,3-butadiene efficiently, in high selectivity and in high yield by catalytically oxidizing a spent 4C fraction with molecular oxygen in a vapor phase in the presence of a specific catalyst. SOLUTION: A spent 4C fraction is catalytically oxidized with molecular oxygen in a vapor phase in the presence of a compound of the formula (A is Ni or Co; X is Mg, Zn, Mn, Cr, Sn, or Pd; Y is P, B, S or Se; Z is Na, K, rubidium, thallium or cesium; when (a) 12, 0.001<=b<=2.0, 0.1<=c<=5, 0.1<=d<=5, 0.01<=e<=5, 1<=f<=12, 0<=g<=10, 0<=h<=5, 0.01<=i<=2, 0<=j<=20 and (k) is the number of oxygen atoms required for satisfying the valence of each component) to give methacrolein, methacrylic acid and 1,3-butadiene.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は触媒の存在下、スペ
ントC4留分を分子状酸素により気相接触酸化してメタ
クロレイン、メタクリル酸及び1,3−ブタジエンを製
造する方法に関する。
The present invention relates to a process for producing methacrolein, methacrylic acid and 1,3-butadiene by subjecting a spent C4 fraction to gas phase catalytic oxidation with molecular oxygen in the presence of a catalyst.

【0002】[0002]

【従来の技術】メタクロレイン及びメタクリル酸を工業
的に製造する方法に関しては、イソブチレン、三級ブタ
ノールまたはメチルターシャリーブチルエーテルを分子
状酸素により気相で接触酸化する方法が一般的に知られ
ている。また、1,3−ブタジエンに関しては、ブタン
やブチレンの脱水素による方法が知られている。
2. Description of the Related Art As a method of industrially producing methacrolein and methacrylic acid, a method of catalytically oxidizing isobutylene, tertiary butanol or methyl tert-butyl ether in the gas phase with molecular oxygen is generally known. . As for 1,3-butadiene, a method based on dehydrogenation of butane or butylene is known.

【0003】これらの反応はいずれも一般的にナフサク
ラッキングで生成するスペントC4留分中のイソブチレ
ンや1−ブテンを分離し原料として用いているが、分離
・精製と工程が長くなりコスト高を招いている。従っ
て、スペントC4留分をそのままの形で反応の原料とし
て用いることができればプロセスが簡略化される。
In all of these reactions, isobutylene and 1-butene in a spent C4 fraction produced by naphtha cracking are generally separated and used as a raw material. Have been. Therefore, if the spent C4 fraction can be used as it is as a raw material for the reaction, the process is simplified.

【0004】スペントC4留分を原料としてメタクロレ
イン、メタクリル酸及び1,3−ブタジエンを製造する
方法に関しては、モリブデン−ビスマス系触媒(特公昭
47−42号公報、特公昭56−10288号公報
等)、モリブデン−テルル系触媒(特公昭46−339
31号公報、特公昭46−43524号公報、特公昭5
5−44729号公報等)を用いることが提案されてい
るが、一般に原料の反応率を高くすると目的生成物の選
択率が低くなる等の問題があり工業的見地から更に改良
された触媒の出現が望まれていた。
A method for producing methacrolein, methacrylic acid and 1,3-butadiene using a spent C4 fraction as a raw material is described in a molybdenum-bismuth catalyst (JP-B-47-42, JP-B-56-10288). ), Molybdenum-tellurium catalysts (JP-B-46-339)
No. 31, JP-B-46-43524, JP-B-5
It has been proposed to use a catalyst which is generally improved from the industrial point of view due to the problem that, if the reaction rate of the raw material is increased, the selectivity of the target product is generally lowered. Was desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、新規な触媒
を用いてスペントC4留分を分子状酸素により接触酸化
し、高収率でメタクロレイン、メタクリル酸及び1,3
−ブタジエンを高い反応率および高い選択率で得ること
のできる製造法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention provides a novel catalyst for catalytically oxidizing a spent C4 fraction with molecular oxygen to obtain methacrolein, methacrylic acid and 1,3 in high yield.
An object of the present invention is to provide a process for producing butadiene with high conversion and high selectivity.

【0006】[0006]

【課題を解決するための手段】本発明は、スペントC4
留分を分子状酸素を用いて気相接触酸化し、メタクロレ
イン、メタクリル酸及び1,3−ブタジエンを製造する
にあたり、一般式 Moab Bic Fed Sbefghi Sij
k (式中、Mo,W,Bi,Fe,Sb,Si及びOはそ
れぞれモリブデン、タングテン、ビスマス、鉄、アンチ
モン、ケイ素及び酸素を表し、Aはニッケル及びコバル
トからなる群より選ばれた少なくとも1種の元素、Xは
マグネシウム、亜鉛、マンガン、クロム、スズ及び鉛か
らなる群より選ばれた少なくとも1種の元素、Yはリ
ン、ホウ素、イオウ及びセレンからなる群より選ばれた
少なくとも1種の元素、Zはナトリウム、カリウム、ル
ビジウム、セシウム及びタリウムからなる群より選ばれ
た少なくとも一種の元素を表す。ただし、a,b,c,
d,e,f,g,h,i,j及びkは各元素の原子比を
表し、a=12のとき、0.001≦b≦2、0.1≦
c≦5、0.1≦d≦5、0.01≦e≦5、1≦f≦
12、0≦g≦10、0≦h≦5、0.01≦i≦2、
0≦j≦20であり、kは前記各成分の原子価を満足す
るのに必要な酸素原子数である。)で示される触媒、ま
たは、一般式 Moa Teb Fec Pbd Sbe Sifghi
j (式中、Mo,Te,Fe,Pb,Sb,Si及びOは
それぞれモリブデン、テルル、鉄、鉛、アンチモン、ケ
イ素及び酸素を表し、Dはニッケル、コバルト、マグネ
シウム、マンガン、クロム及び亜鉛からなる群より選ば
れた少なくとも一種の元素、Eはリン、セリウム、タン
グステン、ランタン、銀及びスズからなる群より選ばれ
た少なくとも一種の元素、Zはナトリウム、カリウム、
ルビジウム、セシウム及びタリウムからなる群より選ば
れた少なくとも一種の元素を示す。ただし、a,b,
c,d,e,f,g,h,i及びjは各元素の原子比を
表し、a=12のとき、0.1≦b≦8、0.1≦c≦
8、1≦d≦12、0.1≦e≦10、1≦f≦30、
0≦g≦12、0≦h≦8、0.01≦i≦2であり、
jは前記各成分の原子価を満足するのに必要な酸素原子
数である。)で示される触媒を使用することを特徴とす
るメタクロレイン、メタクリル酸及び1,3−ブタジエ
ンの製造法にある。
SUMMARY OF THE INVENTION The present invention relates to a Spent C4
Fractions gas-phase catalytic oxidation with molecular oxygen, methacrolein, in producing methacrylic acid and 1,3-butadiene of the general formula Mo a W b Bi c Fe d Sb e A f X g Y h Z i Si j
O k (wherein, Mo, W, Bi, Fe, Sb, Si and O represent molybdenum, tonten, bismuth, iron, antimony, silicon and oxygen, respectively, and A is at least one selected from the group consisting of nickel and cobalt. One element, X is at least one element selected from the group consisting of magnesium, zinc, manganese, chromium, tin and lead, and Y is at least one element selected from the group consisting of phosphorus, boron, sulfur and selenium And Z represents at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium, provided that a, b, c,
d, e, f, g, h, i, j and k represent the atomic ratio of each element, and when a = 12, 0.001 ≦ b ≦ 2, 0.1 ≦
c ≦ 5, 0.1 ≦ d ≦ 5, 0.01 ≦ e ≦ 5, 1 ≦ f ≦
12, 0 ≦ g ≦ 10, 0 ≦ h ≦ 5, 0.01 ≦ i ≦ 2,
0 ≦ j ≦ 20, and k is the number of oxygen atoms required to satisfy the valence of each component. ) The catalyst indicated or, a general formula Mo a Te b Fe c Pb d Sb e Si f D g E h Z i O
j (wherein, Mo, Te, Fe, Pb, Sb, Si and O represent molybdenum, tellurium, iron, lead, antimony, silicon and oxygen, respectively, and D represents nickel, cobalt, magnesium, manganese, chromium and zinc. At least one element selected from the group consisting of: E is at least one element selected from the group consisting of phosphorus, cerium, tungsten, lanthanum, silver and tin; Z is sodium, potassium;
It shows at least one element selected from the group consisting of rubidium, cesium and thallium. Where a, b,
c, d, e, f, g, h, i and j represent the atomic ratio of each element, and when a = 12, 0.1 ≦ b ≦ 8 and 0.1 ≦ c ≦
8, 1 ≦ d ≦ 12, 0.1 ≦ e ≦ 10, 1 ≦ f ≦ 30,
0 ≦ g ≦ 12, 0 ≦ h ≦ 8, 0.01 ≦ i ≦ 2,
j is the number of oxygen atoms required to satisfy the valence of each component. The method for producing methacrolein, methacrylic acid and 1,3-butadiene is characterized by using a catalyst represented by the formula

【0007】[0007]

【発明の実施の形態】本発明において反応原料として用
いるスペントC4留分とは、一般的にナフサクラッキン
グで生成するスペントBBをいい、イソブチレンを約4
2〜52容量%、1−ブテンを約22〜30容量%含有
し、ほかにノルマルブタン、イソブタン、トランス−2
−ブテン、シス−2−ブテン、1,3−ブタジエン等を
含有しているものである。
BEST MODE FOR CARRYING OUT THE INVENTION The spent C4 fraction used as a reaction raw material in the present invention generally refers to spent BB produced by naphtha cracking, and contains about 4 parts of isobutylene.
2 to 52% by volume, about 22 to 30% by volume of 1-butene, and normal butane, isobutane, trans-2
-Butene, cis-2-butene, 1,3-butadiene and the like.

【0008】上記スペントC4留分を分子状酸素と気相
接触酸化するに当り使用する前記の本発明の触媒を構成
する元素の原料としては、酸化物、硫酸塩、硝酸塩、炭
酸塩、水酸化物、アンモニウム塩又はそれらの混合物を
用いることができる。例えば、モリブデン、鉄、ビスマ
スやテルルの原料としては、モリブデン酸アンモニウ
ム、モリブデン酸、酸化モリブデン、クエン酸鉄アンモ
ニウム、シュウ酸第二鉄アンモニウム、硝酸鉄、硫酸
鉄、酢酸ビスマス、炭酸ビスマス、硝酸ビスマス、酸化
ビスマス、硫酸ビスマス、テルル酸、酸化テルルなどが
挙げられる。
The raw materials of the elements constituting the catalyst of the present invention which are used in the gas phase catalytic oxidation of the spent C4 fraction with molecular oxygen include oxides, sulfates, nitrates, carbonates, and hydroxides. , Ammonium salt or a mixture thereof can be used. For example, raw materials of molybdenum, iron, bismuth and tellurium include ammonium molybdate, molybdic acid, molybdenum oxide, iron ammonium citrate, ferric ammonium oxalate, iron nitrate, iron sulfate, bismuth acetate, bismuth carbonate, bismuth nitrate , Bismuth oxide, bismuth sulfate, telluric acid, tellurium oxide and the like.

【0009】触媒は上記元素の原料から蒸発乾固法、沈
殿法、酸化物混合法等の既知の方法を用いて調製するこ
とができる。また、触媒の調製に当り担体を用いること
も好ましく、担体としては例えばシリカ、アルミナ、シ
リカ−アルミナなどを用いることができる。
The catalyst can be prepared from the above-mentioned raw materials by a known method such as an evaporation to dryness method, a precipitation method, and an oxide mixing method. It is also preferable to use a carrier in preparing the catalyst. As the carrier, for example, silica, alumina, silica-alumina and the like can be used.

【0010】本発明において前記の触媒を用いてスペン
トC4留分を分子状酸素により気相接触酸化して、メタ
クロレイン、メタクリル酸及び1,3−ブタジエンを製
造するに際しては、スペントC4留分対酸素のモル比は
1:0.5〜3の範囲が好ましい。酸化に用いられる分
子状酸素は純酸素ガスでもよいが、工業的には空気の使
用が有利である。
In the present invention, when the spent C4 fraction is subjected to gas phase catalytic oxidation with molecular oxygen using the above-mentioned catalyst to produce methacrolein, methacrylic acid and 1,3-butadiene, the spent C4 fraction is used in combination with the spent C4 fraction. The molar ratio of oxygen is preferably in the range of 1: 0.5 to 3. The molecular oxygen used for the oxidation may be pure oxygen gas, but the use of air is industrially advantageous.

【0011】反応圧力は常圧ないし数気圧まで用いられ
る。反応温度は250〜450℃の範囲で行うのが好ま
しい。また、反応は固定床でも流動床でも実施できる。
The reaction pressure is from normal pressure to several atmospheres. The reaction temperature is preferably in the range of 250 to 450 ° C. The reaction can be carried out in a fixed bed or a fluidized bed.

【0012】[0012]

【実施例】以下、本発明を実施例、比較例を掲げて説明
する。説明中の「部」は重量部を意味する。分析はガス
クロマトグラフィーにより行った。また、反応率、生成
するメタクロレイン、メタクリル酸及び1,3−ブタジ
エンの選択率はスペントC4留分中に含まれるイソブチ
レンや1−ブテンを基準とし、以下のように定義され
る。
The present invention will be described below with reference to examples and comparative examples. “Parts” in the description means parts by weight. The analysis was performed by gas chromatography. The reaction rate and the selectivity of methacrolein, methacrylic acid and 1,3-butadiene to be formed are defined as follows based on isobutylene and 1-butene contained in the spent C4 fraction.

【0013】[0013]

【数1】 (Equation 1)

【0014】[0014]

【数2】 (Equation 2)

【0015】[0015]

【数3】 (Equation 3)

【0016】[0016]

【数4】 (Equation 4)

【0017】[0017]

【数5】 (Equation 5)

【0018】実施例1 純水500部に60重量%硝酸50部を加え均一にした
のち、硝酸ビスマス57.3部を加え溶解した。これに
硝酸セシウム23.0部を溶解したのち、パラタングス
テン酸アンモニウム30.8部を加え加熱撹拌し、大部
分の水分を蒸発させた。得られたケーキ状物質を120
℃で乾燥させたのち、400℃で3時間焼成し、乳鉢で
粉砕して複合酸化物の粉体を得た(複合酸化物A)。
Example 1 50 parts of 60% by weight nitric acid was added to 500 parts of pure water to make it uniform, and then 57.3 parts of bismuth nitrate was added and dissolved. After dissolving 23.0 parts of cesium nitrate, 30.8 parts of ammonium paratungstate was added and heated and stirred to evaporate most of the water. The obtained cake-like substance is
After drying at 400 ° C., the mixture was baked at 400 ° C. for 3 hours and pulverized in a mortar to obtain a composite oxide powder (composite oxide A).

【0019】別に純水1000部にモリブデン酸アンモ
ニウム500部、ホウ酸7.3部及び硝酸セシウム9.
2部を加え加熱撹拌した(A液)。さらに、別に純水8
50部に60重量%硝酸50部を加え均一にしたのち、
硝酸ビスマス34.3部を加え溶解した。これに硝酸第
二鉄286.0部、硝酸ニッケル343.2部、硝酸コ
バルト68.7部、硝酸マグネシウム60.5部及び硝
酸亜鉛70.2部を順次加え溶解した(B液)。
Separately, 500 parts of ammonium molybdate, 7.3 parts of boric acid and cesium nitrate in 1000 parts of pure water.
2 parts were added and heated and stirred (Solution A). Separately, pure water 8
After adding 50 parts of 60% by weight nitric acid to 50 parts and making it uniform,
34.3 parts of bismuth nitrate was added and dissolved. 286.0 parts of ferric nitrate, 343.2 parts of nickel nitrate, 68.7 parts of cobalt nitrate, 60.5 parts of magnesium nitrate and 70.2 parts of zinc nitrate were sequentially added and dissolved (solution B).

【0020】A液に複合酸化物A及びB液を加えスラリ
ー状としたのち、三酸化アンチモン51.6部を加え加
熱撹拌し、大部分の水分を蒸発させた。得られたケーキ
状物質を120℃で乾燥させたのち、500℃で10時
間焼成し、プレス成型したのち、破砕して10〜20メ
ッシュ部分を分取した。
After the mixed oxides A and B were added to the liquid A to form a slurry, 51.6 parts of antimony trioxide was added and heated and stirred to evaporate most of the water. The obtained cake-like substance was dried at 120 ° C., baked at 500 ° C. for 10 hours, press-molded, and then crushed to fractionate 10 to 20 mesh portions.

【0021】こうして得られた触媒の組成は次式に示す
通りであった。式中、酸素の原子比xは他の原子の原子
価により自然に決まる値であるので、以後酸素の記載を
省略する。 Mo120.5 Bi0.8 Fe3 Ni5 Co1 Mg1 Zn1
0.5 Sb1.5 Cs0.7x
The composition of the catalyst thus obtained was as shown in the following formula. In the formula, the atomic ratio x of oxygen is a value that is naturally determined by the valence of another atom, and hence the description of oxygen is omitted. Mo 12 W 0.5 Bi 0.8 Fe 3 Ni 5 Co 1 Mg 1 Zn 1
B 0.5 Sb 1.5 Cs 0.7 O x

【0022】この触媒をステンレス製反応管に充填し、
イソブチレン47.6%、1−ブテン29.5%、プロ
ピレン0.2%、イソブタン1.1%、ノルマルブタン
5.0%、トランス−2−ブテン8.3%、シス−2−
ブテン7.9%、1,3−ブタジエン0.3%及びC5
留分以上0.1%(容量%)からなるスペントC4留分
ガス5%、酸素12%、水蒸気10%及び窒素73%
(容量%)の原料混合ガスを接触時間3.6秒で触媒層
を通過させ、340℃で反応を行った。その結果、イソ
ブチレンの反応率97.2%、1−ブテンの反応率9
3.0%、メタクロレインの選択率84.2%、メタク
リル酸の選択率3.2%、1,3−ブタジエンの選択率
95.2%であった。
The catalyst is filled in a stainless steel reaction tube,
Isobutylene 47.6%, 1-butene 29.5%, propylene 0.2%, isobutane 1.1%, normal butane 5.0%, trans-2-butene 8.3%, cis-2-
Butene 7.9%, 1,3-butadiene 0.3% and C5
Spent C4 fraction gas composed of 0.1% (volume%) of fraction or more 5% gas, 12% oxygen, 10% steam and 73% nitrogen
(Volume%) of the raw material mixed gas was passed through the catalyst layer at a contact time of 3.6 seconds, and the reaction was carried out at 340 ° C. As a result, the conversion of isobutylene was 97.2%, and the conversion of 1-butene was 9%.
3.0%, methacrolein selectivity 84.2%, methacrylic acid selectivity 3.2%, 1,3-butadiene selectivity 95.2%.

【0023】実施例2 純水1000部にモリブデン酸アンモニウム500部、
パラタングステン酸アンモニウム18.5部、硝酸カリ
ウム2.4部及び硝酸セシウム32.2部を加え加熱撹
拌した(A液)。別に、純水1500部に60重量%硝
酸250部を加え均一にしたのち、硝酸ビスマス91.
6部を加え溶解した。これに硝酸第二鉄238.4部、
硝酸ニッケル205.9部、硝酸コバルト274.7部
及び硝酸鉛39.1部を順次加え溶解した(B液)。
Example 2 500 parts of ammonium molybdate in 1000 parts of pure water
18.5 parts of ammonium paratungstate, 2.4 parts of potassium nitrate and 32.2 parts of cesium nitrate were added and heated and stirred (Solution A). Separately, 250 parts of 60% by weight nitric acid was added to 1500 parts of pure water to make the mixture uniform, and then bismuth nitrate was added.
6 parts were added and dissolved. 238.4 parts of ferric nitrate,
205.9 parts of nickel nitrate, 274.7 parts of cobalt nitrate and 39.1 parts of lead nitrate were sequentially added and dissolved (solution B).

【0024】A液にB液を加え、スラリー状としたの
ち、三酸化アンチモン44.7部及び酸化第一スズ3
1.8部を加え加熱撹拌し、大部分の水分を蒸発させ
た。得られたケーキ状物質を120℃で乾燥させたの
ち、500℃で10時間焼成し、プレス成型したのち、
破砕して10〜20メッシュ部分を分取した。
Solution B was added to Solution A to form a slurry, and then 44.7 parts of antimony trioxide and stannous oxide 3
1.8 parts were added and heated and stirred to evaporate most of the water. After drying the obtained cake-like substance at 120 ° C., baking it at 500 ° C. for 10 hours, press-molding,
It was crushed and a 10-20 mesh portion was collected.

【0025】こうして得られた触媒の組成は次式に示す
通りであった。 Mo120.3 Bi0.8 Fe2.5 Ni3 Co4 Pb0.5
1.3 Sn10.1Cs0.7
The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 W 0.3 Bi 0.8 Fe 2.5 Ni 3 Co 4 Pb 0.5 S
b 1.3 Sn 1 K 0.1 Cs 0.7

【0026】この触媒を用いて実施例1と同じ条件で反
応を行った。その結果、イソブチレンの反応率95.6
%、1−ブテンの反応率92.7%、メタクロレインの
選択率82.3%、メタクリル酸の選択率4.8%、
1,3−ブタジエンの選択率94.7%であった。
Using this catalyst, a reaction was carried out under the same conditions as in Example 1. As a result, the conversion of isobutylene was 95.6.
%, Conversion of 1-butene 92.7%, selectivity of methacrolein 82.3%, selectivity of methacrylic acid 4.8%,
The selectivity for 1,3-butadiene was 94.7%.

【0027】実施例3 純水1000部にモリブデン酸アンモニウム500部、
パラタングステン酸アンモニウム18.5部、硝酸タリ
ウム6.3部及び硝酸セシウム9.2部を加え加熱撹拌
した(A液)。別に純水1000部に60重量%硝酸2
50部を加え均一にしたのち、硝酸ビスマス114.5
部を加え溶解した。これに硝酸第二鉄286.0部、硝
酸コバルト412.1部、硝酸マグネシウム30.3部
及び硝酸亜鉛105.3部を順次加え溶解した(B
液)。
Example 3 500 parts of ammonium molybdate in 1000 parts of pure water
18.5 parts of ammonium paratungstate, 6.3 parts of thallium nitrate and 9.2 parts of cesium nitrate were added and heated and stirred (Solution A). Separately, 60 parts by weight of nitric acid 2
After adding 50 parts to make uniform, bismuth nitrate 114.5
Was added and dissolved. 286.0 parts of ferric nitrate, 412.1 parts of cobalt nitrate, 30.3 parts of magnesium nitrate and 105.3 parts of zinc nitrate were sequentially added and dissolved therein (B
liquid).

【0028】A液にB液を加え、スラリー状としたの
ち、三酸化アンチモン34.4部、酸化クロム2.4部
及び30重量%シリカゾル472.6部を加え加熱撹拌
し、大部分の水分を蒸発させた。得られたケーキ状物質
を120℃で乾燥させたのち、500℃で6時間焼成
し、プレス成型したのち、破砕して10〜20メッシュ
部分を分取した。
Solution B was added to Solution A to form a slurry, and then 34.4 parts of antimony trioxide, 2.4 parts of chromium oxide, and 472.6 parts of 30% by weight silica sol were added, and the mixture was heated and stirred. Was evaporated. The obtained cake-like substance was dried at 120 ° C., baked at 500 ° C. for 6 hours, press-molded, crushed and fractionated into 10 to 20 mesh portions.

【0029】こうして得られた触媒の組成は次式に示す
通りであった。 Mo120.3 Bi1 Fe3 Co6 Mg0.5 Zn1.5 Cr
0.1 Sb1 Tl0.1Cs0.2 Si10
The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 W 0.3 Bi 1 Fe 3 Co 6 Mg 0.5 Zn 1.5 Cr
0.1 Sb 1 Tl 0.1 Cs 0.2 Si 10

【0030】この触媒を用いて実施例1と同じ条件で反
応を行った。その結果、イソブチレンの反応率95.8
%、1−ブテンの反応率94.5%、メタクロレインの
選択率85.0%、メタクリル酸の選択率2.9%、
1,3−ブタジエンの選択率92.7%であった。
Using this catalyst, a reaction was carried out under the same conditions as in Example 1. As a result, the reaction rate of isobutylene was 95.8.
%, Reaction rate of 1-butene 94.5%, selectivity of methacrolein 85.0%, selectivity of methacrylic acid 2.9%,
The selectivity for 1,3-butadiene was 92.7%.

【0031】実施例4 純水1000部にモリブデン酸アンモニウム500部、
硝酸セシウム32.2部及びパラタングステン酸アンモ
ニウム30.8部を加え加熱撹拌した(A液)。別に純
水1500部に60重量%硝酸250部を加え均一にし
たのち、硝酸ビスマス103.0部を加え溶解した。こ
れに硝酸第二鉄257.4部、硝酸ニッケル68.6
部、硝酸コバルト343.3部、硝酸マグネシウム6
0.5部及び亜セレン酸24.3部を順次加え溶解した
(B液)。
Example 4 500 parts of ammonium molybdate in 1000 parts of pure water
32.2 parts of cesium nitrate and 30.8 parts of ammonium paratungstate were added and heated and stirred (Solution A). Separately, 250 parts of 60% by weight nitric acid was added to 1500 parts of pure water to make the mixture uniform, and 103.0 parts of bismuth nitrate was added and dissolved. 257.4 parts of ferric nitrate and 68.6 of nickel nitrate
Parts, 343.3 parts of cobalt nitrate, magnesium nitrate 6
0.5 part and 24.3 parts of selenous acid were sequentially added and dissolved (solution B).

【0032】A液にB液を加え、スラリー状としたの
ち、三酸化アンチモン51.6部及び30重量%シリカ
ゾル37.8部を加え加熱撹拌し、大部分の水分を蒸発
させた。得られたケーキ状物質を120℃で乾燥させた
のち、500℃で10時間焼成し、プレス成型したの
ち、破砕して10〜20メッシュ部分を分取した。こう
して得られた触媒の組成は次式に示す通りであった。 Mo120.5 Bi0.9 Fe2.7 Ni1 Co5 Mg1 Se
0.8 Sb1.5 Cs0. 7 Si0.8
The solution B was added to the solution A to form a slurry, and then 51.6 parts of antimony trioxide and 37.8 parts of a 30% by weight silica sol were added and heated with stirring to evaporate most of the water. The obtained cake-like substance was dried at 120 ° C., baked at 500 ° C. for 10 hours, press-molded, and then crushed to fractionate 10 to 20 mesh portions. The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 W 0.5 Bi 0.9 Fe 2.7 Ni 1 Co 5 Mg 1 Se
0.8 Sb 1.5 Cs 0. 7 Si 0.8

【0033】この触媒を用いて実施例1と同じ条件で反
応を行った。その結果、イソブチレンの反応率96.1
%、1−ブテンの反応率93.8%、メタクロレインの
選択率83.4%、メタクリル酸の選択率3.6%、
1,3−ブタジエンの選択率95.2%であった。
Using this catalyst, a reaction was carried out under the same conditions as in Example 1. As a result, the conversion of isobutylene was 96.1.
%, Conversion of 1-butene 93.8%, selectivity of methacrolein 83.4%, selectivity of methacrylic acid 3.6%,
The selectivity for 1,3-butadiene was 95.2%.

【0034】実施例5 純水2000部にモリブデン酸アンモニウム500部を
加えて溶解し、これに硝酸第二鉄257.4部を純水3
00部に溶解したものを加えた。生成したスラリーを還
流下95℃で1時間加熱撹拌処理した。加熱処理後のス
ラリーに純水100部にパラタングステン酸アンモニウ
ム30.8部及び85重量%リン酸1.4部を加えた溶
液を加え撹拌した(A液)。別に純水850部に60重
量%硝酸250部を加えて均一にしたのち、硝酸ビスマ
ス114.5部を加え溶解した。これに硝酸ニッケル4
80.4部、硝酸コバルト68.7部、硝酸マンガン3
3.9部及び硝酸ルビジウム17.4部を順次加え溶解
した(B液)。
Example 5 500 parts of ammonium molybdate was added to and dissolved in 2000 parts of pure water, and 257.4 parts of ferric nitrate was added to 3 parts of pure water.
The solution dissolved in 00 parts was added. The resulting slurry was heated and stirred at 95 ° C. for 1 hour under reflux. A solution obtained by adding 30.8 parts of ammonium paratungstate and 1.4 parts of 85% by weight phosphoric acid to 100 parts of pure water was added to the slurry after the heat treatment, followed by stirring (Solution A). Separately, 250 parts of 60% by weight nitric acid was added to 850 parts of pure water to make the mixture uniform, and 114.5 parts of bismuth nitrate was added and dissolved. Nickel nitrate 4
80.4 parts, cobalt nitrate 68.7 parts, manganese nitrate 3
3.9 parts and rubidium nitrate (17.4 parts) were sequentially added and dissolved (solution B).

【0035】A液にB液を加え、スラリー状としたの
ち、三酸化アンチモン68.8部を加え加熱撹拌し、大
部分の水分を蒸発させた。得られたケーキ状物質を12
0℃で乾燥させたのち、500℃で10時間焼成し、プ
レス成型したのち、破砕して10〜20メッシュ部分を
分取した。こうして得られた触媒の組成は次式に示す通
りであった。 Mo120.5 Bi1 Fe2.7 Ni7 Mn0.5 Co1
0.05Sb2 Rb0.5
The solution B was added to the solution A to form a slurry, 68.8 parts of antimony trioxide was added, and the mixture was heated and stirred to evaporate most of the water. The cake-like substance obtained was 12
After drying at 0 ° C., it was baked at 500 ° C. for 10 hours, press-molded, and then crushed to fractionate 10 to 20 mesh portions. The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 W 0.5 Bi 1 Fe 2.7 Ni 7 Mn 0.5 Co 1 P
0.05 Sb 2 Rb 0.5

【0036】この触媒を用いて実施例1と同じ条件で反
応を行った。その結果、イソブチレンの反応率94.7
%、1−ブテンの反応率92.9%、メタクロレインの
選択率84.8%、メタクリル酸の選択率3.9%、
1,3−ブタジエンの選択率93.8%であった。
Using this catalyst, a reaction was carried out under the same conditions as in Example 1. As a result, the conversion of isobutylene was 94.7.
%, Reaction rate of 1-butene 92.9%, selectivity of methacrolein 84.8%, selectivity of methacrylic acid 3.9%,
The selectivity for 1,3-butadiene was 93.8%.

【0037】実施例6 純水1000部にモリブデン酸アンモニウム500部を
加えて溶解し、これに硝酸第二鉄209.8部及び硫酸
第一鉄52.5部を純水300部に溶解した溶液を加え
た。生成したスラリーに純水100部にパラタングステ
ン酸アンモニウム6.2部を加えた溶液を加え撹拌した
(A液)。別に純水850部に60重量%硝酸250部
を加えて均一にしたのち、硝酸ビスマス114.5部を
加え溶解した。これに硝酸ニッケル274.5部、硝酸
コバルト206.0部、硝酸クロム9.4部、硝酸鉛
7.8部及び硝酸第一タリウム12.6部を順次加え溶
解した(B液)。
Example 6 A solution prepared by adding 500 parts of ammonium molybdate to 1000 parts of pure water and dissolving the same, and dissolving 209.8 parts of ferric nitrate and 52.5 parts of ferrous sulfate in 300 parts of pure water. Was added. A solution obtained by adding 6.2 parts of ammonium paratungstate to 100 parts of pure water was added to the resulting slurry and stirred (Solution A). Separately, 250 parts of 60% by weight nitric acid was added to 850 parts of pure water to make the mixture uniform, and 114.5 parts of bismuth nitrate was added and dissolved. To this, 274.5 parts of nickel nitrate, 206.0 parts of cobalt nitrate, 9.4 parts of chromium nitrate, 7.8 parts of lead nitrate and 12.6 parts of thallous nitrate were sequentially added and dissolved (solution B).

【0038】A液に20%シリカゾル850.7部及び
B液を加えてスラリー状としたのち、三酸化アンチモン
34.4部を加え加熱撹拌し、大部分の水分を蒸発させ
た。得られたケーキ状物質を120℃で乾燥させたの
ち、500℃で10時間焼成し、プレス成型したのち、
破砕して10〜20メッシュ部分を分取した。こうして
得られた触媒の組成は次式に示す通りであった。 Mo120.1 Bi1 Fe3 Cr0.1 Ni4 Co3 Pb
0.10.8 Sb1 Tl0.2 Si12
A slurry was prepared by adding 850.7 parts of a 20% silica sol and a B solution to the A solution, and then 34.4 parts of antimony trioxide was added and heated and stirred to evaporate most of the water. After drying the obtained cake-like substance at 120 ° C., baking it at 500 ° C. for 10 hours, press-molding,
It was crushed and a 10-20 mesh portion was collected. The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 W 0.1 Bi 1 Fe 3 Cr 0.1 Ni 4 Co 3 Pb
0.1 S 0.8 Sb 1 Tl 0.2 Si 12

【0039】この触媒を用いて実施例1と同じ条件で反
応を行った。その結果、イソブチレンの反応率93.7
%、1−ブテンの反応率93.6%、メタクロレインの
選択率87.0%、メタクリル酸の選択率3.1%、
1,3−ブタジエンの選択率93.2%であった。
Using this catalyst, a reaction was carried out under the same conditions as in Example 1. As a result, the reaction rate of isobutylene was 93.7.
%, Reaction rate of 1-butene 93.6%, selectivity of methacrolein 87.0%, selectivity of methacrylic acid 3.1%,
The selectivity for 1,3-butadiene was 93.2%.

【0040】実施例7 純水1000部にモリブデン酸アンモニウム500部及
び硝酸セシウム9.2部を加えて加熱溶解し、これに硝
酸第二鉄190.7部、硝酸鉛625.3部及びテルル
酸162.6部を純水3000部に溶解した溶液を加え
た。生成したスラリーに三酸化アンチモン172.0部
及び30重量%シリカゾル709.0部を加えたのち加
熱撹拌し、大部分の水分を蒸発させた。
Example 7 500 parts of ammonium molybdate and 9.2 parts of cesium nitrate were added to 1000 parts of pure water and dissolved by heating. To this, 190.7 parts of ferric nitrate, 625.3 parts of lead nitrate and telluric acid were added. A solution prepared by dissolving 162.6 parts in 3000 parts of pure water was added. 172.0 parts of antimony trioxide and 709.0 parts of a 30% by weight silica sol were added to the resulting slurry, followed by heating and stirring to evaporate most of the water.

【0041】得られたケーキ状物質を120℃で乾燥さ
せた。得られた乾燥物質をプレス成型したのち破砕して
10〜20メッシュ部分を分取し、500℃で3時間焼
成した。こうして得られた触媒の組成は次式に示す通り
であった。 Mo12Te3 Fe2 Pb8 Sb5 Cs0.2 Si15
The obtained cake was dried at 120 ° C. The obtained dried material was press-molded, crushed, fractionated into 10 to 20 mesh portions, and fired at 500 ° C. for 3 hours. The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 Te 3 Fe 2 Pb 8 Sb 5 Cs 0.2 Si 15

【0042】この触媒をステンレス製反応管に充填し、
イソブチレン47.6%、1−ブテン29.5%、プロ
ピレン0.2%、イソブタン1.1%、ノルマルブタン
5.0%、トランス−2−ブテン8.3%、シス−2−
ブテン7.9%、1,3−ブタジエン0.3%及びC5
留分以上0.1%(容量%)からなるスペントC4留分
ガス5%、酸素12%、水蒸気10%及び窒素73%
(容量%)の原料混合ガスを接触時間3.6秒で触媒層
を通過させ、360℃で反応を行った。
This catalyst was filled in a stainless steel reaction tube,
Isobutylene 47.6%, 1-butene 29.5%, propylene 0.2%, isobutane 1.1%, normal butane 5.0%, trans-2-butene 8.3%, cis-2-
Butene 7.9%, 1,3-butadiene 0.3% and C5
Spent C4 fraction gas composed of 0.1% (volume%) of fraction or more 5% gas, 12% oxygen, 10% steam and 73% nitrogen
(Volume%) of the raw material mixed gas was passed through the catalyst layer at a contact time of 3.6 seconds, and the reaction was carried out at 360 ° C.

【0043】その結果、イソブチレンの反応率95.3
%、1−ブテンの反応率14.2%、メタクロレインの
選択率83.5%、メタクリル酸の選択率2.2%、
1,3−ブタジエンの選択率98.5%であった。
As a result, the conversion of isobutylene was 95.3.
%, 1-butene conversion 14.2%, methacrolein selectivity 83.5%, methacrylic acid selectivity 2.2%,
The selectivity for 1,3-butadiene was 98.5%.

【0044】実施例8 実施例7の触媒を用いて、反応温度を340℃としたほ
かは実施例7と同じ条件で反応を行った。その結果、イ
ソブチレンの反応率90.5%、1−ブテンの反応率1
8.5%、メタクロレインの選択率81.5%、メタク
リル酸の選択率1.8%、1,3−ブタジエンの選択率
94.8%であった。
Example 8 Using the catalyst of Example 7, a reaction was carried out under the same conditions as in Example 7 except that the reaction temperature was 340 ° C. As a result, the conversion of isobutylene was 90.5%, and the conversion of 1-butene was 1
The selectivity for methacrolein was 8.5%, the selectivity for methacrylic acid was 1.8%, and the selectivity for 1,3-butadiene was 94.8%.

【0045】実施例9 実施例7の触媒を用いて、反応温度を370℃としたほ
かは実施例7と同じ条件で反応を行った。その結果、イ
ソブチレンの反応率97.4%、1−ブテンの反応率1
4.3%、メタクロレインの選択率85.6%、メタク
リル酸の選択率2.3%、1,3−ブタジエンの選択率
98.6%であった。
Example 9 Using the catalyst of Example 7, the reaction was carried out under the same conditions as in Example 7 except that the reaction temperature was 370 ° C. As a result, the conversion of isobutylene was 97.4% and the conversion of 1-butene was 1
4.3%, methacrolein selectivity 85.6%, methacrylic acid selectivity 2.3%, 1,3-butadiene selectivity 98.6%.

【0046】実施例10 純水1000部にモリブデン酸アンモニウム500部及
び硝酸セシウム4.6部及び硝酸カリウム2.4部を加
えて加熱溶解し、これに硝酸第二鉄190.7部、硝酸
鉛312.7部、硝酸ニッケル274.5部及びテルル
酸162.6部を純水3000部に溶解した溶液を加え
た。生成したスラリーに三酸化アンチモン172.0部
及び30重量%シリカゾル472.7部を加えたのち加
熱撹拌し、大部分の水分を蒸発させた。
Example 10 500 parts of ammonium molybdate, 4.6 parts of cesium nitrate and 2.4 parts of potassium nitrate were added to 1000 parts of pure water and dissolved by heating. To this, 190.7 parts of ferric nitrate and 312 parts of lead nitrate were added. 0.7 part, 274.5 parts of nickel nitrate and 162.6 parts of telluric acid dissolved in 3000 parts of pure water were added. 172.0 parts of antimony trioxide and 472.7 parts of 30% by weight silica sol were added to the resulting slurry, and the mixture was heated and stirred to evaporate most of the water.

【0047】得られたケーキ状物質を120℃で乾燥さ
せた。得られた乾燥物質をプレス成型したのち破砕して
10〜20メッシュ部分を分取し、500℃で3時間焼
成した。こうして得られた触媒の組成は次式に示す通り
であった。 Mo12Te3 Fe2 Pb4 Ni4 Sb5 Cs0.10.1
Si10
The obtained cake was dried at 120 ° C. The obtained dried material was press-molded, crushed, fractionated into 10 to 20 mesh portions, and fired at 500 ° C. for 3 hours. The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 Te 3 Fe 2 Pb 4 Ni 4 Sb 5 Cs 0.1 K 0.1
Si 10

【0048】この触媒を用いて実施例7と同じ条件で反
応を行った。その結果、イソブチレンの反応率94.8
%、1−ブテンの反応率16.8%、メタクロレインの
選択率84.1%、メタクリル酸の選択率1.6%、
1,3−ブタジエンの選択率は100%を超えた。
Using this catalyst, a reaction was carried out under the same conditions as in Example 7. As a result, the reaction rate of isobutylene was 94.8.
%, 1-butene conversion 16.8%, methacrolein selectivity 84.1%, methacrylic acid selectivity 1.6%,
The selectivity for 1,3-butadiene exceeded 100%.

【0049】実施例11 純水1000部にモリブデン酸アンモニウム500部、
パラタングステン酸アンモニウム3.1部、硝酸セシウ
ム4.6部及び硝酸ナトリウム2.0部を加えて加熱溶
解し、これに硝酸第二鉄286.0部、硝酸鉛312.
7部、硝酸コバルト274.7部及びテルル酸162.
6部を純水3000部に溶解した溶液を加えた。生成し
たスラリーに三酸化アンチモン103.2部及び30重
量%シリカゾル236.3部を加えたのち加熱撹拌し、
大部分の水分を蒸発させた。
Example 11 500 parts of ammonium molybdate in 1000 parts of pure water
3.1 parts of ammonium paratungstate, 4.6 parts of cesium nitrate and 2.0 parts of sodium nitrate were added and dissolved by heating, and 286.0 parts of ferric nitrate and 312.
7 parts, 274.7 parts of cobalt nitrate and 162.
A solution obtained by dissolving 6 parts in 3000 parts of pure water was added. 103.2 parts of antimony trioxide and 236.3 parts of a 30% by weight silica sol were added to the resulting slurry, followed by heating and stirring,
Most of the water was evaporated.

【0050】得られたケーキ状物質を120℃で乾燥さ
せた。得られた乾燥物質をプレス成型したのち破砕して
10〜20メッシュ部分を分取し、500℃で3時間焼
成した。こうして得られた触媒の組成は次式に示す通り
であった。 Mo12Te3 Fe3 Pb4 Co4 Sb3 Cs0.1 Na
0.10.05Si5
The obtained cake was dried at 120 ° C. The obtained dried material was press-molded, crushed, fractionated into 10 to 20 mesh portions, and fired at 500 ° C. for 3 hours. The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 Te 3 Fe 3 Pb 4 Co 4 Sb 3 Cs 0.1 Na
0.1 W 0.05 Si 5

【0051】この触媒を用いて実施例7と同じ条件で反
応を行った。その結果、イソブチレンの反応率96.4
%、1−ブテンの反応率16.4%、メタクロレインの
選択率83.8%、メタクリル酸の選択率1.3%で
1,3−ブタジエンの選択率は100%を超えた。
Using this catalyst, a reaction was carried out under the same conditions as in Example 7. As a result, the reaction rate of isobutylene was 96.4.
%, The selectivity of 1-butene was 16.4%, the selectivity of methacrolein was 83.8%, the selectivity of methacrylic acid was 1.3%, and the selectivity of 1,3-butadiene exceeded 100%.

【0052】実施例12 純水1000部にモリブデン酸アンモニウム500部及
び、硝酸ルビジウム7.0部を加えて加熱溶解し、これ
に硝酸第二鉄286.0部、硝酸鉛312.7部、硝酸
マグネシウム121.0部、硝酸亜鉛140.4部、硝
酸ランタン10.2部及びテルル酸108.4部を純水
3000部に溶解した溶液を加えた。生成したスラリー
に三酸化アンチモン103.2部、酸化第二セリウム
4.1部及び30重量%シリカゾル472.7部を加え
たのち加熱撹拌し、大部分の水分を蒸発させた。
Example 12 500 parts of ammonium molybdate and 7.0 parts of rubidium nitrate were added to 1000 parts of pure water and dissolved by heating, and 286.0 parts of ferric nitrate, 312.7 parts of lead nitrate, and A solution prepared by dissolving 121.0 parts of magnesium, 140.4 parts of zinc nitrate, 10.2 parts of lanthanum nitrate, and 108.4 parts of telluric acid in 3000 parts of pure water was added. 103.2 parts of antimony trioxide, 4.1 parts of ceric oxide and 472.7 parts of 30% by weight silica sol were added to the resulting slurry, and the mixture was heated and stirred to evaporate most of the water.

【0053】得られたケーキ状物質を120℃で乾燥さ
せた。得られた乾燥物質をプレス成型したのち、破砕し
て10〜20メッシュ部分を分取し、500℃で3時間
焼成した。こうして得られた触媒の組成は次式に示す通
りであった。 Mo12Te2 Fe3 Pb4 Mg2 Zn2 Sb3 Rb0.2
Ce0.1 La0.1 Si10
The obtained cake was dried at 120 ° C. After the obtained dried substance was press-molded, it was crushed and fractionated into 10 to 20 mesh portions, which were baked at 500 ° C. for 3 hours. The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 Te 2 Fe 3 Pb 4 Mg 2 Zn 2 Sb 3 Rb 0.2
Ce 0.1 La 0.1 Si 10

【0054】この触媒を用いて実施例7と同じ条件で反
応を行った。その結果、イソブチレンの反応率95.0
%、1−ブテンの反応率20.2%、メタクロレインの
選択率84.2%、メタクリル酸の選択率1.5%、
1,3−ブタジエンの選択率99.5%であった。
Using this catalyst, a reaction was carried out under the same conditions as in Example 7. As a result, the conversion of isobutylene was 95.0.
%, 1-butene conversion 20.2%, methacrolein selectivity 84.2%, methacrylic acid selectivity 1.5%,
The selectivity for 1,3-butadiene was 99.5%.

【0055】実施例13 純水1000部にモリブデン酸アンモニウム500部及
び硝酸タリウム12.6部を加えて加熱溶解し、これに
硝酸第二鉄228.8部、硝酸鉛390.8部、硝酸マ
ンガン67.7部、酸化クロム23.6部、硝酸銀2.
0部及びテルル酸162.6部を純水3000部に溶解
した溶液を加えた。生成したスラリーに三酸化アンチモ
ン103.2部及び30重量%シリカゾル236.3部
を加えたのち加熱撹拌し、大部分の水分を蒸発させた。
Example 13 500 parts of ammonium molybdate and 12.6 parts of thallium nitrate were added to 1000 parts of pure water and dissolved by heating. 228.8 parts of ferric nitrate, 390.8 parts of lead nitrate, and manganese nitrate were added. 67.7 parts, chromium oxide 23.6 parts, silver nitrate 2.
A solution of 0 part and 162.6 parts of telluric acid dissolved in 3000 parts of pure water was added. After adding 103.2 parts of antimony trioxide and 236.3 parts of a 30% by weight silica sol to the resulting slurry, the mixture was heated and stirred to evaporate most of the water.

【0056】得られたケーキ状物質を120℃で乾燥さ
せた。得られた乾燥物質をプレス成型したのち、破砕し
て10〜20メッシュ部分を分取し、500℃で3時間
焼成した。こうして得られた触媒の組成は次式に示す通
りであった。 Mo12Te3 Fe2.4 Pb5 Mn1 Cr1 Tl0.2 Sb
3 Ag0.05Si5
The obtained cake was dried at 120 ° C. After the obtained dried substance was press-molded, it was crushed and fractionated into 10 to 20 mesh portions, which were baked at 500 ° C. for 3 hours. The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 Te 3 Fe 2.4 Pb 5 Mn 1 Cr 1 Tl 0.2 Sb
3 Ag 0.05 Si 5

【0057】この触媒を用いて実施例7と同じ条件で反
応を行った。その結果、イソブチレンの反応率95.1
%、1−ブテンの反応率11.8%、メタクロレインの
選択率84.3%、メタクリル酸の選択率1.7%で
1,3−ブタジエンの選択率は100%を超えた。
Using this catalyst, a reaction was carried out under the same conditions as in Example 7. As a result, the conversion of isobutylene was 95.1.
%, The reaction rate of 1-butene was 11.8%, the selectivity of methacrolein was 84.3%, and the selectivity of methacrylic acid was 1.7%, and the selectivity of 1,3-butadiene exceeded 100%.

【0058】実施例14 純水1000部にモリブデン酸アンモニウム500部、
50%水酸化セシウム14.2部を加えて加熱溶解し、
これに硝酸第二鉄381.4部、硝酸鉛625.3部及
びテルル酸162.6部を純水3000部に溶解した溶
液を加えた。生成したスラリーに三酸化アンチモン17
2.0部、酸化第一スズ15.9部及び30重量%シリ
カゾル709.0部を加えたのち加熱撹拌し、大部分の
水分を蒸発させた。
Example 14 500 parts of ammonium molybdate was added to 1000 parts of pure water.
14.2 parts of 50% cesium hydroxide was added and dissolved by heating.
To this was added a solution in which 381.4 parts of ferric nitrate, 625.3 parts of lead nitrate and 162.6 parts of telluric acid were dissolved in 3000 parts of pure water. Antimony trioxide 17 was added to the resulting slurry.
After adding 2.0 parts, 15.9 parts of stannous oxide and 709.0 parts of a 30% by weight silica sol, the mixture was heated and stirred to evaporate most of the water.

【0059】得られたケーキ状物質を120℃で乾燥さ
せた。得られた乾燥物質をプレス成型したのち、破砕し
て10〜20メッシュ部分を分取し、500℃で3時間
焼成した。こうして得られた触媒の組成は次式に示す通
りであった。 Mo12Te3 Fe4 Pb8 Sb5 Cs0.2 Sn0.5 Si
15
The obtained cake was dried at 120 ° C. After the obtained dried substance was press-molded, it was crushed and fractionated into 10 to 20 mesh portions, which were baked at 500 ° C. for 3 hours. The composition of the catalyst thus obtained was as shown in the following formula. Mo 12 Te 3 Fe 4 Pb 8 Sb 5 Cs 0.2 Sn 0.5 Si
Fifteen

【0060】この触媒を用いて実施例7と同じ条件で反
応を行った。その結果、イソブチレンの反応率94.9
%、1−ブテンの反応率15.0%、メタクロレインの
選択率84.0%、メタクリル酸の選択率2.0%で
1,3−ブタジエンの選択率は100%を超えた。
Using this catalyst, a reaction was carried out under the same conditions as in Example 7. As a result, the reaction rate of isobutylene was 94.9.
%, 1-butene conversion rate 15.0%, methacrolein selectivity 84.0%, methacrylic acid selectivity 2.0%, and 1,3-butadiene selectivity exceeded 100%.

【0061】比較例1 実施例1の複合酸化物Aの調製においてパラタングステ
ン酸アンモニウムを用いないほかは、全て実施例1と同
様にして次式に示す組成の触媒を得た。 Mo12Bi0.8 Fe3 Ni5 Co1 Mg1 Zn10.5
Sb1.5 Cs0.7
Comparative Example 1 A catalyst having the composition shown in the following formula was obtained in the same manner as in Example 1 except that ammonium paratungstate was not used in the preparation of the composite oxide A of Example 1. Mo 12 Bi 0.8 Fe 3 Ni 5 Co 1 Mg 1 Zn 1 B 0.5
Sb 1.5 Cs 0.7

【0062】この触媒を用いて実施例1と同じ条件で反
応を行った。その結果、イソブチレンの反応率92.2
%、1−ブテンの反応率90.1%、メタクロレインの
選択率83.0%、メタクリル酸の選択率4.0%、
1,3−ブタジエンの選択率95.3%であった。
Using this catalyst, a reaction was carried out under the same conditions as in Example 1. As a result, the conversion of isobutylene was 92.2.
%, 1-butene conversion 90.1%, methacrolein selectivity 83.0%, methacrylic acid selectivity 4.0%,
The selectivity for 1,3-butadiene was 95.3%.

【0063】比較例2 実施例7においてテルル酸を用いないほかは、全て実施
例7と同様にして次式に示す触媒を得た。 Mo12Fe2 Pb8 Sb5 Cs0.2 Si15
Comparative Example 2 A catalyst represented by the following formula was obtained in the same manner as in Example 7 except that telluric acid was not used. Mo 12 Fe 2 Pb 8 Sb 5 Cs 0.2 Si 15

【0064】この触媒を用いて実施例7と同じ条件で反
応を行った。その結果、イソブチレンの反応率89.8
%、1−ブテンの反応率14.0%、メタクロレインの
選択率81.5%、メタクリル酸の選択率3.0%、
1,3−ブタジエンの選択率97.2%であった。
Using this catalyst, a reaction was carried out under the same conditions as in Example 7. As a result, the conversion of isobutylene was 89.8.
%, 1-butene conversion 14.0%, methacrolein selectivity 81.5%, methacrylic acid selectivity 3.0%,
The selectivity for 1,3-butadiene was 97.2%.

【0065】比較例3 実施例7においてシリカゾルを用いないほかは、全て実
施例7と同様にして次式に示す触媒を得た。 Mo12Te3 Fe2 Pb8 Sb5 Cs0.2
Comparative Example 3 A catalyst represented by the following formula was obtained in the same manner as in Example 7 except that no silica sol was used. Mo 12 Te 3 Fe 2 Pb 8 Sb 5 Cs 0.2

【0066】この触媒を用いて実施例7と同じ条件で反
応を行った。その結果、イソブチレンの反応率60.3
%、1−ブテンの反応率12.1%、メタクロレインの
選択率85.7%、メタクリル酸の選択率0.8%、
1,3−ブタジエンの選択率98.0%であった。
Using this catalyst, a reaction was carried out under the same conditions as in Example 7. As a result, the conversion of isobutylene was 60.3.
%, 1-butene conversion 12.1%, methacrolein selectivity 85.7%, methacrylic acid selectivity 0.8%,
The selectivity of 1,3-butadiene was 98.0%.

【発明の効果】本発明によれば、安価なスペントC4留
分を原料としてメタクロレイン、メタクリル酸及び1,
3−ブタジエンを高い反応率及び高い選択率で得ること
ができる。
According to the present invention, methacrolein, methacrylic acid and 1,1 are prepared from inexpensive spent C4 fraction.
3-Butadiene can be obtained with high conversion and high selectivity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 57/05 C07C 57/05 // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 57/05 C07C 57/05 // C07B 61/00 300 C07B 61/00 300

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スペントC4留分を分子状酸素を用いて
気相接触酸化し、メタクロレイン、メタクリル酸及び
1,3−ブタジエンを製造するにあたり、一般式 Moab Bic Fed Sbefghi Sij
k (式中、Mo,W,Bi,Fe,Sb,Si及びOはそ
れぞれモリブデン、タングテン、ビスマス、鉄、アンチ
モン、ケイ素及び酸素を表し、Aはニッケル及びコバル
トからなる群より選ばれた少なくとも1種の元素、Xは
マグネシウム、亜鉛、マンガン、クロム、スズ及び鉛か
らなる群より選ばれた少なくとも1種の元素、Yはリ
ン、ホウ素、イオウ及びセレンからなる群より選ばれた
少なくとも1種の元素、Zはナトリウム、カリウム、ル
ビジウム、セシウム及びタリウムからなる群より選ばれ
た少なくとも一種の元素を表す。ただし、a,b,c,
d,e,f,g,h,i,j及びkは各元素の原子比を
表し、a=12のとき、0.001≦b≦2、0.1≦
c≦5、0.1≦d≦5、0.01≦e≦5、1≦f≦
12、0≦g≦10、0≦h≦5、0.01≦i≦2、
0≦j≦20であり、kは前記各成分の原子価を満足す
るのに必要な酸素原子数である。)で示される触媒を使
用することを特徴とするメタクロレイン、メタクリル酸
及び1,3−ブタジエンの製造法。
1. A gas-phase catalytic oxidation using a spent C4 molecular oxygen fraction, methacrolein, in producing methacrylic acid and 1,3-butadiene of the general formula Mo a W b Bi c Fe d Sb e A f X g Y h Z i Si j
O k (wherein, Mo, W, Bi, Fe, Sb, Si and O represent molybdenum, tonten, bismuth, iron, antimony, silicon and oxygen, respectively, and A is at least one selected from the group consisting of nickel and cobalt. One element, X is at least one element selected from the group consisting of magnesium, zinc, manganese, chromium, tin and lead, and Y is at least one element selected from the group consisting of phosphorus, boron, sulfur and selenium And Z represents at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium, provided that a, b, c,
d, e, f, g, h, i, j and k represent the atomic ratio of each element, and when a = 12, 0.001 ≦ b ≦ 2, 0.1 ≦
c ≦ 5, 0.1 ≦ d ≦ 5, 0.01 ≦ e ≦ 5, 1 ≦ f ≦
12, 0 ≦ g ≦ 10, 0 ≦ h ≦ 5, 0.01 ≦ i ≦ 2,
0 ≦ j ≦ 20, and k is the number of oxygen atoms required to satisfy the valence of each component. A method for producing methacrolein, methacrylic acid and 1,3-butadiene, characterized by using the catalyst represented by the formula (1).
【請求項2】 スペントC4留分を分子状酸素を用いて
気相接触酸化し、メタクロレイン、メタクリル酸及び
1,3−ブタジエンを製造するにあたり、一般式 Moa Teb Fec Pbd Sbe Sifghi
j (式中、Mo,Te,Fe,Pb,Sb,Si及びOは
それぞれモリブデン、テルル、鉄、鉛、アンチモン、ケ
イ素及び酸素を表し、Dはニッケル、コバルト、マグネ
シウム、マンガン、クロム及び亜鉛からなる群より選ば
れた少なくとも一種の元素、Eはリン、セリウム、タン
グステン、ランタン、銀及びスズからなる群より選ばれ
た少なくとも一種の元素、Zはナトリウム、カリウム、
ルビジウム、セシウム及びタリウムからなる群より選ば
れた少なくとも一種の元素を示す。ただし、a,b,
c,d,e,f,g,h,i及びjは各元素の原子比を
表し、a=12のとき、0.1≦b≦8、0.1≦c≦
8、1≦d≦12、0.1≦e≦10、1≦f≦30、
0≦g≦12、0≦h≦8、0.01≦i≦2であり、
jは前記各成分の原子価を満足するのに必要な酸素原子
数である。)で示される触媒を使用することを特徴とす
るメタクロレイン、メタクリル酸及び1,3−ブタジエ
ンの製造法。
2. A gas phase catalytic oxidation with a spent C4 fraction with molecular oxygen, methacrolein, in producing methacrylic acid and 1,3-butadiene of the general formula Mo a Te b Fe c Pb d Sb e Si f D g E h Z i O
j (wherein, Mo, Te, Fe, Pb, Sb, Si and O represent molybdenum, tellurium, iron, lead, antimony, silicon and oxygen, respectively, and D represents nickel, cobalt, magnesium, manganese, chromium and zinc. At least one element selected from the group consisting of: E is at least one element selected from the group consisting of phosphorus, cerium, tungsten, lanthanum, silver and tin; Z is sodium, potassium;
It shows at least one element selected from the group consisting of rubidium, cesium and thallium. Where a, b,
c, d, e, f, g, h, i and j represent the atomic ratio of each element, and when a = 12, 0.1 ≦ b ≦ 8 and 0.1 ≦ c ≦
8, 1 ≦ d ≦ 12, 0.1 ≦ e ≦ 10, 1 ≦ f ≦ 30,
0 ≦ g ≦ 12, 0 ≦ h ≦ 8, 0.01 ≦ i ≦ 2,
j is the number of oxygen atoms required to satisfy the valence of each component. A method for producing methacrolein, methacrylic acid and 1,3-butadiene, characterized by using the catalyst represented by the formula (1).
JP8285921A 1996-10-09 1996-10-09 Production of metacrolein, methacrilic acid and 1,3-butadiene Pending JPH10114689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8285921A JPH10114689A (en) 1996-10-09 1996-10-09 Production of metacrolein, methacrilic acid and 1,3-butadiene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8285921A JPH10114689A (en) 1996-10-09 1996-10-09 Production of metacrolein, methacrilic acid and 1,3-butadiene

Publications (1)

Publication Number Publication Date
JPH10114689A true JPH10114689A (en) 1998-05-06

Family

ID=17697747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8285921A Pending JPH10114689A (en) 1996-10-09 1996-10-09 Production of metacrolein, methacrilic acid and 1,3-butadiene

Country Status (1)

Country Link
JP (1) JPH10114689A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526765A (en) * 2007-01-19 2010-08-05 エバーヌ・テクノロジー・リミテッド・ライアビリティ・カンパニー Selective oxidation of alkanes and / or alkenes to beneficial oxygenates
JP2010534553A (en) * 2007-05-10 2010-11-11 エスケー エナジー 株式会社 Zinc ferrite catalyst, method for producing the same, and method for producing 1,3-butadiene using the same
JP2010537798A (en) * 2007-05-30 2010-12-09 エスケー エナジー 株式会社 A method for producing a multicomponent bismuth molybdate catalyst with pH adjustment and a method for producing 1,3-butadiene using the same.
JP2013100244A (en) * 2011-11-08 2013-05-23 Mitsui Chemicals Inc Method for producing conjugated diolefin
JP2014001171A (en) * 2012-06-19 2014-01-09 Tosoh Corp Process of producing 1,3-butadiene
JP2015525125A (en) * 2013-05-06 2015-09-03 エルジー・ケム・リミテッド Oxidation catalyst for production of butadiene and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526765A (en) * 2007-01-19 2010-08-05 エバーヌ・テクノロジー・リミテッド・ライアビリティ・カンパニー Selective oxidation of alkanes and / or alkenes to beneficial oxygenates
JP2010534553A (en) * 2007-05-10 2010-11-11 エスケー エナジー 株式会社 Zinc ferrite catalyst, method for producing the same, and method for producing 1,3-butadiene using the same
JP2010537798A (en) * 2007-05-30 2010-12-09 エスケー エナジー 株式会社 A method for producing a multicomponent bismuth molybdate catalyst with pH adjustment and a method for producing 1,3-butadiene using the same.
JP2013100244A (en) * 2011-11-08 2013-05-23 Mitsui Chemicals Inc Method for producing conjugated diolefin
JP2014001171A (en) * 2012-06-19 2014-01-09 Tosoh Corp Process of producing 1,3-butadiene
JP2015525125A (en) * 2013-05-06 2015-09-03 エルジー・ケム・リミテッド Oxidation catalyst for production of butadiene and method for producing the same
US9724676B2 (en) 2013-05-06 2017-08-08 Lg Chem, Ltd. Oxidation catalyst for production of butadiene and method of preparing the same

Similar Documents

Publication Publication Date Title
JP3142549B2 (en) Iron / antimony / molybdenum-containing oxide catalyst composition and method for producing the same
JPH0550489B2 (en)
US4051180A (en) Preparation of acrylic acid and methacrylic acid
EP0267556B1 (en) Process for production of methacrolein and methacrylic acid
EP0476579B1 (en) Iron antimony-containing metal oxide catalyst composition and process for producing the same
US4101448A (en) Catalyst compositions especially useful for preparation of unsaturated acids
CS200497B2 (en) Catalyst for making the acrylic acid or methacrylic acid
JPH0813332B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
US5208371A (en) Process for production of methacrolein and methacrylic acid
EP0235760B1 (en) Process for producing composite oxide catalyst
JPS5820944B2 (en) Production method of acrolein by propylene oxidation
JPH10114689A (en) Production of metacrolein, methacrilic acid and 1,3-butadiene
JPH0547265B2 (en)
JP2657693B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
US4378309A (en) Catalyst compositions for the preparation of unsaturated acids
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP3347263B2 (en) Preparation of catalysts for the production of unsaturated aldehydes and unsaturated carboxylic acids
EP0058046B1 (en) Process for producing methacrolein and methacrylic acid
JP3186243B2 (en) Preparation of catalyst for methacrylic acid production
JP2814321B2 (en) Method for producing methacrylic acid
JPH0479697B2 (en)
JPH0662463B2 (en) Method for producing methacrolein and methacrylic acid
JP2944463B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the catalyst
JPH05253480A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPS60161932A (en) Preparation of methacrolein and methacrylic acid