JPS5824419B2 - Fuhouwa Carbon Sanno Seizouhouhou - Google Patents

Fuhouwa Carbon Sanno Seizouhouhou

Info

Publication number
JPS5824419B2
JPS5824419B2 JP50144134A JP14413475A JPS5824419B2 JP S5824419 B2 JPS5824419 B2 JP S5824419B2 JP 50144134 A JP50144134 A JP 50144134A JP 14413475 A JP14413475 A JP 14413475A JP S5824419 B2 JPS5824419 B2 JP S5824419B2
Authority
JP
Japan
Prior art keywords
catalyst
group
carbon
acid
seizouhouhou
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50144134A
Other languages
Japanese (ja)
Other versions
JPS5268122A (en
Inventor
小林雅夫
松沢英雄
石井啓道
大谷真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP50144134A priority Critical patent/JPS5824419B2/en
Publication of JPS5268122A publication Critical patent/JPS5268122A/en
Publication of JPS5824419B2 publication Critical patent/JPS5824419B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は不飽和アルデヒドを空気または分子状酸素によ
り、気相高温で酸化して相当する不飽和カルボン酸を製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing the corresponding unsaturated carboxylic acid by oxidizing an unsaturated aldehyde with air or molecular oxygen at high temperature in the gas phase.

従来、不飽和アルデヒドを気相接触酸化して相当する不
飽和カルボン酸の製造法に関して数多くの特許が提案さ
れている。
Conventionally, many patents have been proposed regarding methods for producing corresponding unsaturated carboxylic acids by vapor phase catalytic oxidation of unsaturated aldehydes.

これらは主としてアクロレインからアクリル酸を製造す
る方法を重点とするものであり、そこに提案されている
触媒をメタクリル酸製造用として使用すると副反応が太
きいため選択率が低く、また、寿命が短かく実用的でな
かった。
These mainly focus on methods for producing acrylic acid from acrolein, and if the catalysts proposed there are used for producing methacrylic acid, the selectivity is low due to large side reactions, and the life is short. It was thus impractical.

一方、メタクロレインからメタクリル酸を製造する方法
に関しても、多数の触媒が提案されているが、いずれも
反応成績が低かったり、触媒活性の経時低下が太きかっ
たり、反応温度が高すぎたりの欠点を有し、工業触媒と
しては必ずしも充分とは言えない。
On the other hand, many catalysts have been proposed for the production of methacrylic acid from methacrolein, but all of them have poor reaction results, a large decline in catalyst activity over time, or too high reaction temperature. It has drawbacks and is not necessarily sufficient as an industrial catalyst.

本発明者らはメタクロレインからメタクリル酸を製造す
るに用いる触媒について鋭意研究したところ、上記の欠
点を改良し、活性、選択性、寿命ともに実用性の高い触
媒を見い出し、さらに、この触媒がアクロレインからア
クリル酸を製造する方法にも適用し得ることを見い出し
、本発明を完成するに到った。
The present inventors conducted intensive research on catalysts used to produce methacrylic acid from methacrolein, and found a catalyst that improved the above-mentioned drawbacks and had high practicality in terms of activity, selectivity, and lifespan. The present inventors have discovered that the present invention can also be applied to a method for producing acrylic acid from acrylic acid, and have completed the present invention.

本発明は、アクロレインまたはメタクロレインを分子状
酸素で接触酸化してアクリル酸またはメタクリル酸を得
るに際し、′ 一般式が PaMobXcYdzoOf 但しPはリン、Moはモリブデン、0は酸素をあられし
、Xはカリウム、ルビジウム、セシウムおよびタリウム
より成る群から選ばれる1種または2種以上、Yはバナ
ジウムおよびニオブより成る群から選ばれた1種または
2種、2は鉄、ニッケル、アンチモン、硅素、マンガン
、ウランおよび銅より成る群から選ばれた1種または2
種以上をあられし、a、b、c、dlelはそれぞれの
成分の原子比をあられし、a =0.5〜6、b=12
、c=0.2〜6、d=o、oI〜6、e−〇、01〜
6、fは触媒の酸化状態で定まる値である。
In the present invention, when acrolein or methacrolein is catalytically oxidized with molecular oxygen to obtain acrylic acid or methacrylic acid, the general formula is PaMobXcYdzoOf, where P is phosphorus, Mo is molybdenum, 0 is oxygen, and X is potassium. , one or more selected from the group consisting of rubidium, cesium, and thallium, Y is one or two selected from the group consisting of vanadium and niobium, and 2 is iron, nickel, antimony, silicon, manganese, and uranium. and one or two selected from the group consisting of copper.
a, b, c, and del are the atomic ratios of each component, a = 0.5 to 6, b = 12
, c=0.2~6, d=o, oI~6, e-〇, 01~
6, f is a value determined by the oxidation state of the catalyst.

であられされる触媒を用いることを特徴とする不飽和カ
ルボン酸の製造方法である。
A method for producing an unsaturated carboxylic acid characterized by using a catalyst formed by:

本発明の方法によれば不飽和アルデヒドから和尚する不
飽和カルボン酸が高収率、高選択率で得ることが可能で
あり、特に長期にわたって高い触媒活性が維持されるの
で、工業的価値はきわめて太きい。
According to the method of the present invention, it is possible to obtain unsaturated carboxylic acids from unsaturated aldehydes in high yield and high selectivity, and in particular, high catalytic activity is maintained over a long period of time, so it has extremely high industrial value. Thick.

リンおよびモリブデンを含む触媒系がアクロレインまた
はメタクロレインの気相接触酸化用として有効であるこ
とは良(知られている。
Catalyst systems containing phosphorus and molybdenum are well known to be effective for gas phase catalytic oxidation of acrolein or methacrolein.

リンとモリブデンはその混合割合、熱処理の温度雰囲気
によってきわめて複雑な化合物を生成する。
Phosphorus and molybdenum form extremely complex compounds depending on their mixing ratio and the temperature and atmosphere of heat treatment.

しかし、従来提案されてきたリン、モリブデンを含む触
媒系ではこれを気相酸化に用いると通常用いられる反応
温度領域で経時的に活性、選択性の低下が生ずることが
多く、工業触媒としては問題を有していた。
However, when conventionally proposed catalyst systems containing phosphorus and molybdenum are used for gas phase oxidation, their activity and selectivity often decrease over time in the reaction temperature range normally used, making them problematic as industrial catalysts. It had

これに対して本発明の触媒では熱的安定性が著しく高く
、600°Cで熱処理を施しても高性能を維持すること
ができる。
In contrast, the catalyst of the present invention has extremely high thermal stability and can maintain high performance even when heat treated at 600°C.

本発明の触媒ではリン、モリブデン以外の添加金属はリ
ン、モリブデンときわめて安定な塩を作る性質があり、
この事が活性、選択性の維持に寄与しているものと思わ
れる。
In the catalyst of the present invention, added metals other than phosphorus and molybdenum have the property of forming extremely stable salts with phosphorus and molybdenum.
This seems to contribute to maintaining activity and selectivity.

本発明で用いる触媒の各成分元素の化学的な存在状態は
極めて複雑であって厳密には明らかでないが、おそらく
どの成分も単独の酸化物としては存在せず、緊密に結合
していると思われる。
The chemical state of existence of each component element of the catalyst used in the present invention is extremely complex and is not strictly clear, but it is likely that none of the components exists as an individual oxide, but rather is tightly bound. It will be done.

触媒を調製する方法としては特殊な方法に限定する必要
はなく、成分の著しい偏在を伴なわない限り、従来から
よく知られている蒸発乾固法、沈澱法、酸化物混合法等
の種々の方法を用いることができる。
The method for preparing the catalyst does not need to be limited to a special method, and various well-known methods such as evaporation to dryness method, precipitation method, oxide mixing method, etc. can be used as long as the method does not involve significant uneven distribution of components. A method can be used.

触媒の調製に用いる原料化合物としては、各元素の硝酸
塩、アンモニウム塩、ハロゲン化物等の塩類、酸化物あ
るいはリンモリブデン酸等のへテロポリ酸またはその塩
類を組合せて使用することができる。
As the raw material compounds used for preparing the catalyst, salts and oxides of each element such as nitrates, ammonium salts, and halides, or heteropolyacids such as phosphomolybdic acid or salts thereof can be used in combination.

例えばモリブデン酸アンモニウムの水溶液にメタバナジ
ン酸アンモニウムを溶解し、これにリン酸の水溶液を加
えた後、硝酸タリウム水溶液と硝酸鉄水溶液を加えて得
られたスラリーに適当な担体物質を加えて蒸発乾固する
For example, ammonium metavanadate is dissolved in an aqueous solution of ammonium molybdate, an aqueous solution of phosphoric acid is added thereto, an aqueous thallium nitrate solution and an aqueous iron nitrate solution are added, an appropriate carrier substance is added to the resulting slurry, and the mixture is evaporated to dryness. do.

熱処理の温度は300〜650℃好ましくは350〜6
00℃の範囲で、熱処理の時間は温度によって異なるが
1時間ないし数十時間が適当である。
The temperature of heat treatment is 300-650℃, preferably 350-650℃
The heat treatment time varies depending on the temperature within the range of 00°C, but is suitably 1 hour to several tens of hours.

本発明の方法で用いる触媒はシリカ、アルミナ、シリカ
・アルミナ、シリコンカーバイト等の不活性担体に担持
させるか、あるいはこれらで希釈して用いることができ
る。
The catalyst used in the method of the present invention can be supported on an inert carrier such as silica, alumina, silica-alumina, silicon carbide, etc., or can be used after being diluted with these.

本発明の触媒は固定床、流動床あるいは移動床にも使用
できる。
The catalyst of the invention can be used in fixed beds, fluidized beds or moving beds.

原料ガス中の不飽和アルデヒドの濃度は広い範囲で変え
ることができるが、容量で1〜20%が適当であり、と
くに3〜15%が好ましい。
Although the concentration of unsaturated aldehyde in the raw material gas can be varied within a wide range, a range of 1 to 20% by volume is appropriate, and a range of 3 to 15% is particularly preferred.

原料不飽和アルデヒドは、水、低級飽和アルデヒド等の
不純物を少量含んでいてもよく、これらの不純物は反応
に実質的な影響を与えない。
The raw material unsaturated aldehyde may contain small amounts of impurities such as water and lower saturated aldehydes, but these impurities do not substantially affect the reaction.

酸素源としては空気を用いるのが経済的であるが、必要
ならば純酸素で富化した空気も用い得る。
It is economical to use air as the oxygen source, but air enriched with pure oxygen can also be used if necessary.

原料ガス中の酸素濃度は不飽和アルデヒドに対するモル
比で規定され、この値は0.3〜4と(に0.4〜2.
5が好ましい。
The oxygen concentration in the raw material gas is defined by the molar ratio to the unsaturated aldehyde, and this value is between 0.3 and 4 and between 0.4 and 2.
5 is preferred.

原料ガスは窒素、水蒸気、炭酸ガス等の不活性ガスを加
えて希釈してもよい。
The raw material gas may be diluted by adding an inert gas such as nitrogen, water vapor, or carbon dioxide gas.

反応圧力は常圧から数気圧までがよい。The reaction pressure is preferably from normal pressure to several atmospheres.

反応温度は240〜450℃の範囲で選ぶことができる
力瓢とくに270〜400℃が好ましい。
The reaction temperature can be selected within the range of 240 to 450°C, with 270 to 400°C being particularly preferred.

以下に実施例および比較例を挙げて本発明の方法を更に
詳しく説明する。
The method of the present invention will be explained in more detail below with reference to Examples and Comparative Examples.

以下においては部は重量部を表わし、不飽和カルボン酸
選択率は不飽和アルデヒドの反応したモル数に対する生
成した不飽和カルボン酸のモル数の割合(パーセント)
を表わす。
In the following, parts represent parts by weight, and unsaturated carboxylic acid selectivity is the ratio (percentage) of the number of moles of unsaturated carboxylic acid produced to the number of moles of unsaturated aldehyde reacted.
represents.

実施例 1 パラモリブデン酸アンモニウム42.4部を約60℃の
純水200部に溶解した。
Example 1 42.4 parts of ammonium paramolybdate was dissolved in 200 parts of pure water at about 60°C.

これに85%リン酸2.3部を加える。To this is added 2.3 parts of 85% phosphoric acid.

次いで硝酸カリウム4.04部と硝酸マンガン2.87
部を純水50部に溶解させたものを加える。
Next, 4.04 parts of potassium nitrate and 2.87 parts of manganese nitrate.
1 part dissolved in 50 parts of pure water is added.

最後に五酸化ニオブ1.33部を純水20部に懸濁させ
たものを加え、混合液を加熱攪拌しながら蒸発乾固した
Finally, 1.33 parts of niobium pentoxide suspended in 20 parts of pure water was added, and the mixture was evaporated to dryness while heating and stirring.

得られたケークを130℃で16時間乾燥後、圧縮成型
し450℃で2時間焼成しこれを触媒とした。
The resulting cake was dried at 130° C. for 16 hours, compression molded, and calcined at 450° C. for 2 hours to be used as a catalyst.

触媒の組成は原子比でMo 12p1に2Nb 1Mn
□、5であった。
The composition of the catalyst is Mo 12p1, 2Nb 1Mn in atomic ratio.
□, 5.

本触媒を反応器に充填しメタクロレイン5%、酸素10
%、水蒸気30%、窒素55%(容量%)の混合ガスを
反応温度330℃接触時間3,6秒で通じた。
This catalyst was packed into a reactor, and 5% methacrolein and 10% oxygen were added.
%, water vapor 30%, and nitrogen 55% (volume %) mixed gas was passed through the reactor at a reaction temperature of 330°C and a contact time of 3.6 seconds.

生成物をガスクロマトグラフィーで分析したところ、メ
タクロレイン反応率80.6%メタクリル酸選択率は8
0.1%であった。
When the product was analyzed by gas chromatography, the methacrolein reaction rate was 80.6%, and the methacrylic acid selectivity was 8.
It was 0.1%.

この他、酢酸、炭酸ガス、−酸化炭素等が生成した。In addition, acetic acid, carbon dioxide gas, -carbon oxide, etc. were generated.

同一条件で約1000時間反応を継続したが、メタクロ
レイン反応率79.3%メタクリル酸選択率80.8%
と、はとんど変らなかった。
The reaction continued for about 1000 hours under the same conditions, but the methacrolein reaction rate was 79.3% and the methacrylic acid selectivity was 80.8%.
And it hasn't changed at all.

実施例 2−13 実施例1と同様にして次の触媒を調製し実施例′1と同
一条件で反応させ表1の結果を得た。
Example 2-13 The following catalysts were prepared in the same manner as in Example 1 and reacted under the same conditions as in Example '1 to obtain the results shown in Table 1.

実施例 13−20 実施例1〜13の方法で五酸化ニオブの一部又は全部を
メタノ9ナジン酸アンモニウムに変えて同様に触媒を調
製し反応温度以外は実施例1と同一条件で反応し、結果
を表2に示した。
Example 13-20 A catalyst was prepared in the same manner as in Examples 1 to 13 by replacing part or all of the niobium pentoxide with ammonium methanonadate, and the reaction was carried out under the same conditions as in Example 1 except for the reaction temperature. The results are shown in Table 2.

実施例 21−24 実施例1.8.13および16の触媒を用いアクロレイ
ン5%酸素10%、水蒸気30%窒素55%の混合ガス
と所定の反応温度、接触時間3.6秒で反応させ、表3
の結果を得た。
Examples 21-24 The catalysts of Examples 1.8, 13 and 16 were reacted with a mixed gas of 5% acrolein, 10% oxygen, 30% water vapor and 55% nitrogen at a predetermined reaction temperature and for a contact time of 3.6 seconds, Table 3
I got the result.

比較例 実施例1の方法において五酸化ニオブもしくは硝酸マン
ガンもしくは硝酸カリウムを除いた触媒を調製し、実施
例1の方法で試験し、結果を表4に示した。
Comparative Example A catalyst was prepared using the method of Example 1 except that niobium pentoxide, manganese nitrate, or potassium nitrate was removed and tested using the method of Example 1. The results are shown in Table 4.

Claims (1)

【特許請求の範囲】 1 アクロレイン又はメタクロレインを分子状酸素によ
り高温の気相で接触酸化して、アクリル酸またはメタク
リル酸を得るに際し、次の一般式%式% 但し、Pはリン、MOはモリブデン、0は酸素をあられ
し、Xはカリウム、ルビジウム、セシウムおよびタリウ
ムより成る群から選ばれる1種または2種以上、Yはバ
ナジウムおよびニオブより成る群から選ばれた1種また
は2種、Zは鉄、ニッケル、アンチモン、硅素、マンガ
ン、ウランおよび銅より成る群から選ばれた1種または
2種以上をあられし、a、b、c、d、eおよびfはそ
れぞれの成分の原子比をあられし、a = 0.5〜6
、b=12、c = 0.2〜6、d=0.01〜6、
e=0.01〜6、fは触媒の酸化状態で定まる値であ
る。 であられされる触媒を用いることを特徴とする不飽和カ
ルボン酸の製造方法。
[Claims] 1. When acrylic acid or methacrylic acid is obtained by catalytically oxidizing acrolein or methacrolein in a high-temperature gas phase with molecular oxygen, the following general formula % is used, where P is phosphorus and MO is Molybdenum, 0 represents oxygen, X is one or more selected from the group consisting of potassium, rubidium, cesium and thallium, Y is one or two selected from the group consisting of vanadium and niobium, Z represents one or more elements selected from the group consisting of iron, nickel, antimony, silicon, manganese, uranium, and copper, and a, b, c, d, e, and f represent the atomic ratio of each component. Hail, a = 0.5~6
, b=12, c=0.2~6, d=0.01~6,
e=0.01 to 6, and f is a value determined by the oxidation state of the catalyst. A method for producing an unsaturated carboxylic acid, characterized by using a catalyst formed by:
JP50144134A 1975-12-03 1975-12-03 Fuhouwa Carbon Sanno Seizouhouhou Expired JPS5824419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50144134A JPS5824419B2 (en) 1975-12-03 1975-12-03 Fuhouwa Carbon Sanno Seizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50144134A JPS5824419B2 (en) 1975-12-03 1975-12-03 Fuhouwa Carbon Sanno Seizouhouhou

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP59009801A Division JPS59210043A (en) 1984-01-23 1984-01-23 Preparation of unsaturated carboxylic acid
JP59009800A Division JPS606634A (en) 1984-01-23 1984-01-23 Production of unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JPS5268122A JPS5268122A (en) 1977-06-06
JPS5824419B2 true JPS5824419B2 (en) 1983-05-20

Family

ID=15354998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50144134A Expired JPS5824419B2 (en) 1975-12-03 1975-12-03 Fuhouwa Carbon Sanno Seizouhouhou

Country Status (1)

Country Link
JP (1) JPS5824419B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2718399A1 (en) * 1976-05-05 1977-11-17 Standard Oil Co Ohio PROCESS FOR MANUFACTURING UNSATATURATED ALIPHATIC ACIDS AND CATALYSTS USED THEREFORE
JPS552619A (en) * 1978-06-21 1980-01-10 Nippon Kayaku Co Ltd Preparation of methacrylic acid and catalyst
US4252682A (en) * 1978-12-26 1981-02-24 Halcon Research And Development Corp. Catalyst for producing methacrylic acid
JP3800043B2 (en) * 2001-06-28 2006-07-19 住友化学株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Also Published As

Publication number Publication date
JPS5268122A (en) 1977-06-06

Similar Documents

Publication Publication Date Title
JPS5946934B2 (en) Method for manufacturing methacrylic acid
JPH03238051A (en) Preparation of catalyst for preparing methacrylic acid
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPS5826329B2 (en) Seizouhou
US5550095A (en) Process for producing catalyst used for synthesis of methacrylic acid
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
JPH0791212B2 (en) Method for producing methacrylic acid
JPH05177141A (en) Preparation of methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JP3370589B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JPS61114739A (en) Preparation of catalyst for preparing unsaturated carboxylic acid
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JPH03167152A (en) Production of methacrylic acid
JP2671040B2 (en) Method for preparing catalyst for producing unsaturated carboxylic acid
JP2003154273A (en) Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid
JPS5842176B2 (en) Fuhouwa Carbon Sanno Seizouhou
JPS6131092B2 (en)
JPS6136816B2 (en)
JPS5826740B2 (en) Method for producing unsaturated carboxylic acid
JPS5825653B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPH064559B2 (en) Method for producing methacrylic acid