JP2011240219A - Method for manufacturing catalyst for production of methacrylic acid - Google Patents

Method for manufacturing catalyst for production of methacrylic acid Download PDF

Info

Publication number
JP2011240219A
JP2011240219A JP2010112275A JP2010112275A JP2011240219A JP 2011240219 A JP2011240219 A JP 2011240219A JP 2010112275 A JP2010112275 A JP 2010112275A JP 2010112275 A JP2010112275 A JP 2010112275A JP 2011240219 A JP2011240219 A JP 2011240219A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
methacrylic acid
catalyst precursor
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010112275A
Other languages
Japanese (ja)
Other versions
JP5485013B2 (en
Inventor
Tetsushi Yamaguchi
哲史 山口
Takuro Watanabe
拓朗 渡邉
Masahide Kondo
正英 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010112275A priority Critical patent/JP5485013B2/en
Publication of JP2011240219A publication Critical patent/JP2011240219A/en
Application granted granted Critical
Publication of JP5485013B2 publication Critical patent/JP5485013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing with good productivity, a catalyst including at least phosphorus and molybdenum and used in production of methacrylic acid by catalytic oxidation of methacrolein in a vapor phase with molecular oxygen, and to provide a method for producing methacrylic acid using the catalyst manufactured by the above method.SOLUTION: The catalyst is manufactured by calcining a catalyst precursor which includes 3-10% of organic substances and has 10% or more of a weight reduction rate when raising the temperature of the precursor from 25 to 250°C at a temperature raising rate of 10°C/min in thermogravimetry. In a process of performing final calcination of the precursor at 300 to 500°C by raising from ≤150°C, the temperature raising rate in a temperature region of from 150 to 230°C is made to be 5°C/hr to 25°C/hr, and that in the region of from 230°C to a maximum temperature in the final calcination is made to be ≥20°C/hr.

Description

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用する触媒(以下、メタクリル酸製造用触媒という。)の製造方法、該メタクリル酸製造用触媒を用いたメタクリル酸の製造方法に関する。   The present invention relates to a method for producing a catalyst (hereinafter referred to as a methacrylic acid production catalyst) used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen, and the methacrylic acid production catalyst. The present invention relates to a method for producing methacrylic acid.

従来知られているメタクリル酸の製造方法として、メタクロレインの気相接触酸化反応があり、前記反応に用いるメタクリル酸製造用触媒の製造方法として、種々の方法が提案されている。メタクリル酸製造用触媒としてはヘテロポリ酸を主要活性成分とする触媒が有効であることが知られており、これらの触媒には成形助剤や細孔構造制御といった目的で製造工程中において有機物を添加することがしばしばある。例えば特許文献1にはセルロース、ポリビニルアルコール等の有機物質を1〜10重量%添加して成形した後、焼成して触媒とする方法が、また特許文献2にはピリジン等の含窒素有機化合物をスラリーに添加して得られた乾燥物を成形した後、焼成し触媒とする方法が記載されている。   As a conventionally known method for producing methacrylic acid, there is a gas phase catalytic oxidation reaction of methacrolein, and various methods have been proposed as a method for producing a catalyst for producing methacrylic acid used in the reaction. As catalysts for the production of methacrylic acid, it is known that catalysts containing a heteropolyacid as the main active ingredient are effective. To these catalysts, organic substances are added during the production process for the purpose of molding aids and pore structure control. Often there is to do. For example, Patent Document 1 discloses a method in which an organic substance such as cellulose and polyvinyl alcohol is added to form 1 to 10% by weight and then calcined to form a catalyst. Patent Document 2 includes a nitrogen-containing organic compound such as pyridine. A method is described in which a dried product obtained by adding to a slurry is molded and then fired to form a catalyst.

しかしながら、有機物を含む触媒の焼成においては、焼成工程において有機物の分解・燃焼が起こるため、これに伴う急激な発熱により触媒の還元および焼結といった触媒の性能低下が懸念される。このため、触媒の焼成時における温度制御が重要となる。   However, in the calcination of a catalyst containing an organic substance, decomposition and combustion of the organic substance occur in the calcination step, and there is a concern that the catalyst performance may be reduced such as reduction and sintering of the catalyst due to the sudden heat generation. For this reason, temperature control during the firing of the catalyst is important.

メタクリル酸製造用触媒の焼成方法についてはこれまでに多くの提案がなされてきており、例えば特許文献3には触媒前駆体を300℃〜500℃で最終焼成して活性化する際に、最終焼成温度まで連続的に昇温し、かつ200℃〜265℃の昇温速度を10℃/hr未満で焼成することを特徴とするメタクリル酸製造用触媒の製造方法が記載されている。また、特許文献4にはアンモニウム根を含むメタクリル酸製造用触媒成型物を充填した充填層内の焼成において充填層内の最大温度を180℃〜260℃に設定することが記載されている。その実施例では、触媒成型物を空気気流中で室温から220℃まで50℃/hrの速度で昇温し、さらに230℃まで5℃/hrの速度で昇温した後、230℃にて5時間保持し、空気気流中で250℃まで昇温し250℃にて3時間保持した後、窒素気流中、50℃/hrの速度で435℃まで昇温し、435℃で3時間保持した後、さらに空気気流中で390℃にて3時間の順に焼成し、触媒を得る方法が記載されている。   Many proposals have been made so far regarding a method for calcining a catalyst for producing methacrylic acid. For example, Patent Document 3 discloses that when a catalyst precursor is finally calcined at 300 ° C. to 500 ° C. and activated, the final calcining is performed. A method for producing a catalyst for methacrylic acid production is described, wherein the temperature is continuously raised to a temperature and calcined at a rate of temperature rise of 200 ° C. to 265 ° C. at less than 10 ° C./hr. Patent Document 4 describes that the maximum temperature in the packed bed is set to 180 ° C. to 260 ° C. in the baking in the packed bed filled with the catalyst molded product for production of methacrylic acid containing ammonium roots. In this example, the catalyst molding was heated from room temperature to 220 ° C. at a rate of 50 ° C./hr in an air stream, further increased to 230 ° C. at a rate of 5 ° C./hr, and then 5 ° C. at 230 ° C. After holding for a time, raising the temperature to 250 ° C. in an air stream and holding at 250 ° C. for 3 hours, then raising the temperature to 435 ° C. at a rate of 50 ° C./hr in a nitrogen stream and holding at 435 ° C. for 3 hours Furthermore, a method is described in which the catalyst is obtained by firing in an air stream at 390 ° C. for 3 hours in order.

しかしながら、特許文献3に記載の方法では、トータルでの焼成時間が長くかかり生産性が低下するという課題を残している。また、特許文献4に記載の焼成法では有機物の燃焼による触媒劣化が起こることがある。   However, the method described in Patent Document 3 has a problem that the total baking time is long and productivity is lowered. Further, in the calcination method described in Patent Document 4, catalyst deterioration due to combustion of organic substances may occur.

本発明者らは、有機物を多く含み一定の条件下で熱重量分析を行った際の重量減少割合の大きな触媒系において、特許文献4に記載されているような条件で焼成を行った場合、焼成中に触媒の著しい性能低下が起こり、特許文献3に記載されている条件では、性能低下は防げるが焼成に時間がかかり生産性が低下するという課題が生じることを見出した。この課題を解決するため鋭意検討を重ねた結果、焼成処理工程において特定範囲の温度領域における昇温速度を制御することで、このような触媒系においても性能を低下させることなく触媒を生産性良く製造できることを見出し、本発明に至ったものである。   In the catalyst system having a large weight loss ratio when performing thermogravimetric analysis under a certain condition containing a large amount of organic matter, the present inventors performed calcination under the conditions described in Patent Document 4, It has been found that a significant performance degradation of the catalyst occurs during calcination, and under the conditions described in Patent Document 3, the performance degradation can be prevented, but it takes time for the calcination and the productivity is lowered. As a result of intensive studies to solve this problem, it is possible to control the catalyst with high productivity without degrading the performance even in such a catalyst system by controlling the rate of temperature increase in a temperature range within a specific range in the firing process. It has been found that it can be produced, and has led to the present invention.

特開昭55−73347号公報JP 55-73347 A 特開昭60−239439号公報JP-A-60-239439 特開2008−272637号公報JP 2008-272637 A 特開2003−10700号公報JP 2003-10700 A

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、メタクリル酸製造用触媒を生産性良く製造する方法、及びこのメタクリル酸製造用触媒を用いたメタクリル酸の製造方法を提供することを目的とする。   The present invention uses a method for producing a catalyst for producing methacrylic acid with high productivity, which is used when producing methacrolein by vapor phase catalytic oxidation of methacrolein with molecular oxygen, and the catalyst for producing methacrylic acid. It aims at providing the manufacturing method of methacrylic acid.

本発明は、少なくともリン、モリブデンを含み、メタクロレインを気相接触酸化してメタクリル酸を製造するための触媒の製造方法であって、以下の(i)〜(iii)の条件を満たすメタクリル酸製造用触媒の製造方法である。
(i)触媒前駆体中に有機物を質量として3%〜10%含む
(ii)該触媒前駆体の熱重量分析において、10℃/minの昇温速度で25℃から250℃まで昇温した際の重量減少割合が10%〜30%である
(iii)上記(i)及び(ii)を満たす触媒前駆体を150℃以下から昇温し300℃〜500℃で最終焼成を行う過程において、150℃〜230℃の温度領域における昇温速度を5℃/hr以上25℃/hr以下とし、230℃から最終焼成における最高温度の温度領域における昇温速度を20℃/hr以上とする
The present invention is a method for producing a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein, which contains at least phosphorus and molybdenum, and satisfies the following conditions (i) to (iii) It is a manufacturing method of the catalyst for manufacture.
(I) The catalyst precursor contains 3% to 10% of organic matter as a mass. (Ii) In the thermogravimetric analysis of the catalyst precursor, when the temperature is increased from 25 ° C. to 250 ° C. at a temperature increase rate of 10 ° C./min. (Iii) In the process of raising the temperature of the catalyst precursor satisfying the above (i) and (ii) from 150 ° C. or lower and performing final calcination at 300 ° C. to 500 ° C. The temperature increase rate in the temperature range of 270C to 230 ° C is 5 ° C / hr or more and 25 ° C / hr or less, and the temperature increase rate in the temperature range from 230 ° C to the highest temperature in the final firing is 20 ° C / hr or more.

また、本発明は、前記の方法により製造されるメタクリル酸製造触媒を用いてメタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法である。   Moreover, this invention is a manufacturing method of the methacrylic acid which carries out the vapor phase catalytic oxidation of methacrolein with molecular oxygen using the methacrylic acid manufacturing catalyst manufactured by the said method.

本発明によれば、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するための触媒を、性能の低下を伴わずに生産性よく得ることができる。   According to the present invention, a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen can be obtained with high productivity without causing a decrease in performance.

<触媒調製>
本発明の方法で製造されるメタクリル酸製造用触媒は、触媒前駆体に一定重量分率以上の有機物を含むとともに、触媒前駆体を特定の温度範囲において昇温速度を制御して焼成し、300℃〜500℃で最終焼成して活性化する方法により製造される。
<Catalyst preparation>
The catalyst for producing methacrylic acid produced by the method of the present invention includes an organic substance having a certain weight fraction or more in the catalyst precursor, and calcines the catalyst precursor in a specific temperature range while controlling the temperature rise rate. Manufactured by a method of calcination and activation at a temperature of from C to 500C.

本発明の方法で製造されるメタクリル酸製造用触媒は、リン、モリブデンを含むメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する触媒であり、触媒中に含まれる有機物を除いた組成が下記式(1)で表されることが好ましい。   The catalyst for producing methacrylic acid produced by the method of the present invention is a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein containing phosphorus and molybdenum with molecular oxygen, excluding organic substances contained in the catalyst. The composition is preferably represented by the following formula (1).

MoCu (1)
(P、Mo、V、Cu及びOは、それぞれリン、モリブデン、バナジウム、銅及び酸素を示し、Xは鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン及びセリウムからなる群より選ばれた少なくとも1種の元素を示し、Yはカリウム、ルビジウム及びセシウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、f、及びgは各元素の原子比率を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0.01〜3であり、gは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
P a Mo b V c Cu d X e Y f O g (1)
(P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, X is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese At least one selected from the group consisting of silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium Y represents at least one element selected from the group consisting of potassium, rubidium and cesium, a, b, c, d, e, f and g represent the atomic ratio of each element; When b = 12, a = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0-3 A f = 0.01 to 3, g is the atomic ratio of oxygen required to satisfy the valence of each component.)

本発明の方法で製造されるメタクリル酸製造用触媒は、触媒前駆体を特定の温度範囲において昇温速度を制御して熱処理し300〜500℃で最終熱処理して活性化する方法により製造される。この際、有機物を含むすべての触媒原料を含み、焼成を行う前の固形物を触媒前駆体と呼ぶ。   The catalyst for producing methacrylic acid produced by the method of the present invention is produced by a method in which the catalyst precursor is heat-treated at a specific temperature range while controlling the rate of temperature rise and is finally heat-treated at 300 to 500 ° C. and activated. . At this time, a solid material including all the catalyst raw materials including organic substances and before firing is referred to as a catalyst precursor.

本発明において上記触媒前駆体の調製に用いる原料は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を組み合わせて使用することができる。また、リンモリブデン酸などのヘテロポリ酸を使用することもできる。例えばモリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン、リンモリブデン酸、ケイモリブデン酸等が使用できる。   In the present invention, the raw materials used for the preparation of the catalyst precursor are not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides and the like of each element can be used in combination. Heteropolyacids such as phosphomolybdic acid can also be used. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, phosphomolybdic acid, silicomolybdic acid, etc. can be used as the molybdenum raw material.

上記触媒前駆体を調製する方法は特に限定されず、成分の著しい偏在を伴わない限り、従来からよく知られている蒸発乾固法、沈殿法、酸化物混合法等の種々の方法を用いることができるが、触媒原料を含む溶液又はスラリーを乾燥して触媒前駆体を得る方法が好ましい。溶媒以外の成分に対して1質量%以上の有機物を含む溶液又はスラリーを乾燥して調製することがより好ましい。   The method for preparing the catalyst precursor is not particularly limited, and various methods such as the evaporation and drying method, the precipitation method, and the oxide mixing method that are well known in the art are used unless significant uneven distribution of components is involved. However, it is preferable to obtain a catalyst precursor by drying a solution or slurry containing the catalyst raw material. It is more preferable to prepare by drying a solution or slurry containing 1% by mass or more of an organic substance with respect to components other than the solvent.

乾燥方法としては種々の方法を用いることが可能であり、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等を用いることが出来る。乾燥に使用する乾燥機の機種や乾燥時の温度、時間等は特に限定されず、乾燥条件を適宜変えることによって目的に応じた触媒前駆体を得ることが出来る。   As a drying method, various methods can be used, and for example, an evaporating and drying method, a spray drying method, a drum drying method, an air current drying method, and the like can be used. There are no particular limitations on the model of the dryer used for drying, the temperature, time, etc. during drying, and a catalyst precursor according to the purpose can be obtained by appropriately changing the drying conditions.

上記触媒前駆体には3質量%〜10質量%の有機物が含まれるが、含有する有機物の種類は特に限定されず、またその有機物は焼成前のどの製造工程において添加されてもよい。例えば、加えられる有機物としては、ピリジン、キノリン等の含窒素化合物、酢酸、酒石酸等の有機酸、セルロース・ポリビニルアルコール等の成形助剤等があげられる。有機物を加える方法は特に限定されず、触媒スラリーの調製時に加える方法や、触媒前駆体の乾燥前のスラリーに加える方法、乾燥後の触媒に乾式混合する方法、乾燥成形後の触媒前駆体に混合するなどの方法がある。本発明の効果は、特に有機物の含有量が大きい触媒の焼成時に大きい。   Although 3 mass%-10 mass% organic substance is contained in the said catalyst precursor, the kind of organic substance to contain is not specifically limited, Moreover, the organic substance may be added in any manufacturing process before baking. Examples of the organic substance to be added include nitrogen-containing compounds such as pyridine and quinoline, organic acids such as acetic acid and tartaric acid, and molding aids such as cellulose and polyvinyl alcohol. The method of adding the organic substance is not particularly limited, the method of adding at the time of preparing the catalyst slurry, the method of adding the catalyst precursor to the slurry before drying, the method of dry-mixing with the catalyst after drying, the method of mixing with the catalyst precursor after dry molding There are ways to do it. The effect of the present invention is particularly great when a catalyst having a large organic content is calcined.

上記触媒前駆体は、熱重量分析において10℃/minの昇温速度で25℃から250℃まで昇温した際の重量減少割合が10%〜30%である。重量減少の原因としては、有機物の酸化・燃焼の他に、触媒前駆体に含まれるアンモニウム根や硝酸根などの成分の触媒系外への揮散が考えられるが、本発明においては、特に制限なくアンモニウム根・硝酸根を含む原料を使用して調製を行うことができる。   The catalyst precursor has a weight reduction rate of 10% to 30% when the temperature is increased from 25 ° C. to 250 ° C. at a temperature increase rate of 10 ° C./min in thermogravimetric analysis. As a cause of weight reduction, in addition to oxidation and combustion of organic matter, volatilization of components such as ammonium root and nitrate root contained in the catalyst precursor to the outside of the catalyst system can be considered, but in the present invention, there is no particular limitation Preparation can be performed using raw materials containing ammonium and nitrate radicals.

触媒前駆体の形状及び成形方法については特に限定するものではなく、触媒前駆体の形状は、例えば球状、円柱状、円筒状、星型状等の任意の形状が挙げられる。触媒前駆体の粉体を成形して固体触媒を得るための手段としては、例えば打錠成型機、押出成形機、転動造粒機等の成形装置を使用した成形方法が挙げられる。   The shape of the catalyst precursor and the molding method are not particularly limited, and examples of the shape of the catalyst precursor include arbitrary shapes such as a spherical shape, a cylindrical shape, a cylindrical shape, and a star shape. Examples of means for forming a catalyst precursor powder to obtain a solid catalyst include a molding method using a molding apparatus such as a tableting molding machine, an extrusion molding machine, and a rolling granulator.

このようにして得られた触媒前駆体は、空気等の酸素含有ガス流通下または不活性ガス流通下で、メタクリル酸の製造で使用される固定床管型反応器を用いて焼成することが好ましいが、従来公知の焼成炉でも焼成することができる。焼成炉を使用する場合のその形態は特に制限はなく、固定層方式、流動層方式、回転炉、静置炉などの各種の焼成炉を使用することが出来る。焼成炉の形状は円筒状であっても、多角筒状その他の不定形の断面形状を有するものであってもよく、各種形状の焼成炉を使用できる。その場合、雰囲気ガスとして使用されるガスを流通させながら行うことが好ましい。   The catalyst precursor thus obtained is preferably calcined using a fixed bed tubular reactor used in the production of methacrylic acid under a flow of oxygen-containing gas such as air or an inert gas. However, it can be fired in a conventionally known firing furnace. The form in the case of using a firing furnace is not particularly limited, and various firing furnaces such as a fixed bed system, a fluidized bed system, a rotary furnace, and a stationary furnace can be used. The shape of the firing furnace may be cylindrical or may have a polygonal tube shape or other irregular cross-sectional shape, and various shapes of firing furnaces can be used. In that case, it is preferable to carry out while circulating the gas used as the atmospheric gas.

本発明において、固定床管型反応器を用いて触媒前駆体を焼成する場合、固定床管型反応器は熱媒浴を備えたものが好ましい。熱媒は特に限定されないが、例えば、硝酸カリウムおよび亜硝酸ナトリウムを含む塩溶融物が挙げられる。   In the present invention, when the catalyst precursor is calcined using a fixed bed tubular reactor, the fixed bed tubular reactor is preferably provided with a heat medium bath. The heat medium is not particularly limited, and examples thereof include a salt melt containing potassium nitrate and sodium nitrite.

上記固定床型反応器は、熱媒を加熱するヒータの出力を任意に制御できる構造であることが好ましく、焼成処理開始前の温度から焼成処理目標温度まで温度を上昇させる昇温速度を任意に制御できる構造であることが好ましい。   The fixed bed reactor preferably has a structure capable of arbitrarily controlling the output of the heater that heats the heating medium, and the temperature raising rate for raising the temperature from the temperature before the firing treatment to the firing treatment target temperature is arbitrarily chosen. A controllable structure is preferred.

本発明における焼成の温度は、上記固定床管型反応器を焼成容器とした場合、熱媒浴への熱媒供給口における熱媒の実測温度とする。その他の焼成炉等を用いる場合、焼成の温度は焼成炉中の焼成ガス雰囲気の実測温度とする。   The calcination temperature in the present invention is the measured temperature of the heat medium at the heat medium supply port to the heat medium bath when the fixed bed tubular reactor is a calcining container. When using other firing furnaces, the firing temperature is the measured temperature of the firing gas atmosphere in the firing furnace.

触媒前駆体の焼成は、用いる触媒原料、触媒組成、調製条件等によって異なるので一概に言えないが、空気等の酸素含有ガス流通下および/または不活性ガス流通下で行う。   The firing of the catalyst precursor varies depending on the catalyst raw material used, the catalyst composition, the preparation conditions, etc., and cannot be generally stated, but is performed under the flow of oxygen-containing gas such as air and / or under the flow of inert gas.

本発明において、固定床管型反応器を用いて触媒前駆体を焼成する場合、触媒前駆体の焼成における焼成ガスの空間速度(以下、SVと略記する。)は、焼成に用いる装置、炉の大きさに合わせて自由に決めることができるが、100〜30000h-1が適当であり、特に300〜10000h-1の範囲が好ましい。 In the present invention, when the catalyst precursor is calcined using a fixed bed tubular reactor, the space velocity (hereinafter abbreviated as SV) of the calcining gas in the calcining of the catalyst precursor is the same as the apparatus used in the calcining, the furnace. Although it can be determined freely according to the size, 100 to 30000 h −1 is appropriate, and a range of 300 to 10000 h −1 is particularly preferable.

また、焼成ガスを流通させる方向は、特に限定するものではないが、焼成終了後に、反応ガスを流通させるときの方向と逆の方向に流通させておくことが好ましい。反応ガスの流通方向と逆の方向に流通させることによって、反応時における触媒の反応ガス入り側部分において、過度に活性が高くなることを予防することができる。   The direction in which the calcination gas is circulated is not particularly limited, but it is preferable that the calcination gas is circulated in the direction opposite to the direction in which the reaction gas is circulated after the calcination is completed. By causing the reaction gas to flow in the direction opposite to the flow direction, it is possible to prevent the activity from becoming excessively high in the reaction gas containing side portion of the catalyst during the reaction.

上記触媒前駆体の焼成温度は、最終的に300℃〜500℃にまで高められるが、本発明では上記焼成工程において、焼成開始前の温度から最終焼成温度までのうち、特定の温度範囲において昇温速度を制御する。すなわち、150℃〜230℃の温度範囲において、昇温速度を5℃/hr以上25℃/hr以下とする。上記の温度域は、触媒前駆体中に添加された有機物が燃焼分解すると考えられる温度領域であり、なおかつこの温度域で触媒に含まれる一部の成分が脱離することが予想される。この領域の昇温速度を5℃/hr以上25℃/hr以下とすることによって、有機物の急激な分解および発熱やアンモニウム根の局所的な脱離を抑制することができることにより、触媒が受ける急激な還元反応および局所的なアンモニウム根の低減を抑制でき、触媒の性能低下を防ぐことが出来ると推測される。   The firing temperature of the catalyst precursor is finally increased to 300 ° C. to 500 ° C., but in the present invention, in the firing step, the temperature rises in a specific temperature range from the temperature before the firing start to the final firing temperature. Control the temperature rate. That is, in the temperature range of 150 ° C. to 230 ° C., the rate of temperature rise is set to 5 ° C./hr or more and 25 ° C./hr or less. The above temperature range is a temperature range where organic substances added to the catalyst precursor are considered to be burned and decomposed, and it is expected that some components contained in the catalyst are desorbed in this temperature range. By setting the rate of temperature rise in this region to 5 ° C./hr or more and 25 ° C./hr or less, rapid decomposition of organic matter and heat generation and local desorption of ammonium roots can be suppressed, so It is presumed that a simple reduction reaction and a local reduction of the ammonium root can be suppressed, and a decrease in the performance of the catalyst can be prevented.

150℃〜230℃の温度範囲の昇温方法としては、昇温速度を5℃/hr以上25℃/hr以下にするという以外には特に限定されるものではなく、例えば150℃〜230℃の温度範囲において、昇温速度を変化させて焼成を行うといった操作を行っても構わないが、焼成を簡便・迅速に行うという点で、連続して一定速度で昇温することがより好ましい。   The temperature raising method in the temperature range of 150 ° C. to 230 ° C. is not particularly limited except that the temperature raising rate is 5 ° C./hr or more and 25 ° C./hr or less. In the temperature range, the firing may be performed by changing the heating rate, but it is more preferable to continuously raise the temperature at a constant rate in terms of performing firing simply and quickly.

昇温速度の下限は、残アンモニウム根をある程度残存させることが触媒性能低下を防ぐうえで重要であるとの点から5℃/hr以上であることが必要であり、10℃/hr以上であることがより好ましい。   The lower limit of the rate of temperature increase is required to be 5 ° C./hr or more from the point that it is important to prevent the catalyst performance from deteriorating to some extent, and is 10 ° C./hr or more. It is more preferable.

本発明における焼成処理開始温度は昇温速度制御を行う150℃以下でなければならないが、焼成処理開始前の温度から150℃までの昇温速度は特に限定されず、150℃以下であれば焼成を行う容器を予熱して触媒前駆体を投入し焼成を開始してもよい。   The firing treatment start temperature in the present invention must be 150 ° C. or lower for controlling the rate of temperature rise, but the rate of temperature rise from the temperature before the firing treatment to 150 ° C. is not particularly limited. It is also possible to preheat the container for carrying out the process and charge the catalyst precursor to start firing.

150℃〜230℃の範囲を5℃/hr以上25℃/hr以下の昇温速度で昇温が終了した後から、最終的な焼成の最高温度に到達するまでの昇温速度は20℃/hr以上であること以外、特に限定するものではないが、急激な温度変化による触媒の劣化を防ぎつつ、焼成時間を短縮するという点で20〜100℃/hrであることが好ましく、20〜50℃/hrであることがより好ましい。   The temperature increase rate from 150 ° C. to 230 ° C. after the temperature increase is completed at a temperature increase rate of 5 ° C./hr or more and 25 ° C./hr or less until reaching the final maximum firing temperature is 20 ° C. / Although it does not specifically limit except being more than hr, It is preferable that it is 20-100 degreeC / hr at the point of shortening calcination time, preventing deterioration of the catalyst by rapid temperature change, and 20-50. More preferably, it is ° C / hr.

本発明のメタクリル酸の製造に際して、原料ガス中のメタクロレインの濃度は特に限定されるものではないが、通常1〜20容量%が適当であり、特に3〜10容量%が好ましい。原料メタクロレインは水、低級飽和アルデヒド等の不純物を少量含んでいてもよく、これらの不純物は反応に実質的な悪影響を与えない。   In the production of methacrylic acid of the present invention, the concentration of methacrolein in the raw material gas is not particularly limited, but usually 1 to 20% by volume is appropriate, and 3 to 10% by volume is particularly preferable. The raw material methacrolein may contain a small amount of impurities such as water and lower saturated aldehyde, and these impurities do not have a substantial adverse effect on the reaction.

酸素源としては空気を用いるのが経済的であるが、必要ならば純酸素で富化した空気も用い得る。原料ガス中の酸素濃度はメタクロレインに対するモル比で規定され、この値は0.3〜4、特に0.4〜2.5が好ましい。原料ガスは窒素、水蒸気、炭酸ガス等の不活性ガスを加えて希釈してもよい。反応圧力は常圧から数気圧までがよい。反応温度は230〜450℃の範囲が好ましく、特に、250〜400℃がより好ましい。   It is economical to use air as the oxygen source, but if necessary, air enriched with pure oxygen can also be used. The oxygen concentration in the raw material gas is defined by the molar ratio to methacrolein, and this value is preferably 0.3 to 4, particularly 0.4 to 2.5. The source gas may be diluted by adding an inert gas such as nitrogen, water vapor or carbon dioxide. The reaction pressure is preferably from normal pressure to several atmospheres. The reaction temperature is preferably in the range of 230 to 450 ° C, and more preferably 250 to 400 ° C.

以下、実施例を挙げて本発明を更に詳細に説明する。なお、実施例および比較例中の「部」は質量部を意味する。触媒前駆体組成は触媒前駆体成分の原料仕込み量から求めた。得られた触媒前駆体は、それぞれ熱媒浴を備えた内径25.4mmの鋼鉄製固定床管型反応器の原料ガス入口側に620mlと外径5mmのアルミナ球130mlを混合して充填し、出口側には触媒前駆体を750ml充填した。反応器の熱媒としては硝酸カリウム50質量%および亜硝酸ナトリウム50質量%からなる塩溶融物を用いた。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, "part" in an Example and a comparative example means a mass part. The catalyst precursor composition was determined from the raw material charge of the catalyst precursor component. The obtained catalyst precursor was mixed and filled with 620 ml of alumina spheres having an outer diameter of 5 mm and 130 ml of alumina spheres on the gas inlet side of a steel fixed-bed tube reactor having an inner diameter of 25.4 mm each equipped with a heat medium bath. On the outlet side, 750 ml of catalyst precursor was filled. As a heat medium for the reactor, a salt melt composed of 50% by mass of potassium nitrate and 50% by mass of sodium nitrite was used.

熱媒浴の温度制御は、熱媒浴温度をフィードバックして、熱媒浴内に設置したヒータの出力を制御する機構を用いて、任意に設定した昇温速度に合わせてヒータの出力を自動的に制御できるものを用いた。焼成温度および反応温度は、固定床管型反応器の熱媒浴への熱媒供給口における熱媒の実測温度とした。   The temperature control of the heating medium bath uses a mechanism that feeds back the temperature of the heating medium bath and controls the output of the heater installed in the heating medium bath, and automatically adjusts the heater output according to the arbitrarily set rate of temperature rise. The one that can be controlled automatically was used. The calcination temperature and reaction temperature were the measured temperatures of the heat medium at the heat medium supply port to the heat medium bath of the fixed bed tube reactor.

実施例および比較例中の原料メタクロレインの反応率、生成するメタクリル酸の選択率、メタクリル酸の収率は次式により算出した。   The reaction rate of the raw material methacrolein, the selectivity of methacrylic acid to be produced, and the yield of methacrylic acid in the examples and comparative examples were calculated by the following equations.

メタクロレイン反応率(%)=A/B×100
メタクリル酸選択率(%)=C/A×100
メタクリル酸収率(%)=C/B×100
ここで、Aは反応したメタクロレインのモル数、Bは供給したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
Methacrolein reaction rate (%) = A / B × 100
Methacrylic acid selectivity (%) = C / A × 100
Methacrylic acid yield (%) = C / B × 100
Here, A is the number of moles of reacted methacrolein, B is the number of moles of methacrolein supplied, and C is the number of moles of methacrylic acid produced.

[実施例1]
純水400部に、三酸化モリブデン200部、メタバナジン酸アンモニウム10.8部および硝酸銅5.6部を溶解した。これを攪拌しながら95℃に昇温した。次いで95℃に2時間保持したのち、60℃に冷却し、回転翼攪拌機を用いて攪拌しながら、硝酸セシウム22.5部、および硝酸アンモニウム23.5部を加え、15分間攪拌したのち、85質量%リン酸13.3部、硝酸第二鉄9.4部を純水20部に溶解した溶液を加えた。このスラリーに対し5.0部のヒドロキシメチルセルロースを加え、15分間攪拌し、得られたスラリーを噴霧乾燥機を用いて乾燥した。
[Example 1]
In 400 parts of pure water, 200 parts of molybdenum trioxide, 10.8 parts of ammonium metavanadate and 5.6 parts of copper nitrate were dissolved. The temperature was raised to 95 ° C. while stirring. Next, after maintaining at 95 ° C. for 2 hours, cooling to 60 ° C., stirring with a rotary blade stirrer, adding 22.5 parts of cesium nitrate and 23.5 parts of ammonium nitrate, stirring for 15 minutes, and 85 mass A solution prepared by dissolving 13.3 parts of% phosphoric acid and 9.4 parts of ferric nitrate in 20 parts of pure water was added. 5.0 parts of hydroxymethylcellulose was added to the slurry, stirred for 15 minutes, and the resulting slurry was dried using a spray dryer.

得られた乾燥物100部に対してメチルセルロース4部を添加混合し、純水20部を用いて混練りしたものを押出成形し、外径5mm、内径2mm、長さ4mmの触媒前駆体1を得た。触媒前駆体1の有機物を除いた組成は、酸素を除いた原子比で、P1.0Mo12Cu0.20.8Fe0.2Csであった。 4 parts of methylcellulose was added to and mixed with 100 parts of the obtained dried product, and kneaded with 20 parts of pure water was extruded to obtain a catalyst precursor 1 having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 4 mm. Obtained. The composition of the catalyst precursor 1 excluding organic substances was P 1.0 Mo 12 Cu 0.2 V 0.8 Fe 0.2 Cs 1 in terms of atomic ratio excluding oxygen.

この触媒前駆体1を熱重量分析装置を用いて10℃/minの昇温速度で、25℃から250℃まで昇温した際の重量減少割合を測定した。測定装置には、熱重量測定装置(商品名:TGA−50、島津製作所製)を用いた。測定条件としては、成形体状の触媒前駆体を乳鉢を用いて粉砕し、粉状としたもの50mgをサンプルに用い、空気を300mL/minで流通下、10℃/minで昇温することにより測定した。25℃から250℃における重量減少割合は、測定に用いたサンプル重量に対して13%であった。   The weight loss ratio when this catalyst precursor 1 was heated from 25 ° C. to 250 ° C. at a temperature rising rate of 10 ° C./min was measured using a thermogravimetric analyzer. As the measuring device, a thermogravimetric measuring device (trade name: TGA-50, manufactured by Shimadzu Corporation) was used. As measurement conditions, a compacted catalyst precursor was pulverized using a mortar and powdered, 50 mg was used as a sample, air was circulated at 300 mL / min, and heated at 10 ° C./min. It was measured. The weight reduction rate from 25 ° C. to 250 ° C. was 13% with respect to the sample weight used for the measurement.

触媒前駆体1を充填後、反応ガスを供給する方向と逆の方向にSV1000h-1の空気を流通させた状態で、焼成温度を室温25℃から150℃まで25℃/hrの昇温速度で昇温し、150℃から230℃の範囲を20℃/hrで昇温した。その後、230℃から380℃までの範囲を再び25℃/hrで昇温し、380℃となったところで昇温を止め、380℃で12時間保持した。380℃で12時間保持した後、焼成温度を260℃まで25℃/hrの降温速度で下げた。このとき、焼成にかかった時間は31.8hrであった。 After filling the catalyst precursor 1, with the air of SV1000h -1 flowing in the direction opposite to the direction in which the reaction gas is supplied, the firing temperature is increased from room temperature 25 ° C to 150 ° C at a rate of 25 ° C / hr. The temperature was raised, and the temperature was raised from 150 ° C. to 230 ° C. at 20 ° C./hr. Thereafter, the temperature from 230 ° C. to 380 ° C. was increased again at 25 ° C./hr, and when the temperature reached 380 ° C., the temperature increase was stopped and maintained at 380 ° C. for 12 hours. After maintaining at 380 ° C. for 12 hours, the firing temperature was lowered to 260 ° C. at a temperature decrease rate of 25 ° C./hr. At this time, the time taken for firing was 31.8 hours.

この後、反応管に流していた空気を一旦停止し、反応管にメタクロレイン5%、酸素12%、水蒸気10%および窒素73%からなる原料混合ガスを、反応温度290℃、接触時間4.5秒にて通過させて反応させた。結果を表1に示す。   Thereafter, the air flowing in the reaction tube was temporarily stopped, and a raw material mixed gas composed of 5% methacrolein, 12% oxygen, 10% water vapor and 73% nitrogen was added to the reaction tube at a reaction temperature of 290 ° C. and a contact time of 4. The reaction was allowed to pass in 5 seconds. The results are shown in Table 1.

[比較例1]
触媒前駆体1を充填後、焼成温度を150℃から230℃の範囲を50℃/hrの昇温速度で昇温した以外は実施例1と同様の条件で焼成し、酸化反応を実施した。結果を表1に示す。また、反応後の触媒の一部に焼結が見られた。
[Comparative Example 1]
After the catalyst precursor 1 was filled, firing was carried out under the same conditions as in Example 1 except that the firing temperature was raised in the range from 150 ° C. to 230 ° C. at a rate of temperature rise of 50 ° C./hr to carry out the oxidation reaction. The results are shown in Table 1. In addition, sintering was observed in a part of the catalyst after the reaction.

[実施例2]
実施例1と同様の調製法を用いて調製を行い、得られた乾燥物に対して混合したメチルセルロースを6部にした以外は実施例1と同様の条件で触媒調製を行い、触媒前駆体2を得た。この触媒前駆体2を実施例1と同様に熱重量分析装置を用いて測定したところ、測定前の重量に対し15%の重量減少が観測された。この触媒前駆体2を実施例1と同様の条件で焼成し、酸化反応を実施した。結果を表1に示す。
[Example 2]
The catalyst was prepared using the same preparation method as in Example 1, and the catalyst was prepared under the same conditions as in Example 1 except that 6 parts of methylcellulose mixed with the resulting dried product was used. Got. When this catalyst precursor 2 was measured using a thermogravimetric analyzer in the same manner as in Example 1, a 15% weight reduction was observed with respect to the weight before the measurement. This catalyst precursor 2 was calcined under the same conditions as in Example 1 to carry out an oxidation reaction. The results are shown in Table 1.

[比較例2]
触媒前駆体2を充填後、焼成温度を150℃から230℃の範囲を50℃/hrの昇温速度で昇温した以外は実施例1と同様の条件で焼成し、酸化反応を実施した。結果を表1に示す。また、反応後の触媒の一部に焼結がみられた。
[Comparative Example 2]
After the catalyst precursor 2 was filled, the calcination temperature was baked under the same conditions as in Example 1 except that the temperature was raised in the range of 150 ° C. to 230 ° C. at a rate of temperature increase of 50 ° C./hr, and an oxidation reaction was carried out. The results are shown in Table 1. In addition, sintering was observed in a part of the catalyst after the reaction.

[実施例3]
触媒前駆体1を反応器に充填する際に、反応器を予め150℃に予熱して充填を行い、焼成を150℃から開始し、230℃まで20℃/hrで昇温した以外は実施例1と同様の条件で焼成し、酸化反応を実施した。結果を表1に示す。
[Example 3]
When charging the catalyst precursor 1 into the reactor, the reactor was preheated to 150 ° C. and charged, and firing was started from 150 ° C., and the temperature was raised to 230 ° C. at a rate of 20 ° C./hr. Firing was carried out under the same conditions as in No. 1 to carry out an oxidation reaction. The results are shown in Table 1.

[比較例3]
触媒前駆体1を反応器に充填する際に、反応器を予め200℃に予熱して充填を行い、200℃から焼成を開始し、230℃まで20℃/hrで昇温した以外は実施例1と同様の条件で焼成し、酸化反応を実施した。結果を表1に示す。また、反応後の触媒の一部に焼結がみられた。
[Comparative Example 3]
When charging the catalyst precursor 1 into the reactor, the reactor was preheated to 200 ° C. and charged, firing was started from 200 ° C., and the temperature was raised to 230 ° C. at 20 ° C./hr. Firing was carried out under the same conditions as in No. 1 to carry out an oxidation reaction. The results are shown in Table 1. In addition, sintering was observed in a part of the catalyst after the reaction.

[比較例4]
触媒前駆体1を充填後、焼成時の昇温速度を25℃から380℃までの範囲で10℃/hrの昇温速度で昇温した以外は実施例1と同様の条件で焼成し、酸化反応を実施した。結果を表1に示す。
[Comparative Example 4]
After the catalyst precursor 1 was filled, the catalyst was calcined under the same conditions as in Example 1 except that the temperature was increased at a temperature increase rate of 10 ° C./hr in the range from 25 ° C. to 380 ° C. The reaction was carried out. The results are shown in Table 1.

[比較例5]
実施例1と同様にして触媒原料を含むスラリーを調製し、得られた乾燥物に対してメチルセルロースを添加しない以外は実施例1と同様にして触媒前駆体3を得た。この触媒前駆体3の有機物を除いた組成は、酸素を除いた原子比で、Mo121.0Cu0.20.8Fe0.2Csであった。この触媒前駆体を熱重量分析装置を用いて10℃/minの昇温速度で250℃まで昇温したところ、測定前の重量に対し5%の重量減少が観測された。この触媒前駆体を実施例1と同様の条件で焼成し、酸化反応を実施した。結果を表1に示す。
[Comparative Example 5]
A slurry containing a catalyst raw material was prepared in the same manner as in Example 1, and a catalyst precursor 3 was obtained in the same manner as in Example 1 except that methylcellulose was not added to the obtained dried product. The composition of the catalyst precursor 3 excluding organic substances was Mo 12 P 1.0 Cu 0.2 V 0.8 Fe 0.2 Cs 1 in terms of atomic ratio excluding oxygen. When this catalyst precursor was heated up to 250 ° C. at a rate of 10 ° C./min using a thermogravimetric analyzer, a 5% weight reduction was observed with respect to the weight before the measurement. This catalyst precursor was calcined under the same conditions as in Example 1 to carry out an oxidation reaction. The results are shown in Table 1.

[比較例6]
触媒前駆体3を充填後、焼成温度を150℃から230℃の範囲を50℃/hrの昇温速度で昇温した以外は比較例5と同様にした以外は実施例1と同様の条件で焼成し、酸化反応を実施した。結果を表1に示す。
[Comparative Example 6]
After filling the catalyst precursor 3, the firing temperature was the same as in Example 1 except that the firing temperature was raised in the range of 150 ° C. to 230 ° C. at a heating rate of 50 ° C./hr. Firing was carried out and an oxidation reaction was carried out. The results are shown in Table 1.

これらの結果から、本発明が有機物を多く含み、熱分析による重量減少が大きな触媒系に対して有効であることが分かる。   From these results, it can be seen that the present invention is effective for a catalyst system containing a large amount of organic substances and having a large weight loss by thermal analysis.

Figure 2011240219
Figure 2011240219

Claims (3)

少なくともリン、モリブデンを含み、メタクロレインを気相接触酸化してメタクリル酸を製造するための触媒の製造方法であって、以下の(i)〜(iii)の条件を満たすメタクリル酸製造用触媒の製造方法。
(i)触媒前駆体中に有機物を質量として3%〜10%含む
(ii)該触媒前駆体の熱重量分析において、10℃/minの昇温速度で25℃から250℃まで昇温した際の重量減少割合が10%〜30%である
(iii)上記(i)及び(ii)を満たす触媒前駆体を150℃以下から昇温し300℃〜500℃で最終焼成を行う過程において、150℃〜230℃の温度領域における昇温速度を5℃/hr以上25℃/hr以下とし、230℃から最終焼成における最高温度の温度領域における昇温速度を20℃/hr以上とする
A method for producing a catalyst for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein, comprising at least phosphorus and molybdenum, wherein the catalyst for producing methacrylic acid satisfies the following conditions (i) to (iii): Production method.
(I) The catalyst precursor contains 3% to 10% of organic matter as a mass. (Ii) In the thermogravimetric analysis of the catalyst precursor, when the temperature is increased from 25 ° C. to 250 ° C. at a temperature increase rate of 10 ° C./min. (Iii) In the process of raising the temperature of the catalyst precursor satisfying the above (i) and (ii) from 150 ° C. or lower and performing final calcination at 300 ° C. to 500 ° C. The temperature increase rate in the temperature range of 270C to 230 ° C is 5 ° C / hr or more and 25 ° C / hr or less, and the temperature increase rate in the temperature range from 230 ° C to the highest temperature in the final firing is 20 ° C / hr or more.
前記触媒前駆体が、溶媒以外の成分に対して1質量%以上の有機物を含む溶液又はスラリーを乾燥して得られたものである請求項1記載の触媒の製造方法。   The method for producing a catalyst according to claim 1, wherein the catalyst precursor is obtained by drying a solution or slurry containing 1% by mass or more of an organic substance with respect to components other than the solvent. 請求項1又は2に記載の製造方法を用いて製造されたメタクリル酸製造用触媒を用いてメタクロレインを気相接触酸化するメタクリル酸の製造方法。   A method for producing methacrylic acid, which comprises subjecting methacrolein to gas phase catalytic oxidation using the catalyst for producing methacrylic acid produced by using the production method according to claim 1.
JP2010112275A 2010-05-14 2010-05-14 Method for producing a catalyst for methacrylic acid production Active JP5485013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112275A JP5485013B2 (en) 2010-05-14 2010-05-14 Method for producing a catalyst for methacrylic acid production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112275A JP5485013B2 (en) 2010-05-14 2010-05-14 Method for producing a catalyst for methacrylic acid production

Publications (2)

Publication Number Publication Date
JP2011240219A true JP2011240219A (en) 2011-12-01
JP5485013B2 JP5485013B2 (en) 2014-05-07

Family

ID=45407447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112275A Active JP5485013B2 (en) 2010-05-14 2010-05-14 Method for producing a catalyst for methacrylic acid production

Country Status (1)

Country Link
JP (1) JP5485013B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203789A1 (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Method for producing catalyst for unsaturated carboxylic acid synthesis
RU2806328C2 (en) * 2019-03-29 2023-10-31 Мицубиси Кемикал Корпорейшн Method of producing catalyst for synthesis of unsaturated carboxylic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102600910B1 (en) 2018-03-28 2023-11-09 닛뽄 가야쿠 가부시키가이샤 Catalyst for producing unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated carboxylic acid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861833A (en) * 1981-10-09 1983-04-13 Mitsubishi Rayon Co Ltd Calcining method of phosphorus and molybdenum type catalyst
JP2003010690A (en) * 2001-06-28 2003-01-14 Sumitomo Chem Co Ltd Catalyst for manufacturing methacrylic acid, method for manufacturing the same, and method for manufacturing methacrylic acid
JP2003010700A (en) * 2001-06-27 2003-01-14 Sumitomo Chem Co Ltd Method for baking inorganic compound and method for manufacturing oxidizing catalyst using the same
JP2003519109A (en) * 1999-12-24 2003-06-17 サムソン ジェネラル ケミカルズ カンパニー リミテッド Method for producing methacrylic acid
JP2008149262A (en) * 2006-12-18 2008-07-03 Mitsubishi Rayon Co Ltd Method for producing catalyst for unsaturated carboxylic acid synthesis
JP2008272637A (en) * 2007-04-26 2008-11-13 Mitsubishi Rayon Co Ltd Manufacturing method of catalyst for manufacturing methacrylic acid, catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861833A (en) * 1981-10-09 1983-04-13 Mitsubishi Rayon Co Ltd Calcining method of phosphorus and molybdenum type catalyst
JP2003519109A (en) * 1999-12-24 2003-06-17 サムソン ジェネラル ケミカルズ カンパニー リミテッド Method for producing methacrylic acid
JP2003010700A (en) * 2001-06-27 2003-01-14 Sumitomo Chem Co Ltd Method for baking inorganic compound and method for manufacturing oxidizing catalyst using the same
JP2003010690A (en) * 2001-06-28 2003-01-14 Sumitomo Chem Co Ltd Catalyst for manufacturing methacrylic acid, method for manufacturing the same, and method for manufacturing methacrylic acid
JP2008149262A (en) * 2006-12-18 2008-07-03 Mitsubishi Rayon Co Ltd Method for producing catalyst for unsaturated carboxylic acid synthesis
JP2008272637A (en) * 2007-04-26 2008-11-13 Mitsubishi Rayon Co Ltd Manufacturing method of catalyst for manufacturing methacrylic acid, catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203789A1 (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Method for producing catalyst for unsaturated carboxylic acid synthesis
RU2806328C2 (en) * 2019-03-29 2023-10-31 Мицубиси Кемикал Корпорейшн Method of producing catalyst for synthesis of unsaturated carboxylic acid

Also Published As

Publication number Publication date
JP5485013B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5973999B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the same
WO2015008815A1 (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2016136882A1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2008212779A (en) Method for producing molybdenum-, bismuth-, iron-, and silica-containing composite oxide catalyst
JP2018043197A (en) Catalyst for manufacturing acrylic acid
JP2011092882A (en) Method for producing catalyst for preparation of methacrylic acid, and method for preparing methacrylic acid
JP4691359B2 (en) Method for producing a catalyst for methacrylic acid production
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
JP5680373B2 (en) Catalyst and method for producing acrylic acid
JP6229497B2 (en) Method for producing methacrolein and methacrylic acid
JP5485013B2 (en) Method for producing a catalyst for methacrylic acid production
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP6845473B2 (en) Method for manufacturing catalyst
JP6779911B2 (en) Regeneration method of catalyst for butadiene production
JP5793345B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5069152B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP2004188231A (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP2010029847A (en) Production method for methacrylic acid production catalyst
JP4951230B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid using the catalyst
CN106881128B (en) Heteropolyacid salt catalyst, preparation method and application thereof
JP2013086008A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R151 Written notification of patent or utility model registration

Ref document number: 5485013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250