JP2008149262A - Method for producing catalyst for unsaturated carboxylic acid synthesis - Google Patents

Method for producing catalyst for unsaturated carboxylic acid synthesis Download PDF

Info

Publication number
JP2008149262A
JP2008149262A JP2006339800A JP2006339800A JP2008149262A JP 2008149262 A JP2008149262 A JP 2008149262A JP 2006339800 A JP2006339800 A JP 2006339800A JP 2006339800 A JP2006339800 A JP 2006339800A JP 2008149262 A JP2008149262 A JP 2008149262A
Authority
JP
Japan
Prior art keywords
catalyst
carboxylic acid
unsaturated carboxylic
acid synthesis
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339800A
Other languages
Japanese (ja)
Inventor
Tsutomu Fujita
藤田  勉
Masahide Kondo
正英 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006339800A priority Critical patent/JP2008149262A/en
Publication of JP2008149262A publication Critical patent/JP2008149262A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a catalyst for unsaturated carboxylic acid synthesis within a short time while keeping the catalytic performance in synthesis of an unsaturated carboxylic acid such as methacrylic acid, acrylic acid, and the like. <P>SOLUTION: The method is for producing an unsaturated carboxylic acid synthesis catalyst to be used at the time of synthesizing an unsaturated carboxylic acid by vapor phase catalytic oxidation of an unsaturated aldehyde with molecular-state oxygen and involves packing a container for firing previously heated at 100°C or higher and lower than 300°C with a catalyst precursor and thereafter carrying out firing in a temperature condition of 300°C or higher and 700°C or lower as the highest temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、不飽和カルボン酸合成用触媒の製造方法に関するものであり、特に、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用されるメタクリル酸合成用触媒の製造方法に好適である。   The present invention relates to a method for producing an unsaturated carboxylic acid synthesis catalyst, and more particularly, to a methacrylic acid synthesis catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. Suitable for manufacturing method.

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する触媒としては、モリブドリン酸、モリブドリン酸塩などのヘテロポリ酸を主成分とするものが知られている。また、アクロレインをアクリル酸へ気相接触酸化する触媒としてはモリブデンやビスマスを主体とした複合酸化物触媒が好適であることが知られている。これら触媒の製造方法については数多くの検討がなされており、その多くでは、まず、触媒を構成する各元素の原料を含む水溶液または水性スラリーなどの原料液を調製し、その後、これを乾燥、焼成することで、触媒を製造している。   As a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, a catalyst mainly containing a heteropolyacid such as molybdophosphoric acid or molybdophosphate is known. Further, it is known that a composite oxide catalyst mainly composed of molybdenum or bismuth is suitable as a catalyst for vapor-phase catalytic oxidation of acrolein to acrylic acid. Many studies have been made on the production methods of these catalysts. In many of them, first, a raw material liquid such as an aqueous solution or an aqueous slurry containing raw materials of each element constituting the catalyst is prepared, and then this is dried and calcined. By doing so, the catalyst is manufactured.

このうち焼成する工程に関しても種々の検討がなされている。これらの触媒では焼成温度の最高値を300℃以上700℃以下とすることが多い。例えば、特許文献1では焼成雰囲気や焼成時の昇温速度(10℃〜100℃/時)についての記載がなされているが、室温から徐々に加熱する方法では触媒の製造に時間を要し、触媒製造のコストが高い問題があった。また例えば、特許文献2では焼成時のガス(空気)の流通方法についての記載がなされているが、これは焼成用容器と反応用容器が同一であることを前提としている。例えばこの特許文献2の場合、実際の工場での運用にあたっては触媒の焼成に要する時間の分、工場での反応物質の生産を停止させる必要があり、室温から徐々に加熱する方法との組み合わせで考えれば、単に触媒製造のコストが高いという以上に、メタクリル酸やアクリル酸の製造におけるコストアップ要因となる。
特開昭58−61833号公報 特開昭58−67643号公報
Among these, various investigations have also been made on the firing step. In these catalysts, the maximum value of the calcination temperature is often set to 300 ° C. or more and 700 ° C. or less. For example, Patent Document 1 describes the firing atmosphere and the rate of temperature rise during firing (10 ° C. to 100 ° C./hour), but the method of gradually heating from room temperature requires time for the production of the catalyst, There was a problem that the cost of catalyst production was high. Further, for example, Patent Document 2 describes a gas (air) distribution method during firing, which is based on the premise that the firing container and the reaction container are the same. For example, in the case of this Patent Document 2, it is necessary to stop the production of reactants in the factory for the time required for the firing of the catalyst in operation in an actual factory, and in combination with a method of gradually heating from room temperature. Considering this, the cost of manufacturing the methacrylic acid and acrylic acid becomes higher than simply the high cost of manufacturing the catalyst.
JP 58-61833 A JP 58-67643 A

そこで焼成用容器を予め300℃以上700℃以下に加熱してから触媒の前駆体を焼成用容器に充填する方法も考えられるが、この方法を不飽和カルボン酸合成用触媒の製造について実施すると、必ずしも十分な収率を発揮する触媒が得られず工業用触媒の製造方法としてはさらに改良が望まれているのが現状である。   Therefore, a method of preheating the firing vessel to 300 ° C. or more and 700 ° C. or less and then filling the catalyst precursor into the firing vessel is also conceivable, but when this method is carried out for the production of an unsaturated carboxylic acid synthesis catalyst, Currently, a catalyst that exhibits a sufficient yield cannot be obtained, and further improvement is desired as a method for producing an industrial catalyst.

本発明は上記事情に鑑みてなされたもので、メタクリル酸、アクリル酸などの不飽和カルボン酸合成における触媒性能を維持しつつ、より短時間で不飽和カルボン酸合成用触媒を焼成、製造する方法の提供を課題とする。   The present invention has been made in view of the above circumstances, and a method for firing and producing an unsaturated carboxylic acid synthesis catalyst in a shorter time while maintaining the catalyst performance in the synthesis of unsaturated carboxylic acid such as methacrylic acid and acrylic acid. The issue is to provide

本発明者らは触媒の構造形成過程について鋭意検討した結果、100℃以上300℃未満の温度領域で焼成用容器を予め加熱したのちに触媒前駆体を充填することで、触媒性能を維持しつつ、より短時間で不飽和カルボン酸合成用触媒を焼成、製造することが可能なことを見出し本発明を完成するに至った。本発明は、特に、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用されるメタクリル酸合成用触媒の製造方法に特に好適であるが、同様な過程を経て製造する不飽和カルボン酸合成用触媒の一般について有効であり、以下の要件[1]〜[4]で構成される。   As a result of earnestly examining the structure formation process of the catalyst, the present inventors have preliminarily heated the firing container in a temperature range of 100 ° C. or higher and lower than 300 ° C., and then filled with the catalyst precursor, thereby maintaining the catalyst performance. The present inventors have found that an unsaturated carboxylic acid synthesis catalyst can be calcined and produced in a shorter time, and the present invention has been completed. The present invention is particularly suitable for a method for producing a methacrylic acid synthesis catalyst used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen, but it is produced through a similar process. This is effective for general unsaturated carboxylic acid synthesis catalysts, and comprises the following requirements [1] to [4].

[1]不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる不飽和カルボン酸合成用触媒の製造方法であって、触媒前駆体を予め100℃以上300℃未満に加熱した焼成用容器に充填したのちに、温度の最高値が300℃以上700℃以下の条件で焼成することを特徴とする不飽和カルボン酸合成用触媒の製造方法。   [1] A method for producing an unsaturated carboxylic acid synthesis catalyst used for synthesizing an unsaturated carboxylic acid by gas-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen, wherein the catalyst precursor is preliminarily set to 100 ° C or higher. A method for producing an unsaturated carboxylic acid synthesis catalyst, comprising filling a firing container heated to less than 300 ° C and then firing under a condition where the maximum temperature is 300 ° C to 700 ° C.

[2]全ての触媒原料を含む水性スラリー又は水溶液を調製し、そのpHを3.0以上8.0以下に調整した原料液を乾燥して得られる触媒前駆体を用いる前記[1]に記載の不飽和カルボン酸合成用触媒の製造方法。   [2] As described in [1] above, a catalyst precursor obtained by preparing an aqueous slurry or an aqueous solution containing all catalyst raw materials and drying a raw material liquid whose pH is adjusted to 3.0 or more and 8.0 or less is used. A method for producing an unsaturated carboxylic acid synthesis catalyst.

[3]前記[1]または[2]に記載の製造方法で製造されることを特徴とする不飽和カルボン酸合成用触媒。   [3] An unsaturated carboxylic acid synthesis catalyst produced by the production method according to [1] or [2].

[4]前記[3]に記載の不飽和カルボン酸合成用触媒を用いて、不飽和アルデヒドを分子状酸素により気相接触酸化することを特徴とする不飽和カルボン酸の製造方法。   [4] A method for producing an unsaturated carboxylic acid, characterized in that the unsaturated aldehyde is subjected to gas phase catalytic oxidation with molecular oxygen using the unsaturated carboxylic acid synthesis catalyst according to [3].

本発明によれば、触媒性能を維持しつつ、より短時間で不飽和カルボン酸合成用触媒を焼成、製造する方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the method of baking and manufacturing the catalyst for unsaturated carboxylic acid synthesis in a shorter time can be provided, maintaining catalyst performance.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明でいう不飽和カルボン酸とは、カルボン酸基が不飽和炭化水素に結合した化合物であり、例えばメタクリル酸、アクリル酸などが挙げられる。本発明でいう不飽和アルデヒドとは、アルデヒド基が不飽和炭化水素に結合した化合物であり、例えばメタクロレイン、アクロレインなどである。不飽和カルボン酸は、対応する不飽和アルデヒドを分子状酸素により気相接触酸化することで合成することができる。   The unsaturated carboxylic acid referred to in the present invention is a compound in which a carboxylic acid group is bonded to an unsaturated hydrocarbon, and examples thereof include methacrylic acid and acrylic acid. The unsaturated aldehyde referred to in the present invention is a compound in which an aldehyde group is bonded to an unsaturated hydrocarbon, and examples thereof include methacrolein and acrolein. Unsaturated carboxylic acids can be synthesized by vapor-phase catalytic oxidation of the corresponding unsaturated aldehydes with molecular oxygen.

本発明は、その合成の際に用いられる不飽和カルボン酸合成用触媒の製造方法であって、触媒前駆体を予め100℃以上300℃未満に加熱した焼成用容器に充填したのちに、温度の最高値が300℃以上700℃以下の条件で焼成することを特徴とする触媒の製造方法である。   The present invention relates to a method for producing an unsaturated carboxylic acid synthesis catalyst used in the synthesis, and the catalyst precursor is charged into a firing container that has been heated to 100 ° C. or more and less than 300 ° C. The catalyst is produced by firing at a maximum value of 300 ° C. or more and 700 ° C. or less.

本発明は、不飽和カルボン酸合成用触媒の製造一般について用いることが可能であるが、全ての触媒原料を含む水性スラリー又は水溶液を調製し、そのpHを3.0以上8.0以下に調整した原料液を乾燥して得られる触媒前駆体を用いる場合により好適である。   The present invention can be used for the production of unsaturated carboxylic acid synthesis catalysts in general, but an aqueous slurry or aqueous solution containing all catalyst raw materials is prepared, and its pH is adjusted to 3.0 or more and 8.0 or less. It is more preferable to use a catalyst precursor obtained by drying the raw material liquid.

本発明で製造する不飽和カルボン酸合成用触媒の組成は特に制限しないが、下記式(1)で表される組成を有することが好ましい。この元素組成を有する触媒は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する際に使用されるメタクリル酸合成用触媒として特に好適である。   The composition of the unsaturated carboxylic acid synthesis catalyst produced in the present invention is not particularly limited, but preferably has a composition represented by the following formula (1). The catalyst having this elemental composition is particularly suitable as a catalyst for synthesizing methacrylic acid used when synthesizing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen.

Pα1Moα2Vα3Cuα4Xα5Yα6Zα7Oα8 (1)
(式中、P、Mo、V、Cu及びOはそれぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Xはヒ素、テルル、アンチモン、セレン、ケイ素からなる群より選ばれた少なくとも1種類の元素を示し、Yはビスマス、ジルコニウム、銀、鉄、亜鉛、クロム、マグネシウム、コバルト、マンガン、バリウム、セリウム、ランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウム、及びセシウムからなる群より選ばれた少なくとも1種類の元素を示す。α1〜α8は各元素の原子比率を表し、α2=12のとき、α1=0.5〜3、α3=0.01〜3、α4=0.01〜2、α5=0.01〜3、α6=0〜3、α7=0.01〜3であり、α8は前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
本発明の不飽和カルボン酸合成用触媒を製造する際には、好ましくは、まず、触媒を構成する各元素を、例えば上記式(1)に示される比率となるように含む原料液を調製し(原料液調製工程)、次いで、これを乾燥する(乾燥工程)ことにより、触媒前駆体を製造する。
1 Moα 23 Cuα 45678 (1)
(Wherein P, Mo, V, Cu and O are element symbols indicating phosphorus, molybdenum, vanadium, copper and oxygen, respectively. X is at least selected from the group consisting of arsenic, tellurium, antimony, selenium and silicon. Y represents one element, Y represents at least one element selected from the group consisting of bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium, cerium, and lanthanum, and Z represents potassium. And at least one element selected from the group consisting of rubidium and cesium, α1 to α8 represent the atomic ratio of each element, and when α2 = 12, α1 = 0.5 to 3, α3 = 0. 01-3, α4 = 0.01-2, α5 = 0.01-3, α6 = 0-3, α7 = 0.01-3, and α8 is necessary to satisfy the valence of each component. Acid It is an atomic ratio.)
When producing the unsaturated carboxylic acid synthesis catalyst of the present invention, preferably, first, a raw material solution containing each element constituting the catalyst so as to have a ratio represented by the above formula (1) is prepared. (Raw material liquid preparation step) Then, this is dried (drying step) to produce a catalyst precursor.

原料液調製工程の方法には特に制限はないが、水に各元素の原料を投入し、30〜100℃に加熱、撹拌してスラリー状の原料液を調製する方法が好ましい。水の使用量は、各元素の原料の合計100質量部に対して、200〜1000質量部が好ましい。   The method of the raw material liquid preparation step is not particularly limited, but a method of preparing a raw material liquid in a slurry state by adding raw materials of each element to water and heating and stirring at 30 to 100 ° C. is preferable. As for the usage-amount of water, 200-1000 mass parts is preferable with respect to a total of 100 mass parts of the raw material of each element.

各元素の原料としては、各元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩等を適宜選択して使用することができる。例えば、モリブデンの原料としてはモリブデン酸や三酸化モリブデンが好ましいが、パラモリブデン酸アンモニウム等も使用できる。リンの原料としては、正リン酸、五酸化リン、リン酸アンモニウム等が使用できる。バナジウムの原料としては、メタバナジン酸アンモニウム、五酸化二バナジウム等が使用できる。また、銅の原料としては硝酸銅、硫酸銅、炭酸銅等が使用できる。   As raw materials for each element, oxides, nitrates, carbonates, ammonium salts and the like of each element can be appropriately selected and used. For example, molybdic acid or molybdenum trioxide is preferable as a raw material of molybdenum, but ammonium paramolybdate or the like can also be used. As a raw material of phosphorus, orthophosphoric acid, phosphorus pentoxide, ammonium phosphate, etc. can be used. As a raw material of vanadium, ammonium metavanadate, divanadium pentoxide, or the like can be used. Moreover, copper nitrate, copper sulfate, copper carbonate, etc. can be used as a raw material of copper.

原料液のpHを調整する場合には、例えば硝酸、硫酸、アンモニア水、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等を、所望のpHになるように混合することができる。原料液のpHは、3.0以上8.0以下が好ましく、4.0以上7.0以下がより好ましい。   When adjusting the pH of the raw material liquid, for example, nitric acid, sulfuric acid, aqueous ammonia, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and the like can be mixed so as to have a desired pH. The pH of the raw material liquid is preferably from 3.0 to 8.0, more preferably from 4.0 to 7.0.

原料液の調製スケールには特に制限はないが、モリブデンなど主となる原料の一回の使用量として好ましくは100g〜10t、より好ましくは1kg〜1tであると、良好な原料液を安定に調製することができる。   There is no particular limitation on the preparation scale of the raw material liquid, but a preferable raw material liquid is stably prepared when the amount of the main raw material such as molybdenum used is preferably 100 g to 10 t, more preferably 1 kg to 1 t. can do.

このような原料液を乾燥し、触媒前駆体を得る乾燥工程の方法には特に制限はないが、例えば蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等が挙げられる。乾燥に使用する乾燥機の種類、機種、乾燥時の温度、雰囲気等には特に制限はなく、例えば、空気雰囲気下100〜180℃で0.1〜20時間乾燥する条件などが挙げられる。乾燥条件を変えることによって、触媒前駆体の流動性、成型性、などの物性を制御できるため、目的に応じた条件を設定することが好ましい。   There is no particular limitation on the method of the drying step of drying such a raw material liquid to obtain a catalyst precursor, and examples thereof include an evaporating and drying method, a spray drying method, a drum drying method, and an air current drying method. There is no restriction | limiting in particular in the kind of drying machine used for drying, a model, the temperature at the time of drying, atmosphere, etc. For example, the conditions etc. which dry at 100-180 degreeC by air atmosphere for 0.1 to 20 hours are mentioned. Since the physical properties such as fluidity and moldability of the catalyst precursor can be controlled by changing the drying conditions, it is preferable to set conditions according to the purpose.

次いで、このように乾燥して得られた触媒前駆体を最高温度300〜700℃で焼成する焼成工程を行うことにより、不飽和カルボン酸合成用触媒を製造する。焼成工程の前には、必要に応じて、触媒前駆体を成形する成形工程を実施してもよい。   Subsequently, the catalyst for unsaturated carboxylic acid synthesis is manufactured by performing the baking process which bakes the catalyst precursor obtained by drying in this way at the maximum temperature of 300-700 degreeC. Prior to the firing step, a forming step for forming the catalyst precursor may be performed as necessary.

その際の成形工程の方法には特に制限はなく、公知の乾式および湿式の成形方法が適用でき、例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状についても特に限定されず、例えば、円柱状、リング状、球状等の形状が挙げられる。また、成形時には、触媒前駆体に担体等を添加せず、触媒前駆体のみを成形することが好ましいが、必要に応じて、例えばグラファイトやタルクなどの公知の添加剤を加えてもよい。   There is no particular limitation on the method of the molding step at that time, and known dry and wet molding methods can be applied. Examples thereof include tableting molding, press molding, extrusion molding, granulation molding and the like. The shape of the molded product is not particularly limited, and examples thereof include a columnar shape, a ring shape, and a spherical shape. Further, at the time of molding, it is preferable to mold only the catalyst precursor without adding a carrier or the like to the catalyst precursor, but a known additive such as graphite or talc may be added if necessary.

焼成工程での雰囲気は特に制限はなく、通常、空気等の酸素含有ガス流通下または不活性ガス流通下で焼成する。ここで不活性ガスとは触媒活性を低下させないような気体のことを指し、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。   There is no restriction | limiting in particular in the atmosphere in a baking process, Usually, it bakes under oxygen containing gas circulation, such as air, or inert gas circulation. Here, the inert gas refers to a gas that does not decrease the catalytic activity, and examples thereof include nitrogen, carbon dioxide, helium, and argon.

焼成工程を行うにあたり、触媒前駆体の焼成用容器を予め加熱する。その温度は焼成用容器内の触媒前駆体に接する部分の壁面温度の最高値で、100℃以上300℃未満であるが、180℃以上250℃未満が好ましい。焼成用容器を予め加熱する際の温度は100℃未満でも触媒の製造には支障ないが、焼成時間短縮効果は小さい。焼成用容器を予め加熱する際の温度が300℃以上では触媒の活性が低下する。この触媒活性の低下機構は必ずしも明らかではないが、触媒前駆体を急激に加熱すると触媒の結晶性が高くなることが要因の可能性がある。   In performing the firing step, the firing container for the catalyst precursor is heated in advance. The temperature is the maximum value of the wall surface temperature of the portion in contact with the catalyst precursor in the firing container and is 100 ° C. or higher and lower than 300 ° C., but is preferably 180 ° C. or higher and lower than 250 ° C. Even if the temperature at the time of preheating the firing container is less than 100 ° C., there is no problem in the production of the catalyst, but the effect of shortening the firing time is small. When the temperature at which the firing container is heated in advance is 300 ° C. or higher, the activity of the catalyst decreases. The mechanism for reducing the catalyst activity is not always clear, but there is a possibility that the crystallinity of the catalyst increases when the catalyst precursor is heated rapidly.

触媒前駆体の焼成用容器を予め加熱する際の昇温速度は特に制限しないが、原則として昇温速度が速いほど焼成時間短縮効果は高くなる。ただし、温度コントロールの機構によっては、昇温速度を高くしすぎると焼成用容器を目標の加熱温度に安定制御するまでにかえって時間を要する場合があるので装置により適宜適切な昇温速度を選択することが望ましい。同じ焼成用容器で触媒を複数回連続して製造する場合、容器の温度を室温まで下げず、100℃以上300℃未満の温度まで下がった状態で、連続して製造すればより好ましい。   The rate of temperature rise when the catalyst precursor firing vessel is preheated is not particularly limited, but in principle, the faster the temperature rise rate, the higher the effect of shortening the firing time. However, depending on the temperature control mechanism, if the heating rate is too high, it may take time to stably control the firing container to the target heating temperature. It is desirable. When the catalyst is continuously produced a plurality of times in the same firing container, it is more preferable that the catalyst is continuously produced in a state where the temperature of the container is lowered to a temperature of 100 ° C. or higher and lower than 300 ° C.

焼成温度の最高値は300℃以上700℃以下であることが必要であり、320℃以上450℃以下であることがより好ましい。焼成用容器を予め加熱する際の温度から焼成温度の最高値に移行するについての昇温速度は0.1℃/時以上100℃/時以下であることが好ましく、1℃/時以上10℃/時以下であることがより好ましい。焼成温度の最高値では1時間以上40時間以下の間、温度を保持することが好ましい。   The highest firing temperature needs to be 300 ° C. or higher and 700 ° C. or lower, and more preferably 320 ° C. or higher and 450 ° C. or lower. The rate of temperature rise for shifting from the temperature at which the firing container is preheated to the maximum value of the firing temperature is preferably 0.1 ° C./hour or more and 100 ° C./hour or less, preferably 1 ° C./hour or more and 10 ° C. / Hour or less is more preferable. It is preferable to hold the temperature for 1 hour to 40 hours at the maximum firing temperature.

こうして製造された不飽和カルボン酸合成用触媒に、例えばメタクロレインなどの不飽和アルデヒドと分子状酸素を含む原料ガスを接触させることにより、不飽和アルデヒドが分子状酸素により気相接触酸化され、不飽和カルボン酸(メタクロレインを用いた場合はメタクリル酸)が得られる。   When the unsaturated carboxylic acid synthesis catalyst thus produced is brought into contact with an unsaturated aldehyde such as methacrolein and a raw material gas containing molecular oxygen, the unsaturated aldehyde is oxidized in a gas phase by molecular oxygen, and the unsaturated aldehyde is oxidized. Saturated carboxylic acid (methacrylic acid when methacrolein is used) is obtained.

ここで不飽和アルデヒドの酸化に関して、原料ガス中の不飽和アルデヒド濃度には制限はなく、任意の濃度に設定できるが、1〜20容量%が適当であり、特に3〜10容量%が好ましい。原料ガス中の分子状酸素濃度は、不飽和アルデヒド1モルに対して0.5〜4モルが好ましく、より好ましくは1〜3モルである。また、原料ガスには、希釈のために窒素、炭酸ガス等の不活性ガスを加えてもよいし、水蒸気を加えてもよい。反応圧力は、通常、常圧から数百kPaまでの範囲内で設定される。反応温度は、通常、230〜450℃の範囲内で設定され、不飽和カルボン酸収率の点からは、250〜400℃が好ましい。   Here, regarding the oxidation of the unsaturated aldehyde, the concentration of the unsaturated aldehyde in the raw material gas is not limited and can be set to any concentration, but 1 to 20% by volume is suitable, and 3 to 10% by volume is particularly preferable. 0.5-4 mol is preferable with respect to 1 mol of unsaturated aldehydes, and, as for the molecular oxygen concentration in source gas, More preferably, it is 1-3 mol. In addition, an inert gas such as nitrogen or carbon dioxide may be added to the raw material gas for dilution, or water vapor may be added. The reaction pressure is usually set within a range from normal pressure to several hundred kPa. The reaction temperature is usually set within the range of 230 to 450 ° C, and from the point of unsaturated carboxylic acid yield, 250 to 400 ° C is preferable.

以上説明した不飽和カルボン酸合成用触媒の製造方法は、触媒前駆体を焼成する際、予め焼成用容器を100℃以上300℃未満に加熱するため、焼成時間を短縮でき、低コストで触媒を製造することができる。焼成用容器と反応用容器が同一である場合には、工場の運用効率を挙げることにより、さらに反応物質の製造コストも下げることができる。   In the method for producing an unsaturated carboxylic acid synthesis catalyst described above, when the catalyst precursor is calcined, the calcining vessel is preheated to 100 ° C. or more and less than 300 ° C. Can be manufactured. When the firing container and the reaction container are the same, the production cost of the reactant can be further reduced by increasing the operational efficiency of the factory.

以下、本発明について、メタクロレインの酸化に関して実施例を挙げて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、下記の実施例および比較例中の「部」は質量部である。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely regarding the oxidation of methacrolein, this invention is not limited to these Examples. Further, “parts” in the following examples and comparative examples are parts by mass.

原料ガスおよび生成物の分析はガスクロマトグラフィーを用いて行った。なお、メタクロレインの反応率、生成するメタクリル酸の選択率および単流収率は以下のように定義される。
メタクロレインの反応率(%)=(B/A)×100
メタクリル酸の選択率(%)=(C/B)×100
メタクリル酸の単流収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
The analysis of the raw material gas and the product was performed using gas chromatography. In addition, the reaction rate of methacrolein, the selectivity of the methacrylic acid to produce | generate, and a single flow yield are defined as follows.
Reaction rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Single stream yield of methacrylic acid (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

[実施例1]
(1)原料液調製工程
(A液の調製)
純水200部に、三酸化モリブデン100部、85質量%リン酸水溶液6.67部、メタバナジン酸アンモニウム3.39部、60質量%砒酸水溶液9.59部を加え、100℃の還流下で5時間攪拌してA液を調製した。A液中に含まれるアンモニウムの量は、A液中に含まれるモリブデン原子12モルに対して0.5モルであった。
[Example 1]
(1) Raw material liquid preparation step (Preparation of liquid A)
To 200 parts of pure water, 100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid aqueous solution, 3.39 parts of ammonium metavanadate, and 9.59 parts of 60 mass% arsenic acid aqueous solution were added, and the mixture was refluxed at 100 ° C. Liquid A was prepared by stirring for a period of time. The amount of ammonium contained in the A liquid was 0.5 mol with respect to 12 mol of molybdenum atoms contained in the A liquid.

(B液の調製)
重炭酸セシウム10.10部を純水28.43部に50℃で溶解してB液を調製した。
(Preparation of liquid B)
Liquid B was prepared by dissolving 10.10 parts of cesium bicarbonate in 28.43 parts of pure water at 50 ° C.

(C液の調製)
25質量%アンモニア水41.34部をC液とした。C液中に含まれるアンモニウムの量は、A液中に含まれるモリブデン原子12モルに対して10.5モルであった。
(Preparation of liquid C)
The liquid C was 41.34 parts of 25% by mass aqueous ammonia. The amount of ammonium contained in the C liquid was 10.5 mol with respect to 12 mol of molybdenum atoms contained in the A liquid.

(A液、B液、C液の混合)
A液を70℃まで冷却した後、B液を攪拌しながらA液に混合し、10分間攪拌してA−B混合液を調製した。次いで、A−B混合液を撹拌しながら、このA−B混合液にC液を10分間かけて徐々に添加した。C液混合後、50℃で60分間撹拌保持し、A−B−C混合液を調製した。
(Mixture of liquid A, liquid B, liquid C)
After cooling A liquid to 70 degreeC, B liquid was mixed with A liquid, stirring, and it stirred for 10 minutes, and prepared AB mixed liquid. Subsequently, C liquid was gradually added over 10 minutes to this AB mixed liquid, stirring AB mixed liquid. After mixing the liquid C, the mixture was stirred and held at 50 ° C. for 60 minutes to prepare an ABC liquid mixture.

このようにして得られたA−B−C混合液を液温50℃で撹拌しながら、これに硝酸第二銅2.10部、硝酸第二鉄0.47部を純水9.80部に溶解した溶液を加えて、スラリーを得た。このスラリーのpHを測定したところ6.5であった。   While stirring the thus-obtained ABC mixed liquid at a liquid temperature of 50 ° C., 2.10 parts of cupric nitrate and 0.47 part of ferric nitrate were added to 9.80 parts of pure water. A solution dissolved in was added to obtain a slurry. The pH of this slurry was measured and found to be 6.5.

(2)乾燥工程
このスラリーを101℃まで加熱し、撹拌しながら蒸発乾固した後、さらに、130℃で16時間乾燥して、触媒前駆体を得た。
(2) Drying Step This slurry was heated to 101 ° C., evaporated to dryness with stirring, and further dried at 130 ° C. for 16 hours to obtain a catalyst precursor.

(3)成形工程
得られた触媒前駆体を打錠成型機により、外径5mm、内径2mm、長さ5mmのリング状に成型した。
(3) Molding step The obtained catalyst precursor was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm with a tableting machine.

(4)焼成工程
内径3cmの円筒状石英ガラス製焼成容器を予め200℃に加熱し、成型した触媒前駆体を入れた。空気流通下、60℃/時で3時間を要して昇温、380℃にて5時間焼成して、メタクリル酸製造用触媒を得た。得られた触媒の組成(酸素以外)は、以下の通りである。
1.0Mo120.5As0.7Cu0.15Fe0.02Cs0.9
この触媒を反応管に充填し、下記条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
(4) Firing step A cylindrical quartz glass firing container having an inner diameter of 3 cm was heated in advance to 200 ° C., and a molded catalyst precursor was placed therein. Under an air flow, the temperature was increased at 60 ° C./hour for 3 hours, and the mixture was calcined at 380 ° C. for 5 hours to obtain a catalyst for producing methacrylic acid. The composition (other than oxygen) of the obtained catalyst is as follows.
P 1.0 Mo 12 V 0.5 As 0.7 Cu 0.15 Fe 0.02 Cs 0.9
This catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the following conditions. The results are shown in Table 1.

(反応条件)
反応ガス:メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、窒素55容量%の混合ガス
反応温度:290℃
反応圧力:101kPa
接触時間:3.6秒
[実施例2]
純水200部に、三酸化モリブデン100部、85質量%リン酸水溶液6.67部、70.9質量%シュウ酸バナジル水溶液7.59部、硝酸第二銅2.10部、硝酸第二鉄0.47部、酸化テルル3.70部を加え、100℃の還流下で5時間攪拌してA液を調製した以外は、実施例1と同様にしてA−B−C混合液を調製し、そのA−B−C混合液(スラリー)を原料液として用いてメタクリル酸製造用触媒を製造した。なお、乾燥工程の前に触媒前駆体を含むスラリーのpHを測定したところ5.5であった。得られた触媒の組成(酸素以外)は、以下の通りである。
1.0Mo120.5Te0.4Cu0.15Fe0.02Cs0.9
この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
(Reaction conditions)
Reaction gas: 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor, 55% by volume of nitrogen Reaction temperature: 290 ° C.
Reaction pressure: 101 kPa
Contact time: 3.6 seconds [Example 2]
200 parts of pure water, 100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid aqueous solution, 7.59 parts of 70.9 mass% vanadyl oxalate aqueous solution, 2.10 parts of cupric nitrate, ferric nitrate 0.47 parts and 3.70 parts of tellurium oxide were added, and an A-B-C mixture was prepared in the same manner as in Example 1 except that liquid A was prepared by stirring for 5 hours under reflux at 100 ° C. Then, a catalyst for methacrylic acid production was produced using the ABC mixed liquid (slurry) as a raw material liquid. In addition, it was 5.5 when the pH of the slurry containing a catalyst precursor was measured before the drying process. The composition (other than oxygen) of the obtained catalyst is as follows.
P 1.0 Mo 12 V 0.5 Te 0.4 Cu 0.15 Fe 0.02 Cs 0.9
The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[実施例3]
純水200部に、三酸化モリブデン100部、85質量%リン酸水溶液6.67部、70.9質量%シュウ酸バナジル水溶液7.59部、硝酸第二銅2.10部、硝酸マンガン2.49部、三酸化アンチモン3.38部を加え、100℃の還流下で5時間攪拌してA液を調製した以外は、実施例1と同様にしてA−B−C混合液を調製し、そのA−B−C混合液(スラリー)を原料液として用いてメタクリル酸製造用触媒を製造した。なお、乾燥工程の前に触媒前駆体を含むスラリーのpHを測定したところ6.4であった。得られた触媒の組成(酸素以外)は、以下の通りである。
1.0Mo120.5Sb0.4Cu0.15Fe0.02Cs0.9
この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Example 3]
200 parts of pure water, 100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid aqueous solution, 7.59 parts of 70.9 mass% vanadyl oxalate aqueous solution, 2.10 parts of cupric nitrate, 2. 49 parts and 3.38 parts of antimony trioxide were added, and an A-B-C mixture was prepared in the same manner as in Example 1 except that A liquid was prepared by stirring for 5 hours under reflux at 100 ° C. The catalyst for methacrylic acid manufacture was manufactured using the ABC mixed liquid (slurry) as a raw material liquid. In addition, it was 6.4 when pH of the slurry containing a catalyst precursor was measured before the drying process. The composition (other than oxygen) of the obtained catalyst is as follows.
P 1.0 Mo 12 V 0.5 Sb 0.4 Cu 0.15 Fe 0.02 Cs 0.9
The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例1]
実施例1における(1)原料液調製工程〜(3)成形工程までを行い、焼成工程において焼成容器を予め加熱せず室温(25℃)で、成型した触媒前駆体を入れた。空気流通下、60℃/時で6時間を要して昇温、380℃にて5時間焼成して、触媒を得た。この触媒を使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 1]
In Example 1, (1) the raw material solution preparation step to (3) the molding step were carried out, and the molded catalyst precursor was put at room temperature (25 ° C.) without preheating the firing container in the firing step. Under an air flow, the temperature was increased at 60 ° C./hour for 6 hours, and calcined at 380 ° C. for 5 hours to obtain a catalyst. Using this catalyst, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例2]
実施例2における(1)原料液調製工程〜(3)成形工程までを行い、焼成工程において焼成容器を予め加熱せず室温(25℃)で、成型した触媒前駆体を入れた。空気流通下、60℃/時で6時間を要して昇温、380℃にて5時間焼成して、触媒を得た。この触媒を使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 2]
In Example 2, (1) the raw material liquid preparation step to (3) the molding step were performed, and the molded catalyst precursor was put at room temperature (25 ° C.) without heating the firing container in advance in the firing step. Under an air flow, the temperature was increased at 60 ° C./hour for 6 hours, and calcined at 380 ° C. for 5 hours to obtain a catalyst. Using this catalyst, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例3]
実施例3における(1)原料液調製工程〜(3)成形工程までを行い、焼成工程において焼成容器を予め加熱せず室温(25℃)で、成型した触媒前駆体を入れた。空気流通下、60℃/時で6時間を要して昇温、380℃にて5時間焼成して、触媒を得た。この触媒を使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 3]
In Example 3, (1) the raw material liquid preparation step to (3) the molding step were performed, and the molded catalyst precursor was put at room temperature (25 ° C.) without heating the firing container in advance in the firing step. Under an air flow, the temperature was increased at 60 ° C./hour for 6 hours, and calcined at 380 ° C. for 5 hours to obtain a catalyst. Using this catalyst, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例4]
実施例1における(1)原料液調製工程〜(3)成形工程までを行い、焼成工程において焼成容器を予め320℃に加熱し、成型した触媒前駆体を入れた。空気流通下、60℃/時で1時間を要して昇温、380℃にて5時間焼成して、触媒を得た。この触媒を使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 4]
In Example 1, (1) the raw material liquid preparation step to (3) the molding step were carried out, and the calcining vessel was heated to 320 ° C. in advance in the calcining step, and the molded catalyst precursor was added. The catalyst was obtained by heating at 60 ° C./hour for 1 hour under air flow, raising the temperature at 380 ° C. for 5 hours. Using this catalyst, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例5]
実施例2における(1)原料液調製工程〜(3)成形工程までを行い、焼成工程において焼成容器を予め320℃に加熱し、成型した触媒前駆体を入れた。空気流通下、60℃/時で1時間を要して昇温、380℃にて5時間焼成して、触媒を得た。この触媒を使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 5]
In Example 2, (1) the raw material solution preparation step to (3) the molding step were carried out, and the calcining vessel was heated to 320 ° C. in advance in the calcining step, and the molded catalyst precursor was added. The catalyst was obtained by heating at 60 ° C./hour for 1 hour under air flow, raising the temperature at 380 ° C. for 5 hours. Using this catalyst, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

[比較例6]
実施例3における(1)原料液調製工程〜(3)成形工程までを行い、焼成工程において焼成容器を予め320℃に加熱し、成型した触媒前駆体を入れた。空気流通下、60℃/時で1時間を要して昇温、380℃にて5時間焼成して、触媒を得た。この触媒を使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 6]
In Example 3, (1) the raw material solution preparation step to (3) the molding step were carried out, and the calcining vessel was heated to 320 ° C. in advance in the calcining step, and the molded catalyst precursor was added. The catalyst was obtained by heating at 60 ° C./hour for 1 hour under air flow, raising the temperature at 380 ° C. for 5 hours. Using this catalyst, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

Figure 2008149262
Figure 2008149262

表1に示すように、各実施例で得られたメタクリル酸合成用触媒を使用すると、焼成時間を短縮したにもかかわらず焼成時間の長い比較例1〜3と同等の収率でメタクリル酸を製造できた。一方、焼成容器を予め加熱する温度が高すぎる比較例4〜6では、実施例1〜3もよりもメタクリル酸収率が低い結果となった。   As shown in Table 1, when the catalyst for synthesizing methacrylic acid obtained in each example was used, methacrylic acid was obtained in a yield equivalent to that of Comparative Examples 1 to 3 having a long calcination time despite shortening the calcination time. I was able to manufacture it. On the other hand, in Comparative Examples 4 to 6 in which the temperature for preheating the baking container was too high, the methacrylic acid yield was lower than in Examples 1 to 3.

Claims (4)

不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を合成する際に用いられる不飽和カルボン酸合成用触媒の製造方法であって、触媒前駆体を予め100℃以上300℃未満に加熱した焼成用容器に充填したのちに、温度の最高値が300℃以上700℃以下の条件で焼成することを特徴とする不飽和カルボン酸合成用触媒の製造方法。   A method for producing an unsaturated carboxylic acid synthesis catalyst used for synthesizing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen, wherein the catalyst precursor is preliminarily 100 ° C or higher and lower than 300 ° C. A method for producing an unsaturated carboxylic acid synthesis catalyst, comprising filling a calcining container heated to a temperature and calcining under a condition where the maximum temperature is 300 ° C. or higher and 700 ° C. or lower. 全ての触媒原料を含む水性スラリー又は水溶液を調製し、そのpHを3.0以上8.0以下に調整した原料液を乾燥して得られる触媒前駆体を用いる請求項1に記載の不飽和カルボン酸合成用触媒の製造方法。   The unsaturated carboxylic acid according to claim 1, wherein a catalyst precursor obtained by preparing an aqueous slurry or an aqueous solution containing all catalyst raw materials and drying the raw material liquid whose pH is adjusted to 3.0 or more and 8.0 or less is used. A method for producing a catalyst for acid synthesis. 請求項1または2に記載の製造方法で製造されることを特徴とする不飽和カルボン酸合成用触媒。   An unsaturated carboxylic acid synthesis catalyst produced by the production method according to claim 1. 請求項3に記載の不飽和カルボン酸合成用触媒を用いて、不飽和アルデヒドを分子状酸素により気相接触酸化することを特徴とする不飽和カルボン酸の製造方法。   A method for producing an unsaturated carboxylic acid, characterized in that an unsaturated aldehyde is subjected to gas phase catalytic oxidation with molecular oxygen using the unsaturated carboxylic acid synthesis catalyst according to claim 3.
JP2006339800A 2006-12-18 2006-12-18 Method for producing catalyst for unsaturated carboxylic acid synthesis Pending JP2008149262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339800A JP2008149262A (en) 2006-12-18 2006-12-18 Method for producing catalyst for unsaturated carboxylic acid synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339800A JP2008149262A (en) 2006-12-18 2006-12-18 Method for producing catalyst for unsaturated carboxylic acid synthesis

Publications (1)

Publication Number Publication Date
JP2008149262A true JP2008149262A (en) 2008-07-03

Family

ID=39652041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339800A Pending JP2008149262A (en) 2006-12-18 2006-12-18 Method for producing catalyst for unsaturated carboxylic acid synthesis

Country Status (1)

Country Link
JP (1) JP2008149262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162460A (en) * 2009-01-14 2010-07-29 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing methacrylic acid
JP2011240219A (en) * 2010-05-14 2011-12-01 Mitsubishi Rayon Co Ltd Method for manufacturing catalyst for production of methacrylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162460A (en) * 2009-01-14 2010-07-29 Mitsubishi Rayon Co Ltd Method of manufacturing catalyst for synthesizing methacrylic acid
JP2011240219A (en) * 2010-05-14 2011-12-01 Mitsubishi Rayon Co Ltd Method for manufacturing catalyst for production of methacrylic acid

Similar Documents

Publication Publication Date Title
US10300463B2 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP4691359B2 (en) Method for producing a catalyst for methacrylic acid production
JP4922614B2 (en) Method for producing a catalyst for methacrylic acid production
JP2007283265A (en) Method of manufacturing catalyst for producing methacrylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP5069152B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst
JP2008284416A (en) Method for manufacturing metal oxide catalyst
JP5261231B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008149262A (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP4766610B2 (en) Method for producing a catalyst for methacrylic acid production
JP4372573B2 (en) Method for producing a catalyst for methacrylic acid production
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2007090193A (en) Production method of catalyst for methacrylic acid production and production method of methacrylic acid
JP5149138B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP2010029847A (en) Production method for methacrylic acid production catalyst
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same
JP4951230B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst
JP5149135B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP4601420B2 (en) Method for producing a catalyst for methacrylic acid production
JP4933736B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4017864B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP5063493B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid