JP2814321B2 - Method for producing methacrylic acid - Google Patents

Method for producing methacrylic acid

Info

Publication number
JP2814321B2
JP2814321B2 JP3262430A JP26243091A JP2814321B2 JP 2814321 B2 JP2814321 B2 JP 2814321B2 JP 3262430 A JP3262430 A JP 3262430A JP 26243091 A JP26243091 A JP 26243091A JP 2814321 B2 JP2814321 B2 JP 2814321B2
Authority
JP
Japan
Prior art keywords
catalyst
parts
molybdenum
methacrylic acid
methacrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3262430A
Other languages
Japanese (ja)
Other versions
JPH0596172A (en
Inventor
昌子 宇吹
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP3262430A priority Critical patent/JP2814321B2/en
Publication of JPH0596172A publication Critical patent/JPH0596172A/en
Application granted granted Critical
Publication of JP2814321B2 publication Critical patent/JP2814321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、メタクロレインの気相
接触酸化によりメタクリル酸を製造する方法に関する。
The present invention relates to a method for producing methacrylic acid by gas phase catalytic oxidation of methacrolein.

【0002】[0002]

【従来の技術】メタクロレインを気相接触酸化してメタ
クリル酸を製造するにあたって、リン、モリブデン、バ
ナジウム系の多成分系触媒が多数知られており、これら
の触媒を用いる場合に触媒の寿命、副反応の抑制、装置
価格等の見地より、低い反応温度で収率を高く保つこと
が有利であることも知られているが、従来の方法で調製
された触媒を使用すると必ずしも満足できる結果が得ら
れていない。また上述の触媒を調製する際のモリブデン
原料としてパラモリブデン酸アンモニウム又は三酸化モ
リブデンを用い得ることも各々良く知られている。しか
し、反応成績が充分でなかったり、触媒活性の経時低下
が大きかったり、反応温度が高すぎたり、あるいは触媒
の調製法の再現性に欠けたりする欠点を有し、工業用触
媒としての使用に際しては更に改良が望まれているのが
現状である。
2. Description of the Related Art In producing methacrylic acid by gas phase catalytic oxidation of methacrolein, a large number of phosphorus, molybdenum, and vanadium-based multicomponent catalysts are known. It is also known that it is advantageous to keep the yield high at a low reaction temperature from the viewpoint of suppression of side reactions and the cost of the apparatus, but the use of a catalyst prepared by a conventional method does not always give satisfactory results. Not obtained. It is also well known that ammonium paramolybdate or molybdenum trioxide can be used as a molybdenum raw material when preparing the above catalyst. However, the reaction results are not sufficient, the catalyst activity is greatly reduced with time, the reaction temperature is too high, or the reproducibility of the catalyst preparation method is lacking. At present, further improvement is desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は、メタクロレ
インからメタクリル酸を有利に製造する方法のための触
媒の提供を目的としている。
The object of the present invention is to provide a catalyst for a process for advantageously producing methacrylic acid from methacrolein.

【0004】[0004]

【課題を解決するための手段】本発明は、リン、モリブ
デン、バナジウム及び銅を含有する多成分系固体触媒に
おいてモリブデン成分の原料としてパラモリブデン酸ア
ンモニウムを使用して調製した触媒乾燥粉と三酸化モリ
ブデンを使用して調製した触媒乾燥粉とを混合して得ら
れる触媒を使用することを特徴とする、メタクロレイン
の気相接触酸化によるメタクリル酸の製造方法である。
DISCLOSURE OF THE INVENTION The present invention relates to a multi-component solid catalyst containing phosphorus, molybdenum, vanadium and copper, comprising a catalyst dry powder prepared by using ammonium paramolybdate as a raw material of a molybdenum component and trioxide. A method for producing methacrylic acid by gas phase catalytic oxidation of methacrolein, comprising using a catalyst obtained by mixing a dry catalyst powder prepared using molybdenum.

【0005】本発明方法により得られるメタクリル酸製
造用触媒としては、一般式 Pa Mob c Cud e f g h (式中P、Mo、V、Cu及びOはそれぞれリン、モリ
ブデン、バナジウム、銅及び酸素、Xは砒素、ビスマ
ス、アンチモン、ゲルマニウム、ジルコニウム、テル
ル、銀、珪素及びホウ素からなる群より選ばれた少なく
とも一種の元素、Yはチタン、タングステン、鉄、亜
鉛、クロム、マグネシウム、タンタル、マンガン、バリ
ウム、ガリウム、セリウム及びランタンからなる群より
選ばれた少なくとも一種の元素、Zはカリウム、ルビジ
ウム、セシウム及びタリウムからなる群より選ばれた少
なくとも一種の元素、a、b、c、d、e、f、g及び
hは各元素の原子比率を示し、b=12のときa=0.
1〜3、c=0.01〜2、d=0.01〜1、e=0
〜3、f=0〜3、g=0.01〜3であり、hは前記
各成分の原子価を満足するのに必要な酸素原子数であ
る)で表わされる組成を有することが好ましい。
[0005] As the methacrylic acid production catalyst obtained by the method of the present invention, the general formula P a Mo b V c Cu d X e Y f Z g O h ( respectively in P, Mo, V, Cu and O wherein phosphorus , Molybdenum, vanadium, copper and oxygen, X is at least one element selected from the group consisting of arsenic, bismuth, antimony, germanium, zirconium, tellurium, silver, silicon and boron, Y is titanium, tungsten, iron, zinc, Chromium, magnesium, tantalum, manganese, barium, gallium, cerium and at least one element selected from the group consisting of lanthanum, Z is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, a, b, c, d, e, f, g and h indicate the atomic ratio of each element, and when b = 12, a = 0.
1-3, c = 0.01-2, d = 0.01-1, e = 0
, F = 0-3, and g = 0.01-3, and h is the number of oxygen atoms necessary to satisfy the valence of each component.)

【0006】本発明においては、パラモリブデン酸アン
モニウムをモリブデン原料としてリン、モリブデン、バ
ナジウム及び銅を含有する多成分系触媒の乾燥粉を製造
し、一方で三酸化モリブデンをモリブデン原料とする同
種の多成分系触媒の乾燥粉を製造し、両者を混合して成
型触媒を調製する。
In the present invention, a dry powder of a multi-component catalyst containing phosphorus, molybdenum, vanadium and copper is produced using ammonium paramolybdate as a molybdenum raw material, while the same kind of multi-component catalyst using molybdenum trioxide as a molybdenum raw material. A dry powder of the component catalyst is produced, and both are mixed to prepare a molded catalyst.

【0007】これら二種類の触媒の調製法は、従来公知
の調製法を用いればよい。例えば、モリブデンの原料と
してパラモリブデン酸アンモニウムを使用して調製する
触媒の調製例としては、特開平2−22243号公報が
ある。具体的には、リン、モリブデン及びバナジウムを
含む触媒原料を水に溶解又は分散する。該原料混合液又
はスラリーを加熱攪拌しながら蒸発乾固する。得られた
固形物を乾燥後、紛砕し触媒乾燥粉を得る。また、モリ
ブデンの原料として三酸化モリブデンを使用して調製す
る触媒の調製例としては、特願平2−32585号公報
がある。同じように調製し触媒乾燥粉を得る。モリブデ
ン以外の他の触媒構成元素の原料化合物としては、酸化
物、炭酸塩、硝酸塩、酢酸塩、水酸化物等を組合せて使
用することができる。二種類の触媒組成は同一である事
が好ましいが異ってもよい。
For the preparation of these two types of catalysts, conventionally known preparation methods may be used. For example, JP-A-2-22243 discloses an example of a catalyst prepared by using ammonium paramolybdate as a raw material for molybdenum. Specifically, a catalyst raw material containing phosphorus, molybdenum and vanadium is dissolved or dispersed in water. The raw material mixture or slurry is evaporated to dryness while heating and stirring. The obtained solid is dried and then crushed to obtain a dried catalyst powder. Further, as a preparation example of a catalyst prepared by using molybdenum trioxide as a raw material of molybdenum, there is Japanese Patent Application No. 2-35855. Prepare a dry catalyst powder in the same manner. As a raw material compound of a catalyst constituent element other than molybdenum, oxides, carbonates, nitrates, acetates, hydroxides and the like can be used in combination. The two types of catalyst compositions are preferably the same, but may be different.

【0008】このようにして得られた二種類の乾燥粉の
混合方法としては、乾燥状態での混合、すなわち乾式混
合でもよいし、また、適当量の水を加えてスラリーに
し、スラリー状態での混合、すなわち湿式混合でもよ
い。パラモリブデン酸アンモニウムから調製した乾燥粉
と三酸化モリブデンから調製した乾燥粉との混合割合
は、重量比で0.05対0.95から0.95対0.0
5の範囲で選ぶことができるが、特に0.1対0.9か
ら0.9対0.1の範囲で選ぶことが好ましい。こうし
て得られた乾燥混合粉を成型し、空気流通下に熱処理す
ると目的の触媒が得られる。
As a method for mixing the two kinds of dry powders thus obtained, mixing in a dry state, that is, dry mixing may be used, or an appropriate amount of water may be added to form a slurry, and the slurry may be mixed. Mixing, that is, wet mixing may be used. The mixing ratio of the dry powder prepared from ammonium paramolybdate and the dry powder prepared from molybdenum trioxide was 0.05: 0.95 to 0.95: 0.0 by weight.
5, but it is particularly preferable to select from 0.1 to 0.9 to 0.9 to 0.1. The dried mixed powder thus obtained is molded and heat-treated under a flow of air to obtain a target catalyst.

【0009】本発明方法により得られた触媒は、無担体
でも有効であるが、シリカ、アルミナ、マグネシア、チ
タニア、シリカ・アルミナ、シリコンカーバイド等の不
活性担体に担持させるか、あるいはこれで混合希釈して
用いることもできる。
Although the catalyst obtained by the method of the present invention is effective without a carrier, it is supported on an inert carrier such as silica, alumina, magnesia, titania, silica / alumina, silicon carbide, or mixed and diluted with the same. It can also be used.

【0010】本発明の実施に際して、原料ガス中のメタ
クロレインの濃度は特に限定されるものではないが、通
常1〜20容量%が適当であり、特に3〜10容量%が
好ましい。原料メタクロレインは水、低級飽和アルデヒ
ド等の不純物を少量含んでいてもよく、これらの不純物
は反応に実質的に悪影響を与えない。
In practicing the present invention, the concentration of methacrolein in the raw material gas is not particularly limited, but usually 1 to 20% by volume is appropriate, and particularly preferably 3 to 10% by volume. The raw material methacrolein may contain small amounts of impurities such as water and lower saturated aldehyde, and these impurities do not substantially adversely affect the reaction.

【0011】酸素源としては空気を用いるのが経済的で
あるが、必要ならば純酸素で富化した空気も用い得る。
原料ガス中の酸素濃度はメタクロレインに対するモル比
で規定され、この値は0.3〜4、特に0.4〜2.5
が好ましい。原料ガスは窒素、水蒸気、炭酸ガス等の不
活性ガスを加えて希釈してもよい。反応圧力は常圧から
数気圧までがよい。反応温度は230〜450℃の範囲
で選ぶことができるが、特に、250〜400℃が好ま
しい。反応は固定床でも流動床でも行うことができる。
Although it is economical to use air as the oxygen source, air enriched with pure oxygen may be used if necessary.
The oxygen concentration in the source gas is defined by the molar ratio to methacrolein, and this value is 0.3 to 4, especially 0.4 to 2.5.
Is preferred. The source gas may be diluted by adding an inert gas such as nitrogen, steam, or carbon dioxide. The reaction pressure is preferably from normal pressure to several atmospheres. The reaction temperature can be selected in the range of 230 to 450 ° C, and particularly preferably 250 to 400 ° C. The reaction can be carried out in a fixed bed or a fluidized bed.

【0012】[0012]

【実施例】以下、本発明による触媒の調製法、および、
それを用いての反応例を具体的に説明する。実施例、比
較例中、メタクロレインの反応率、生成するメタクリル
酸の選択率は以下のように定義される。
EXAMPLES Hereinafter, a method for preparing a catalyst according to the present invention, and
A reaction example using the same will be specifically described. In Examples and Comparative Examples, the reaction rate of methacrolein and the selectivity of methacrylic acid to be formed are defined as follows.

【0013】[0013]

【数1】 (Equation 1)

【0014】下記実施例、比較例中の部は重量部であ
り、分析はガスクロマトグラフィーにより行った。
Parts in the following Examples and Comparative Examples are parts by weight, and the analysis was carried out by gas chromatography.

【0015】実施例1 パラモリブデン酸アンモニウム100部、メタバナジン
酸アンモニウム2.8部及び硝酸セシウム9.2部を純
水100部に溶解した。これに85%リン酸8.7部を
純水30部に溶解した溶液を加えた。次に、硝酸銅1.
1部を純水30部に溶解した溶液を加えた。得られた混
合液をA液とする。一方、三酸化モリブデン100部、
五酸化バナジウム2.6部及び85%リン酸10.7部
を純水400部に加え、3時間加熱還流した。これに酸
化銅0.5部を加え、更に2時間加熱還流した。還流
後、純水100部で溶解した重炭酸セシウム11.2部
を加え、次に純水50部に溶解した炭酸アンモニウム5
部を加えた。得られた混合液をB液とする。A液及びB
液をそれぞれ別々に加熱攪拌しながら蒸発乾固した。得
られた固形物を120℃で16時間乾燥したのち、粉砕
した。
Example 1 100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate and 9.2 parts of cesium nitrate were dissolved in 100 parts of pure water. To this was added a solution of 8.7 parts of 85% phosphoric acid dissolved in 30 parts of pure water. Next, copper nitrate 1.
A solution obtained by dissolving 1 part in 30 parts of pure water was added. The obtained mixed liquid is referred to as Liquid A. On the other hand, 100 parts of molybdenum trioxide,
2.6 parts of vanadium pentoxide and 10.7 parts of 85% phosphoric acid were added to 400 parts of pure water and heated under reflux for 3 hours. To this was added 0.5 parts of copper oxide, and the mixture was further heated and refluxed for 2 hours. After refluxing, 11.2 parts of cesium bicarbonate dissolved in 100 parts of pure water were added, and then ammonium carbonate 5 dissolved in 50 parts of pure water was added.
Parts were added. The obtained mixed liquid is referred to as Liquid B. Liquid A and B
The liquids were evaporated to dryness while separately heating and stirring. The obtained solid was dried at 120 ° C. for 16 hours and then pulverized.

【0016】次に、A液から得られた粉末とB液から得
られた粉末を1対1の重量比で混合したのち加圧成型
し、空気流通下に380℃で3時間熱処理したものを触
媒として用いた。得られた触媒の酸素以外の元素の組成
(以下同じ)は、P1.6 Mo120.5 Cu0.1 Cs1
あった。この触媒を反応器に充填し、メタクロレイン5
%、酸素10%、水蒸気30%及び窒素55%(容量
%)の混合ガスを反応温度290℃、接触時間3.6秒
で通じた。生成物を捕集しガスクロマトグラフィーで分
析したところ、メタクロレイン反応率86.0%、メタ
クリル酸選択率84.4%であった。
Next, the powder obtained from the liquid A and the powder obtained from the liquid B are mixed at a weight ratio of 1: 1 and then molded under pressure and heat-treated at 380 ° C. for 3 hours under air flow. Used as catalyst. The composition of the resulting of elements other than oxygen in the catalyst (the same applies hereinafter) was P 1.6 Mo 12 V 0.5 Cu 0.1 Cs 1. This catalyst was charged into a reactor and methacrolein 5
%, Oxygen 10%, steam 30% and nitrogen 55% (vol%) at a reaction temperature of 290 ° C. for a contact time of 3.6 seconds. The product was collected and analyzed by gas chromatography. As a result, the conversion of methacrolein was 86.0% and the selectivity of methacrylic acid was 84.4%.

【0017】比較例1 実施例1のA液から得られた粉末だけを使用して加圧成
型した以外は実施例1と同じ方法で触媒を調製した。こ
の触媒の元素の組成は実施例1と同じである。この触媒
を用い、実施例1と同じ条件で反応を行ったところ、メ
タクロレイン反応率82.0%、メタクリル酸選択率8
2.1%であった。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that only the powder obtained from the solution A of Example 1 was pressed and molded. The composition of the elements of this catalyst is the same as in Example 1. When the reaction was carried out using this catalyst under the same conditions as in Example 1, the conversion of methacrolein was 82.0% and the selectivity of methacrylic acid was 8%.
2.1%.

【0018】比較例2 実施例1のB液から得られた粉末だけを使用して加圧成
型した以外は実施例1と同じ方法で触媒を調製した。こ
の触媒を用い、実施例1と同じ条件で反応を行ったとこ
ろ、メタクロレイン反応率86.1%、メタクリル酸選
択率82.5%であった。
Comparative Example 2 A catalyst was prepared in the same manner as in Example 1 except that only the powder obtained from the solution B of Example 1 was used for pressure molding. When a reaction was carried out using this catalyst under the same conditions as in Example 1, the conversion of methacrolein was 86.1% and the selectivity of methacrylic acid was 82.5%.

【0019】実施例2 パラモリブデン酸アンモニウム100部、メタバナジン
酸アンモニウム3.9部、硝酸カリウム1.4部及び硝
酸ルビジウム4.9部を純水100部に溶解した。これ
に85%リン酸7.6部、硝酸銅1.1部及び硝酸第二
鉄3.8部をそれぞれ純水30部に溶解した溶液を順次
加えた。続いて、酸化ゲルマニウム1.5部とホウ酸
0.6部を加えた。得られた混合液をA液とする。
Example 2 100 parts of ammonium paramolybdate, 3.9 parts of ammonium metavanadate, 1.4 parts of potassium nitrate and 4.9 parts of rubidium nitrate were dissolved in 100 parts of pure water. A solution of 7.6 parts of 85% phosphoric acid, 1.1 parts of copper nitrate, and 3.8 parts of ferric nitrate in 30 parts of pure water was sequentially added thereto. Subsequently, 1.5 parts of germanium oxide and 0.6 part of boric acid were added. The obtained mixed liquid is referred to as Liquid A.

【0020】一方、三酸化モリブデン100部、メタバ
ナジン酸アンモニウム4.7部、85%リン酸9.3
部、酸化ゲルマニウム1.8部及びホウ酸0.7部を純
水400部に加え、3時間加熱還流した。これに硝酸銅
1.4部と硝酸第二鉄4.7部をそれぞれ純水30部に
溶解した溶液を加え、更に2時間加熱還流した。還流
後、純水30部に溶解した硝酸カリウム1.8部と純水
50部に溶解した硝酸ルビジウム6.0部を加え、続い
て、純水100部に溶解した硝酸アンモニウム10部を
加えた。得られた混合液をB液とする。A液及びB液を
それぞれ別々に加熱攪拌しながら蒸発乾固した。得られ
た固形物を120℃で16時間乾燥したのち、粉砕し
た。
On the other hand, 100 parts of molybdenum trioxide, 4.7 parts of ammonium metavanadate, and 9.3 of 85% phosphoric acid are used.
, 1.8 parts of germanium oxide and 0.7 part of boric acid were added to 400 parts of pure water, and the mixture was refluxed for 3 hours. A solution prepared by dissolving 1.4 parts of copper nitrate and 4.7 parts of ferric nitrate in 30 parts of pure water was added thereto, and the mixture was further heated under reflux for 2 hours. After the reflux, 1.8 parts of potassium nitrate dissolved in 30 parts of pure water and 6.0 parts of rubidium nitrate dissolved in 50 parts of pure water were added, followed by 10 parts of ammonium nitrate dissolved in 100 parts of pure water. The obtained mixed liquid is referred to as Liquid B. The solution A and the solution B were evaporated to dryness while separately heating and stirring. The obtained solid was dried at 120 ° C. for 16 hours and then pulverized.

【0021】次に、A液から得られた粉末100部とB
液から得られた粉末100部にそれぞれ30部の純水を
加えてスラリーにし、混合した。得られた混合スラリー
を再び120℃で16時間乾燥したのち、粉砕した。こ
の粉末を加圧成型し、空気流通下に380℃で3時間熱
処理したものを触媒として用いた。得られた触媒の元素
の組成は、 P1.4 Mo120.7 Cu0.1 Fe0.2 Ge0.3 0.2
0.3 Rb0.7 であった。この触媒を用い、実施例1と同じ条件で反応
を行ったところ、メタクロレイン反応率90.5%、メ
タクリル酸選択率89.6%であった。
Next, 100 parts of the powder obtained from the solution A and B
30 parts of pure water was added to 100 parts of the powder obtained from the liquid to form a slurry and mixed. The obtained mixed slurry was dried again at 120 ° C. for 16 hours, and then pulverized. This powder was molded under pressure, and heat-treated at 380 ° C. for 3 hours in an air stream to use as a catalyst. The composition of the resulting elements of the catalyst, P 1.4 Mo 12 V 0.7 Cu 0.1 Fe 0.2 Ge 0.3 B 0.2 K
0.3 Rb 0.7 . When a reaction was carried out using this catalyst under the same conditions as in Example 1, the conversion of methacrolein was 90.5% and the selectivity of methacrylic acid was 89.6%.

【0022】比較例3 実施例2のA液から得られた粉末だけを使用して加圧成
型した以外は実施例2と同じ方法で触媒を調製した。こ
の触媒を用い、実施例1と同じ条件で反応を行ったとこ
ろ、メタクロレイン反応率88.0%、メタクリル酸選
択率86.5%であった。
Comparative Example 3 A catalyst was prepared in the same manner as in Example 2 except that pressure molding was performed using only the powder obtained from the solution A in Example 2. When a reaction was carried out using this catalyst under the same conditions as in Example 1, the conversion of methacrolein was 88.0% and the selectivity of methacrylic acid was 86.5%.

【0023】比較例4 実施例2のB液から得られた粉末だけを使用して加圧成
型した以外は実施例2と同じ方法で触媒を調製した。こ
の触媒を用い、実施例1と同じ条件で反応を行ったこと
ろ、メタクロレイン反応率90.6%、メタクリル酸選
択率87.7%であった。
Comparative Example 4 A catalyst was prepared in the same manner as in Example 2, except that only the powder obtained from the solution B of Example 2 was used for pressure molding. When the reaction was carried out using this catalyst under the same conditions as in Example 1, the conversion of methacrolein was 90.6% and the selectivity of methacrylic acid was 87.7%.

【0024】実施例3〜8 A液(モリブデン成分の原料としてパラモリブデン酸ア
ンモニウム使用)から得られた乾燥粉末とB液(モリブ
デン成分の原料として三酸化モリブデン使用)から得ら
れた乾燥粉末の重量混合割合を変えた以外は実施例1に
準じて表−1の各触媒を調製した。実施例1と反応温度
以外は同一条件で反応し表−1の結果を得た。
Examples 3-8 Weight of dry powder obtained from liquid A (using ammonium paramolybdate as a raw material for molybdenum component) and dry powder obtained from liquid B (using molybdenum trioxide as a raw material for molybdenum component) Except for changing the mixing ratio, each catalyst of Table 1 was prepared according to Example 1. The reaction was carried out under the same conditions as in Example 1 except for the reaction temperature, and the results shown in Table 1 were obtained.

【0025】比較例5〜10 それぞれ実施例3〜8のA液から得られた粉末だけを使
用して表−1の各比較触媒を調製した。実施例1と反応
温度以外は同一条件で反応し表−1の結果を得た。
Comparative Examples 5 to 10 Each of the comparative catalysts in Table 1 was prepared using only the powders obtained from the solutions A of Examples 3 to 8, respectively. The reaction was carried out under the same conditions as in Example 1 except for the reaction temperature, and the results shown in Table 1 were obtained.

【0026】比較例11〜16 それぞれ実施例3〜8のB液から得られた粉末だけを使
用して表−1の各比較触媒を調製した。実施例1と反応
温度以外は同一条件で反応し表−1の結果を得た。
Comparative Examples 11 to 16 Each comparative catalyst shown in Table 1 was prepared using only the powders obtained from the solutions B of Examples 3 to 8. The reaction was carried out under the same conditions as in Example 1 except for the reaction temperature, and the results shown in Table 1 were obtained.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明方法で用いる触媒はモリブデン成
分の原料としてパラモリブデン酸アンモニウムを使用し
た場合及び三酸化モリブデンを使用した場合のいずれよ
りも成績が向上する効果を有している。
The catalyst used in the method of the present invention has an effect of improving the performance as compared with the case where ammonium paramolybdate is used as a raw material of the molybdenum component and the case where molybdenum trioxide is used.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リン、モリブデン、バナジウム及び銅を
含有する多成分系触媒においてモリブデン成分の原料と
してパラモリブデン酸アンモニウムを使用して調製した
触媒乾燥粉と三酸化モリブデンを使用して調製した触媒
乾燥粉とを混合して得られる触媒を使用することを特徴
とする、メタクロレインの気相接触酸化によるメタクリ
ル酸の製造方法。
1. A catalyst drying powder prepared by using ammonium paramolybdate as a raw material of a molybdenum component and a catalyst drying powder prepared by using molybdenum trioxide in a multi-component catalyst containing phosphorus, molybdenum, vanadium and copper. A method for producing methacrylic acid by gas phase catalytic oxidation of methacrolein, comprising using a catalyst obtained by mixing powder and powder.
【請求項2】 メタクリル酸製造用触媒が、一般式 Pa Mob c Cud e f g h (式中P、Mo、V、Cu及びOはそれぞれリン、モリ
ブデン、バナジウム、銅及び酸素、Xは砒素、ビスマ
ス、アンチモン、ゲルマニウム、ジルコニウム、テル
ル、銀、珪素及びホウ素からなる群より選ばれた少なく
とも一種の元素、Yはチタン、タングステン、鉄、亜
鉛、クロム、マグネシウム、タンタル、マンガン、バリ
ウム、ガリウム、セリウム及びランタンからなる群より
選ばれた少なくとも一種の元素、Zはカリウム、ルビジ
ウム、セシウム及びタリウムからなる群より選ばれた少
なくとも一種の元素、a、b、c、d、e、f、g及び
hは各元素の原子比率を示し、b=12のときa=0.
1〜3、c=0.01〜2、d=0.01〜1、e=0
〜3、f=0〜3、g=0.01〜3であり、hは前記
各成分の原子価を満足するのに必要な酸素原子数であ
る)で表わされる組成を有する触媒であることを特徴と
する、第1請求項に記載の方法。
2. A catalyst for producing methacrylic acid has the general formula P a Mo b V c Cu d X e Y f Z g O h ( respectively in P, Mo, V, Cu and O wherein phosphorus, molybdenum, vanadium, Copper and oxygen, X is at least one element selected from the group consisting of arsenic, bismuth, antimony, germanium, zirconium, tellurium, silver, silicon and boron, Y is titanium, tungsten, iron, zinc, chromium, magnesium, tantalum , At least one element selected from the group consisting of manganese, barium, gallium, cerium and lanthanum, Z is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, a, b, c, d , E, f, g and h indicate the atomic ratio of each element, and when b = 12, a = 0.
1-3, c = 0.01-2, d = 0.01-1, e = 0
-3, f = 0-3, g = 0.01-3, and h is the number of oxygen atoms necessary to satisfy the valency of each component described above.) The method according to claim 1, characterized in that:
JP3262430A 1991-10-09 1991-10-09 Method for producing methacrylic acid Expired - Fee Related JP2814321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3262430A JP2814321B2 (en) 1991-10-09 1991-10-09 Method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3262430A JP2814321B2 (en) 1991-10-09 1991-10-09 Method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JPH0596172A JPH0596172A (en) 1993-04-20
JP2814321B2 true JP2814321B2 (en) 1998-10-22

Family

ID=17375680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3262430A Expired - Fee Related JP2814321B2 (en) 1991-10-09 1991-10-09 Method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP2814321B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2782933B1 (en) * 1998-09-09 2000-11-17 Univ Pasteur VERSATILE BIFUNCTIONAL CATALYST AND METHODS FOR OBTAINING SUCH A CATALYST
JP3884967B2 (en) 2002-02-07 2007-02-21 住友化学株式会社 Method for producing methacrylic acid
JP4056429B2 (en) 2003-06-05 2008-03-05 株式会社日本触媒 Method for producing (meth) acrylic acid
KR100760461B1 (en) * 2004-12-09 2007-10-04 주식회사 엘지화학 Preparing Method of Heteropoly Acid Catalyst

Also Published As

Publication number Publication date
JPH0596172A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
KR930008085B1 (en) Process for preparing a catalyst, the catalyst and its use
JPS5827255B2 (en) Method for producing unsaturated fatty acids
EP0454376B1 (en) Process for preparing catalysts for producing methacrylic acid
JPH0753686B2 (en) Method for producing methacrylic acid
JP3101821B2 (en) Preparation of catalyst for methacrylic acid production
KR920009118B1 (en) Process for preparing catalysts for producing methacrylic acid
EP0350862B1 (en) Process for producing methacrylic acid
JP2814321B2 (en) Method for producing methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JP3186243B2 (en) Preparation of catalyst for methacrylic acid production
US4968838A (en) Process for the preparation of unsaturated carboxylic acids
JPH05331085A (en) Production of methacrolein and/or methacrylic acid
JP3370589B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
JPH10114689A (en) Production of metacrolein, methacrilic acid and 1,3-butadiene
JP2671040B2 (en) Method for preparing catalyst for producing unsaturated carboxylic acid
JPH03167152A (en) Production of methacrylic acid
JP3859397B2 (en) Catalyst for production of methacrolein and methacrylic acid
JP2592325B2 (en) Method for producing unsaturated carboxylic acid
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPH05279291A (en) Production of methacrylic acid
JP3313943B2 (en) Method for producing catalyst for synthesizing methacrolein and methacrylic acid
JPH064559B2 (en) Method for producing methacrylic acid
JP2001300318A (en) Catalyst for manufacturing methacrylic acid and manufacturing method thereof
JPH02119942A (en) Preparation of catalyst for producing methacrylic acid
JPS62161739A (en) Production of methacrylic acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees