JP5069152B2 - Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst - Google Patents

Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst Download PDF

Info

Publication number
JP5069152B2
JP5069152B2 JP2008058138A JP2008058138A JP5069152B2 JP 5069152 B2 JP5069152 B2 JP 5069152B2 JP 2008058138 A JP2008058138 A JP 2008058138A JP 2008058138 A JP2008058138 A JP 2008058138A JP 5069152 B2 JP5069152 B2 JP 5069152B2
Authority
JP
Japan
Prior art keywords
catalyst
carboxylic acid
unsaturated carboxylic
producing
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008058138A
Other languages
Japanese (ja)
Other versions
JP2009213969A (en
Inventor
藤田  勉
雄一 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2008058138A priority Critical patent/JP5069152B2/en
Publication of JP2009213969A publication Critical patent/JP2009213969A/en
Application granted granted Critical
Publication of JP5069152B2 publication Critical patent/JP5069152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、不飽和カルボン酸合成用触媒、その製造方法、およびその触媒を用いた不飽和カルボン酸の製造方法に関するものであり、特に、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用されるメタクリル酸合成用触媒に好適なものである。   The present invention relates to an unsaturated carboxylic acid synthesis catalyst, a method for producing the same, and a method for producing an unsaturated carboxylic acid using the catalyst. In particular, methacrolein is subjected to gas phase catalytic oxidation with molecular oxygen to methacrylic acid. It is suitable for a catalyst for synthesizing methacrylic acid used when producing an acid.

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する触媒としては、モリブドリン酸、モリブドリン酸塩などのヘテロポリ酸を主成分とするものが知られている。また、アクロレインをアクリル酸へ気相接触酸化する触媒としてはモリブデンやビスマスを主体とした複合酸化物触媒が好適であることが知られている。これら触媒の製造方法については数多くの検討がなされており、その多くでは、まず、触媒を構成する各元素を含む水溶液または水性スラリーなどの原料液を調製し、その後、これを乾燥、焼成することで、触媒を製造している。このうち焼成工程に関しても種々の検討がなされている。これらの触媒では、空気、もしくは、その他の気体の流通化で温度の最高値を300℃以上700℃以下とし焼成するものが多い。   As a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, a catalyst mainly containing a heteropolyacid such as molybdophosphoric acid or molybdophosphate is known. Further, it is known that a composite oxide catalyst mainly composed of molybdenum or bismuth is suitable as a catalyst for vapor-phase catalytic oxidation of acrolein to acrylic acid. Many studies have been made on the production methods of these catalysts. In many of them, first, a raw material liquid such as an aqueous solution or an aqueous slurry containing each element constituting the catalyst is prepared, and then dried and calcined. And the catalyst is manufactured. Of these, various studies have been made on the firing step. Many of these catalysts are calcined at a maximum temperature of 300 ° C. or more and 700 ° C. or less by circulating air or other gases.

しかしながら、従来、気体の流量の影響についてはあまり詳しく検討されてきておらず、多く空気流通下とのみ記載されている例が多い。例えば、焼成の際の気体の流量として記載のあるものとして、特許文献1〜3があるが、その実施例では、管状焼成容器を用いており、27.5mmの管径に対し、空気流量500l/h〜2000l/hとしているものの、この際の触媒量についての記載はない。雰囲気を制御する技術に関する特許では、気体の流量について具体的な記載があるものがあり、例えば、特許文献4、5の実施例では、管径を8mmとし、触媒量15gについて、気体流量6l/h〜13l/hとしており、これは触媒1gあたりになおすと、0.4l/h/gから0.9l/h/gに相当する。また、特許文献6の実施例では管径を25mmとし、気体流量を36l/hとし、これは触媒1gあたりになおすと、およそ0.9l/h/gに相当する。しかしながら、これらの従来技術は、単に実験条件を記載したもので、必ずしも、気体の流量の重要性に着目したものではなく、得られた触媒は、反応成績が十分でなかったり、反応成績の経時低下が大きいなどの問題点を有しており、工業触媒としてはさらに改良が望まれているのが現状である。また、従来、焼成条件のうち、特に気体の流量の影響はよくわかっておらず、単に気体の流量と焼成時間を独立に検討し、経験的に求めた値を最適値として採用してきた経緯があった。
特開昭58−61833号公報 特開昭58−67643号公報 特開昭58−79545号公報 特開昭59−66349号公報 特開昭59−69148号公報 特開平8−79545号公報
However, the influence of the gas flow rate has not been studied in detail so far, and there are many examples that are described only under air circulation. For example, Patent Documents 1 to 3 are disclosed as gas flow rates during firing, but in the examples, a tubular firing container is used, and an air flow rate of 500 l for a tube diameter of 27.5 mm. Although it is set to / h to 2000 l / h, there is no description about the catalyst amount at this time. Patents relating to the technology for controlling the atmosphere include a specific description of the gas flow rate. For example, in the examples of Patent Documents 4 and 5, the tube diameter is 8 mm, the catalyst flow rate is 15 g, and the gas flow rate is 6 l / h to 13 l / h, which corresponds to 0.4 l / h / g to 0.9 l / h / g when converted to 1 g of catalyst. In the example of Patent Document 6, the tube diameter is 25 mm and the gas flow rate is 36 l / h. However, these conventional techniques merely describe experimental conditions, and do not necessarily focus on the importance of the gas flow rate, and the obtained catalyst does not have sufficient reaction results or the reaction results over time. There is a problem such as a large decrease, and the present situation is that further improvement is desired as an industrial catalyst. In addition, the influence of the gas flow rate among the firing conditions has not been well understood in the past, simply considering the gas flow rate and firing time independently and adopting the empirically obtained value as the optimum value. there were.
JP 58-61833 A JP 58-67643 A JP 58-79545 A JP 59-66349 A JP 59-69148 JP-A-8-79545

本発明は上記事情に鑑みてなされたもので、不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる不飽和カルボン酸の収率が高い不飽和カルボン酸合成用触媒を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an unsaturated carboxylic acid having a high yield of unsaturated carboxylic acid used for synthesizing an unsaturated carboxylic acid by gas phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen. It is an object to provide a catalyst for acid synthesis.

本発明者らは前記触媒について鋭意検討した結果、アンモニウム根、もしくは、含窒素有機化合物を含む触媒前駆体を特定の流量の気体を流通しながら焼成することにより、不飽和アルデヒドの転化率と不飽和カルボン酸の収率が高い不飽和カルボン酸合成用触媒を製造できることを見出し、本発明を完成した。   As a result of intensive studies on the catalyst, the present inventors have calcinated a catalyst precursor containing an ammonium root or a nitrogen-containing organic compound while flowing a gas at a specific flow rate, thereby reducing the conversion rate and the unsaturation of the unsaturated aldehyde. The present inventors have found that an unsaturated carboxylic acid synthesis catalyst having a high yield of saturated carboxylic acid can be produced.

すなわち、本発明は、(式(1)で表される、不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる不飽和カルボン酸合成用触媒の製造方法であって、アンモニウム根、もしくは、含窒素有機化合物を含む触媒前駆体を触媒前駆体1gあたり1.5l/h以上4.0l/h以下の酸素含有ガスを流通しながら最高温度が300℃以上700℃以下で焼成することを特徴とする触媒の製造方法、

α1 Mo α2 α3 Cu α4 α5 α6 α7 α8 (1)
(式中、P、Mo、V、Cu及びOはそれぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Xはヒ素、テルル、アンチモン、セレン、ケイ素からなる群より選ばれた少なくとも1種類の元素を示し、Yはビスマス、ジルコニウム、銀、鉄、亜鉛、クロム、マグネシウム、コバルト、マンガン、バリウム、セリウム、ランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウム、及びセシウムからなる群より選ばれた少なくとも1種類の元素を示す。α1〜α8は各元素の原子比率を表し、α2=12のときα1=0.5〜3、α3=0.01〜3、α4=0.01〜2、α5=0.01〜3、α6=0〜3、α7=0.01〜3であり、α8は前記各成分の原子価を満足するのに必要な酸素の原子比率である。)ii)上記製造方法で製造された触媒、(iii)上記触媒を用いて、不飽和アルデヒドを分子状酸素により気相接触酸化することを特徴とする不飽和カルボン酸の製造方法である。
That is, the present invention relates to ( i ) a catalyst for synthesizing an unsaturated carboxylic acid represented by the formula (1) and used for synthesizing an unsaturated carboxylic acid by gas-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen. The catalyst precursor containing an ammonium radical or a nitrogen-containing organic compound with a maximum temperature of 1.5 l / h or more and 4.0 l / h or less of oxygen-containing gas per 1 g of the catalyst precursor. A method for producing a catalyst, characterized by firing at 300 ° C. or more and 700 ° C. or less,

P α1 Mo α2 V α3 Cu α4 X α5 Y α6 Z α7 O α8 (1)
(Wherein P, Mo, V, Cu and O are element symbols indicating phosphorus, molybdenum, vanadium, copper and oxygen, respectively. X is at least selected from the group consisting of arsenic, tellurium, antimony, selenium and silicon. Y represents one element, Y represents at least one element selected from the group consisting of bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium, cerium, and lanthanum, and Z represents potassium. And at least one element selected from the group consisting of rubidium and cesium, α1 to α8 represent the atomic ratio of each element, and α1 = 0.5 to 3, α3 = 0.01 when α2 = 12. -3, α4 = 0.01-2, α5 = 0.01-3, α6 = 0-3, α7 = 0.01-3, and α8 is necessary to satisfy the valence of each component. oxygen The atomic ratio.) (Ii) catalyst prepared by the above production method, (iii) using the above catalyst, with molecular oxygen to unsaturated aldehyde of unsaturated carboxylic acids, characterized in that the gas-phase catalytic oxidation It is a manufacturing method.

本発明の触媒の製造方法により、不飽和アルデヒドを分子状酸素により気相接触酸化する際に用いられる不飽和カルボン酸の収率が高い不飽和カルボン酸合成用触媒を製造することができる。本発明の触媒を用いて高収率で不飽和カルボン酸を製造することができる。   According to the method for producing a catalyst of the present invention, an unsaturated carboxylic acid synthesis catalyst having a high yield of unsaturated carboxylic acid used when vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen can be produced. Unsaturated carboxylic acids can be produced in high yields using the catalyst of the present invention.

以下、本発明について詳細に説明する。
本発明でいう不飽和カルボン酸とはメタクリル酸、アクリル酸などであり、不飽和アルデヒドとはこれら不飽和カルボン酸に対応するアルデヒド類、メタクロレイン、アクロレインなどである。
Hereinafter, the present invention will be described in detail.
The unsaturated carboxylic acid referred to in the present invention is methacrylic acid, acrylic acid or the like, and the unsaturated aldehyde is an aldehyde, methacrolein, acrolein or the like corresponding to the unsaturated carboxylic acid.

本発明は、式(1)で表される、不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる不飽和カルボン酸合成用触媒の製造方法であって、アンモニウム根、もしくは、含窒素有機化合物を含む触媒前駆体を最高温度を300℃以上700℃以下とし気体の流通下で焼成する際に、触媒前駆体1gあたり1.5l/h以上4.0l/h以下の空気等の酸素含有ガスを流通しながら焼成することを特徴とする触媒の製造方法である。

The present invention is a method for producing an unsaturated carboxylic acid synthesis catalyst represented by the formula (1), which is used for synthesizing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen. When the catalyst precursor containing an ammonium root or a nitrogen-containing organic compound is calcined at a maximum temperature of 300 ° C. or more and 700 ° C. or less under a gas flow, 1.5 l / h or more per 1 g of the catalyst precursor. It is a method for producing a catalyst, characterized by calcining while circulating an oxygen-containing gas such as air of 0 l / h or less.

本発明は、不飽和カルボン酸合成用触媒の製造一般について用いることが可能であるが、特に、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用されるメタクリル酸合成用触媒の製造方法に好適であり、触媒の化学構造がヘテロポリ酸のケギン構造を含むものである場合にさらに好適であり、触媒の焼成前の前駆体にヘテロポリ酸のドーソン構造を含むものである場合に特に好適である。   The present invention can be used for the production of unsaturated carboxylic acid synthesis catalysts in general, and in particular, methacrylic acid used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. It is suitable for a method for producing a catalyst for synthesis, more suitable when the chemical structure of the catalyst includes a Keggin structure of a heteropolyacid, and particularly when the precursor before the catalyst calcination includes a Dawson structure of a heteropolyacid. Is preferred.

本発明に用いる不飽和カルボン酸合成用触媒の元素組成は特に制限しないが、下記式(1)で表される組成を有し、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する際に使用されるメタクリル酸合成用触媒の製造方法に関して特に好適である。
α1Moα2α3Cuα4α5α6α7α8 (1)
(式中、P、Mo、V、Cu及びOはそれぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Xはヒ素、テルル、アンチモン、セレン、ケイ素からなる群より選ばれた少なくとも1種類の元素を示し、Yはビスマス、ジルコニウム、銀、鉄、亜鉛、クロム、マグネシウム、コバルト、マンガン、バリウム、セリウム、ランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウム、及びセシウムからなる群より選ばれた少なくとも1種類の元素を示す。α1〜α8は各元素の原子比率を表し、α2=12のときα1=0.5〜3、α3=0.01〜3、α4=0.01〜2、α5=0.01〜3、α6=0〜3、α7=0.01〜3であり、α8は前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
The elemental composition of the unsaturated carboxylic acid synthesis catalyst used in the present invention is not particularly limited, but has a composition represented by the following formula (1), and methacrolein is vapor-phase contact oxidized with molecular oxygen to produce methacrylic acid. It is particularly suitable for a method for producing a catalyst for synthesizing methacrylic acid used in the synthesis.
P α1 Mo α2 V α3 Cu α4 X α5 Y α6 Z α7 O α8 (1)
(Wherein P, Mo, V, Cu and O are element symbols indicating phosphorus, molybdenum, vanadium, copper and oxygen, respectively. X is at least selected from the group consisting of arsenic, tellurium, antimony, selenium and silicon. Y represents one element, Y represents at least one element selected from the group consisting of bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium, cerium, and lanthanum, and Z represents potassium. And at least one element selected from the group consisting of rubidium and cesium, α1 to α8 represent the atomic ratio of each element, and α1 = 0.5 to 3, α3 = 0.01 when α2 = 12. -3, α4 = 0.01-2, α5 = 0.01-3, α6 = 0-3, α7 = 0.01-3, and α8 is necessary to satisfy the valence of each component. oxygen It is an atomic ratio.)

本発明の不飽和カルボン酸合成用触媒を製造する際には、好ましくは、まず、触媒を構成する各元素を、例えば上記式(1)に示される比率など、で含む原料液を調製し(原料液調製工程)、ついで、これを乾燥する(乾燥工程)ことにより、触媒前駆体を製造する。   When producing the unsaturated carboxylic acid synthesis catalyst of the present invention, preferably, first, a raw material liquid containing each element constituting the catalyst in a ratio represented by the above formula (1) is prepared ( A catalyst precursor is manufactured by drying this (raw material liquid preparation process) and then drying this (drying process).

原料液の調製方法には特に制限はないが、水に各元素の原料を投入し、30〜100℃に加熱、撹拌してスラリー状の原料液を調製する方法が好ましい。水の使用量は、各元素の原料の合計100質量部に対して、200〜1000質量部が好ましい。   The method for preparing the raw material liquid is not particularly limited, but a method of preparing a slurry-like raw material liquid by charging the raw materials of each element into water and heating and stirring at 30 to 100 ° C. is preferable. As for the usage-amount of water, 200-1000 mass parts is preferable with respect to a total of 100 mass parts of the raw material of each element.

各元素の原料としては、各元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩等を適宜選択して使用することができる。例えば、モリブデンの原料としてはモリブデン酸や三酸化モリブデンが好ましいが、パラモリブデン酸アンモニウム等も使用できる。リンの原料としては、正リン酸、五酸化リン、リン酸アンモニウム等が使用できる。バナジウムの原料としては、メタバナジン酸アンモニウム、五酸化二バナジウム等が使用できる。また、銅の原料としては硝酸銅、硫酸銅、炭酸銅等が使用できる。調製の中途ではアンモニウム根、もしくは、含窒素有機化合物を含むよう調製することが必須であり、アンモニウム根、もしくは、含窒素有機化合物を調製過程の中途で加えることが好ましい。このアンモニウム根、もしくは、含窒素有機化合物は焼成後の触媒ではほとんど残っていなくてもかまわないが、通常は微量残存するか、その分解生成物が微量残存する。   As raw materials for each element, oxides, nitrates, carbonates, ammonium salts and the like of each element can be appropriately selected and used. For example, molybdic acid or molybdenum trioxide is preferable as a raw material of molybdenum, but ammonium paramolybdate or the like can also be used. As a raw material of phosphorus, orthophosphoric acid, phosphorus pentoxide, ammonium phosphate, etc. can be used. As a raw material of vanadium, ammonium metavanadate, divanadium pentoxide, or the like can be used. Moreover, copper nitrate, copper sulfate, copper carbonate, etc. can be used as a raw material of copper. In the middle of the preparation, it is essential to prepare an ammonium root or a nitrogen-containing organic compound, and it is preferable to add the ammonium root or the nitrogen-containing organic compound in the middle of the preparation process. The ammonium root or the nitrogen-containing organic compound may be hardly left in the catalyst after calcination, but usually a trace amount or a slight decomposition product thereof remains.

原料液の調製スケールには特に制限はないが、モリブデンなど主となる原料の一回の使用量として好ましくは100g〜10t、より好ましくは1kg〜1tであると、良好な原料液を安定に調製することができる。   There is no particular limitation on the preparation scale of the raw material liquid, but a preferable raw material liquid is stably prepared when the amount of the main raw material such as molybdenum used is preferably 100 g to 10 t, more preferably 1 kg to 1 t. can do.

このような原料液を乾燥し、触媒前駆体を得る乾燥工程の具体的な方法には特に制限はないが、例えば蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等が挙げられる。乾燥に使用する乾燥機の種類、機種、乾燥時の温度、雰囲気等には特に制限はなく、例えば、空気雰囲気下100〜180℃で0.1〜20時間乾燥する条件などが挙げられるが、乾燥条件を変えることによって、触媒前駆体の流動性、成型性、などの物性を制御できるため、目的に応じた条件を設定することが好ましい。   There are no particular limitations on the specific method of the drying step of drying such a raw material liquid to obtain a catalyst precursor, and examples thereof include an evaporating and drying method, a spray drying method, a drum drying method, and an airflow drying method. . There are no particular limitations on the type, model, drying temperature, atmosphere, and the like of the dryer used for drying, and examples include conditions for drying at 100 to 180 ° C. in an air atmosphere for 0.1 to 20 hours. Since the physical properties such as fluidity and moldability of the catalyst precursor can be controlled by changing the drying conditions, it is preferable to set conditions according to the purpose.

ついで、このように乾燥して得られたアンモニウム根、もしくは、含窒素有機化合物を含む触媒前駆体を触媒前駆体1gあたり1.5l/h以上4.0l/h以下の気体を流通しながら最高温度が300以上700℃以下で焼成する焼成工程を行う。また、焼成工程の前には、必要に応じて、触媒前駆体を成形する成形工程を実施してもよい。
その際、具体的な成形方法には特に制限はなく、公知の乾式および湿式の成形方法が適用でき、例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状についても特に限定されず、例えば、円柱状、リング状、球状等の形状が挙げられる。また、成形時には、触媒前駆体に担体等を添加せず、触媒前駆体のみを成形することが好ましいが、必要に応じて、例えばグラファイトやタルクなどの公知の添加剤を加えてもよい。
Next, the ammonium radical obtained by drying in this way, or the catalyst precursor containing a nitrogen-containing organic compound is the highest while flowing a gas of 1.5 l / h or more and 4.0 l / h or less per 1 g of the catalyst precursor. A baking process is performed in which the temperature is 300 to 700 ° C. Moreover, you may implement the shaping | molding process which shape | molds a catalyst precursor as needed before a baking process.
In that case, there is no restriction | limiting in particular in a specific shaping | molding method, A well-known dry type and wet shaping | molding method can be applied, For example, tableting shaping | molding, press molding, extrusion molding, granulation shaping | molding etc. are mentioned. The shape of the molded product is not particularly limited, and examples thereof include a columnar shape, a ring shape, and a spherical shape. Further, at the time of molding, it is preferable to mold only the catalyst precursor without adding a carrier or the like to the catalyst precursor, but a known additive such as graphite or talc may be added as necessary.

焼成工程で流通させる気体には特に制限はないが、空気等の酸素含有ガス流通下または不活性ガス流通下で焼成するのが特に好適である。ここで不活性ガスとは触媒活性を低下させないような気体のことを指し、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。前記気体としては、空気、窒素、酸素と空気の混合ガス、これらの混合ガスが好ましく、空気がより好ましい。   There is no particular limitation on the gas to be circulated in the calcination step, but it is particularly preferable to calcinate in the circulation of an oxygen-containing gas such as air or in an inert gas. Here, the inert gas refers to a gas that does not decrease the catalytic activity, and examples thereof include nitrogen, carbon dioxide, helium, and argon. As the gas, air, nitrogen, a mixed gas of oxygen and air, and a mixed gas thereof are preferable, and air is more preferable.

焼成容器の形状に特に制限はないが、断面積を2cm以上100cm以下とする管状焼成容器を用いるのが好適である。これより細い管状焼成容器を用いるのは工業的な生産性が低下するため好ましくなく、太い形状のものは温度コントロールが難しく、焼成中にホットスポットが発生し触媒が破壊する恐れが増大する。 No particular limitation on the shape of the firing container, but it is preferred to use a tubular firing vessel to the cross-sectional area as the 2 cm 2 or more 100 cm 2 or less. It is not preferable to use a tubular calcining vessel thinner than this because industrial productivity is lowered, and a thick one is difficult to control the temperature, and a hot spot is generated during calcination and the risk of destruction of the catalyst increases.

焼成容器に触媒前駆体を充填した上で、気体の流量を触媒前駆体1gあたり1.5l/h以上4.0l/h以下として焼成する。焼成容器内の温度が300℃より低いうちは、流量は1.5l/h未満でもよいが、300℃以上からは1.5l/h以上であることが必須である。可能であれば4.0l/h/gに近くなるよう気体の流量を上げることが望ましい。4.0l/h/gより大きい流量では、焼成を行う場合に圧損が大きくなりすぎるので、工業的規模での触媒製造には好ましくない。   After the firing vessel is filled with the catalyst precursor, firing is performed at a gas flow rate of 1.5 l / h or more and 4.0 l / h or less per 1 g of the catalyst precursor. While the temperature in the baking container is lower than 300 ° C., the flow rate may be less than 1.5 l / h, but from 300 ° C. or higher, it is essential that the flow rate is 1.5 l / h or higher. If possible, it is desirable to increase the gas flow rate to be close to 4.0 l / h / g. When the flow rate is higher than 4.0 l / h / g, the pressure loss becomes too large when the calcination is performed, which is not preferable for the production of a catalyst on an industrial scale.

焼成温度の最高値は300℃以上700℃以下であることが必要であり、320℃以上450℃以下であることがより好ましい。焼成温度の最高値に達してからの温度保持時間が重要であり、この温度保持時間はアンモニウム根もしくは含窒素有機化合物の残留量を元に決定するのがよい。アンモニウム根もしくは含窒素有機化合物の残留量の最適値は触媒の使用方法などにより変化するが、通常、アンモニウム根もしくは含窒素有機化合物の残留量は触媒単位重量あたり0.001mmol/g以上、1mmol/g以下の値を目標値とする。アンモニウム根もしくは含窒素有機化合物の残留量を目標値以下とするには焼成温度の最高値の温度保持時間をある程度長くする必要がある、ただし、焼成温度の最高値の温度保持時間を長くしすぎると、触媒の比表面積および活性が低下するので、焼成温度の最高値の温度保持時間は可能な限り短時間となるよう調整することが望ましい。   The highest firing temperature needs to be 300 ° C. or higher and 700 ° C. or lower, and more preferably 320 ° C. or higher and 450 ° C. or lower. The temperature holding time after reaching the maximum firing temperature is important, and this temperature holding time is preferably determined based on the residual amount of ammonium root or nitrogen-containing organic compound. Although the optimum value of the residual amount of the ammonium root or nitrogen-containing organic compound varies depending on the method of using the catalyst, the residual amount of the ammonium root or nitrogen-containing organic compound is usually 0.001 mmol / g or more per unit weight of the catalyst, 1 mmol / A value equal to or less than g is set as a target value. To keep the residual amount of ammonium root or nitrogen-containing organic compound below the target value, it is necessary to lengthen the temperature holding time at the maximum firing temperature to some extent, but the temperature holding time at the maximum firing temperature is too long. Then, the specific surface area and activity of the catalyst are reduced, and therefore it is desirable to adjust the temperature holding time at the maximum value of the calcination temperature to be as short as possible.

こうして製造された不飽和カルボン酸合成用触媒に、例えば、メタクロレインと分子状酸素を含む原料ガスを接触させることにより、メタクロレインが分子状酸素により気相接触酸化され、メタクリル酸が得られる。   For example, by bringing a raw material gas containing methacrolein and molecular oxygen into contact with the unsaturated carboxylic acid synthesis catalyst thus produced, methacrolein is vapor-phase contact oxidized with molecular oxygen to obtain methacrylic acid.

ここでメタクロレインの酸化に関して、原料ガス中のメタクロレイン濃度には制限はなく、任意の濃度に設定できるが、1〜20容量%が適当であり、特に3〜10容量%が好ましい。原料ガス中の分子状酸素濃度は、メタクロレイン1モルに対して0.5〜4モルが好ましく、より好ましくは1〜3モルである。また、原料ガスには、希釈のために窒素、炭酸ガス等の不活性ガスを加えてもよいし、水蒸気を加えてもよい。反応圧力は、通常、常圧から数百kPaまでの範囲内で設定される。反応温度は、通常、230〜450℃の範囲内で設定され、メタクリル酸収率の点からは、250〜400℃が好ましい。   Here, regarding the oxidation of methacrolein, the concentration of methacrolein in the raw material gas is not limited and can be set to any concentration, but 1 to 20% by volume is appropriate, and 3 to 10% by volume is particularly preferable. The molecular oxygen concentration in the raw material gas is preferably 0.5 to 4 mol, more preferably 1 to 3 mol, relative to 1 mol of methacrolein. In addition, an inert gas such as nitrogen or carbon dioxide may be added to the raw material gas for dilution, or water vapor may be added. The reaction pressure is usually set within a range from normal pressure to several hundred kPa. The reaction temperature is usually set within the range of 230 to 450 ° C., and from the point of methacrylic acid yield, 250 to 400 ° C. is preferable.

以上説明した不飽和カルボン酸合成用触媒の製造方法により、従来より好ましい構造部分が増えた高性能な触媒が得られる。   By the above-described method for producing an unsaturated carboxylic acid synthesis catalyst, a high-performance catalyst having more preferable structural portions than the conventional one can be obtained.

以下、本発明について、メタクロレインの酸化に関して実施例を挙げて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
また、下記の実施例および比較例中の「部」は質量部である。
原料ガスおよび生成物の分析はガスクロマトグラフィーを用いて行った。なお、メタクロレインの転化率、生成するメタクリル酸の選択率および収率は以下のように定義される。
メタクロレインの転化率(%)=(B/A)×100
メタクリル酸の選択率(%)=(C/B)×100
メタクリル酸の収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
EXAMPLES Hereinafter, although an Example is given and this invention is concretely demonstrated about an oxidation of methacrolein, this invention is not limited to these Examples.
Further, “parts” in the following examples and comparative examples are parts by mass.
The analysis of the raw material gas and the product was performed using gas chromatography. The conversion rate of methacrolein, the selectivity and yield of methacrylic acid to be produced are defined as follows.
Conversion rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid yield (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

[実施例1]
(1)原料液調製工程
(A液の調製)
純水200部に、三酸化モリブデン100部、85質量%リン酸6.67部、メタバナジン酸アンモニウム3.39部、60%砒酸水溶液9.59部を加え、100℃の還流下で5時間攪拌してA液を調製した。
A液中に含まれるアンモニウムの量は、A液中に含まれるモリブデン原子12モルに対して0.5モルであった。
(B液の調製)
重炭酸セシウム10.10部を純水28.43部に50℃で溶解してB液を調製した。
(C液の調製)
25質量%アンモニア水41.34部をC液とした。
C液中に含まれるアンモニウムの量は、A液中に含まれるモリブデン原子12モルに対して10.5モルであった。
(A液、B液、C液の混合)
A液を70℃まで冷却した後、B液を攪拌しながらA液に混合し、10分間攪拌してA−B混合液を調製した。次いで、A−B混合液を撹拌しながら、このA−B混合液にC液を10分間かけて徐々に添加した。C液混合後、50℃で60分間撹拌保持し、A−B−C混合液を調製した。
このようにして得られたA−B−C混合液を液温50℃で撹拌しながら、これに硝酸第二銅2.10部、硝酸第二鉄0.47部を純水9.80部に溶解した溶液を加えて、触媒前駆体を含むスラリーを得た。このスラリーのpHを測定したところ6.5であった。
(2)乾燥工程
この触媒前駆体を含むスラリーを101℃まで加熱し、撹拌しながら蒸発乾固した後、さらに、130℃で16時間乾燥して、触媒前駆体を得た。
(3)成形工程
得られた触媒前駆体を打錠成形機により、外径5mm、内径2mm、長さ5mmのリング状に成形した。
(4)焼成工程
内径3cmの円筒状石英ガラス製焼成容器に成型した触媒前駆体を入れた。気体流量4.0l/h/gとして空気流通下、10℃/hで昇温、380℃にて2時間焼成して、触媒を得た。この触媒を反応管に充填し、下記条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Example 1]
(1) Raw material solution preparation step (preparation of solution A)
To 200 parts of pure water, 100 parts of molybdenum trioxide, 6.67 parts of 85% by weight phosphoric acid, 3.39 parts of ammonium metavanadate, and 9.59 parts of 60% aqueous arsenic acid solution are added and stirred at 100 ° C. under reflux for 5 hours. A solution was prepared.
The amount of ammonium contained in the A liquid was 0.5 mol with respect to 12 mol of molybdenum atoms contained in the A liquid.
(Preparation of liquid B)
Liquid B was prepared by dissolving 10.10 parts of cesium bicarbonate in 28.43 parts of pure water at 50 ° C.
(Preparation of liquid C)
The liquid C was 41.34 parts of 25% by mass aqueous ammonia.
The amount of ammonium contained in the C liquid was 10.5 mol with respect to 12 mol of molybdenum atoms contained in the A liquid.
(Mixture of liquid A, liquid B, liquid C)
After cooling A liquid to 70 degreeC, B liquid was mixed with A liquid, stirring, and it stirred for 10 minutes, and prepared AB mixed liquid. Subsequently, C liquid was gradually added over 10 minutes to this AB mixed liquid, stirring AB mixed liquid. After mixing the liquid C, the mixture was stirred and held at 50 ° C. for 60 minutes to prepare an ABC liquid mixture.
While stirring the thus-obtained ABC mixed liquid at a liquid temperature of 50 ° C., 2.10 parts of cupric nitrate and 0.47 part of ferric nitrate were added to 9.80 parts of pure water. The solution dissolved in was added to obtain a slurry containing the catalyst precursor. The pH of this slurry was measured and found to be 6.5.
(2) Drying Step The slurry containing this catalyst precursor was heated to 101 ° C., evaporated to dryness with stirring, and further dried at 130 ° C. for 16 hours to obtain a catalyst precursor.
(3) Molding step The obtained catalyst precursor was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm using a tableting machine.
(4) Calcination Step The molded catalyst precursor was placed in a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst was obtained by raising the temperature at 10 ° C./h and calcining at 380 ° C. for 2 hours under air flow at a gas flow rate of 4.0 l / h / g. This catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the following conditions. The results are shown in Table 1.

(反応条件)
反応ガス:メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、窒素55容量%の混合ガス
反応温度:290℃
反応圧力:101kPa
接触時間:3.6秒
(Reaction conditions)
Reaction gas: 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor, 55% by volume of nitrogen Reaction temperature: 290 ° C.
Reaction pressure: 101 kPa
Contact time: 3.6 seconds

[実施例2]
純水200部に、三酸化モリブデン100部、85質量%リン酸6.67部、70.9質量%シュウ酸バナジル7.59部、硝酸第二銅2.10部、硝酸第二鉄0.47部、酸化テルル3.70部を加え、100℃の還流下で5時間攪拌してA液を調製した以外は、実施例1と同様にして、メタクリル酸製造用触媒を製造した。なお、乾燥工程の前に触媒前駆体を含むスラリーのpHを測定したところ5.5であった。
この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Example 2]
To 200 parts of pure water, 100 parts of molybdenum trioxide, 6.67 parts of 85% by weight phosphoric acid, 7.59 parts of 70.9% by weight vanadyl oxalate, 2.10 parts of cupric nitrate, 0. A catalyst for methacrylic acid production was produced in the same manner as in Example 1 except that 47 parts and 3.70 parts of tellurium oxide were added and stirred for 5 hours under reflux at 100 ° C. to prepare solution A. In addition, it was 5.5 when the pH of the slurry containing a catalyst precursor was measured before the drying process.
The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[実施例3]
純水200部に、三酸化モリブデン100部、85質量%リン酸6.67部、70.9質量%シュウ酸バナジル7.59部、硝酸第二銅2.10部、硝酸マンガン2.49部、三酸化アンチモン3.38部を加え、100℃の還流下で5時間攪拌してA液を調製した以外は、実施例1と同様にして、メタクリル酸製造用触媒を製造した。なお、乾燥工程の前に触媒前駆体を含むスラリーのpHを測定したところ6.4であった。
この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Example 3]
200 parts of pure water, 100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid, 7.59 parts of 70.9 mass% vanadyl oxalate, 2.10 parts of cupric nitrate, 2.49 parts of manganese nitrate A catalyst for producing methacrylic acid was produced in the same manner as in Example 1 except that 3.38 parts of antimony trioxide was added and stirred for 5 hours under reflux at 100 ° C. to prepare solution A. In addition, it was 6.4 when pH of the slurry containing a catalyst precursor was measured before the drying process.
The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例1]
実施例1における(1)原料液調製工程〜(3)成形工程までを行い、内径3cmの円筒状石英ガラス製焼成容器に成型した触媒前駆体を入れた。気体流量0.5l/h/gとして空気流通下、10℃/hで昇温、380℃にて2時間焼成して、触媒を得た。この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 1]
In Example 1, (1) the raw material solution preparation step to (3) the molding step were carried out, and the molded catalyst precursor was put into a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst was obtained by raising the temperature at 10 ° C./h and calcining at 380 ° C. for 2 hours under air flow at a gas flow rate of 0.5 l / h / g. The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例2]
実施例2における(1)原料液調製工程〜(3)成形工程までを行い、内径3cmの円筒状石英ガラス製焼成容器に成型した触媒前駆体を入れた。気体流量0.5l/h/gとして空気流通下、10℃/hで昇温、380℃にて2時間焼成して、触媒を得た。この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 2]
(1) The raw material solution preparation step to (3) the molding step in Example 2 were performed, and the molded catalyst precursor was put into a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst was obtained by raising the temperature at 10 ° C./h and calcining at 380 ° C. for 2 hours under air flow at a gas flow rate of 0.5 l / h / g. The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例3]
実施例3における(1)原料液調製工程〜(3)成形工程までを行い、内径3cmの円筒状石英ガラス製焼成容器に成型した触媒前駆体を入れた。気体流量0.5l/h/gとして空気流通下、10℃/hで昇温、380℃にて2時間焼成して、触媒を得た。この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 3]
In Example 3, (1) the raw material solution preparation step to (3) the molding step were carried out, and the molded catalyst precursor was put into a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst was obtained by raising the temperature at 10 ° C./h and calcining at 380 ° C. for 2 hours under air flow at a gas flow rate of 0.5 l / h / g. The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例4]
実施例1における(1)原料液調製工程〜(3)成形工程までを行い、内径3cmの円筒状石英ガラス製焼成容器に成型した触媒前駆体を入れた。気体流量0.5l/h/gとして空気流通下、10℃/hで昇温、380℃にて5時間焼成して、触媒を得た。この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 4]
In Example 1, (1) the raw material solution preparation step to (3) the molding step were carried out, and the molded catalyst precursor was put into a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst was obtained by raising the temperature at 10 ° C./h and calcining at 380 ° C. for 5 hours under air flow at a gas flow rate of 0.5 l / h / g. The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例5]
実施例2における(1)原料液調製工程〜(3)成形工程までを行い、内径3cmの円筒状石英ガラス製焼成容器に成型した触媒前駆体を入れた。気体流量0.5l/h/gとして空気流通下、10℃/hで昇温、380℃にて5時間焼成して、触媒を得た。この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 5]
(1) The raw material solution preparation step to (3) the molding step in Example 2 were performed, and the molded catalyst precursor was put into a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst was obtained by raising the temperature at 10 ° C./h and calcining at 380 ° C. for 5 hours under air flow at a gas flow rate of 0.5 l / h / g. The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例6]
実施例3における(1)原料液調製工程〜(3)成形工程までを行い、内径3cmの円筒状石英ガラス製焼成容器に成型した触媒前駆体を入れた。気体流量0.5l/h/gとして空気流通下、10℃/hで昇温、380℃にて5時間焼成して、触媒を得た。この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 6]
In Example 3, (1) the raw material solution preparation step to (3) the molding step were carried out, and the molded catalyst precursor was put into a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst was obtained by raising the temperature at 10 ° C./h and calcining at 380 ° C. for 5 hours under air flow at a gas flow rate of 0.5 l / h / g. The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[実施例4]
実施例1における(1)原料液調製工程〜(3)成形工程までを行い、内径3cmの円筒状石英ガラス製焼成容器に成型した触媒前駆体を入れた。気体流量2.0l/h/gとして空気流通下、10℃/hで昇温、380℃にて3時間焼成して、触媒を得た。この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Example 4]
In Example 1, (1) the raw material solution preparation step to (3) the molding step were carried out, and the molded catalyst precursor was put into a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst was obtained by raising the temperature at 10 ° C./h and calcining at 380 ° C. for 3 hours under air flow at a gas flow rate of 2.0 l / h / g. The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[実施例5]
実施例2における(1)原料液調製工程〜(3)成形工程までを行い、内径3cmの円筒状石英ガラス製焼成容器に成型した触媒前駆体を入れた。気体流量2.0l/h/gとして空気流通下、10℃/hで昇温、380℃にて3時間焼成して、触媒を得た。この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Example 5]
(1) The raw material solution preparation step to (3) the molding step in Example 2 were performed, and the molded catalyst precursor was put into a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst was obtained by raising the temperature at 10 ° C./h and calcining at 380 ° C. for 3 hours under air flow at a gas flow rate of 2.0 l / h / g. The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[実施例6]
実施例3における(1)原料液調製工程〜(3)成形工程までを行い、内径3cmの円筒状石英ガラス製焼成容器に成型した触媒前駆体を入れた。気体流量2.0l/h/gとして空気流通下、10℃/hで昇温、380℃にて3時間焼成して、触媒を得た。この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。


[Example 6]
In Example 3, (1) the raw material solution preparation step to (3) the molding step were carried out, and the molded catalyst precursor was put into a cylindrical quartz glass baking vessel having an inner diameter of 3 cm. The catalyst was obtained by raising the temperature at 10 ° C./h and calcining at 380 ° C. for 3 hours under air flow at a gas flow rate of 2.0 l / h / g. The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.


Figure 0005069152
Figure 0005069152

表1に示すように、各実施例で得られたメタクリル酸合成用触媒を使用すると、比較例1〜3以上の収率でメタクリル酸を製造できた。   As shown in Table 1, when the methacrylic acid synthesis catalyst obtained in each Example was used, methacrylic acid could be produced in a yield of Comparative Examples 1 to 3 or more.

Claims (3)

式(1)で表される、不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる不飽和カルボン酸合成用触媒の製造方法であって、アンモニウム根、もしくは、含窒素有機化合物を含む触媒前駆体を触媒前駆体1gあたり1.5l/h以上4.0l/h以下の酸素含有ガスを流通しながら最高温度が300℃以上700℃以下で焼成することを特徴とする触媒の製造方法。

α1 Mo α2 α3 Cu α4 α5 α6 α7 α8 (1)
(式中、P、Mo、V、Cu及びOはそれぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Xはヒ素、テルル、アンチモン、セレン、ケイ素からなる群より選ばれた少なくとも1種類の元素を示し、Yはビスマス、ジルコニウム、銀、鉄、亜鉛、クロム、マグネシウム、コバルト、マンガン、バリウム、セリウム、ランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウム、及びセシウムからなる群より選ばれた少なくとも1種類の元素を示す。α1〜α8は各元素の原子比率を表し、α2=12のときα1=0.5〜3、α3=0.01〜3、α4=0.01〜2、α5=0.01〜3、α6=0〜3、α7=0.01〜3であり、α8は前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
A method for producing an unsaturated carboxylic acid synthesis catalyst represented by formula (1) for use in synthesizing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen, comprising an ammonium radical Alternatively, the catalyst precursor containing a nitrogen-containing organic compound is calcined at a maximum temperature of 300 ° C. or more and 700 ° C. or less while circulating an oxygen-containing gas of 1.5 l / h or more and 4.0 l / h or less per gram of the catalyst precursor. A method for producing a catalyst characterized by the above.

P α1 Mo α2 V α3 Cu α4 X α5 Y α6 Z α7 O α8 (1)
(Wherein P, Mo, V, Cu and O are element symbols indicating phosphorus, molybdenum, vanadium, copper and oxygen, respectively. X is at least selected from the group consisting of arsenic, tellurium, antimony, selenium and silicon. Y represents one element, Y represents at least one element selected from the group consisting of bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium, cerium, and lanthanum, and Z represents potassium. And at least one element selected from the group consisting of rubidium and cesium, α1 to α8 represent the atomic ratio of each element, and α1 = 0.5 to 3, α3 = 0.01 when α2 = 12. -3, α4 = 0.01-2, α5 = 0.01-3, α6 = 0-3, α7 = 0.01-3, and α8 is necessary to satisfy the valence of each component. oxygen It is an atomic ratio.)
請求項1に記載の製造方法で製造されることを特徴とする不飽和カルボン酸合成用触媒。   An unsaturated carboxylic acid synthesis catalyst produced by the production method according to claim 1. 請求項2に記載の不飽和カルボン酸合成用触媒を用いて、不飽和アルデヒドを分子状酸素により気相接触酸化することを特徴とする不飽和カルボン酸の製造方法。   A process for producing an unsaturated carboxylic acid, characterized in that the unsaturated aldehyde is subjected to gas phase catalytic oxidation with molecular oxygen using the unsaturated carboxylic acid synthesis catalyst according to claim 2.
JP2008058138A 2008-03-07 2008-03-07 Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst Active JP5069152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058138A JP5069152B2 (en) 2008-03-07 2008-03-07 Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058138A JP5069152B2 (en) 2008-03-07 2008-03-07 Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst

Publications (2)

Publication Number Publication Date
JP2009213969A JP2009213969A (en) 2009-09-24
JP5069152B2 true JP5069152B2 (en) 2012-11-07

Family

ID=41186424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058138A Active JP5069152B2 (en) 2008-03-07 2008-03-07 Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst

Country Status (1)

Country Link
JP (1) JP5069152B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582709B2 (en) * 2009-03-13 2014-09-03 株式会社日本触媒 Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP5582708B2 (en) * 2009-03-13 2014-09-03 株式会社日本触媒 Catalyst for producing acrolein and method for producing acrolein and / or acrylic acid using the catalyst
WO2019013116A1 (en) 2017-07-10 2019-01-17 三菱ケミカル株式会社 Method for manufacturing catalyst, method for manufacturing unsaturated carboxylic acid, method for manufacturing unsaturated aldehyde and unsaturated carboxylic acid, and method for manufacturing unsaturated carboxylic acid ester

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130694A (en) * 1975-05-12 1976-11-13 Nippon Kayaku Co Ltd Process for producing methacrolein oxidation catalyst
JP2883454B2 (en) * 1991-02-13 1999-04-19 ダイセル化学工業株式会社 Method for producing unsaturated carboxylic acid
JPH07299369A (en) * 1994-05-11 1995-11-14 Mitsubishi Rayon Co Ltd Preparation of catalyst for producing unsaturated carboxylic acid and production of unsaturated carboxylic acid using the catalyst
JP3581038B2 (en) * 1998-11-16 2004-10-27 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst
JP2001058827A (en) * 1999-06-17 2001-03-06 Mitsubishi Chemicals Corp Production of compound oxide

Also Published As

Publication number Publication date
JP2009213969A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
KR20120022559A (en) Catalyst for producing methacrolein and methacrylic acid, and process for producing the same
JP4720431B2 (en) Method for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4691359B2 (en) Method for producing a catalyst for methacrylic acid production
JP2011092882A (en) Method for producing catalyst for preparation of methacrylic acid, and method for preparing methacrylic acid
JP4922614B2 (en) Method for producing a catalyst for methacrylic acid production
JP5069152B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst
JP7356923B2 (en) Method for producing heteropolyacid compound, method for producing heteropolyacid compound and methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5261231B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5831329B2 (en) Composite oxide catalyst
JP5560596B2 (en) Method for producing a catalyst for methacrylic acid production
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP4766610B2 (en) Method for producing a catalyst for methacrylic acid production
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
TW201400450A (en) Process for producing alkyl methacrylate
JP6136436B2 (en) Catalyst production method
JP2008149262A (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP5149138B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JP5063493B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5069152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250