JPH0547265B2 - - Google Patents

Info

Publication number
JPH0547265B2
JPH0547265B2 JP60075442A JP7544285A JPH0547265B2 JP H0547265 B2 JPH0547265 B2 JP H0547265B2 JP 60075442 A JP60075442 A JP 60075442A JP 7544285 A JP7544285 A JP 7544285A JP H0547265 B2 JPH0547265 B2 JP H0547265B2
Authority
JP
Japan
Prior art keywords
catalyst
bismuth
reaction
molybdenum
element selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60075442A
Other languages
Japanese (ja)
Other versions
JPS61234943A (en
Inventor
Kazunori Kinumi
Rikuo Uejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60075442A priority Critical patent/JPS61234943A/en
Publication of JPS61234943A publication Critical patent/JPS61234943A/en
Publication of JPH0547265B2 publication Critical patent/JPH0547265B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は炭素数4〜5のモノオレフインを分子
状酸素含有ガスにより気相で酸化脱水素せしめ、
対応する共役ジオレフインを製造するための触媒
に関する。詳しく述べると本発明は、n−ブテ
ン、1−ブテン、シス−2−ブテン、トランス−
2−ブテンなどの炭素数4のモノオレフインある
いはイソペンテンなどの炭素数5のモノオレフイ
ンを分子状酸素含有ガス、たとえば空気を用いて
接触酸化脱水素して1,3−ブタジエンあるいは
イソプレンを高選択率、高収率でえるための触媒
に関するものであり、しかも工業的に長期かつ安
定に使用しうる触媒を提供するものである。 <従来技術> 従来よりモノオレフインを接触気相酸化脱水素
して対応する共役ジオレフインを製造する触媒と
しては数多くの提案がなされている。具体例をあ
げれば特公昭43−26842号にはニツケル、コバル
ト、アンチモン、鉄、ビスマス、リン、タングス
テン、モリブデンからなる触媒、特公昭46−
33929号にはモリブデン、ビスマス、鉄、銀より
なる触媒、特公昭49−3498号にはニツケル、コバ
ルト、鉄、ビスマス、モリブデンにリン、砒素、
ホウ素、アルカリ金属を加えた触媒が開示されて
いる。その他特公昭49−5321号、特公昭50−
11886号、特開昭48−32807号、特開昭54−52010
号、特開昭48−514号、特開昭49−13102号、特開
昭51−93793号、特開昭51−105011号、特開昭57
−209232号にはモリブデン、ビスマス、鉄を含む
触媒系が、特開昭49−14393号にはモリブデン、
ビスマス、タングステンを含む触媒系が、特開昭
49−9490号、特開昭49−72203号、特開昭49−
101304号にはモリブデン、ビスマス、タングステ
ン、鉄を含む触媒系が、特公昭50−3285〜3287
号、特開昭56−140931号、特開昭56−150023号、
特開昭57−123122号にはモリブデン、ビスマス、
クロムを含む触媒系がそれぞれ開示されている。 <発明が解決しようとする問題点> しかしながら、これらの提案になる触媒は工業
的規模での使用を考えるときそれらの明細書実施
例に記載されているように共役ジオレフインを高
選択率、高収率でえることができない場合が多
い。これは該接触気相反応が非常に発熱的である
ために触媒層の中にホツトスポツトという局部的
異常高温帯が発生して過度の反応が起つたり、触
媒の充填層高が大きいために触媒層中での圧力が
触媒層の入口から出口に向つて順次変化していく
ために理想的な反応からかけはなれること等が考
えられる。 又、一方モリブデンを主体とする多成分系触媒
においてはモリブデンが多数の元素と容易に反応
して複雑なモリブデンの錯塩を生じるため、均質
の触媒をえることが困難であり、触媒性能の再現
性に難点があり、かかる触媒組成を工業的規模で
の接触製造に用いた場合、製造された全ての触媒
性能が明細書実施例の如き高い水準を示しえない
ことは十分納得のいくところである。 <問題点を解決するための手段> 本発明者等はモリブデン、ビスマスおよびタン
グステンを含む触媒系でのかかる工業的使用にお
ける欠点を克服し、なおかつ工業的規模での触媒
製造において触媒性能の再現性にすぐれた調製方
法を鋭意研究の結果本発明を完成するに至つた。 すなわち、本発明は、一般式 Mo12Co2.0〜10.0AaBbCc (BidWeFefDg)Oh (但しここでMoはモリブデン、Coはコバルト、
Biはビスマス、Wはタングステン、Feは鉄を示
し、Aはニツケルおよび鉛の中から選ばれた少な
くとも一種の元素、Bはカリウム、ルビジウム、
セシウムおよびタリウムの中から選ばれた少なく
とも一種の元素、Cはシリコン、アルミニウム、
チタン、ジルコニウムの中から選ばれた少なくと
も一種の元素、Dはマグネシウム、カルシウム、
セリウムの中から選ばれた少なくとも一種の元
素、Oは、酸素を表す。また、添字a、b、c、
d、e、f、g、hはそれぞれの元素の原子比を
表わし、モリブデンを12としたときa=0.0〜
10.0(但し、Coの原子比とaとの合計は10.0を超
えない)、b=0.1〜3.0、c=0.1〜5.0、d=0.1〜
5.0、e=0.5〜10.0、f=0.1〜5.0、g=0.1〜3.0、
hは各元素の原子比によつて定まる値をとる。) で表わされ、かつその調製時において、Bi、W、
FeおよびDのおのおのの成分の原料物質をあら
かじめ混合し、さらに600〜900℃の高温にて処理
して得た物質を用いてなることを特徴とする、高
性能および寿命の長い共役ジオレフイン製造用触
媒の製造方法を提供するものである。 <作用> 本発明における触媒の特徴は触媒組成成分のう
ちBi、W、Fe、およびD成分とが、きわめて安
定かつ特異な結合をしており、しかもこの安定し
た化合物を含む触媒を使用しモノオレフインの酸
化脱水素せしめた場合、長期にわたり安定して高
い収率を維持することである。 このBi、W、Fe、D成分の安定した結合はこ
れらの成分元素の混合物を600〜900℃の高温で処
理することにより形成されたものである。 本発明者らの一人は、先にBi−Wの化合物
(ビスマスタングステート)を高温で処理するこ
とにより調製し、この化合物とMo−Fe−Co−
(Ni、Mg、Ca、Ce、Pbの中から選ばれる少なく
とも1種の元素)−(アルカリ金属の中から選ばれ
る少なくとも1種の元素)−(シリコン、アルミニ
ウム、チタニウム、ジルコニウムの中から選ばれ
る少なくとも1種の元素)からなる組成物とを混
合して得られる触媒が共役ジオレフイン製造用触
媒として非常にすぐれたものであるとの発見にも
とづき特許出願をおこなつた。 その後、このビスマスタングステートをベース
とする触媒について鋭意研究をおこなつてきた結
果、このビスマスタングステートを調製する際に
FeおよびD成分(Mg、Ca、Ceの中から選ばれ
る少なくとも1種の元素)を添加してえられる化
合物は、安定に結合した複合酸化物と認められ、
この複合酸化物を先に記した他の成分と混合し触
媒としそれを用いモノオレフインの気相反応をお
こなつた場合、触媒活性がさらに向上しかつ高い
原料濃度においても長期にわたり共役ジオレフイ
ンの収率が高く、安定に維持されることがわかつ
た。 また同時に長期にわたる反応の結果より従来公
知の触媒にくらべ触媒上でのカーボンの析出も大
巾に減少することがわかり、ここに工業的にも非
常に有用な触媒を開発でき本発明を完成するに至
つた。 本発明による触媒調製法は、触媒調製時、先に
述べた(Bi−W−Fe−D)の組成で示される複
合酸化物を用いることのみを除けば一般に知られ
ている調製法を採用することができる。次にその
触媒調製の一例を以下に示す。 (1) (Bi−W−Fe−D)成分組成の複合酸化物
の調製 最初にビスマス化合物(たとえば硝酸ビスマ
ス、水酸化ビスマス、酸化ビスマスなど)とタ
ングステン化合物(たとえばパラタングステン
酸アンモニウム、酸化タングステンなど)とを
少量の水と共によく混合する。ここに鉄化合物
(たとえば硝酸第2鉄、水酸化第2鉄など)の
水溶液およびD成分化合物(D成分の硝酸塩、
水酸化物、炭酸塩、酸化物など)の水溶液ある
いはスラリーを加えよく混合する。かくしてえ
られたスラリーを加熱濃縮せしめ、乾燥した後
600〜900℃、好ましくは700〜850℃の高温で空
気流通下、もしくは窒素など不活性ガス流通
下、1〜10時間焼成をおこないえられた複合酸
化物を100メツシユ程度に粉砕する。 (2) 触媒の調製 モリブテンの化合物(たとえばモリブデン酸
アンモニウム)の水溶液にCoの化合物(たと
えば硝酸コバルト)、A成分(たとえば硝酸ニ
ツケル)およびB成分(たとえば硝酸カリウ
ム)の各水溶液を加えよく混合した後C成分
(たとえばコロイダルシリカ)を加えよくかき
まぜる。えられたスラリーに(1)で調製した
(Bi−W−Fe−D)複合酸化物の粉体を加えよ
く混合して加熱濃縮する。えられた粘土状物質
を成型し乾燥した後350〜650℃、好ましくは
400〜600℃の温度にて空気流通下ないし不活性
ガス流通下、1〜15時間焼成し触媒をえる。 本触媒の特徴である(Bi−W−Fe−D)複合
酸化物の添加時期は上記に示した場合のほか、
(Mo−Co−A−B−C)成分組成で乾燥粉体を
別途調製したのちこの両者の粉体を混合後成型
し、焼成後触媒とする方法でも何らさしつかえな
い。 これらの調製方法のほか、触媒組成物中の各触
媒成分が均一に混合されて存在しうる方法であれ
ば、いかなる方法でも採用することができ、たと
えば(Bi−W−Fe−D)複合酸化物の粉末を、
他の触媒成分の各々の酸化物粉末の混合物ととも
に混合し、結合剤(たとえばカルボキシメチルセ
ルロースなど)を加え成型後、焼成し触媒とする
こともできる。 また本発明で用いる複合酸化物(BidWeFefDg
の構成元素の比率は原子比でd+f+g/e=0.5〜 4.0の範囲で構成されることが好ましい。 本発明における触媒原料としては、上記の化合
物に限定するものではなく、ビスマスおよびタン
グステンに関しては塩化ビスマスなどのハロゲン
化ビスマス、炭酸ビスマス、重炭酸ビスマス、水
酸化ビスマス、酢酸ビスマスなどの有機酸ビスマ
ス塩やタングステン酸ナトリウムなどのタングス
テン酸のアルカリ金属塩、塩化タングステン類な
どのハロゲン化タングステン類などが適宜使用さ
れるがハロゲン化物やアルカリ塩を使用した場合
はスラリーを過した後十分な洗滌が必要である
ことはいうまでもない。 モリブデン、鉄およびその他の触媒原料につい
ても、硝酸塩、有機酸塩は勿論のこと触媒調製に
各々の酸化物を形成しうるものであればいかなる
化合物でも使用可能である。もちろん上記触媒を
構成する元素の2種ないし3種を含有する化合物
も同様に使用しうる。 また、上記触媒成分に対し、担体物質も適宜使
用可能であり、たとえば粘土、ケイソウ土、アス
ベスト、セライト(商品名)などのほかシリカ、
アルミナ、シリカ・アルミナなどの粒状担体を担
持基盤として使用できる。 以上のようにしてえた本発明の触媒を用い、モ
ノオレフインの酸化脱水素反応をおこなつた場合
共役ジオレフインの収率および選択率が非常に改
善され、さらには高濃度原料ガスを用いても十分
に優れた性能を有し、かつ長期の反応においても
安定な性能を維持することがわかつた。そして長
期の反応においても触媒上でのカーボン析出も非
常に少なく、工業的にも非常に有利な触媒である
ことがわかつた。 この効果の原因は、本発明を用いた(Bi−W
−Fe−D)複合酸化物の特異的な作用によるも
のであつて、その科学的な構造および作用につい
ては未だ十分に解明されていないが、触媒の酸塩
基量のバランス、生成物の吸脱着などの作用が改
善された結果によるものと考えられる。 このようにしてえられた触媒を用いて250〜400
℃の反応温度、常圧〜10気圧の圧力下、2〜20容
量%のモノオレフイン、2〜20容量%の酸素、0
〜60容量%の水蒸気および20〜80容量%の窒素ガ
ス、炭酸ガスなどの不活性ガスよりなる原料ガス
を接触時間0.5〜5.0秒で反応せしめる。 なお原料である炭素数4〜5のモノオレフイン
は必らずしも1−ブテン、トランス−2−ブテ
ン、シス−2−ブテン或いはイソペンテンなどを
単離した形で使用する必要はない。例えばナフサ
の分解で副生するC4留分から1,3−ブタジエ
ン及びイソブチレンを分離したn−ブテンを主成
分とするいわゆるスペントスペントB−B留分を
炭素数4のモノオレフイン混合物として使用した
場合も高純度のn−ブテンを原料として使用した
場合とほぼ同じ収率で1,3−ブタジエンをうる
ことができる。 また、本発明による触媒は固定床式反応におい
ても流動床式反応においても使用できるもので、
その選択も、当業者が適宜行ないうるところであ
る。 以下、実施例、比較例を示し本発明をさらに詳
細に説明するが、本発明はその主旨に反しないか
ぎり以下の実施例に限定されるものではない。 なお、本発明における反応率、選択率および単
流収率を以下のように定義するものとする。 反応率(モル%) =反応したモノオレフインのモル数/供給した
〃 ×100 選択率(モル%) =生成したジオレフインのモル数/反応したモノオレ
フインのモル数×100 単流収率(モル%) =生成したジオレフインのモル数/供給したモノオレ
フインのモル数×100 実施例 1 硝酸ビスマス291gを濃硝酸45mlを加えて酸性
とした水200mlに溶解した。これに三酸化タング
ステン278gを加えよく混合した。そしてさらに
硝酸第2鉄71gを50mlの水に溶解した水溶液およ
び硝酸マグネシウム13gを15mlの水に溶解した水
溶液を加えよく混合した。これを加熱濃縮せし
め、乾燥した後、空気流通下750℃で2時間焼成
した。えられた焼成物を100メツシユ程度に粉砕
した。 別にモリブデン酸アンモニウム1060gを水8000
mlに溶解した水溶液に硝酸コバルト960gを600ml
の水に溶解した水溶液、硝酸セシウム20gを200
mlの水に溶解した水溶液および20重量%のシリカ
を含むシリカゾル150gをそれぞれ加え、よく攪
拌した。 えられたスラリーに先に調製した(Bi−W−
Fe−Mg)複合酸化物の粉体を加え、よく混合し
て加熱濃縮した。えられた粘土状物質を直径5.5
mm、長さ7mmのペレツト状に成型し、乾燥後空気
流通下500℃で6時間焼成して完成触媒とした。 この触媒の組成(ただし、酸素を除く)は原子
比でMo12Co6.6Cs0.2Si1.0 Bi1.2W2.4Fe0.35Mg0.1であつた(以下同様に触媒組
成を表現する)。 かくしてえられた触媒を内径25.4mmφの鋼鉄製
反応管に層長3000mmで充填し、外部の触媒(溶融
塩)温度を330℃に加熱し、1−ブテン13.0容量
%、酸素13.0容量%、水蒸気10.0容量%、窒素
64.0容量%からなる組成の原料ガスを導入し、接
触時間1.0秒(NTP換算)で反応せしめ表1に示
す結果をえた。 この反応を1000時間継続した時の結果も表1に
示した。なお、1000時間反応後抜き出した触媒上
にはカーボンの析出は認められなかつた。 分析はガスクロマトグラフイー法で行なつた。 実施例 2、3 実施例1でえられたのと同じ触媒を使用して1
−ブテンをシス−2−ブテン、トランス−2−ブ
テンに代え反応温度を340℃とした以外は実施例
1と同じ条件で反応を行ない表1に示す結果をえ
た。 実施例 4 硝酸ビスマス291gを濃硝酸45mlを加えて酸性
とした水200mlに溶解した。これに三酸化タング
ステン278gを加え、よく混合した。そしてさら
に硝酸第2鉄81gを60mlの水に溶解した水溶液お
よび酸化第2セリウム43gを加えよく混合した。
これを加熱濃縮せしめ乾燥した後、空気流通下
750℃で2時間焼成した。えられた焼成物を100メ
ツシユ程度に粉砕した。 別にモリブデン酸アンモニウム1060gを水8000
mlに溶解した水溶液に硝酸コバルト582gを350ml
の水に溶解した水溶液、硝酸ニツケル291gを150
mlの水に溶解した水溶液、硝酸セシウム29gを
290mlの水に溶解した水溶液および20重量%のシ
リカを含むシリカゾル150gを加え、よく混合し
た。えられたスラリーを加熱濃縮せしめ、乾燥し
たのち粉砕した。この粉体に先に調製した(Bi
−W−Fe−Ce)複合酸化物の粉体を加え、十分
混合したのち水を加えてよく混練し、以下、実施
例1と同様に成型、焼成し、下記組成の触媒をえ
た。 Mo12Co4.0Ni2.0Cs0.3Si1.0Bi1.2W2.4Fe0.4Ce0.5 えられた触媒を実施例1と同じ反応器を用い、
その組成がモル%で1−ブテン46.5%、シス−2
−ブテン13.0%、トランス−2−ブテン18.3%、
イソブタン3.8%、正−ブタン16.0%、その他2.4
%からなる混合留分(B−B分)を17.0容量%、
酸素13.0容量%、水蒸気10.0容量%、窒素60.0容
量%からなる組成の原料ガスを接触時間1.0秒
(NTP換算)、反応温度340℃で反応せしめたとこ
ろブタン類に関しては反応は認められずブテン類
に対しては表1の結果をえた。 この反応を1000時間継続した時の結果も表1に
示した。なお、1000時間反応後抜き出した触媒上
にはカーボンの析出は認められなかつた。 実施例 5 実施例1と同様の方法で表1に示す組成の触媒
を調製した。使用した原料は鉛、カリウムはそれ
ぞれの硝酸塩を、ジルコニウムは酸化物をルビジ
ウム、カルシウムはそれぞれの水酸化物を用い
た。 えられた触媒を実施例4と同じ条件で反応を行
ない表1に示す結果をえた。この反応を1000時間
継続した時の結果も表1に示した。なお1000時間
反応後抜き出した触媒上にはカーボンの析出は認
められなかつた。 実施例 6、7 実施例1と同様の方法で表1に示す組成の触媒
を調製した。使用した原料はタリウムは硝酸塩
を、チタニウム、アルミニウムはそれぞれの酸化
物を用いた。 えられた触媒を実施例7において反応温度を
320℃とした以外は実施例4と同じ条件でそれぞ
れ反応を行ない表1に示す結果をえた。 実施例 8 実施例5でえられたのと同じ触媒60mlを内径20
mmの鋼鉄製反応管に充填し、熱媒温度320℃でイ
ソペンテン(2−メテン−2−ブテン)8.0容量
%、酸素8.0容量%、水蒸気10.0容量%、窒素74.0
容量%の混合ガスを接触時間1.8秒(NTP換算)
で導入して反応せしめた。その結果を表1に示し
た。 比較例 1 実施例1においてあらかじめ(Bi−W−Fe−
Mg)複合酸化物をつくることをせず、各成分を
1つに混合し、加熱濃縮、成型、焼成することに
より、実施例1と同じ組成の触媒をえた。 えられた触媒を反応温度を400℃とした以外は
実施例1と同じ条件で反応を行ない、表2に示す
結果をえた。 この反応を1000時間継続した時の結果も表2に
示した。 比較例 2 実施例1においてあらかじめビスマスとタング
ステンのみで複合酸化物をつくり、鉄およびマグ
ネシウム成分はモリブデン、コバルト、セシウ
ム、シリカのスラリー中に添加し、以下同様にし
て、実施例1と同じ組成の触媒をえた。 えられた触媒を実施例1と同じ条件で反応を行
ない表2に示す結果をえた。 比較例 3 実施例1においてビスマス、タングステンおよ
びマグネシウムを含有する混合物の熱処理温度を
550℃と変更した以外は同様に行ない、実施例1
と同じ組成の触媒をえた。 この触媒を用い、反応温度を400℃とした以外
は実施例1と同じ条件下で反応をおこない、表2
に示す結果をえた。 比較例 4 実施例1においてビスマス、タングステンおよ
びマグネシウムを含有する混合物の熱処理温度を
950℃と変更した以外は同様に行ない、実施例1
と同じ組成の触媒をえた。 この触媒を用い反応温度を400℃とした以外は
実施例1と同じ条件下で反応をおこない表2に示
す結果をえた。 比較例 5、6 比較例3でえられたのと同じ触媒を用い、原料
1−ブテンをそれぞれシス−2−ブテン、トラン
ス−2−ブテンに代え、反応温度を400℃とし実
施例1の条件にしたがい反応を行ない、それぞれ
表2に示す結果をえた。 比較例 7 実施例5において、D成分(セリウムおよびカ
ルシウム)を用いないほかは同様に行ない、表2
に示す組成の触媒をえた。 えられた触媒を実施例5と同じ条件で反応を行
ない表2に示す結果をえた。 この反応を1000時間継続した時の結果も表2に
示した。 比較例 8 実施例5においてあらかじめ(Bi−W−Fe−
Ce−Ca)複合酸化物をつくることをせず、各成
分を1つに混合し、加熱濃縮、成型、焼成するこ
とにより実施例5と同じ組成の触媒をえた。 えられた触媒を実施例8と同じ条件で反応を行
ない表2に示す結果をえた。
<Industrial Application Field> The present invention oxidizes and dehydrogenates a monoolefin having 4 to 5 carbon atoms in a gas phase with a molecular oxygen-containing gas,
It relates to a catalyst for producing the corresponding conjugated diolefin. Specifically, the present invention relates to n-butene, 1-butene, cis-2-butene, trans-butene,
Monoolefins with 4 carbon atoms such as 2-butene or monoolefins with 5 carbon atoms such as isopentene are catalytically oxidized and dehydrogenated using a molecular oxygen-containing gas, such as air, to produce 1,3-butadiene or isoprene with high selectivity. The present invention relates to a catalyst that can be obtained in high yield, and furthermore, provides a catalyst that can be used industrially for a long period of time and stably. <Prior Art> Many proposals have been made as catalysts for producing the corresponding conjugated diolefins by subjecting monoolefins to catalytic gas-phase oxidative dehydrogenation. To give a specific example, Japanese Patent Publication No. 26842 (1972) describes a catalyst consisting of nickel, cobalt, antimony, iron, bismuth, phosphorus, tungsten, and molybdenum;
No. 33929 contains a catalyst consisting of molybdenum, bismuth, iron, and silver, and Special Publication No. 1983-3498 contains a catalyst consisting of nickel, cobalt, iron, bismuth, molybdenum, phosphorus, arsenic,
Catalysts containing boron and alkali metals have been disclosed. Other Special Publications No. 5321, Special Publication No. 1973, Special Publications No. 50-
No. 11886, JP-A-48-32807, JP-A-54-52010
No., JP-A-48-514, JP-A-49-13102, JP-A-51-93793, JP-A-51-105011, JP-A-57
-209232 has a catalyst system containing molybdenum, bismuth, and iron, and JP-A-49-14393 has a catalyst system containing molybdenum, bismuth, and iron.
A catalyst system containing bismuth and tungsten was
No. 49-9490, JP-A-49-72203, JP-A-49-
No. 101304 contains a catalyst system containing molybdenum, bismuth, tungsten, and iron.
No., JP-A-56-140931, JP-A-56-150023,
JP-A-57-123122 contains molybdenum, bismuth,
Catalyst systems containing chromium are each disclosed. <Problems to be Solved by the Invention> However, when considering the use of these proposed catalysts on an industrial scale, as described in their specification examples, conjugated diolefins cannot be processed with high selectivity and high yield. In many cases, it is not possible to obtain a high rate. This is because the catalytic gas phase reaction is extremely exothermic, so local abnormally high temperature zones called hot spots occur in the catalyst bed, causing an excessive reaction, or because the height of the catalyst packed bed is large. It is conceivable that the reaction may deviate from an ideal reaction because the pressure in the layer changes sequentially from the inlet to the outlet of the catalyst layer. On the other hand, in multicomponent catalysts mainly composed of molybdenum, molybdenum easily reacts with many elements to form complex molybdenum complex salts, making it difficult to obtain homogeneous catalysts and the reproducibility of catalyst performance. It is quite understandable that when such a catalyst composition is used for catalytic production on an industrial scale, the performance of all the produced catalysts cannot show the high level as shown in the examples in the specification. <Means for Solving the Problems> The present inventors have overcome the drawbacks in such industrial use of catalyst systems containing molybdenum, bismuth and tungsten, and yet have achieved reproducibility of catalyst performance in catalyst production on an industrial scale. As a result of intensive research into an excellent preparation method, the present invention has been completed. That is, the present invention is based on the general formula Mo 12 Co 2.0 to 10.0 A a B b C c (Bi d W e Fe f D g ) O h (where Mo is molybdenum, Co is cobalt,
Bi is bismuth, W is tungsten, Fe is iron, A is at least one element selected from nickel and lead, B is potassium, rubidium,
At least one element selected from cesium and thallium, C is silicon, aluminum,
At least one element selected from titanium and zirconium, D is magnesium, calcium,
At least one element selected from cerium, O, represents oxygen. Also, subscripts a, b, c,
d, e, f, g, h represent the atomic ratio of each element, and when molybdenum is 12, a = 0.0 ~
10.0 (however, the sum of the atomic ratio of Co and a does not exceed 10.0), b = 0.1 to 3.0, c = 0.1 to 5.0, d = 0.1 to
5.0, e=0.5~10.0, f=0.1~5.0, g=0.1~3.0,
h takes a value determined by the atomic ratio of each element. ), and at the time of its preparation, Bi, W,
For the production of conjugated diolefin with high performance and long life, characterized by using a material obtained by pre-mixing the raw materials of each component of Fe and D and further processing at a high temperature of 600 to 900 ° C. A method for producing a catalyst is provided. <Function> A feature of the catalyst of the present invention is that the Bi, W, Fe, and D components of the catalyst composition have extremely stable and unique bonds, and furthermore, the catalyst containing these stable compounds can be used to produce monomers. In the case of oxidative dehydrogenation of olefin, the objective is to maintain a stable high yield over a long period of time. This stable bond of Bi, W, Fe, and D components is formed by treating a mixture of these component elements at a high temperature of 600 to 900°C. One of the inventors previously prepared a Bi-W compound (bismuth tungstate) by treating it at high temperature, and combined this compound with Mo-Fe-Co-
(At least one element selected from Ni, Mg, Ca, Ce, Pb) - (At least one element selected from alkali metals) - (At least one element selected from silicon, aluminum, titanium, zirconium) Based on the discovery that a catalyst obtained by mixing a composition consisting of at least one element) is an excellent catalyst for producing conjugated diolefins, the patent application was filed. After that, as a result of intensive research on catalysts based on this bismuth tungstate, we found that when preparing this bismuth tungstate,
Compounds obtained by adding Fe and D components (at least one element selected from Mg, Ca, and Ce) are recognized as stably bonded composite oxides,
When this composite oxide is mixed with the other components mentioned above and used as a catalyst to perform the gas phase reaction of monoolefin, the catalytic activity is further improved and the conjugated diolefin can be collected for a long period of time even at high raw material concentrations. It was found that the rate was high and stable. At the same time, as a result of the long-term reaction, it was found that the precipitation of carbon on the catalyst was greatly reduced compared to conventionally known catalysts, and this led to the development of a catalyst that is extremely useful industrially, and the completion of the present invention. It came to this. The catalyst preparation method according to the present invention employs a generally known preparation method, except that the complex oxide having the composition (Bi-W-Fe-D) described above is used when preparing the catalyst. be able to. Next, an example of catalyst preparation is shown below. (1) Preparation of composite oxide with component composition (Bi-W-Fe-D) First, a bismuth compound (e.g. bismuth nitrate, bismuth hydroxide, bismuth oxide, etc.) and a tungsten compound (e.g. ammonium paratungstate, tungsten oxide, etc.) are prepared. ) and a small amount of water. Here, an aqueous solution of an iron compound (for example, ferric nitrate, ferric hydroxide, etc.) and a D component compound (D component nitrate,
Add an aqueous solution or slurry of hydroxide, carbonate, oxide, etc. and mix well. After heating and concentrating the slurry thus obtained and drying it,
The composite oxide is calcined for 1 to 10 hours at a high temperature of 600 to 900°C, preferably 700 to 850°C, under air flow or inert gas flow such as nitrogen, and is pulverized into about 100 meshes. (2) Preparation of catalyst Add aqueous solutions of a Co compound (e.g. cobalt nitrate), component A (e.g. nickel nitrate) and component B (e.g. potassium nitrate) to an aqueous solution of a molybdenum compound (e.g. ammonium molybdate) and mix well. Add component C (e.g. colloidal silica) and stir well. The (Bi-W-Fe-D) composite oxide powder prepared in (1) is added to the resulting slurry, mixed well, and concentrated by heating. After molding and drying the resulting clay-like material, it is heated to 350-650℃, preferably
The catalyst is calcined at a temperature of 400 to 600° C. for 1 to 15 hours under air flow or inert gas flow. In addition to the times shown above, the timing of addition of the (Bi-W-Fe-D) composite oxide, which is a feature of this catalyst, is
It is also possible to separately prepare a dry powder with the component composition (Mo-Co-A-B-C), mix the two powders, mold the powder, and use it as a catalyst after firing. In addition to these preparation methods, any method can be adopted as long as each catalyst component in the catalyst composition can be uniformly mixed. For example, (Bi-W-Fe-D) composite oxidation powder of things,
It is also possible to prepare a catalyst by mixing it with a mixture of oxide powders of each of the other catalyst components, adding a binder (for example, carboxymethyl cellulose, etc.), molding, and calcining. Moreover, the composite oxide (Bi d W e Fe f D g ) used in the present invention
The ratio of the constituent elements is preferably in the range of d+f+g/e=0.5 to 4.0 in terms of atomic ratio. The catalyst raw materials in the present invention are not limited to the above-mentioned compounds, and for bismuth and tungsten, bismuth halides such as bismuth chloride, bismuth salts of organic acids such as bismuth carbonate, bicarbonate, bismuth hydroxide, and bismuth acetate are used. Alkali metal salts of tungstic acid such as sodium tungstate and tungsten halides such as tungsten chloride are used as appropriate, but when halides or alkali salts are used, thorough cleaning is required after passing through the slurry. It goes without saying that there is. Regarding molybdenum, iron, and other catalyst raw materials, not only nitrates and organic acid salts, but also any compounds that can form their respective oxides can be used in the preparation of the catalyst. Of course, compounds containing two or three of the elements constituting the above catalyst may also be used. In addition, carrier materials can be used as appropriate for the above catalyst components, such as clay, diatomaceous earth, asbestos, Celite (trade name), silica,
A granular support such as alumina, silica/alumina, etc. can be used as a support base. When the oxidative dehydrogenation reaction of monoolefins is carried out using the catalyst of the present invention obtained as described above, the yield and selectivity of conjugated diolefins are greatly improved, and even when a high concentration raw material gas is used, it is sufficient. It was found that it has excellent performance and maintains stable performance even in long-term reactions. It was also found that even during long-term reactions, there was very little carbon precipitation on the catalyst, making it an extremely advantageous catalyst from an industrial perspective. The reason for this effect is that the present invention was used (Bi-W
-Fe-D) This is due to the specific action of the complex oxide, and its scientific structure and action are not yet fully elucidated. This is thought to be due to improved effects such as 250 to 400 using the catalyst obtained in this way.
℃ reaction temperature, under pressure of normal pressure to 10 atm, 2-20% by volume monoolefin, 2-20% by volume oxygen, 0
A raw material gas consisting of ~60% by volume of water vapor and 20~80% by volume of an inert gas such as nitrogen gas or carbon dioxide gas is reacted for a contact time of 0.5~5.0 seconds. Note that the monoolefin having 4 to 5 carbon atoms, which is a raw material, does not necessarily have to be used in the form of isolated 1-butene, trans-2-butene, cis-2-butene, or isopentene. For example, when a so-called spent B-B fraction containing n-butene as a main component obtained by separating 1,3-butadiene and isobutylene from a C4 fraction produced as a by-product in the cracking of naphtha is used as a monoolefin mixture having 4 carbon atoms. Also, 1,3-butadiene can be obtained in almost the same yield as when using high-purity n-butene as a raw material. Furthermore, the catalyst according to the present invention can be used in both fixed bed reactions and fluidized bed reactions.
The selection can also be made appropriately by those skilled in the art. EXAMPLES Hereinafter, the present invention will be explained in more detail by showing examples and comparative examples, but the present invention is not limited to the following examples unless it goes against the gist thereof. In addition, the reaction rate, selectivity, and single flow yield in this invention shall be defined as follows. Reaction rate (mol%) = Number of moles of monoolefin reacted/supplied
〃 ×100 Selectivity (mol%) = Number of moles of diolefin produced / Number of moles of monoolefin reacted × 100 Single flow yield (mol%) = Number of moles of diolefin produced / Number of moles of monoolefin supplied × 100 Example 1 291 g of bismuth nitrate was dissolved in 200 ml of water made acidic by adding 45 ml of concentrated nitric acid. 278 g of tungsten trioxide was added to this and mixed well. Further, an aqueous solution of 71 g of ferric nitrate dissolved in 50 ml of water and an aqueous solution of 13 g of magnesium nitrate dissolved in 15 ml of water were added and mixed well. This was concentrated by heating, dried, and then calcined at 750° C. for 2 hours under air circulation. The obtained fired product was crushed into about 100 pieces. Separately, add 1060 g of ammonium molybdate to 8000 g of water.
600ml of 960g of cobalt nitrate dissolved in ml of aqueous solution
An aqueous solution of 20 g of cesium nitrate dissolved in 200
An aqueous solution dissolved in ml of water and 150 g of silica sol containing 20% by weight of silica were each added and stirred well. The slurry prepared previously (Bi-W-
Powder of composite oxide (Fe-Mg) was added, mixed well, and concentrated by heating. The resulting clay-like substance is sized to a diameter of 5.5 mm.
The catalyst was molded into a pellet with a length of 7 mm and a length of 7 mm, and after drying, it was calcined at 500°C for 6 hours under air circulation to obtain a finished catalyst. The composition of this catalyst (excluding oxygen) was Mo 12 Co 6.6 Cs 0.2 Si 1.0 Bi 1.2 W 2.4 Fe 0.35 Mg 0.1 in atomic ratio (hereinafter, the catalyst composition will be expressed in the same manner). The thus obtained catalyst was packed into a steel reaction tube with an inner diameter of 25.4 mmφ to a layer length of 3000 mm, the external catalyst (molten salt) was heated to 330°C, and 1-butene 13.0% by volume, oxygen 13.0% by volume, and water vapor were added. 10.0% by volume, nitrogen
A raw material gas having a composition of 64.0% by volume was introduced, and the reaction was carried out for a contact time of 1.0 seconds (in terms of NTP), and the results shown in Table 1 were obtained. Table 1 also shows the results when this reaction was continued for 1000 hours. Note that no carbon precipitation was observed on the catalyst taken out after 1000 hours of reaction. Analysis was performed using gas chromatography. Examples 2, 3 Using the same catalyst obtained in Example 1, 1
The reaction was carried out under the same conditions as in Example 1, except that -butene was replaced with cis-2-butene or trans-2-butene and the reaction temperature was 340°C, and the results shown in Table 1 were obtained. Example 4 291 g of bismuth nitrate was dissolved in 200 ml of water made acidic by adding 45 ml of concentrated nitric acid. 278 g of tungsten trioxide was added to this and mixed well. Then, an aqueous solution of 81 g of ferric nitrate dissolved in 60 ml of water and 43 g of ceric oxide were added and mixed well.
After heating and concentrating this and drying it,
It was baked at 750°C for 2 hours. The obtained fired product was crushed into about 100 pieces. Separately, add 1060 g of ammonium molybdate to 8000 g of water.
350 ml of cobalt nitrate 582 g dissolved in 350 ml of aqueous solution
An aqueous solution of 291 g of nickel nitrate dissolved in 150
29 g of cesium nitrate, an aqueous solution dissolved in ml of water.
An aqueous solution dissolved in 290 ml of water and 150 g of silica sol containing 20% by weight of silica were added and mixed well. The resulting slurry was concentrated by heating, dried, and then ground. This powder was previously prepared (Bi
-W-Fe-Ce) composite oxide powder was added and thoroughly mixed, water was added and kneaded well, and the mixture was then molded and fired in the same manner as in Example 1 to obtain a catalyst having the following composition. Mo 12 Co 4.0 Ni 2.0 Cs 0.3 Si 1.0 Bi 1.2 W 2.4 Fe 0.4 Ce 0.5The obtained catalyst was used in the same reactor as in Example 1,
Its composition is 1-butene 46.5% in mole%, cis-2
-butene 13.0%, trans-2-butene 18.3%,
Isobutane 3.8%, normal-butane 16.0%, other 2.4
The mixed fraction (B-B fraction) consisting of 17.0% by volume,
When a raw material gas with a composition of 13.0% by volume of oxygen, 10.0% by volume of water vapor, and 60.0% by volume of nitrogen was reacted at a contact time of 1.0 seconds (NTP conversion) and a reaction temperature of 340°C, no reaction was observed for butanes. We obtained the results shown in Table 1. Table 1 also shows the results when this reaction was continued for 1000 hours. Note that no carbon precipitation was observed on the catalyst taken out after 1000 hours of reaction. Example 5 A catalyst having the composition shown in Table 1 was prepared in the same manner as in Example 1. The raw materials used were lead, potassium nitrates, zirconium oxides rubidium, and calcium hydroxides. A reaction was carried out using the obtained catalyst under the same conditions as in Example 4, and the results shown in Table 1 were obtained. Table 1 also shows the results when this reaction was continued for 1000 hours. Note that no carbon precipitation was observed on the catalyst taken out after 1000 hours of reaction. Examples 6 and 7 Catalysts having the compositions shown in Table 1 were prepared in the same manner as in Example 1. The raw materials used were nitrate for thallium, and oxides of titanium and aluminum. The reaction temperature of the obtained catalyst was changed in Example 7.
The reactions were carried out under the same conditions as in Example 4, except that the temperature was 320°C, and the results shown in Table 1 were obtained. Example 8 60 ml of the same catalyst obtained in Example 5 was prepared with an inner diameter of 20
Filled in a steel reaction tube with a diameter of 1.5 mm, and heated at a heating medium temperature of 320°C, isopentene (2-methene-2-butene) 8.0% by volume, oxygen 8.0% by volume, water vapor 10.0% by volume, and nitrogen 74.0%.
Contact time of 1.8 seconds (NTP conversion) for mixed gas of % by volume
was introduced and reacted. The results are shown in Table 1. Comparative Example 1 In Example 1, (Bi-W-Fe-
A catalyst having the same composition as in Example 1 was obtained by mixing each component, heating and concentrating it, molding it, and sintering it without creating a Mg) composite oxide. A reaction was carried out using the obtained catalyst under the same conditions as in Example 1 except that the reaction temperature was 400°C, and the results shown in Table 2 were obtained. Table 2 also shows the results when this reaction was continued for 1000 hours. Comparative Example 2 In Example 1, a composite oxide was prepared in advance using only bismuth and tungsten, and iron and magnesium components were added to a slurry of molybdenum, cobalt, cesium, and silica. I got a catalyst. A reaction was carried out using the obtained catalyst under the same conditions as in Example 1, and the results shown in Table 2 were obtained. Comparative Example 3 In Example 1, the heat treatment temperature of the mixture containing bismuth, tungsten and magnesium was
Example 1 was carried out in the same manner except that the temperature was changed to 550°C.
A catalyst with the same composition was obtained. Using this catalyst, the reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 400°C. Table 2
The results shown are obtained. Comparative Example 4 In Example 1, the heat treatment temperature of the mixture containing bismuth, tungsten and magnesium was
Example 1 was carried out in the same manner except that the temperature was changed to 950°C.
A catalyst with the same composition was obtained. The reaction was carried out under the same conditions as in Example 1 except that this catalyst was used and the reaction temperature was 400°C, and the results shown in Table 2 were obtained. Comparative Examples 5 and 6 The same catalyst as obtained in Comparative Example 3 was used, the raw material 1-butene was replaced with cis-2-butene and trans-2-butene, and the reaction temperature was 400°C under the conditions of Example 1. Reactions were carried out according to the following procedures, and the results shown in Table 2 were obtained. Comparative Example 7 The same procedure as in Example 5 was carried out except that component D (cerium and calcium) was not used, and Table 2
A catalyst with the composition shown was obtained. A reaction was carried out using the obtained catalyst under the same conditions as in Example 5, and the results shown in Table 2 were obtained. Table 2 also shows the results when this reaction was continued for 1000 hours. Comparative Example 8 In Example 5, (Bi-W-Fe-
A catalyst having the same composition as in Example 5 was obtained by mixing each component into one, heating and concentrating, molding, and sintering without creating a Ce-Ca) composite oxide. A reaction was carried out using the obtained catalyst under the same conditions as in Example 8, and the results shown in Table 2 were obtained.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 炭素数4〜5のモノオレフインを気相で酸化
脱水素して共役ジオレフインを製造するに際し、
使用する触媒として、その組成が次の一般式 Mo12Co2.0〜10.0AaBbCc (BidWeFefDg)Oh (但しここでMoはモリブデン、Coはコバルト、
Biはビスマス、Wはタングステン、Feは鉄を示
し、Aはニツケルおよび鉛の中から選ばれた少な
くとも一種の元素、Bはカリウム、ルビジウム、
セシウムおよびタリウムの中から選ばれた少なく
とも一種の元素、Cはシリコン、アルミニウム、
チタン、ジルコニウムの中から選ばれた少なくと
も一種の元素、Dはマグネシウム、カルシウム、
セリウムの中から選ばれた少なくとも一種の元
素、Oは、酸素を表す。また、添字a、b、c、
d、e、f、g、hはそれぞれの元素の原子比を
表わし、モリブデンを12としたときa=0.0〜
10.0(但し、Coの原子比とaとの合計は10.0を超
えない)、b=0.1〜3.0、c=0.1〜5.0、d=0.1〜
5.0、e=0.5〜10.0、f=0.1〜5.0、g=0.1〜3.0、
hは各元素の原子比によつて定まる値をとる。) で表わされ、かつその調製時において、Bi、W、
FeおよびDのおのおのの成分の原料物質をあら
かじめ混合し、さらに600〜900℃の高温にて処理
して得た物質を用いてなることを特徴とする、高
性能および寿命の長い共役ジオレフイン製造用触
媒の製造方法。
[Claims] 1. When producing a conjugated diolefin by oxidizing and dehydrogenating a monoolefin having 4 to 5 carbon atoms in a gas phase,
The catalyst used has the following general formula: Mo 12 Co 2.0~10.0 A a B b C c (Bi d W e Fe f D g ) O h (where Mo is molybdenum, Co is cobalt,
Bi is bismuth, W is tungsten, Fe is iron, A is at least one element selected from nickel and lead, B is potassium, rubidium,
At least one element selected from cesium and thallium, C is silicon, aluminum,
At least one element selected from titanium and zirconium, D is magnesium, calcium,
At least one element selected from cerium, O, represents oxygen. Also, subscripts a, b, c,
d, e, f, g, h represent the atomic ratio of each element, and when molybdenum is 12, a = 0.0 ~
10.0 (however, the sum of the atomic ratio of Co and a does not exceed 10.0), b = 0.1 to 3.0, c = 0.1 to 5.0, d = 0.1 to
5.0, e=0.5~10.0, f=0.1~5.0, g=0.1~3.0,
h takes a value determined by the atomic ratio of each element. ), and at the time of its preparation, Bi, W,
For the production of conjugated diolefin with high performance and long life, characterized by using a material obtained by pre-mixing the raw materials of each component of Fe and D and further processing at a high temperature of 600 to 900 ° C. Catalyst manufacturing method.
JP60075442A 1985-04-11 1985-04-11 Catalyst for producing conjugated diolefin Granted JPS61234943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075442A JPS61234943A (en) 1985-04-11 1985-04-11 Catalyst for producing conjugated diolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075442A JPS61234943A (en) 1985-04-11 1985-04-11 Catalyst for producing conjugated diolefin

Publications (2)

Publication Number Publication Date
JPS61234943A JPS61234943A (en) 1986-10-20
JPH0547265B2 true JPH0547265B2 (en) 1993-07-16

Family

ID=13576358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075442A Granted JPS61234943A (en) 1985-04-11 1985-04-11 Catalyst for producing conjugated diolefin

Country Status (1)

Country Link
JP (1) JPS61234943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107405610A (en) * 2015-03-03 2017-11-28 日本化药株式会社 Conjugated diene catalyst for producing and its manufacture method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137595A1 (en) * 2009-05-29 2010-12-02 三菱化学株式会社 Method for producing conjugated diene
US8153546B2 (en) * 2010-03-23 2012-04-10 Ineos Usa Llc Mixed metal oxide ammoxidation catalysts
JP2011241208A (en) * 2010-04-23 2011-12-01 Mitsubishi Chemicals Corp Method for producing conjugated diene
JP5780038B2 (en) * 2010-07-29 2015-09-16 三菱化学株式会社 Method for producing conjugated diene
JP2012067047A (en) * 2010-09-27 2012-04-05 Asahi Kasei Chemicals Corp Method for producing butadiene
WO2015187050A1 (en) * 2014-06-06 2015-12-10 Общество С Ограниченной Ответственностью "Научно-Производственное Объединение "Еврохим" Catalyst and method for producing isoprene
HU4490U (en) * 2014-07-31 2015-01-28 Gábor Pusztay Apparatus for changing temperature
US10407363B2 (en) * 2017-08-16 2019-09-10 Saudi Arabian Oil Company Steam-less process for converting butenes to 1,3-butadiene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107405610A (en) * 2015-03-03 2017-11-28 日本化药株式会社 Conjugated diene catalyst for producing and its manufacture method

Also Published As

Publication number Publication date
JPS61234943A (en) 1986-10-20

Similar Documents

Publication Publication Date Title
JP3142549B2 (en) Iron / antimony / molybdenum-containing oxide catalyst composition and method for producing the same
US3972920A (en) Process for producing unsaturated aldehydes, unsaturated fatty acids or conjugated dienes
JPS6224408B2 (en)
JPS6224407B2 (en)
JPH10156185A (en) Catalyst for ammoxidation of propylene to acrylonitrile
US4051180A (en) Preparation of acrylic acid and methacrylic acid
JPH0420419B2 (en)
JPH0441454A (en) Production of methacrolein
US4115441A (en) Catalyst compositions especially useful for preparation of unsaturated acids
JPH0813332B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
JPH0547265B2 (en)
JPH0210695B2 (en)
KR100204321B1 (en) Preparation of catalyst for synthesizing unsaturated aldehyde or carboxylic acid
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
US4378309A (en) Catalyst compositions for the preparation of unsaturated acids
JPH0232017B2 (en)
JPH0212619B2 (en)
JP3720625B2 (en) Method for preparing molybdenum-bismuth-iron-containing composite oxide catalyst
JPH10114689A (en) Production of metacrolein, methacrilic acid and 1,3-butadiene
JP2520279B2 (en) Method for producing acrylonitrile
JP2903317B2 (en) Preparation of molybdenum-containing ammoxidation catalyst
JP2944463B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the catalyst
JPH09299802A (en) Manufacture of oxidation catalyst and preparation of methacrylic acid
JP3505547B2 (en) Method for producing acrylonitrile
JP4273565B2 (en) Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids