JPH0463139A - Catalyst for production of methacrylic acid - Google Patents

Catalyst for production of methacrylic acid

Info

Publication number
JPH0463139A
JPH0463139A JP2171734A JP17173490A JPH0463139A JP H0463139 A JPH0463139 A JP H0463139A JP 2171734 A JP2171734 A JP 2171734A JP 17173490 A JP17173490 A JP 17173490A JP H0463139 A JPH0463139 A JP H0463139A
Authority
JP
Japan
Prior art keywords
catalyst
selectivity
methacrylic acid
reaction
conversion rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2171734A
Other languages
Japanese (ja)
Other versions
JP3146486B2 (en
Inventor
Koichi Nagai
功一 永井
Yoshihiko Nagaoka
長岡 義彦
Motomasa Osu
大須 基正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP17173490A priority Critical patent/JP3146486B2/en
Publication of JPH0463139A publication Critical patent/JPH0463139A/en
Application granted granted Critical
Publication of JP3146486B2 publication Critical patent/JP3146486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst having higher reactivity, selectivity and long life by calcining a solid of partially neutralized salt of specified heteropoly acid at 400-500 deg.C in an inert gas. CONSTITUTION:Vanadium pentoxide (V2O5) is used as the vanadium source. The partial neutral salt of heteropoly acid is prepared as a dissolved or suspended state of the catalyst source in water in the presence of ammonium group and is heated at >=80 deg.C for one hour or longer. Then the material is concentrated and drive to obtain the solid, which is then calcined at 400-500 deg.C in an inert gas. Thus, the catalyst for the production of methacrylic acid is obtained. This catalyst can be used for the production of methacrylic acid by oxidation of methacrolein or various source materials. The catalyst is used in a signal form, or is deposited on a carrier as alumina, silica, silicon carbide, or diluted or mixed for use.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は気相接触酸化によるメタクリル酸の製造に用い
られるヘテロポリ酸系触媒の改良に関する。詳しくはメ
タクロレイン、イソブタンなどを分子状酸素で気相接触
酸化してメタクリル酸を製造するために用いられるヘテ
ロポリ酸系触媒の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in heteropolyacid catalysts used in the production of methacrylic acid by gas phase catalytic oxidation. More specifically, the present invention relates to improvements in heteropolyacid catalysts used to produce methacrylic acid by gas-phase catalytic oxidation of methacrolein, isobutane, etc. with molecular oxygen.

[従来の技術] メタクロレインを気相接触酸化してメタクリル酸を製造
するための触媒は数多く提案されており(例えば特開昭
50−101316号、特開昭50−142510号、
特開昭59−4445号など)、既にその一部は工業的
規模の生産に用いられている。またイソ酪酸の酸化脱水
素(特開昭57−72936号など)、イソブチルアル
デヒドの酸化(特開昭57−144238号など)にょ
るメタクリル酸の製造も良く知られている。さらにイソ
ブチレンまたは第三級ブタノールを酸化してメタクリル
酸、メタクロレインを作るための触媒(特開昭55−1
27328号)、最近ではイソブタンを直接酸化してメ
タクリル酸、メタクロレインを得るための触媒(特開平
2−42032号など)も提案されている。
[Prior Art] Many catalysts have been proposed for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein (for example, Japanese Patent Application Laid-open Nos. 101316-1982, 142510-1980,
JP-A No. 59-4445, etc.), some of which have already been used in industrial scale production. Furthermore, the production of methacrylic acid by oxidative dehydrogenation of isobutyric acid (JP-A-57-72936, etc.) and oxidation of isobutyraldehyde (JP-A-57-144238, etc.) is also well known. Furthermore, a catalyst for producing methacrylic acid and methacrolein by oxidizing isobutylene or tertiary butanol (JP-A-55-1
27328), and recently, catalysts for directly oxidizing isobutane to obtain methacrylic acid and methacrolein (Japanese Patent Application Laid-Open No. 2-42032, etc.) have also been proposed.

これらの反応に用いられる触媒としてはいずれもモリブ
デン及びリンを主成分とするヘテロポリ酸及びまたはそ
の塩の構造を有するものが有効であることが知られてお
り、組成に関してはバナジウムによるモリブデンの一部
置換、銅、アンチモン、ヒ素などの助触媒成分の添加、
調製法に関しても環状アミンの使用等、種々の改良がな
されてきている。
It is known that catalysts used in these reactions have a structure of a heteropolyacid and/or a salt thereof whose main components are molybdenum and phosphorus, and the composition is such that a portion of molybdenum is formed by vanadium. Substitution, addition of promoter components such as copper, antimony, arsenic,
Various improvements have been made regarding the preparation method, such as the use of cyclic amines.

[発明が解決しようとする課題] しかしながら、これらの知られている触媒系の問題点は
、既に実用化されているメタクロレインの酸化において
も反応収率(活性と選択性)と触媒寿命の両者を満足さ
せる点で必ずしも十分でないことである。例えばアクロ
レインからアクリル酸を製造する触媒に比べ、反応の選
択性が悪いばかりでなく反応活性と寿命も悪く、従って
大量の触媒が必要となり設備費用と触媒コストの負担が
大きいのが現状である。イソブタン、イソ酪酸などを原
料とする場合も未だに工業化できていないのは触媒の性
能が十分でないことが大きな理由の一つである。本発明
の課題は現状の触媒を改良して、より高い反応活性、選
択性と、長い触媒寿命を合わせもつ触媒を提供すること
にある。
[Problems to be Solved by the Invention] However, the problems with these known catalyst systems are that even in the oxidation of methacrolein, which has already been put into practical use, both the reaction yield (activity and selectivity) and the catalyst life are affected. However, it is not necessarily sufficient to satisfy the following. For example, compared to a catalyst for producing acrylic acid from acrolein, it not only has poor reaction selectivity but also poor reaction activity and lifespan, and as a result, a large amount of catalyst is required, resulting in large equipment costs and catalyst costs. One of the main reasons why even when using isobutane, isobutyric acid, etc. as raw materials has not yet been commercialized is that the performance of the catalyst is not sufficient. The object of the present invention is to improve current catalysts and provide a catalyst that has higher reaction activity, higher selectivity, and longer catalyst life.

[課題を解決するための手段] 本発明者らは上記の課題を達成するために、ヘテロポリ
酸系の触媒の改良について鋭意検討した結果、特定の触
媒組成をもち特別な調製工程を含む方法で調製した触媒
が上記の目的を達成することを見いだし本発明に到達し
たものである。
[Means for Solving the Problems] In order to achieve the above-mentioned problems, the present inventors have conducted intensive studies on improving heteropolyacid-based catalysts, and have developed a method that has a specific catalyst composition and includes a special preparation process. The present invention was achieved by discovering that the prepared catalyst achieves the above object.

すなわち、本発明は一般式 %式% (式中、P、 Mo、  V、 As、 Cu、  O
はそれぞれリン、モリブデン、バナジウム、ヒ素、銅及
び酸素を示し、Xはルビジウム、セシウム及びタリウム
からなる群より選ばれた少なくとも一種の元素を示し、
また添字a、  b、  c、  d、  e、  f
及びgは各元素の原子比を示し、b=12としたとき、
a、c%dSeS fはそれぞれO(ゼロ)を含まない
3以下の値をとり、gは他の元素の原子価及び原子比に
よって決まる値を示す)で表されるヘテロポリ酸の部分
中和塩であって、バナジウム原料として五酸化バナジウ
ム(V 20 s )を用い、またアンモニウム根の存
在下に触媒原料を水に溶解または懸濁した状態で、80
℃以上の温度で1時間以上加熱処理をする工程と、濃縮
乾燥後得られた固体を400〜500℃の温度で不活性
ガス中で焼成する工程とを含む方法で調製されることを
特徴とするメタクリル酸製造用触媒である。
That is, the present invention is based on the general formula % (wherein, P, Mo, V, As, Cu, O
represent phosphorus, molybdenum, vanadium, arsenic, copper and oxygen, respectively; X represents at least one element selected from the group consisting of rubidium, cesium and thallium;
Also, subscripts a, b, c, d, e, f
and g indicates the atomic ratio of each element, and when b = 12,
Partially neutralized salt of a heteropolyacid represented by a, c%dSeS f each takes a value of 3 or less without O (zero), and g indicates a value determined by the valence and atomic ratio of other elements) Using vanadium pentoxide (V 20 s ) as the vanadium raw material, and with the catalyst raw material dissolved or suspended in water in the presence of ammonium radicals, 80
It is characterized by being prepared by a method including a step of heat treatment at a temperature of 1 hour or more at a temperature of 100° C. or higher, and a step of calcining the solid obtained after concentration and drying in an inert gas at a temperature of 400 to 500° C. This is a catalyst for producing methacrylic acid.

本発明の触媒の基本的な構造は従来からよく知られてい
るリンモリブデン酸のルビジウム、セシウム、タリウム
による部分中和塩であるが、さらに必須成分として、バ
ナジウム、ヒ素及び銅を含んでいる。これらの元素が有
効であることは既に知られているが、これらの組成の組
合せと調製法との関係を種々検討した結果、組成に関し
ては以下のことが判明した。
The basic structure of the catalyst of the present invention is a well-known partially neutralized salt of phosphomolybdic acid with rubidium, cesium, and thallium, but it also contains vanadium, arsenic, and copper as essential components. Although it is already known that these elements are effective, as a result of various studies on the relationship between the combination of these compositions and the preparation method, the following was found regarding the composition.

まずバナジウムを含まずヒ素を含む触媒は調製法によら
ず反応選択性は高いが、長時間の使用により反応率が低
下し易い欠点を持っており工業的使用に耐えるものでは
ない。一方、ヒ素を含まずバナジウムを含む触媒は従来
の調製法では反応選択性、寿命ともある程度のものがで
きるがともに十分ではない。本発明の五酸化バナジウム
を原料とし加熱工程を含むような調製方法を用いれば反
応率の低下は起こりにくい触媒となるが、反応選択性は
改良されない。反応選択性を高めるためにはヒ素が必要
であり寿命のためにはバナジウムが必要であるが、両者
を含む触媒は、従来の調製法ではバナジウムのみのもの
より寿命は短くなってしまう。反応選択性と活性、寿命
を合わせもつためにはバナジウムとヒ素をともに含みさ
らに本発明の特別な調製法でつくる必要がある。また銅
は反応活性及び選択性の改良の点で必須成分である。
First, catalysts that do not contain vanadium but contain arsenic have high reaction selectivity regardless of the preparation method, but they have the disadvantage that the reaction rate tends to decrease when used for a long time, and are not suitable for industrial use. On the other hand, a catalyst that does not contain arsenic but contains vanadium can have a certain degree of reaction selectivity and lifetime using conventional preparation methods, but both are insufficient. If a preparation method using the vanadium pentoxide of the present invention as a raw material and including a heating step is used, a catalyst is obtained in which the reaction rate is less likely to decrease, but the reaction selectivity is not improved. Although arsenic is required to increase reaction selectivity and vanadium is required for longevity, catalysts containing both have shorter lifetimes than those containing only vanadium using conventional preparation methods. In order to have a combination of reaction selectivity, activity, and lifetime, it is necessary to contain both vanadium and arsenic, and to make it using the special preparation method of the present invention. Copper is also an essential component for improving reaction activity and selectivity.

その他、アンチモン、銀、鉄、コバルト、ランタン、セ
リウムなどを任意成分として含んでいてもよい。
In addition, antimony, silver, iron, cobalt, lanthanum, cerium, etc. may be included as optional components.

本発明の触媒は特定の原料及び方法を用いて調製される
。バナジウムの原料としては五酸化バナジウムを用い、
また後に述べる懸濁物の加熱処理の段階でアンモニウム
根を含んでいることが必要である。なぜ五酸化バナジウ
ムを用いると良いのか理由はよく分からないが、五酸化
バナジウムの代わりにメタバナジン酸アンモニウム、シ
ュウ酸バナジル、モリブドバナドリン酸などの水によく
溶ける原料を用いると反応活性および寿命ともに十分で
ない。モリブデン及びアンモニウムの原料としてはモリ
ブデン酸アンモニウムが適当であるが、酸化モリブデン
、リンモリブデン酸等とアンモニアまたはアンモニウム
塩との組合せで用いてもよい。リンおよびヒ素はリン酸
、ヒ酸を用いるのが一般的であるがリン酸アンモニウム
、リン酸銅など他の必須成分との塩などの形で用いても
よい。銅およびルビジウム等の成分は硝酸塩、塩化物、
炭酸塩、水酸化物、リン酸塩等を用いることができる。
The catalysts of this invention are prepared using specific raw materials and methods. Vanadium pentoxide is used as the raw material for vanadium,
Further, it is necessary that the suspension contains ammonium radicals at the stage of heat treatment of the suspension, which will be described later. I don't really understand why it is better to use vanadium pentoxide, but using raw materials that are highly soluble in water such as ammonium metavanadate, vanadyl oxalate, and molybdovanadophosphate instead of vanadium pentoxide improves both reaction activity and lifespan. not enough. Ammonium molybdate is suitable as a raw material for molybdenum and ammonium, but a combination of molybdenum oxide, phosphomolybdic acid, etc., and ammonia or an ammonium salt may be used. For phosphorus and arsenic, phosphoric acid and arsenic acid are generally used, but they may also be used in the form of salts with other essential components such as ammonium phosphate and copper phosphate. Ingredients such as copper and rubidium are nitrates, chlorides,
Carbonates, hydroxides, phosphates, etc. can be used.

上記の原料を水中に溶解または懸濁させ、これを約80
℃以上の温度で約1時間以上加熱処理をする工程が必要
なことである。熱処理温度が約80℃以下の場合及び約
80℃以上でも反応時間が約1時間以下の場合には反応
が十分に進まず、メタクリル酸選択性のよくない触媒に
なってしまう。
Dissolve or suspend the above raw materials in water and add about 80%
It is necessary to carry out a heat treatment process at a temperature of 0.degree. C. or higher for about 1 hour or more. If the heat treatment temperature is about 80° C. or lower, or if the reaction time is about 1 hour or less even if it is about 80° C. or higher, the reaction will not proceed sufficiently, resulting in a catalyst with poor methacrylic acid selectivity.

この工程をオートクレーブを用い100℃以上の温度、
約100〜150℃でも実施することができるが、通常
は常圧で煮沸(100℃)還流下に行われる。処理時間
は約1時間以上であれば特に制限されるものではないが
、通常約1〜24時間の範囲で行われる。これ以上長時
間行ってもそれに見合う効果はない。
This process is carried out using an autoclave at a temperature of 100°C or more.
Although it can be carried out at about 100 to 150°C, it is usually carried out under boiling (100°C) and reflux at normal pressure. The treatment time is not particularly limited as long as it is about 1 hour or more, but it is usually carried out for about 1 to 24 hours. Even if you do it for a longer time, there will be no effect.

水溶性の原料は予め別に水に溶解して用いてもよいが、
粉体のまま仕込んでも問題ない。五酸化バナジウムは粉
体のまま仕込む必要がある。この工程では明らかに固体
を含めた不均一系の反応が起こっており、このスラリー
を蒸発乾固して得た固体中には、X線回折によっても五
酸化バナジウムの結晶は見られず、P:Moの比が1:
9のいわゆるドーンン型のへテロポリ酸の塩となってい
る。これを250℃程度に加熱するとP:Moが1:1
2のいわゆるケギン型へテロポリ酸の塩の構造に変化す
る。アンモニウム根を含んで調製しているのでこの段階
の固体は、ヘテロポリ酸のX成分(ルビジウムなど)と
アンモニウムとの混合塩となっている。このままでは固
体酸の性質がなく活性が低いので焼成して活性化する必
要がある。
Water-soluble raw materials may be used by separately dissolving them in water, but
There is no problem even if it is prepared as a powder. Vanadium pentoxide must be prepared in powder form. In this process, a heterogeneous reaction involving solids clearly occurs, and in the solid obtained by evaporating this slurry to dryness, no vanadium pentoxide crystals were observed by X-ray diffraction, and P :Mo ratio is 1:
It is a salt of a so-called Dawn-type heteropolyacid of No. 9. When this is heated to about 250℃, P:Mo becomes 1:1.
The structure changes to the so-called Keggin-type heteropolyacid salt of No. 2. Since it is prepared containing an ammonium radical, the solid at this stage is a mixed salt of the X component of the heteropolyacid (such as rubidium) and ammonium. As it is, it does not have the properties of a solid acid and has low activity, so it must be activated by firing.

窒素などの不活性ガス雰囲気中約400〜50f)℃、
好ましくは約420〜450℃の温度で焼成する。これ
によりほぼ全てのアンモニウム成分が脱離しプロトン酸
となり高活性を発現する。空気中で焼成した場合は、約
400℃以上ではへテロポリ酸の分解、焼結が起こって
活性が低くなり、約400℃以下ではアンモニウム根が
多く残ってしまうためにやはり活性が低いと考えられる
。不活性ガス中で焼成した後空気中で約400’l:以
下の温度で焼成することは差し支えない。
Approximately 400~50f)℃ in an inert gas atmosphere such as nitrogen,
Preferably it is fired at a temperature of about 420-450°C. As a result, almost all of the ammonium components are eliminated and become protonic acids, exhibiting high activity. When fired in air, the heteropolyacid decomposes and sinters at temperatures above about 400°C, resulting in low activity, and below about 400°C, many ammonium roots remain, so activity is thought to be low as well. . After firing in an inert gas, it may be fired in air at a temperature of about 400'l or less.

本発明の触媒はメタクロレイの酸化をはじめ種々の原料
の酸化によるメタクリル酸の製造に用いられるが、使用
に当たっては触媒単味、またはアルミナ、シリカ、ンリ
コンカーバイドなどの担体に担持または希釈混合した形
で用いられ、固定床の場合は、円柱状、球状、リング状
等に成形−して用いられる。流動床、移動床などの反応
形式を用いることもできる。
The catalyst of the present invention can be used to produce methacrylic acid by oxidizing various raw materials, including the oxidation of methachloride, but it can be used as a single catalyst, supported on a carrier such as alumina, silica, or phosphoric acid carbide, or in the form of a diluted mixture. In the case of a fixed bed, it is used after being shaped into a cylinder, sphere, ring, etc. Reaction formats such as fluidized bed and moving bed may also be used.

本発明の触媒を用いて、メタクロレインを気相で接触酸
化してメタクリル酸を製造する場合、使用される原料と
しては必ずしも純粋のメタクロレインである必要はなく
、インブチレンやターシャリ−ブタノールを気相接触酸
化して得られたメタクロレイン含有ガスでもまた液相法
で得られたメタクロレインを気化したものでもよい。酸
素源は純粋な酸素でもよいが、工業的には空気が使用さ
れる。その他の希釈ガスとしては、窒素、二酸化炭素、
−酸化炭素、水蒸気等を用いることができる。反応原料
ガス中のメタクロレイン濃度は約1〜lO%、メタクロ
レインに対する酸素の比は約1〜5程度が用いられる。
When producing methacrylic acid by catalytically oxidizing methacrolein in the gas phase using the catalyst of the present invention, the raw material used does not necessarily have to be pure methacrolein, but imbutylene or tertiary-butanol. A methacrolein-containing gas obtained by phase contact oxidation or a gas obtained by vaporizing methacrolein obtained by a liquid phase method may be used. The oxygen source may be pure oxygen, but air is used industrially. Other diluent gases include nitrogen, carbon dioxide,
- Carbon oxide, water vapor, etc. can be used. The concentration of methacrolein in the reaction raw material gas is approximately 1 to 10%, and the ratio of oxygen to methacrolein is approximately 1 to 5.

原料ガスの空間速度は約500〜5000 h−’の範
囲、反応温度は約260〜340℃程度が好ましい。反
応圧力は常圧付近または若干の加圧下で行なわれるのが
普通である。。
The space velocity of the raw material gas is preferably in the range of about 500 to 5000 h-', and the reaction temperature is preferably about 260 to 340°C. The reaction pressure is usually around normal pressure or under slightly increased pressure. .

また本発明の触媒を用いて、イソブタンを直接酸化して
メタクリル酸、メタクロレインを製造する場合は、原料
ガス中のイソブタン濃度は約15%以上の高濃度の方が
よい。酸素源としては、純酸素、酸素富化空気、空気な
どが用いられる。イソブタンに対する酸素の比は約0.
2〜2程度が適当である。反応ガス中には水蒸気を約3
〜30%の範囲で含有させることが望ましい。原料ガス
中には窒素、二酸化炭素、−酸化炭素などが希釈ガスと
して含まれていてもよい。この反応では転化率をそれほ
ど高くできないので、未反応イソブタン及び場合により
酸素は回収して再循環される。
Further, when isobutane is directly oxidized to produce methacrylic acid and methacrolein using the catalyst of the present invention, the isobutane concentration in the raw material gas is preferably as high as about 15% or more. As the oxygen source, pure oxygen, oxygen-enriched air, air, etc. are used. The ratio of oxygen to isobutane is approximately 0.
Approximately 2 to 2 is appropriate. Approximately 3% water vapor is contained in the reaction gas.
It is desirable to contain it in a range of 30%. The raw material gas may contain nitrogen, carbon dioxide, carbon oxide, etc. as a diluent gas. Since conversion rates cannot be very high in this reaction, unreacted isobutane and optionally oxygen are recovered and recycled.

副生メタクロレインは再循環するか別の反応器に導きメ
タクリル酸まで酸化する。空間速度は約300〜300
0 h−’、反応温度は約270〜340℃程度が好ま
しい。反応圧力は常圧または加圧で行なわれる。
By-product methacrolein is recycled or led to another reactor where it is oxidized to methacrylic acid. Space velocity is about 300-300
0 h-' and the reaction temperature is preferably about 270 to 340°C. The reaction pressure is normal pressure or increased pressure.

本発明の触媒は、イソ酪酸の酸化脱水素、イソブチルア
ルデヒドの酸化によるメタクリル酸の製造にも用いるこ
とができる。またインブチレンから一段でメタクリル酸
を製造する際にも用いることが可能である。これらの反
応では、メタクロレインの酸化と同様な反応条件が採用
できる。
The catalyst of the present invention can also be used for the production of methacrylic acid by oxidative dehydrogenation of isobutyric acid and oxidation of isobutyraldehyde. It can also be used to produce methacrylic acid from inbutylene in one step. In these reactions, reaction conditions similar to those for the oxidation of methacrolein can be employed.

[発明の効果] 本発明の触媒はメタクリル酸の製造において、従来の触
媒よりも高い反応活性、選択性と長い触媒寿命を有して
いる。
[Effects of the Invention] The catalyst of the present invention has higher reaction activity, higher selectivity, and longer catalyst life than conventional catalysts in the production of methacrylic acid.

[実施例コ 以下に実施例を挙げて、本発明をさらに具体的に説明す
るが、本発明はこれらの実施例によって限定されるもの
ではない。
[Example] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

転化率、および選択率の定義は下記の通りである一 実施例1 イオン交換水500m1にモリブデン酸アンモニウム(
(NH4)sMOloaa ” 4H20)105.9
g1五酸化バナジウム1.82g、リン酸銅(Cu。
The definitions of conversion rate and selectivity are as follows. Example 1 Ammonium molybdate (
(NH4)sMOloaa” 4H20) 105.9
g1 Vanadium pentoxide 1.82g, copper phosphate (Cu.

(PO,)2・3H20)2.17gを懸濁させ、さら
に85%リン酸7.49 gと60%ヒ酸水溶液4.7
3gおよび硝酸セシウム17.5 gをイオン交換水に
溶解して180m1としたものを加え、得られたスラリ
ーを約100℃でリフラックスしながら15時間撹拌加
熱した。これをステンレス製バットにとり電気炉中15
0℃で水分を蒸発させた。
Suspend 2.17 g of (PO,)2.3H20), and further add 7.49 g of 85% phosphoric acid and 4.7 g of 60% arsenic acid aqueous solution.
3 g of cesium nitrate and 17.5 g of cesium nitrate were dissolved in ion-exchanged water to make 180 ml, and the resulting slurry was stirred and heated at about 100° C. for 15 hours while being refluxed. Place this in a stainless steel vat and put it in an electric furnace for 15 minutes.
Water was evaporated at 0°C.

この段階の乾固物はX線回折では2θ(CuKα)が9
,6°、11.1°、12.4°、15.5°、19゜
1’、20.7°、22.7°、25.9°、27.6
゜などにピークをもち、レーザーラマン分光スペクトル
では960.925.890.650.53Qcrrr
’などにピークをもっており、いわゆるドーソン型のへ
テロポリ酸塩の構造をしていることがわかった。これを
さらに250℃で焼成する。
The dry matter at this stage has a 2θ (CuKα) of 9 in X-ray diffraction.
, 6°, 11.1°, 12.4°, 15.5°, 19°1', 20.7°, 22.7°, 25.9°, 27.6
It has a peak at 960.925.890.650.53Qcrrr in the laser Raman spectrum.
' It was found that it has a structure of a so-called Dawson-type heteropolyacid salt. This is further fired at 250°C.

このものはX線回折でI O,5°、18.4°、23
゜8°、26.1°、30.2°などにピークをもった
いわゆるケギン型のへテロポリ酸塩になっていることが
分かった。これを窒素気流中、435℃で5時間焼成し
たものは、やはりケギン型のへテロポリ酸の塩の構造を
している。
This one was determined by X-ray diffraction as IO, 5°, 18.4°, 23
It was found that it was a so-called Keggin-type heteropolyacid salt having peaks at 8 degrees, 26.1 degrees, 30.2 degrees, etc. The product calcined at 435° C. for 5 hours in a nitrogen stream still has the structure of a Keggin-type heteropolyacid salt.

この粉末にグラファイトを2%加えて、直径5mm高さ
5mmの円柱状に打錠成形して触媒を得た。 この触媒
の酸素、水素、窒素を除く組成はMO+zP+、5AS
o、<Vo、aCuo、*CS+、eである。
2% graphite was added to this powder and the mixture was compressed into a cylindrical tablet having a diameter of 5 mm and a height of 5 mm to obtain a catalyst. The composition of this catalyst excluding oxygen, hydrogen, and nitrogen is MO+zP+, 5AS
o, <Vo, aCuo, *CS+, e.

この触媒9 m lを内径15mmのガラス製反応管に
充填し、メタクロレイン4モル%、酸素12モル%、水
蒸気16モル%、残りが窒素からなる組成の原料ガスを
空間速度(STP基準)670h−1で反応管を通し、
反応温度280℃で活性試験を行なった。その結果メタ
クロレイン転化率87.5%、メタクリル酸選択¥= 
88.6%であった。
A glass reaction tube with an inner diameter of 15 mm was filled with 9 ml of this catalyst, and a raw material gas having a composition of 4 mol% methacrolein, 12 mol% oxygen, 16 mol% water vapor, and the balance nitrogen was heated at a space velocity (STP standard) of 670 h. -1 through the reaction tube,
The activity test was conducted at a reaction temperature of 280°C. As a result, methacrolein conversion rate was 87.5%, methacrylic acid selection ¥=
It was 88.6%.

また加速寿命試験として、この触媒3mlを内径15m
mのガラス製反応管に充填し、上記と同じ組成のガスを
空間速度2000 h−’で反応管を通し、反応温度3
20℃として連続運転した。その結果、反応開始後15
時間目の反応成績はメタクロレイン転化率65.3%、
メタクリル酸選択率86.5%であり、2000時間後
の成績はそれぞれ59.8%と87.0%であった。
In addition, as an accelerated life test, 3 ml of this catalyst was tested with an inner diameter of 15 m.
A glass reaction tube of 300 m was filled with a gas having the same composition as above, passed through the reaction tube at a space velocity of 2000 h-', and the reaction temperature was 3.
It was operated continuously at 20°C. As a result, after the start of the reaction, 15
The reaction results at the 1st hour were methacrolein conversion rate of 65.3%;
The methacrylic acid selectivity was 86.5%, and the results after 2000 hours were 59.8% and 87.0%, respectively.

比較例1 ヒ素を用いず五酸化バナジウムを4.56 g用いた以
外は実施例1と同様にして触媒を調製した。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that 4.56 g of vanadium pentoxide was used instead of arsenic.

その組成はMo+zP+、sV+、oCuo、C5r−
eである。実施例1と同じ活性試験では転化率78.8
%、選択率79.3%であり、特に選択性が十分ではな
い。
Its composition is Mo+zP+, sV+, oCuo, C5r-
It is e. In the same activity test as Example 1, the conversion rate was 78.8.
%, the selectivity was 79.3%, and the selectivity was not particularly sufficient.

比較例2 パラモリブデン酸アンモニウム105.9gをイオン交
換水40 Q、m 1に溶解したものに、別に85%リ
ン酸7.72 g、60%ヒ酸水溶液7.10 g、硝
酸銅1.20g、硝酸セシウム17.5 gをイオン交
換水300m1に溶解したものを加え、ロータリーエバ
ポレーターをを用いて蒸発乾固した。これを窒素気流中
435℃で5時間焼成したのち、実施例工と同様に打錠
成形した。その触媒組成はMO+*P+、zASo、6
Cu0.+C3+、eである。
Comparative Example 2 105.9 g of ammonium paramolybdate was dissolved in 40 Q, m 1 of ion-exchanged water, and separately 7.72 g of 85% phosphoric acid, 7.10 g of 60% arsenic acid aqueous solution, and 1.20 g of copper nitrate. A solution of 17.5 g of cesium nitrate dissolved in 300 ml of ion-exchanged water was added, and the mixture was evaporated to dryness using a rotary evaporator. This was calcined at 435° C. for 5 hours in a nitrogen stream, and then formed into tablets in the same manner as in the example. Its catalyst composition is MO++P+,zASo,6
Cu0. +C3+, e.

実施例1と同じ活性試験の結果は、転化率82.8%、
選択率90.0%と良い成績であったが、加速寿命試験
の結果は、15時間で転化率60.2%、選択率87.
9%に対し、2000時間では転化率29.4%、選択
率88.0%と、特に転化率の低下が著しい。
The results of the same activity test as in Example 1 were that the conversion rate was 82.8%;
Although the selectivity was 90.0%, which was a good result, the results of the accelerated life test showed that the conversion rate was 60.2% and the selectivity was 87.0% in 15 hours.
9%, at 2000 hours the conversion rate was 29.4% and the selectivity was 88.0%, which was a particularly significant decrease in the conversion rate.

比較例3 パラモリブデン酸アンモニウム105.9gとメタバナ
ジン酸アンモニウム(NH,VO,)2.34gをイオ
ン交換水400m1に溶解したものに別に85%リン酸
8.65g、60%ヒ酸水溶液4.73g、硝酸銅3.
62g、硝酸セシウム17.5 gをイオン交換水30
0m1に溶解したものを加え、そのままロータリーエバ
ポレーターを用いて濃縮乾燥し、その後は実施例1と同
じ方法で実施例1と同じ組成の触媒を調製した。
Comparative Example 3 105.9 g of ammonium paramolybdate and 2.34 g of ammonium metavanadate (NH, VO,) were dissolved in 400 ml of ion exchange water, and 8.65 g of 85% phosphoric acid and 4.73 g of 60% arsenic acid aqueous solution were added separately. , copper nitrate3.
62g, 17.5g of cesium nitrate and 30g of ion exchange water
A catalyst having the same composition as in Example 1 was prepared by the same method as in Example 1.

活性試験の結果は、転化率68.5%、選択、$88.
5%と特に活性の点で不十分である。さらに加速寿命試
験の結果は、15時間で転化率51.3%、選択率85
.6%であったが2000時間後には転化率31.5%
、選択率85.8%となった。
The results of the activity test were 68.5% conversion, selection, $88.
5%, which is insufficient especially in terms of activity. Furthermore, the results of an accelerated life test showed a conversion rate of 51.3% and a selectivity of 85% in 15 hours.
.. The conversion rate was 6%, but after 2000 hours, the conversion rate was 31.5%.
, the selectivity was 85.8%.

比較例4 12モリブドリン酸(H=PMo、□0.。・30H2
0) 118.2 g、 60%ヒ酸4.73 gをイ
オン交換水500m1に溶解し、ここに五酸化バナジウ
ム2.28 gを加えて、アンモニウムイオンの存在し
ない条件下沸騰温度で15時間加熱した。
Comparative Example 4 12 Molybdophosphoric acid (H=PMo, □0..・30H2
0) Dissolve 118.2 g and 4.73 g of 60% arsenic acid in 500 ml of ion-exchanged water, add 2.28 g of vanadium pentoxide, and heat at boiling temperature for 15 hours in the absence of ammonium ions. did.

これにより五酸化バナジウムは溶解し、遊離のモリブド
バナドリン酸を主とする澄明な橙赤色の液体を得る。こ
れに硝酸セシウム17.5g、硝酸アンモニウム4.8
g、硝酸銅1.20 gを300m1のイオン交換水に
溶解したものを加え、そのままロータリーエバポレータ
ーで濃縮乾燥する。その後は実施例1と同じ方法で触媒
を調整した。その組成はMO12P +A Sa、<V
a、sCuo−+CS+、aである。
As a result, the vanadium pentoxide is dissolved, and a clear orange-red liquid containing free molybdovanadophosphoric acid is obtained. This includes 17.5 g of cesium nitrate and 4.8 g of ammonium nitrate.
A solution of 1.20 g of copper nitrate dissolved in 300 ml of ion-exchanged water was added, and the mixture was directly concentrated and dried using a rotary evaporator. Thereafter, the catalyst was prepared in the same manner as in Example 1. Its composition is MO12P +A Sa, <V
a, sCuo-+CS+, a.

活性試験の結果は、転化率55.0%、選択率88.2
%であり、特に活性の点で不十分である。
The results of the activity test were a conversion rate of 55.0% and a selectivity of 88.2.
%, which is insufficient especially in terms of activity.

比較例5 実施例1と同じ原料、同じ方法で得られたスラリーを特
に長時間の加熱工程なしにそのまま撹拌しながら濃縮乾
燥する。その後は実施例1と同様にし実施例1と同じ組
成の触媒を得た。
Comparative Example 5 A slurry obtained using the same raw materials and the same method as in Example 1 was concentrated and dried while stirring without any particularly long heating process. Thereafter, the same procedure as in Example 1 was carried out to obtain a catalyst having the same composition as in Example 1.

活性試験の結果は、転化率83.5%、選択率80.6
%であり、特に選択率の点で十分ではない。
The results of the activity test were a conversion rate of 83.5% and a selectivity of 80.6.
%, which is not sufficient especially in terms of selectivity.

比較例6 窒素気流中で焼成する代わりに、空気中370℃で5時
間焼成した以外は実施例1と同様にして実施例1と同じ
組成の触媒を得た。
Comparative Example 6 A catalyst having the same composition as in Example 1 was obtained in the same manner as in Example 1, except that instead of being calcined in a nitrogen stream, it was calcined in air at 370° C. for 5 hours.

活性試験の結果は、転化率68,5%、選択率89.2
%であり、特に反応活性の点で十分ではない。
The results of the activity test were a conversion rate of 68.5% and a selectivity of 89.2.
%, which is not sufficient especially in terms of reaction activity.

実施例2 五酸化バナジウムの量を1.14 gとし、硝酸セシウ
ムの量を19.4 gとした他は実施例1と同様にして
M O+zP+、sA SD、4V0.25Cuo、s
c s2.0なる組成の触媒を得た。
Example 2 M O+zP+, sA SD, 4V0.25Cuo, s
A catalyst having a composition of c s2.0 was obtained.

活性試験の結果は、転化率84.5%、選択率89.2
%であった。さらに加速寿命試験の結果は、15時間で
転化率68.3%、選択率85.7%であったが、20
00時間後には転化率61.6%、選択率86.3%と
なった。
The results of the activity test were a conversion rate of 84.5% and a selectivity of 89.2.
%Met. Furthermore, the results of the accelerated life test showed that the conversion rate was 68.3% and the selectivity was 85.7% in 15 hours;
After 00 hours, the conversion rate was 61.6% and the selectivity was 86.3%.

実施例3 五酸化バナジウムの量を1.14 g、60%ヒ酸水溶
液の量を7.10g、硝酸セシウムの量を15゜59g
とした他は実施例1と同様にして行い、Mo+aP+−
5Aso、sVo、asCuo、+cS+−sなる組成
の触媒を得た。
Example 3 The amount of vanadium pentoxide was 1.14 g, the amount of 60% arsenic acid aqueous solution was 7.10 g, and the amount of cesium nitrate was 15°59 g.
The process was carried out in the same manner as in Example 1 except that Mo+aP+-
A catalyst having a composition of 5Aso, sVo, asCuo, +cS+-s was obtained.

活性試験の結果は、転化率86,2%、選択率89.6
%であった。さらに加速寿命試験の結果は、15時間で
転化率70.2%、選択率86.1%であったが、20
00時間後には転化率60.8%、選択率86.8%と
なった。
The results of the activity test were a conversion rate of 86.2% and a selectivity of 89.6.
%Met. Furthermore, the results of the accelerated life test showed that the conversion rate was 70.2% and the selectivity was 86.1% in 15 hours;
After 00 hours, the conversion rate was 60.8% and the selectivity was 86.8%.

実施例4 五酸化バナジウムの量を2.28g、硝酸セシウムの量
を13.6gとした他は実施例1と同様にしてM o+
zP +、sA S++、4V0.5Cun−sCS+
、なる組成の触媒を得た。
Example 4 M o +
zP +, sA S++, 4V0.5Cun-sCS+
A catalyst with the following composition was obtained.

活性試験の結果は、転化率94.2%、選択率84.1
%であった。
The results of the activity test were a conversion rate of 94.2% and a selectivity of 84.1.
%Met.

実施例5 モリブデン酸アンモニウムの代わりに三酸化モリブデン
(M o O3) 86.3 gと28%アンモニア水
30gを用い、加熱撹拌時間を24時間にした他は、実
施例3と同様にして実施例3と同じ組成の触媒を調製し
た。
Example 5 An example was carried out in the same manner as in Example 3, except that 86.3 g of molybdenum trioxide (MoO3) and 30 g of 28% ammonia water were used instead of ammonium molybdate, and the heating and stirring time was changed to 24 hours. A catalyst having the same composition as in Example 3 was prepared.

活性試験の結果は、転化率832%、選択率89.9%
であった。
The results of the activity test were a conversion rate of 832% and a selectivity of 89.9%.
Met.

実施例6 硝酸セシウムの代わりに炭酸セシウム(CszC03)
 13.0 gを用いた他は、実施例3と同様にして実
施例3と同じ組成の触媒を調製した。
Example 6 Cesium carbonate (CszC03) instead of cesium nitrate
A catalyst having the same composition as in Example 3 was prepared in the same manner as in Example 3, except that 13.0 g was used.

活性試験の結果は、転化率84.2%、選択¥=88.
9%であった。
The results of the activity test were that the conversion rate was 84.2%, and the selection rate was 88.
It was 9%.

実施例7 硝酸セシウムの代わりに硝酸ルビジウム(RbN○、)
 11.8 gを用いた他は、実施例3と同様にしてM
O12P1.5A So、6V0.25Cuo、3Rb
l−6なる組成の触媒を調製した。
Example 7 Rubidium nitrate (RbN○,) instead of cesium nitrate
M
O12P1.5A So, 6V0.25Cuo, 3Rb
A catalyst having a composition of 1-6 was prepared.

活性試験の結果は、転化率85.3%、選択′;;$8
7.5%であった。
The results of the activity test showed that the conversion rate was 85.3%, and the selection rate was 85.3%.
It was 7.5%.

実施例8 硝酸セシウムの代わりに硝酸タリウム(T I N03
) 21.3 gを用いた他は、実施例3と同様にして
MO12P+、5ASO,1lV0.25Cuo、3T
 l+、sなる組成の触媒を調製した。
Example 8 Thallium nitrate (T I N03) was used instead of cesium nitrate.
) MO12P+, 5ASO, 1lV0.25Cuo, 3T
A catalyst having a composition l+,s was prepared.

活性試験の結果は、転化率83.8%、選択率87.9
%であった。
The results of the activity test were a conversion rate of 83.8% and a selectivity of 87.9.
%Met.

実施例9 実施例1の触媒を用い、イソブタンの酸化反応を行なっ
た。
Example 9 Using the catalyst of Example 1, an oxidation reaction of isobutane was carried out.

触媒9gを内径15mmのガラス製反応管に充填し、イ
ソブタン42モル%、酸素33モル%、水蒸気12モル
%、残りが窒素よりなる原料ガスを空間速度(STP基
準)600h−’で供給した。
A glass reaction tube with an inner diameter of 15 mm was filled with 9 g of catalyst, and a raw material gas consisting of 42 mol % of isobutane, 33 mol % of oxygen, 12 mol % of water vapor, and the balance nitrogen was supplied at a space velocity (STP standard) of 600 h-'.

反応圧力は1.5気圧とした。反応温度310℃とし反
応開始15時間後に分析したところ、インブタン転化率
9.2%、メタクリル酸選択率50.2%、メタクロレ
イン選択率13.5%であった。そのまま反応を継続し
、2000時間後の成績は、転化率8.4%、メタクリ
ル酸選択率49.5%、メタクロレイン選択率16.8
%であった。
The reaction pressure was 1.5 atm. When the reaction temperature was set to 310° C. and analysis was performed 15 hours after the start of the reaction, the inbutane conversion rate was 9.2%, the methacrylic acid selectivity was 50.2%, and the methacrolein selectivity was 13.5%. The reaction continued as it was, and the results after 2000 hours were a conversion rate of 8.4%, a methacrylic acid selectivity of 49.5%, and a methacrolein selectivity of 16.8.
%Met.

実施例10 実施例4と同じ触媒を用い、実施例9と同じ反応試験を
行なった。反応温度は300℃とし15時間後にはイソ
ブタン転化率8.9%、メタクリル酸選択率51.3%
、メタクロレイン選択率14.3%であった。さらに2
000時間後の成績は、転化率8.2%、メタクリル酸
選択率50.0%、メタクロレイン選択率17.5%で
あった。
Example 10 Using the same catalyst as in Example 4, the same reaction test as in Example 9 was conducted. The reaction temperature was 300°C, and after 15 hours, the isobutane conversion rate was 8.9% and the methacrylic acid selectivity was 51.3%.
, the methacrolein selectivity was 14.3%. 2 more
The results after 000 hours were a conversion rate of 8.2%, a methacrylic acid selectivity of 50.0%, and a methacrolein selectivity of 17.5%.

比較例7 比較例3と同じ触媒を用い、実施例9と同じ反応試験を
行なった。反応温度320℃で運転し15時間後の成績
は、イソブタン転化率10,5%、メタクリル酸選択率
45.2%、メタクロレイン選択率13.3%であった
。さらに1000時間後の成績は、転化率5.2%、メ
タクリル酸選択率44゜0%、メタクロレイン選択率1
9.8%となり転化率の低下が著しい。
Comparative Example 7 Using the same catalyst as in Comparative Example 3, the same reaction test as in Example 9 was conducted. The results after 15 hours of operation at a reaction temperature of 320°C were: isobutane conversion rate of 10.5%, methacrylic acid selectivity of 45.2%, and methacrolein selectivity of 13.3%. Furthermore, the results after 1000 hours were: conversion rate 5.2%, methacrylic acid selectivity 44.0%, methacrolein selectivity 1.
The conversion rate was 9.8%, which was a significant decrease in the conversion rate.

実施例11 実施例1と同じ触媒を用い、イソ酪酸の酸化脱水素反応
を行なった。
Example 11 Using the same catalyst as in Example 1, an oxidative dehydrogenation reaction of isobutyric acid was carried out.

触媒9gを内径15mmのガラス製反応管に充填し、イ
ソ酪酸5モル%、空気60モル%、水蒸気35モル%の
原料ガスを空間速度(STP基準)670 h−’で供
給した。反応温度300℃でイソ酪酸転化率98.2%
、メタクリル酸選択率81.8%であった。
A glass reaction tube with an inner diameter of 15 mm was filled with 9 g of catalyst, and a raw material gas containing 5 mol % of isobutyric acid, 60 mol % of air, and 35 mol % of water vapor was supplied at a space velocity (STP standard) of 670 h-'. Isobutyric acid conversion rate 98.2% at reaction temperature 300℃
, the methacrylic acid selectivity was 81.8%.

Claims (1)

【特許請求の範囲】 1、一般式 P_aMo_bV_cAs_dCu_eX_fO_g(
式中、P、Mo、V、As、Cu、Oはそれぞれリン、
モリブデン、バナジウム、ヒ素、銅及び酸素を示し、X
はルビジウム、セシウム及びタリウムからなる群より選
ばれた少なくとも一種の元素を示し、また添字a、b、
c、d、e、f及びgは各元素の原子比を示し、b=1
2としたとき、a、c、d、e、fはそれぞれ0(ゼロ
)を含まない3以下の値をとり、gは他の元素の原子価
及び原子比によって決まる値を示す)で表されるヘテロ
ポリ酸の部分中和塩であって、バナジウム原料として五
酸化バナジウム(V_2O_5)を用い、またアンモニ
ウム根の存在下に触媒原料を水に溶解または懸濁した状
態で、80℃以上の温度で1時間以上加熱処理をする工
程と、濃縮乾燥後得られた固体を400〜500℃の温
度で不活性ガス中で焼成する工程とを含む方法で調製さ
れることを特徴とするメタクリル酸製造用触媒。
[Claims] 1. General formula P_aMo_bV_cAs_dCu_eX_fO_g(
In the formula, P, Mo, V, As, Cu, and O are each phosphorus,
Molybdenum, vanadium, arsenic, copper and oxygen, X
indicates at least one element selected from the group consisting of rubidium, cesium, and thallium, and the subscripts a, b,
c, d, e, f and g indicate the atomic ratio of each element, b = 1
2, a, c, d, e, and f each take a value of 3 or less that does not include 0 (zero), and g indicates a value determined by the valence and atomic ratio of other elements). It is a partially neutralized salt of a heteropolyacid that uses vanadium pentoxide (V_2O_5) as a vanadium raw material, and the catalyst raw material is dissolved or suspended in water in the presence of an ammonium group at a temperature of 80°C or higher. For the production of methacrylic acid, which is prepared by a method comprising a step of heat treatment for 1 hour or more, and a step of calcining the solid obtained after concentration and drying in an inert gas at a temperature of 400 to 500 ° C. catalyst.
JP17173490A 1990-06-28 1990-06-28 Method for producing catalyst for producing methacrylic acid Expired - Fee Related JP3146486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17173490A JP3146486B2 (en) 1990-06-28 1990-06-28 Method for producing catalyst for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17173490A JP3146486B2 (en) 1990-06-28 1990-06-28 Method for producing catalyst for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JPH0463139A true JPH0463139A (en) 1992-02-28
JP3146486B2 JP3146486B2 (en) 2001-03-19

Family

ID=15928696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17173490A Expired - Fee Related JP3146486B2 (en) 1990-06-28 1990-06-28 Method for producing catalyst for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP3146486B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233760A (en) * 2000-09-21 2002-08-20 Nippon Kayaku Co Ltd Catalyst for producing methacrylic acid, coated catalyst and its producing method
WO2005087757A1 (en) * 2004-03-12 2005-09-22 Basf Aktiengesellschaft Method for the production of tetrahydrofuran using a heteropoly acid as catalyst with exclusion of oxygen
WO2006121100A1 (en) * 2005-05-12 2006-11-16 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2011152543A (en) * 2011-04-28 2011-08-11 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
US8716523B2 (en) 2005-03-29 2014-05-06 Nippon Kayaku Kabushiki Kaisha Catalyst for use in production of methacrylic acid and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665939C1 (en) * 2017-07-18 2018-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) Method of ceramics metallization

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233760A (en) * 2000-09-21 2002-08-20 Nippon Kayaku Co Ltd Catalyst for producing methacrylic acid, coated catalyst and its producing method
WO2005087757A1 (en) * 2004-03-12 2005-09-22 Basf Aktiengesellschaft Method for the production of tetrahydrofuran using a heteropoly acid as catalyst with exclusion of oxygen
US8716523B2 (en) 2005-03-29 2014-05-06 Nippon Kayaku Kabushiki Kaisha Catalyst for use in production of methacrylic acid and method for manufacturing the same
WO2006121100A1 (en) * 2005-05-12 2006-11-16 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2006314923A (en) * 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd Manufacturing method of catalyst for producing methacrylic acid
US8017547B2 (en) 2005-05-12 2011-09-13 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
US8148291B2 (en) 2005-05-12 2012-04-03 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
JP2011152543A (en) * 2011-04-28 2011-08-11 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid

Also Published As

Publication number Publication date
JP3146486B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
EP0043100B2 (en) Oxidation catalyst and process for preparation thereof
US4146574A (en) Process for preparing heteropoly-acids
US4051179A (en) Catalytic process for the preparation of unsaturated carboxylic acids
JPH0441454A (en) Production of methacrolein
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPS5826329B2 (en) Seizouhou
JP3799660B2 (en) Oxidation catalyst, method for producing the same, and method for producing methacrylic acid
JPH0463139A (en) Catalyst for production of methacrylic acid
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JPS6033539B2 (en) Oxidation catalyst and its preparation method
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JPH09290162A (en) Production of oxidation catalyst and production of methacrylic acid
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP3316880B2 (en) Method for producing catalyst for producing methacrylic acid
JPH0133097B2 (en)
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3750234B2 (en) Method for producing acrylic acid production catalyst
JPS6035180B2 (en) Oxidation catalyst and its preparation method
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees