JP3668386B2 - Catalyst for synthesizing methacrolein and methacrylic acid and method for producing methacrolein and methacrylic acid - Google Patents
Catalyst for synthesizing methacrolein and methacrylic acid and method for producing methacrolein and methacrylic acid Download PDFInfo
- Publication number
- JP3668386B2 JP3668386B2 JP04212499A JP4212499A JP3668386B2 JP 3668386 B2 JP3668386 B2 JP 3668386B2 JP 04212499 A JP04212499 A JP 04212499A JP 4212499 A JP4212499 A JP 4212499A JP 3668386 B2 JP3668386 B2 JP 3668386B2
- Authority
- JP
- Japan
- Prior art keywords
- methacrylic acid
- catalyst
- methacrolein
- aqueous slurry
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、メタクロレインおよびメタクリル酸合成用触媒、すなわちイソブチレンまたは三級ブタノール(以下、TBAという。)を分子状酸素により気相接触酸化してメタクロレインおよびメタクリル酸を合成する際に使用する触媒、およびメタクロレインおよびメタクリル酸の製造方法に関する。
【0002】
【従来の技術】
従来、イソブチレンまたはTBAを分子状酸素により気相接触酸化してメタクロレインおよびメタクリル酸を製造する際に用いられる触媒に関して、例えば特開昭55−127328号公報、特開昭56−2926号公報、特開昭56−161341号公報、特開昭59−31727号公報等数多くの提案がなされている。しかし、これらは主として触媒を構成する成分およびその比率に関するものであり、触媒の製造工程の詳細に関する記載、特に触媒原料を含む水性スラリーの乾燥工程に関する記載はほとんどない。
【0003】
一方、特開平9−932号公報には、メタクロレインおよびメタクリル酸合成用触媒を、触媒原料を含有する水性スラリーを30〜95℃の範囲の雰囲気温度下で静置乾燥し、次いで焼成する方法が開示されている。
【0004】
【発明が解決しようとする課題】
しかし、特開平9−932号公報記載の方法で得られる触媒では、触媒活性、目的生成物選択性等の点で工業触媒としてはまだ不十分であり、更に改良が望まれている。
【0005】
本発明は、活性と目的物の選択性に優れたメタクロレインおよびメタクリル酸合成用触媒、および活性と目的物の選択性に優れたメタクロレインおよびメタクリル酸の製造方法の提供を目的としている。
【0006】
【課題を解決するための手段】
本発明者らは上記課題を達成するために鋭意検討した結果、触媒原料を含有する水性スラリーの乾燥物を0〜80℃で10〜100時間保持し、次いで焼成することにより、活性および目的物の選択性に優れた触媒が得られることを見出し、本発明を完成した。
【0007】
すなわち本発明は、触媒原料を含有する水性スラリーを乾燥し、得られた乾燥物を0〜80℃で10〜100時間保持し、次いで焼成することにより得られる下記式で表わされる組成を有するメタクロレインおよびメタクリル酸合成用触媒である。
MoaBibFecAdXeYfZgOh
(式中、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Aはニッケルおよび/またはコバルト、Xはマグネシウム、亜鉛、マンガン、スズおよび鉛からなる群より選ばれた少なくとも1種の元素、Yはリン、ホウ素、イオウ、テルル、ケイ素、ゲルマニウム、セリウム、ニオブ、チタン、ジルコニウム、タングステンおよびアンチモンからなる群より選ばれた少なくとも1種の元素、Zはカリウム、ナトリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、f、gおよびhは各元素の原子比を表し、a=12のとき、0.1≦b≦5、0.1≦c≦5、1≦d≦12、0≦e≦10、0≦f≦10、0.01≦g≦3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
【0008】
【発明の実施の形態】
本発明において、触媒製造に用いられる触媒構成元素の触媒原料は特に限定されないが、通常は当該元素の酸化物または加熱することにより酸化物になり得る塩化物、水酸化物、硫酸塩、硝酸塩、炭酸塩、アンモニウム塩またはそれらの混合物が用いられる。
【0009】
本発明において、触媒原料を含有する水性スラリーを調製する方法は特に限定されないが、例えば以下のような方法で調製することができる。
【0010】
適当なモリブデン化合物、例えばモリブデン酸アンモニウムを水に溶解した水溶液を第一の溶液とし、ビスマス、鉄、コバルト、セシウム等の化合物、例えば各々の硝酸塩を希硝酸に溶解した水溶液を第二の溶液とする。第一の溶液に第二の溶液を攪拌混合すると所望の水性スラリーが得られる。
【0011】
本発明において、触媒原料を含有する水性スラリーは、該水性スラリーの調製後直ちに乾燥してもよいが、30分以上加熱熟成および/または加熱濃縮した後に乾燥することが好ましい。この熟成および/または濃縮を行うことにより、触媒前駆構造が成長し、安定化される。また、熟成および/または濃縮する際の水性スラリーの温度については、80〜103℃の範囲が好ましい。
【0012】
このようにして得られた水性スラリーを乾燥する方法としては、例えば、箱型乾燥機、スプレードライヤー、スラリードライヤー、ドラムドライヤー、ロータリーキルン等を用いる方法が挙げられる。このうち、容器に仕込んだ該水性スラリーを箱型乾燥機内に設置し、水性スラリーを乾燥する方法が容易であり好ましい。この際の箱型乾燥機内の雰囲気温度は、30〜150℃の範囲に保つことが好ましく、特に30〜95℃の範囲内に保つことが好ましい。
【0013】
水性スラリーを乾燥する際の温度は特に限定されないが、低いほど触媒構造として好ましくない結晶の成長が抑えられ、高いほど乾燥の進みが早く操作上好都合であることを考慮して、使用する乾燥機の特性に応じた適正な温度に設定する必要がある。なお、ここで言う乾燥とは、水性スラリーから適当量の水分を除去して固形状物にすることであり、乾燥後の含水率は必ずしも0ではない。
【0014】
本発明において、目的とする触媒活性および/または目的物の選択性の向上効果を得るためには、上記のようにして得られた水性スラリーの乾燥物を0〜80℃で10〜100時間保持する。乾燥物を保持する際の温度は0〜80℃の範囲であることが必須であるが、経済性、操作性等の点で20℃程度の室温が好ましい。また、乾燥物を保持する時間は10〜100時間であるが、10〜60時間が好ましい。
【0015】
水性スラリーの乾燥物を上記の条件で保持する方法は特に限定されないが、例えば、水性スラリーの乾燥を箱型乾燥機で行った場合、水性スラリーが実質的に乾燥した時点で乾燥機の加熱を停止し、乾燥機の中で温度が80℃以下になった時点から所定の時間保持する方法が簡便であり好ましい。この際、乾燥機内の温度は室温まで徐々に降温していくことになるが、0〜80℃の範囲であれば特に問題はない。
【0016】
本発明において、上記条件で保持した後の乾燥物から最終的な触媒を得るためには焼成と呼ばれる熱処理を行う。焼成の条件は特に限定されないが、通常は200〜400℃の範囲で1〜5時間程度仮焼し、続いて必要に応じて成形あるいは不活性担体に担持し、その後400〜650℃の範囲で1〜20時間程度焼成する方法が用いられる。
【0017】
このようにして得られた本発明の触媒を用いて、イソブチレンまたはTBAを分子状酸素により気相接触酸化して、メタクロレインおよびメタクリル酸を製造する。この反応は、成形体または担持体の触媒を用いて固定床で実施することが好ましいが、粒状の触媒を用いて流動床で実施してもよい。反応に使用する原料混合ガス中のイソブチレンまたはTBA対分子状酸素のモル比は通常1:0.5〜3である。分子状酸素源は純酸素ガスでもよいが、工業的には空気が有利である。原料混合ガスは不活性ガスで希釈して用いることが好ましい。この反応の反応圧力は常圧ないし数気圧である。反応温度は通常300〜450℃であり、好ましくは300〜400℃である。
【0018】
【実施例】
以下、本発明を実施例および比較例により説明する。下記の実施例および比較例中の「部」は重量部を意味する。また、触媒の活性を示すイソブチレンまたはTBAの反応率、生成したメタクロレインおよびメタクリル酸の選択率は以下のように定義される。
イソブチレンまたはTBAの反応率(%)=A/B×100
メタクロレインの選択率(%)=C/A×100
メタクリル酸の選択率(%)=D/A×100
ここで、Aは反応したイソブチレンまたはTBAのモル数、Bは供給したイソブチレンまたはTBAのモル数、Cは生成したメタクロレインのモル数、およびDは生成したメタクリル酸のモル数を表わす。原料混合ガスおよび生成物の分析はガスクロマトグラフィーを用いて行った。
【0019】
[実施例1]
水6000部にパラモリブデン酸アンモニウム3000部、二酸化ゲルマニウム74.1部および二酸化テルル45.2部を加え加熱攪拌した(A液)。別に水5500部に60重量%硝酸水溶液100部、硝酸ビスマス1030.3部、硝酸第二鉄1201.3部、硝酸ニッケル823.3部、硝酸コバルト2059.9部、硝酸亜鉛210.6部および硝酸セシウム165.6部を順次加え溶解した(B液)。攪拌下、A液にB液を混合し水性スラリーを得た。得られた水性スラリーを90℃に加熱し60分間熟成処理した後、高さ30mmのステンレス製容器に仕込み、箱型乾燥機内に設置し、80℃の雰囲気温度下で15時間乾燥した。その後、乾燥機の加熱源を切り自然に降温させながら50時間放置した。50時間放置後の乾燥機内の雰囲気温度は室温と同じ20℃であった。続いて、得られた乾燥物を300℃で1時間仮焼した後、圧縮成形し、510℃で3時間焼成して、次の組成の触媒を得た。
Mo12Bi1.5Fe2.1Ni2Co5Zn0.5Ge0.5Te0.2Cs0.6Ox
(式中、Mo、Bi、Fe、Ni、Co、Zn、Ge、Te、CsおよびOはそれぞれモリブデン、ビスマス、鉄、ニッケル、コバルト、亜鉛、ゲルマニウム、テルル、セシウムおよび酸素を表す。また元素記号右下の数字は各元素の原子比であり、xは前記各成分の原子価を満足するのに必要な酸素の原子比である。)この触媒をステンレス製反応管に充填し、イソブチレン5%、酸素12%、水蒸気10%および窒素73%の原料混合ガスを接触時間4.5秒で触媒層を通過させ、340℃で反応させた。その結果、イソブチレンの反応率97.6%、メタクロレインの選択率88.2%、メタクリル酸の選択率5.5%であった。
【0020】
[実施例2]
実施例1において、乾燥機の加熱源を切った後の放置時間を15時間に変更し、15時間放置後の乾燥機内の雰囲気温度を20℃とした以外は実施例1と同様に実施した結果を表1に示した。得られた触媒の性能は実施例1と同等であった。
【0021】
[比較例1]
実施例1において、乾燥の後、乾燥物を放置することなく直ちに仮焼した以外は実施例1と同様に実施した結果を表1に示した。得られた触媒の性能は実施例1と比べ劣るものであった。
【0022】
[比較例2]
実施例1において、乾燥機の加熱源を切った後の放置時間を7時間に変更し、7時間放置後の乾燥機内の雰囲気温度を28℃とした以外は実施例1と同様に実施した結果を表1に示した。得られた触媒の性能は実施例1および比較例1と比べ劣るものであった。
【0023】
【表1】
【0024】
[実施例3]
水6000部にパラモリブデン酸アンモニウム3000部およびタングステン酸アンモニウム184.8部を加え加熱攪拌した(C液)。別に水5500部に60重量%硝酸水溶液100部、硝酸ビスマス824.2部、硝酸第二鉄1029.7部、硝酸ニッケル1646.7部、硝酸コバルト412.0部、硝酸マグネシウム363.1部、硝酸マンガン406.5部、硝酸鉛234.5部、硝酸ルビジウム41.8部および硝酸カリウム28.6部を順次加え溶解した(D液)。攪拌下、C液にD液を混合し、水性スラリーを得た。得られた水性スラリーを100℃に加熱し90分間熟成処理した後、高さ30mmのステンレス製容器に仕込み、箱型乾燥機内に設置し、90℃の雰囲気温度下で12時間乾燥した。その後、乾燥機内の雰囲気温度を35℃に設定し、該雰囲気温度が80℃まで降温した時点から80時間保持した。80時間放置後の乾燥機内の雰囲気温度は設定温度の35℃であった。続いて、得られた乾燥物を300℃で1時間仮焼した後、圧縮成形し、510℃で3時間焼成して、次の組成の触媒を得た。
Mo12Bi1.2Fe1.8Ni4Co1Mg1Mn1Pb0.5W0.5Rb0.2K0.2Ox
(式中、Mo、Bi、Fe、Ni、Co、Mg、Mn、Pb、W、Rb、KおよびOはそれぞれモリブデン、ビスマス、鉄、ニッケル、コバルト、マグネシウム、マンガン、鉛、タングステン、ルビジウム、カリウムおよび酸素を表す。また、元素記号右下の数字は各元素の原子比であり、xは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
この触媒を用いて、反応原料のイソブチレンをTBAに変更した以外は実施例1と同様にして反応を行った結果を表2に示した。
【0025】
[比較例3]
実施例3において、乾燥の後、乾燥物を80〜35℃にて保持することなく直ちに仮焼する方法に変更した以外は実施例3と同様に実施した結果を表2に示した。得られた触媒の性能は実施例3と比べ劣るものであった。
【0026】
【表2】
【0027】
[実施例4]
水6000部にパラモリブデン酸アンモニウム3000部、二酸化ケイ素85.1部およびタングステン酸アンモニウム184.8部を加え加熱攪拌した(E液)。別に水5500部に60重量%硝酸水溶液100部、硝酸ビスマス824.2部、硝酸第二鉄1258.5部、硝酸ニッケル1646.7部、硝酸コバルト824.0部、硝酸亜鉛631.8部、硝酸セリウム123.0部、硝酸ルビジウム41.8部および硝酸カリウム28.6部を順次加え溶解した(F液)。攪拌下、E液にF液を混合し、水性スラリーを得た。得られた水性スラリーを100℃に加熱し90分間熟成処理した後、高さ30mmのステンレス製容器に仕込み、箱型乾燥機内に設置し、100℃の雰囲気温度下で15時間乾燥した。その後、乾燥機内の雰囲気温度を30℃に設定し、該雰囲気温度が80℃まで降温した時点から40時間保持した。80時間放置後の乾燥機内の雰囲気温度は設定温度の30℃であった。続いて、得られた乾燥物を270℃で3時間仮焼した後、得られた仮焼物400部に対して平均直径10μm、長さ100〜300μmのガラス繊維30部を添加し、直径4.5mmの球状アルミナ担体400部に担持し、次いで495℃で2時間焼成して、次の組成の触媒を得た。
Mo12Bi1.2Fe2.2Ni4Co2Zn1.5Si1Ce0.2W0.5Rb0.2K0.2Ox(式中、Mo、Bi、Fe、Ni、Co、Zn、Si、Ce、W、Rb、KおよびOはそれぞれモリブデン、ビスマス、鉄、ニッケル、コバルト、亜鉛、ケイ素、セリウム、タングステン、ルビジウム、カリウムおよび酸素を表す。また、元素記号右下の数字は各元素の原子比であり、xは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
この触媒を用いて、実施例1と同様にして反応を行った結果を表3に示した。
【0028】
【表3】
【0029】
【発明の効果】
本発明は、触媒活性および目的生成物選択性に優れたメタクロレインおよびメタクリル酸合成用触媒である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for synthesizing methacrolein and methacrylic acid, that is, a catalyst used for synthesizing methacrolein and methacrylic acid by gas phase catalytic oxidation of isobutylene or tertiary butanol (hereinafter referred to as TBA) with molecular oxygen. And a process for producing methacrolein and methacrylic acid.
[0002]
[Prior art]
Conventionally, regarding catalysts used for producing methacrolein and methacrylic acid by vapor-phase catalytic oxidation of isobutylene or TBA with molecular oxygen, for example, JP-A-55-127328, JP-A-56-2926, Many proposals such as Japanese Patent Laid-Open Nos. 56-161341 and 59-31727 have been made. However, these are mainly related to the components constituting the catalyst and their ratios, and there is little description about the details of the production process of the catalyst, particularly about the drying process of the aqueous slurry containing the catalyst raw material.
[0003]
On the other hand, Japanese Patent Application Laid-Open No. 9-932 discloses a method in which methacrolein and a catalyst for synthesizing methacrylic acid are dried by standing an aqueous slurry containing a catalyst raw material at an ambient temperature in the range of 30 to 95 ° C. Is disclosed.
[0004]
[Problems to be solved by the invention]
However, the catalyst obtained by the method described in JP-A-9-932 is still insufficient as an industrial catalyst in terms of catalyst activity, target product selectivity and the like, and further improvement is desired.
[0005]
An object of the present invention is to provide a catalyst for synthesizing methacrolein and methacrylic acid excellent in activity and selectivity of a target product, and a method for producing methacrolein and methacrylic acid excellent in selectivity of activity and target product.
[0006]
[Means for Solving the Problems]
As a result of intensive investigations to achieve the above-mentioned problems, the inventors of the present invention have been able to maintain the dried product of the aqueous slurry containing the catalyst raw material at 0 to 80 ° C. for 10 to 100 hours, and then calcinate the active and target products. The present inventors have found that a catalyst having excellent selectivity can be obtained.
[0007]
That is, the present invention is a method for drying an aqueous slurry containing a catalyst raw material, holding the resulting dried product at 0 to 80 ° C. for 10 to 100 hours, and then firing it, and then having a composition represented by the following formula. Rain and methacrylic acid synthesis catalyst.
Mo a Bi b Fe c A d X e Y f Z g O h
(Wherein Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A is nickel and / or cobalt, X is at least selected from the group consisting of magnesium, zinc, manganese, tin and lead) One element, Y is at least one element selected from the group consisting of phosphorus, boron, sulfur, tellurium, silicon, germanium, cerium, niobium, titanium, zirconium, tungsten, and antimony, and Z is potassium, sodium, rubidium Represents at least one element selected from the group consisting of cesium and thallium, where a, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12. 0.1 ≦ b ≦ 5, 0.1 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0.01 ≦ g ≦ 3 h is the atomic ratio of oxygen required to satisfy the valence of each component.)
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the catalyst raw material of the catalyst constituent element used for catalyst production is not particularly limited, but usually an oxide of the element or a chloride, hydroxide, sulfate, nitrate, which can be converted into an oxide by heating, Carbonates, ammonium salts or mixtures thereof are used.
[0009]
In the present invention, the method for preparing the aqueous slurry containing the catalyst raw material is not particularly limited. For example, it can be prepared by the following method.
[0010]
An aqueous solution in which an appropriate molybdenum compound, such as ammonium molybdate is dissolved in water, is used as the first solution, and a compound such as bismuth, iron, cobalt, cesium, etc. To do. The desired aqueous slurry is obtained by stirring and mixing the second solution with the first solution.
[0011]
In the present invention, the aqueous slurry containing the catalyst raw material may be dried immediately after the preparation of the aqueous slurry, but is preferably dried after being heated and aged for 30 minutes or more and / or concentrated. By carrying out this aging and / or concentration, the catalyst precursor structure grows and is stabilized. Moreover, about the temperature of the aqueous slurry at the time of aging and / or concentration, the range of 80-103 degreeC is preferable.
[0012]
Examples of the method for drying the aqueous slurry thus obtained include a method using a box dryer, a spray dryer, a slurry dryer, a drum dryer, a rotary kiln, and the like. Among these, the method of placing the aqueous slurry charged in the container in a box-type dryer and drying the aqueous slurry is easy and preferable. At this time, the atmospheric temperature in the box-type dryer is preferably maintained in the range of 30 to 150 ° C, and more preferably in the range of 30 to 95 ° C.
[0013]
The temperature at which the aqueous slurry is dried is not particularly limited. However, the lower the temperature, the less the growth of unfavorable crystals as the catalyst structure is suppressed, and the higher the speed, the faster the drying proceeds and the more convenient for operation. It is necessary to set the temperature appropriately according to the characteristics. The term “drying” as used herein refers to removing an appropriate amount of water from the aqueous slurry to obtain a solid product, and the moisture content after drying is not necessarily zero.
[0014]
In the present invention, in order to obtain the effect of improving the target catalyst activity and / or the selectivity of the target product, the dry product of the aqueous slurry obtained as described above is held at 0 to 80 ° C. for 10 to 100 hours. To do. Although it is essential that the temperature when holding the dried product is in the range of 0 to 80 ° C., a room temperature of about 20 ° C. is preferable from the viewpoint of economy and operability. Moreover, although the time to hold | maintain a dried material is 10 to 100 hours, 10 to 60 hours are preferable.
[0015]
The method of holding the dried aqueous slurry under the above conditions is not particularly limited. For example, when the aqueous slurry is dried with a box-type dryer, the dryer is heated when the aqueous slurry is substantially dried. A method of stopping and holding for a predetermined time from the time when the temperature becomes 80 ° C. or lower in the dryer is simple and preferable. At this time, the temperature in the dryer gradually decreases to room temperature, but there is no particular problem as long as it is in the range of 0 to 80 ° C.
[0016]
In the present invention, in order to obtain a final catalyst from the dried product after being held under the above conditions, a heat treatment called calcination is performed. The firing conditions are not particularly limited, but usually calcined in the range of 200 to 400 ° C. for about 1 to 5 hours, then shaped or supported on an inert carrier as necessary, and then in the range of 400 to 650 ° C. A method of firing for about 1 to 20 hours is used.
[0017]
Using the catalyst of the present invention thus obtained, isobutylene or TBA is subjected to gas phase catalytic oxidation with molecular oxygen to produce methacrolein and methacrylic acid. This reaction is preferably carried out in a fixed bed using a molded or supported catalyst, but may be carried out in a fluidized bed using a granular catalyst. The molar ratio of isobutylene or TBA to molecular oxygen in the raw material mixed gas used for the reaction is usually 1: 0.5-3. The molecular oxygen source may be pure oxygen gas, but industrially air is advantageous. The raw material mixed gas is preferably diluted with an inert gas. The reaction pressure for this reaction is from atmospheric pressure to several atmospheres. The reaction temperature is usually 300 to 450 ° C, preferably 300 to 400 ° C.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples. In the following examples and comparative examples, “parts” means parts by weight. Moreover, the reaction rate of isobutylene or TBA which shows the activity of a catalyst, and the selectivity of the produced methacrolein and methacrylic acid are defined as follows.
Reaction rate of isobutylene or TBA (%) = A / B × 100
Selectivity of methacrolein (%) = C / A × 100
Methacrylic acid selectivity (%) = D / A × 100
Here, A represents the number of moles of reacted isobutylene or TBA, B represents the number of moles of supplied isobutylene or TBA, C represents the number of moles of methacrolein formed, and D represents the number of moles of methacrylic acid formed. The analysis of the raw material mixed gas and the product was performed using gas chromatography.
[0019]
[Example 1]
To 6000 parts of water, 3000 parts of ammonium paramolybdate, 74.1 parts of germanium dioxide and 45.2 parts of tellurium dioxide were added and heated and stirred (solution A). Separately, 5500 parts of water, 100 parts of 60 wt% nitric acid aqueous solution, 1030.3 parts of bismuth nitrate, 1201.3 parts of ferric nitrate, 823.3 parts of nickel nitrate, 2059.9 parts of cobalt nitrate, 210.6 parts of zinc nitrate and 165.6 parts of cesium nitrate were sequentially added and dissolved (solution B). Under stirring, liquid A was mixed with liquid A to obtain an aqueous slurry. The obtained aqueous slurry was heated to 90 ° C. and aged for 60 minutes, then charged in a stainless steel container having a height of 30 mm, placed in a box-type dryer, and dried at an ambient temperature of 80 ° C. for 15 hours. Then, the heating source of the dryer was turned off and left for 50 hours while the temperature was naturally lowered. The atmospheric temperature in the dryer after leaving for 50 hours was 20 ° C., the same as room temperature. Subsequently, the obtained dried product was calcined at 300 ° C. for 1 hour, then compression molded, and calcined at 510 ° C. for 3 hours to obtain a catalyst having the following composition.
Mo 12 Bi 1.5 Fe 2.1 Ni 2 Co 5 Zn 0.5 Ge 0.5 Te 0.2 Cs 0.6 O x
(In the formula, Mo, Bi, Fe, Ni, Co, Zn, Ge, Te, Cs, and O represent molybdenum, bismuth, iron, nickel, cobalt, zinc, germanium, tellurium, cesium, and oxygen, respectively. The number on the lower right is the atomic ratio of each element, and x is the atomic ratio of oxygen necessary to satisfy the valence of each component.) The catalyst is packed in a stainless steel reaction tube, and 5% isobutylene Then, a raw material mixed gas of oxygen 12%, water vapor 10% and nitrogen 73% was passed through the catalyst layer at a contact time of 4.5 seconds and reacted at 340 ° C. As a result, the reaction rate of isobutylene was 97.6%, the selectivity of methacrolein was 88.2%, and the selectivity of methacrylic acid was 5.5%.
[0020]
[Example 2]
In Example 1, the result of carrying out in the same manner as in Example 1 except that the standing time after turning off the heating source of the dryer was changed to 15 hours, and the atmospheric temperature in the dryer after leaving for 15 hours was changed to 20 ° C. Is shown in Table 1. The performance of the obtained catalyst was equivalent to that in Example 1.
[0021]
[Comparative Example 1]
Table 1 shows the results obtained in the same manner as in Example 1, except that after drying, the dried product was immediately calcined without being left to stand. The performance of the obtained catalyst was inferior to that of Example 1.
[0022]
[Comparative Example 2]
In Example 1, the result was carried out in the same manner as in Example 1 except that the standing time after the heating source of the dryer was turned off was changed to 7 hours, and the atmospheric temperature in the dryer after standing for 7 hours was changed to 28 ° C. Is shown in Table 1. The performance of the obtained catalyst was inferior to that of Example 1 and Comparative Example 1.
[0023]
[Table 1]
[0024]
[Example 3]
To 6000 parts of water, 3000 parts of ammonium paramolybdate and 184.8 parts of ammonium tungstate were added and stirred with heating (solution C). Separately, 5500 parts of water, 100 parts of 60% by weight aqueous nitric acid solution, 824.2 parts of bismuth nitrate, 1029.7 parts of ferric nitrate, 1646.7 parts of nickel nitrate, 412.0 parts of cobalt nitrate, 363.1 parts of magnesium nitrate, 406.5 parts of manganese nitrate, 234.5 parts of lead nitrate, 41.8 parts of rubidium nitrate and 28.6 parts of potassium nitrate were sequentially added and dissolved (solution D). Under stirring, liquid D was mixed with liquid C to obtain an aqueous slurry. The obtained aqueous slurry was heated to 100 ° C. and aged for 90 minutes, then charged into a stainless steel container having a height of 30 mm, placed in a box-type dryer, and dried at an ambient temperature of 90 ° C. for 12 hours. Then, the atmospheric temperature in a dryer was set to 35 degreeC, and it hold | maintained for 80 hours from the time of this atmospheric temperature falling to 80 degreeC. The ambient temperature in the dryer after standing for 80 hours was a set temperature of 35 ° C. Subsequently, the obtained dried product was calcined at 300 ° C. for 1 hour, then compression molded, and calcined at 510 ° C. for 3 hours to obtain a catalyst having the following composition.
Mo 12 Bi 1.2 Fe 1.8 Ni 4 Co 1 Mg 1 Mn 1 Pb 0.5 W 0.5 Rb 0.2 K 0.2 O x
(In the formula, Mo, Bi, Fe, Ni, Co, Mg, Mn, Pb, W, Rb, K and O are molybdenum, bismuth, iron, nickel, cobalt, magnesium, manganese, lead, tungsten, rubidium and potassium, respectively. (The number on the lower right of the element symbol is the atomic ratio of each element, and x is the atomic ratio of oxygen necessary to satisfy the valence of each component.)
Table 2 shows the results of the reaction performed in the same manner as in Example 1 except that the reaction material isobutylene was changed to TBA using this catalyst.
[0025]
[Comparative Example 3]
Table 2 shows the results obtained in the same manner as in Example 3, except that after drying, the dried product was changed to a method of calcining immediately without holding at 80 to 35 ° C. The performance of the obtained catalyst was inferior to that of Example 3.
[0026]
[Table 2]
[0027]
[Example 4]
To 6000 parts of water, 3000 parts of ammonium paramolybdate, 85.1 parts of silicon dioxide, and 184.8 parts of ammonium tungstate were added and stirred with heating (E solution). Separately, 5500 parts of water, 100 parts of a 60% by weight aqueous nitric acid solution, 824.2 parts of bismuth nitrate, 1258.5 parts of ferric nitrate, 1646.7 parts of nickel nitrate, 824.0 parts of cobalt nitrate, 631.8 parts of zinc nitrate, 123.0 parts of cerium nitrate, 41.8 parts of rubidium nitrate and 28.6 parts of potassium nitrate were sequentially added and dissolved (F solution). Under stirring, liquid E was mixed with liquid E to obtain an aqueous slurry. The obtained aqueous slurry was heated to 100 ° C. and aged for 90 minutes, then charged into a stainless steel container having a height of 30 mm, placed in a box-type dryer, and dried at an ambient temperature of 100 ° C. for 15 hours. Then, the atmospheric temperature in a dryer was set to 30 degreeC, and it hold | maintained for 40 hours from the time of this atmospheric temperature falling to 80 degreeC. The ambient temperature in the dryer after standing for 80 hours was the set temperature of 30 ° C. Subsequently, after the obtained dried product was calcined at 270 ° C. for 3 hours, 30 parts of glass fiber having an average diameter of 10 μm and a length of 100 to 300 μm was added to 400 parts of the obtained calcined product. It was supported on 400 parts of a 5 mm spherical alumina carrier and then calcined at 495 ° C. for 2 hours to obtain a catalyst having the following composition.
Mo 12 Bi 1.2 Fe 2.2 Ni 4 Co 2 Zn 1.5 Si 1 Ce 0.2 W 0.5 Rb 0.2 K 0.2 O x (where Mo, Bi, Fe, Ni, Co, Zn, Si, Ce, W, Rb, K and O represents molybdenum, bismuth, iron, nickel, cobalt, zinc, silicon, cerium, tungsten, rubidium, potassium and oxygen. (This is the atomic ratio of oxygen necessary to satisfy the valence of the component.)
Table 3 shows the results of reaction using this catalyst in the same manner as in Example 1.
[0028]
[Table 3]
[0029]
【The invention's effect】
The present invention is a catalyst for synthesizing methacrolein and methacrylic acid having excellent catalytic activity and target product selectivity.
Claims (5)
MoaBibFecAdXeYfZgOh
(式中、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Aはニッケルおよび/またはコバルト、Xはマグネシウム、亜鉛、マンガン、スズおよび鉛からなる群より選ばれた少なくとも1種の元素、Yはリン、ホウ素、イオウ、テルル、ケイ素、ゲルマニウム、セリウム、ニオブ、チタン、ジルコニウム、タングステンおよびアンチモンからなる群より選ばれた少なくとも1種の元素、Zはカリウム、ナトリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、f、gおよびhは各元素の原子比を表し、a=12のとき、0.1≦b≦5、0.1≦c≦5、1≦d≦12、0≦e≦10、0≦f≦10、0.01≦g≦3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比である。)Production of methacrolein and methacrylic acid synthesis catalyst having the composition represented by the following formula, wherein the aqueous slurry containing the catalyst raw material is dried, and the resulting dried product is held at 0 to 80 ° C. for 10 to 100 hours and then calcined. Method.
Mo a Bi b Fe c A d X e Y f Z g O h
(Wherein Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A is nickel and / or cobalt, X is at least selected from the group consisting of magnesium, zinc, manganese, tin and lead) One element, Y is at least one element selected from the group consisting of phosphorus, boron, sulfur, tellurium, silicon, germanium, cerium, niobium, titanium, zirconium, tungsten, and antimony, and Z is potassium, sodium, rubidium Represents at least one element selected from the group consisting of cesium and thallium, where a, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12. 0.1 ≦ b ≦ 5, 0.1 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0.01 ≦ g ≦ 3 h is the atomic ratio of oxygen required to satisfy the valence of each component.)
MoaBibFecAdXeYfZgOh
(式中、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Aはニッケルおよび/またはコバルト、Xはマグネシウム、亜鉛、マンガン、スズおよび鉛からなる群より選ばれた少なくとも1種の元素、Yはリン、ホウ素、イオウ、テルル、ケイ素、ゲルマニウム、セリウム、ニオブ、チタン、ジルコニウム、タングステンおよびアンチモンからなる群より選ばれた少なくとも1種の元素、Zはカリウム、ナトリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、f、gおよびhは各元素の原子比を表し、a=12のとき、0.1≦b≦5、0.1≦c≦5、1≦d≦12、0≦e≦10、0≦f≦10、0.01≦g≦3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比である。)Synthesis of methacrolein and methacrylic acid having a composition represented by the following formula obtained by drying an aqueous slurry containing a catalyst raw material, holding the obtained dried product at 0 to 80 ° C. for 10 to 100 hours, and then firing the slurry. Catalyst.
Mo a Bi b Fe c A d X e Y f Z g O h
(Wherein Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A is nickel and / or cobalt, X is at least selected from the group consisting of magnesium, zinc, manganese, tin and lead) One element, Y is at least one element selected from the group consisting of phosphorus, boron, sulfur, tellurium, silicon, germanium, cerium, niobium, titanium, zirconium, tungsten, and antimony, and Z is potassium, sodium, rubidium Represents at least one element selected from the group consisting of cesium and thallium, where a, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12. 0.1 ≦ b ≦ 5, 0.1 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0.01 ≦ g ≦ 3 h is the atomic ratio of oxygen required to satisfy the valence of each component.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04212499A JP3668386B2 (en) | 1999-02-19 | 1999-02-19 | Catalyst for synthesizing methacrolein and methacrylic acid and method for producing methacrolein and methacrylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04212499A JP3668386B2 (en) | 1999-02-19 | 1999-02-19 | Catalyst for synthesizing methacrolein and methacrylic acid and method for producing methacrolein and methacrylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000237592A JP2000237592A (en) | 2000-09-05 |
JP3668386B2 true JP3668386B2 (en) | 2005-07-06 |
Family
ID=12627206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04212499A Expired - Lifetime JP3668386B2 (en) | 1999-02-19 | 1999-02-19 | Catalyst for synthesizing methacrolein and methacrylic acid and method for producing methacrolein and methacrylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3668386B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1697700A (en) | 2003-12-04 | 2005-11-16 | 三菱化学株式会社 | Process for producing catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid |
KR100807972B1 (en) | 2005-08-10 | 2008-02-28 | 주식회사 엘지화학 | Complex metal oxide catalyst with high acrylic acid selectivity |
JP5042658B2 (en) * | 2007-02-14 | 2012-10-03 | ダイヤニトリックス株式会社 | Method for producing catalyst for producing acrylonitrile, and method for producing acrylonitrile |
CN103619473B (en) * | 2011-06-28 | 2015-09-02 | 旭化成化学株式会社 | Oxide catalyst |
CN103524312A (en) * | 2012-07-03 | 2014-01-22 | 中国石油化工股份有限公司 | Method for preparing methylacrolein |
CN103934001B (en) * | 2013-01-23 | 2016-07-13 | 中国石油化工股份有限公司 | The catalyst of synthesizing methyl acrylic aldehyde and methacrylic acid |
WO2020203789A1 (en) * | 2019-03-29 | 2020-10-08 | 三菱ケミカル株式会社 | Method for producing catalyst for unsaturated carboxylic acid synthesis |
JP7532841B2 (en) * | 2019-03-29 | 2024-08-14 | 三菱ケミカル株式会社 | Method for producing catalyst for synthesis of unsaturated carboxylic acid |
-
1999
- 1999-02-19 JP JP04212499A patent/JP3668386B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000237592A (en) | 2000-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100193030B1 (en) | Process for preparing catalysts used for production of methacrolein and methacrylic acid | |
JP4166334B2 (en) | Method for preparing oxidation catalyst | |
JP5500761B2 (en) | Method for producing catalyst for synthesis of methacrylic acid | |
CN1205245A (en) | Process for manufacture of acrolein from propylene by redox reaction and use of solid mixed oxide composition as redox system in said reaction | |
JP3668386B2 (en) | Catalyst for synthesizing methacrolein and methacrylic acid and method for producing methacrolein and methacrylic acid | |
JP4081824B2 (en) | Acrylic acid production method | |
US5550095A (en) | Process for producing catalyst used for synthesis of methacrylic acid | |
JP2006326440A (en) | Catalyst for acrylonitrile synthesis | |
US5349092A (en) | Process for producing catalysts for synthesis of unsaturated aldehydes and unsaturated carboxylic acids | |
JP4022047B2 (en) | Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method | |
JP3288197B2 (en) | Method for producing catalyst for synthesizing methacrolein and methacrylic acid | |
EP0639404B1 (en) | Process for producing methacrylic acid synthesis catalyst | |
JP2005058909A (en) | Production method for catalyst for synthesizing methacrylic acid | |
JP4947753B2 (en) | Catalyst for methacrylic acid synthesis and method for producing methacrylic acid | |
JP4811977B2 (en) | Method for producing catalyst for synthesis of methacrylic acid | |
JP3370589B2 (en) | Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same | |
JP4236415B2 (en) | Catalyst for methacrylic acid synthesis and method for producing methacrylic acid | |
JPH05192580A (en) | Preparation of catalyst for manufacturing methacrylic acid | |
JP3313943B2 (en) | Method for producing catalyst for synthesizing methacrolein and methacrylic acid | |
JPH05293389A (en) | Preparation of catalyst for production of acrolein and acrylic acid | |
JP4301484B2 (en) | Method for producing methacrylic acid | |
JPH11226412A (en) | Production of catalyst for production of methacrylic acid and production of methacrylic acid | |
JP3764805B2 (en) | Method for preparing catalyst for production of methacrylic acid and method for producing methacrylic acid | |
JP3859397B2 (en) | Catalyst for production of methacrolein and methacrylic acid | |
JP4067316B2 (en) | Catalyst preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050408 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080415 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090415 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090415 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100415 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110415 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110415 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120415 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120415 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120415 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130415 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130415 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130415 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |