JP4601420B2 - Method for producing a catalyst for methacrylic acid production - Google Patents
Method for producing a catalyst for methacrylic acid production Download PDFInfo
- Publication number
- JP4601420B2 JP4601420B2 JP2004377189A JP2004377189A JP4601420B2 JP 4601420 B2 JP4601420 B2 JP 4601420B2 JP 2004377189 A JP2004377189 A JP 2004377189A JP 2004377189 A JP2004377189 A JP 2004377189A JP 4601420 B2 JP4601420 B2 JP 4601420B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- catalyst
- mol
- molybdenum
- methacrylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用する触媒(以下、メタクリル酸製造用触媒という。)の製造方法、この方法により製造される触媒、および、この触媒を用いたメタクリル酸の製造方法に関する。 The present invention relates to a method for producing a catalyst (hereinafter referred to as a catalyst for producing methacrylic acid) used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, a catalyst produced by this method, The present invention also relates to a method for producing methacrylic acid using this catalyst.
特許文献1には、少なくともモリブデン、リンおよびバナジウムを含む溶液またはスラリーとアンモニア化合物を含む溶液またはスラリーを混合し、得られた混合液または混合スラリーにZ元素を含む溶液またはスラリーを混合し、次いで乾燥して乾燥物とする工程を含むメタクリル酸製造用触媒の製造方法が開示されている。 In Patent Document 1, a solution or slurry containing at least molybdenum, phosphorus and vanadium and a solution or slurry containing an ammonia compound are mixed, and a solution or slurry containing Z element is mixed with the resulting mixed solution or slurry, A method for producing a catalyst for methacrylic acid production comprising a step of drying to obtain a dried product is disclosed.
また、特許文献2には、触媒原料の水溶液に尿素、尿素の誘導体及び/又は硝酸アンモニウムを加えたのち加熱するなどの方法で水を除去し、残留物(乾燥物)を熱処理する工程を含むメタクリル酸製造用触媒の製造方法が開示されている。 In addition, Patent Document 2 includes a step of adding water to an aqueous solution of a catalyst raw material and then removing water by a method such as heating after adding urea, a derivative of urea and / or ammonium nitrate, and heat treating the residue (dried product). A method for producing a catalyst for acid production is disclosed.
しかしながら、このような従来の製造方法では製造過程で得られる乾燥物の流動性が悪く取扱いが難しいという場合があった。例えば、乾燥粉を輸送する際に乾燥粉がホッパーでブリッジを形成して流れ難くなる、打錠成型やプレス成型用などの成形用の型に乾燥粉がスムーズに流れ込まない等の問題があった。また、乾燥物の流動性が比較的良い場合でも、触媒の性能、特にメタクリル酸の収率が、工業触媒としては十分ではないという問題もあった。 However, in such a conventional manufacturing method, there are cases where the dry matter obtained in the manufacturing process has poor fluidity and is difficult to handle. For example, when transporting dry powder, there is a problem that the dry powder forms a bridge with a hopper and does not flow easily, and the dry powder does not flow smoothly into a mold for tableting or press molding. . In addition, even when the flowability of the dried product is relatively good, there is a problem that the performance of the catalyst, particularly the yield of methacrylic acid, is not sufficient as an industrial catalyst.
したがって本発明の目的はメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる触媒の製造方法であって、製造過程で得られる乾燥物の流動性が優れており、なおかつメタクリル酸を高収率で製造することができる触媒の製造方法、その製造方法で得られた触媒、およびこの触媒を用いたメタクリル酸を高収率で製造できる方法を提供することにある。 Therefore, an object of the present invention is a method for producing a catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, and the flowability of the dried product obtained in the production process is excellent. The present invention also provides a method for producing a catalyst capable of producing methacrylic acid in high yield, a catalyst obtained by the production method, and a method capable of producing methacrylic acid using the catalyst in high yield. .
本発明者らは、特定の条件でモリブデン、リンおよびバナジウムを含む溶液から沈殿を生じさせることによって乾燥物の流動性を向上させることができること、また得られる触媒の収率を向上させることができることを見出し、上記の問題を解決するに至った。
すなわち本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、下記式(1)で表される組成を有する触媒の製造方法であって、
PaMobVcCudXeYfZgOh (1)
(式(1)中、P、Mo、V、CuおよびOは、それぞれリン、モリブデン、バナジウム、銅および酸素を示し、Xはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウムおよびセシウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
次の(i)から(iv)の工程を含むことを特徴とする製造方法である。
(i) 少なくともモリブデン、リン、バナジウムおよび尿素類を含み、モリブデン、リンおよびバナジウムの各元素、ならびに尿素類の90モル%以上が溶液側に分配されている溶液またはスラリー(a液)を調製する工程、
(ii) a液の温度を60℃以上とし、60℃以上の期間に100℃を超えないようにし、かつ60℃以上の期間に下記式(2)で定義されるアンモニウムイオン生成係数が0.01〜0.7mol-NH4 +/(hr・L・mol-Mo)となる条件で液中に沈殿を生じさせスラリー(A液)を調製する工程、
アンモニウムイオン生成係数[mol-NH4 +/(hr・L・mol-Mo)]=x/(t×y×z) (2)
t:液温が60℃以上の期間(加熱期間)[時間]
x:加熱期間に生成するアンモニウムイオンの量[mol-NH4 +]
y:a液の体積[L]
z:a液に含まれるモリブデン原子の量[mol-Mo]
(iii) A液またはA液由来の液とZ元素の化合物とを混合してスラリー(C液)を調製する工程、
(iv) C液またはC液由来の液を乾燥する工程
The inventors of the present invention can improve the fluidity of the dried product by causing precipitation from a solution containing molybdenum, phosphorus and vanadium under specific conditions, and can improve the yield of the resulting catalyst. To solve the above problem.
That is, the present invention is a method for producing a catalyst having a composition represented by the following formula (1), which is used in producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen,
P a Mo b V c Cu d X e Y f Z g O h (1)
(In the formula (1), P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, and X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium and silicon. , At least one element selected from the group consisting of tungsten and boron, Y is at least selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium and cesium, a, b, c, d, e, f, g and h are atomic ratios of the respective elements When b = 12, a = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0-3, f = 0-3, = Is 0.01 to 3, h is an atomic ratio of oxygen required to satisfy the valence of each component.)
A production method comprising the following steps (i) to (iv):
(I) Prepare a solution or slurry (liquid a) containing at least molybdenum, phosphorus, vanadium and urea, each element of molybdenum, phosphorus and vanadium, and 90 mol% or more of urea being distributed to the solution side Process,
(Ii) The temperature of the liquid a is set to 60 ° C. or higher, does not exceed 100 ° C. during a period of 60 ° C. or higher, and the ammonium ion production coefficient defined by the following formula (2) is 0. A step of preparing a slurry (liquid A) by causing precipitation in the liquid under the conditions of 01 to 0.7 mol-NH 4 + / (hr · L · mol-Mo);
Ammonium ion formation coefficient [mol-NH 4 + / (hr · L · mol-Mo)] = x / (t × y × z) (2)
t: Period when the liquid temperature is 60 ° C. or higher (heating period) [hour]
x: Amount of ammonium ion generated during heating period [mol-NH 4 + ]
y: Volume of liquid a [L]
z: Molybdenum atom content in liquid a [mol-Mo]
(Iii) A step of preparing a slurry (liquid C) by mixing liquid A or liquid derived from liquid A and a compound of element Z,
(Iv) Step of drying C liquid or liquid derived from C liquid
また本発明は、上記の方法により触媒を製造し、得られた触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法である。 The present invention is also a method for producing methacrylic acid, in which a catalyst is produced by the above-described method, and methacrolein is vapor-phase contact oxidized with molecular oxygen in the presence of the obtained catalyst.
本発明によれば、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる触媒の製造方法において、製造過程で得られる乾燥物の流動性を向上させることができる。また、本発明によればメタクリル酸を高収率で製造することができる触媒を製造することができる。 ADVANTAGE OF THE INVENTION According to this invention, the fluidity | liquidity of the dry matter obtained in a manufacturing process can be improved in the manufacturing method of the catalyst used when vapor-phase catalytic oxidation of methacrolein is carried out with molecular oxygen, and methacrylic acid is manufactured. . Moreover, according to this invention, the catalyst which can manufacture methacrylic acid with a high yield can be manufactured.
以下、本発明のメタクリル酸製造用触媒(以下、単に触媒ということもある)の製造方法について、さらに詳しく説明する。 Hereinafter, the method for producing a catalyst for producing methacrylic acid of the present invention (hereinafter sometimes simply referred to as a catalyst) will be described in more detail.
本発明で製造する触媒は前記の式(1)の組成を有するものであって、リン、モリブデン、バナジウム、銅、Z元素および酸素を必須成分として構成されるものであり、X元素およびY元素は任意成分である。Z元素としてはセシウムが好ましい。後述する各原料の配合比を適宜調整することで、目的とする触媒における各元素の原子比率(aおよびc〜g)を上記範囲で任意に設定することができる。触媒の酸素以外の原子比(組成比)は、例えばアンモニア水に溶解した触媒をICP発光分析法と原子吸光分析法で分析することによって分析することができる。 The catalyst produced in the present invention has the composition of the above formula (1), and is composed of phosphorus, molybdenum, vanadium, copper, Z element and oxygen as essential components, and X element and Y element. Is an optional component. As the Z element, cesium is preferable. The atomic ratio (a and c to g) of each element in the target catalyst can be arbitrarily set within the above range by appropriately adjusting the blending ratio of each raw material to be described later. The atomic ratio (composition ratio) other than oxygen of the catalyst can be analyzed, for example, by analyzing the catalyst dissolved in aqueous ammonia by ICP emission spectrometry and atomic absorption spectrometry.
本発明の触媒の製造方法には、前記の(i)から(iv)の工程が含まれる。 The method for producing a catalyst of the present invention includes the steps (i) to (iv).
工程(i)において、a液は、少なくともモリブデン化合物、バナジウム化合物、リン化合物および尿素類の各化合物を溶媒に溶解させることにより調製する。a液にはモリブデン、リンおよびバナジウムの各元素、ならびに尿素類の90モル%以上が溶液側に分配されている必要があり(以下、条件1という)、好ましくは95モル%以上、特に好ましくは100モル%である。すなわち、a液はこれらの各元素および化合物の全量が溶解しており、固形物側に含まれていないことが特に好ましい。溶液側に分配される各元素および化合物の割合は多いほど後述する(ii)工程で生成させる沈殿の量が多くなり、(iv)工程の過程で得られる乾燥物の流動性が高まる。この溶液を調製する際の各化合物の混合方法は特に限定されない。混合方法としては、例えば、化合物を同時または順次溶液に溶解させる方法、化合物を別個に溶解させたのちにこれらの溶液を混合する方法等が挙げられる。 In step (i), the solution a is prepared by dissolving at least each of a molybdenum compound, a vanadium compound, a phosphorus compound, and urea compounds in a solvent. In the liquid a, each element of molybdenum, phosphorus and vanadium, and 90 mol% or more of ureas must be distributed to the solution side (hereinafter referred to as condition 1), preferably 95 mol% or more, particularly preferably 100 mol%. That is, it is particularly preferable that the liquid a is dissolved in the total amount of each of these elements and compounds and is not contained on the solid side. The greater the proportion of each element and compound distributed to the solution side, the greater the amount of precipitate produced in the step (ii) described later, and the fluidity of the dry matter obtained in the process of (iv) step increases. The mixing method of each compound at the time of preparing this solution is not specifically limited. Examples of the mixing method include a method of dissolving the compounds in the solution simultaneously or sequentially, a method of dissolving the compounds separately and then mixing these solutions.
使用できるモリブデン化合物としては、例えば、リンモリブデン酸、モリブデン酸アンモニウム、三酸化モリブデン等が挙げられる。中でも溶解度が高いという理由でリンモリブデン酸、モリブデン酸アンモニウム等が好ましい。 Examples of the molybdenum compound that can be used include phosphomolybdic acid, ammonium molybdate, and molybdenum trioxide. Of these, phosphomolybdic acid and ammonium molybdate are preferred because of their high solubility.
使用できるバナジウム化合物としては、例えば、メタバナジン酸アンモニウム、蓚酸バナジル、リンバナドモリブデン酸、炭化バナジウム、五酸化バナジウム等が挙げられる。中でも溶解度が高いという理由でメタバナジン酸アンモニウム、蓚酸バナジル、リンバナドモリブデン酸が好ましい。 Examples of vanadium compounds that can be used include ammonium metavanadate, vanadyl oxalate, phosphovanadomolybdic acid, vanadium carbide, and vanadium pentoxide. Of these, ammonium metavanadate, vanadyl oxalate, and phosphovanadomolybdic acid are preferred because of their high solubility.
使用できるリン化合物としては、例えば、リンモリブデン酸、リンバナドモリブデン酸、リン酸、リン酸ジフェニル、リン酸トリフェニル、リン酸尿素等が挙げられる。また、リン酸アンモニウム等の塩を用いることもできる。中でも高い溶解度および安価であるという理由でリンモリブデン酸、リンバナドモリブデン酸、リン酸が好ましい。 Examples of the phosphorus compound that can be used include phosphomolybdic acid, phosphovanadomolybdic acid, phosphoric acid, diphenyl phosphate, triphenyl phosphate, and urea phosphate. A salt such as ammonium phosphate can also be used. Of these, phosphomolybdic acid, phosphovanadomolybdic acid and phosphoric acid are preferred because of their high solubility and low cost.
使用できる尿素類とは尿素および尿素誘導体である。ここで「尿素誘導体」とは、尿素の窒素原子と結合している水素原子の少なくとも一つが他の原子団と置き換わったものの総称である。このような尿素類としては、例えば、尿素、メチル尿素、メチル尿素塩、N,N−ジメチル尿素、アリル尿素、N-ベンジル尿素等が挙げられる。中でも、安価であるという理由で尿素、メチル尿素、N,N−ジメチル尿素が好ましい。 Ureas that can be used are urea and urea derivatives. Here, the “urea derivative” is a general term for a substance in which at least one hydrogen atom bonded to the nitrogen atom of urea is replaced with another atomic group. Examples of such ureas include urea, methylurea, methylurea salt, N, N-dimethylurea, allylurea, N-benzylurea and the like. Of these, urea, methylurea, and N, N-dimethylurea are preferable because they are inexpensive.
モリブデン化合物、バナジウム化合物、リン化合物および尿素類等は1種を用いても、2種以上を併用してもよい。 A molybdenum compound, a vanadium compound, a phosphorus compound, and ureas may be used alone or in combination of two or more.
a液の原料となる各化合物の組合せおよび量は条件1を満たすように適宜選定される。a液には、モリブデン化合物、バナジウム化合物、リン化合物、尿素類以外の化合物を含んでいてもよい。このような化合物としては、例えばX元素(アンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素)やY元素(鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素)の塩、酸化物等の化合物が挙げられる。 The combination and amount of each compound used as the raw material for the liquid a are appropriately selected so as to satisfy the condition 1. The liquid a may contain compounds other than molybdenum compounds, vanadium compounds, phosphorus compounds, and ureas. Examples of such compounds include X element (at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten, and boron) and Y element (iron , Zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum), and salts and oxides.
また、a液にはZ元素、すなわちカリウム、ルビジウムおよびセシウムからなる群より選ばれた少なくとも1種類の元素を含んでいてもよいが、多く含むとモリブデンおよびリンと化合して非溶解物を形成するので、条件1から外れる場合がある。そのため、a液中のZ元素の量は少ない方が好ましく、含まないことが特に好ましい。 In addition, the solution a may contain at least one element selected from the group consisting of element Z, that is, potassium, rubidium and cesium. Therefore, there is a case where the condition 1 is not satisfied. For this reason, it is preferable that the amount of the Z element in the liquid a is small, and it is particularly preferable not to include it.
これらの化合物の配合比は目的とする触媒の組成となるように適宜設定すればよい。モリブデン化合物、リン化合物およびバナジウム化合物は、全量をa液に含めることが、調製が容易になるので好ましいが、a液には一部だけ含め、残りを後述するZ元素の化合物と同時期に添加したり前駆体混合液に添加したりしてもよい。 What is necessary is just to set suitably the compounding ratio of these compounds so that it may become the composition of the target catalyst. Molybdenum compound, phosphorus compound and vanadium compound are preferably included in the liquid a because it is easy to prepare. However, only a part is included in the liquid a and the remainder is added at the same time as the compound of element Z described later. Or may be added to the precursor mixture.
a液の溶媒は溶質となる化合物を溶解することができる化合物であれば特に限定されない。このような溶媒としては、例えば、水、アルコール等が挙げられる。中でも水が好ましい。溶媒の量は溶質となる化合物を溶解することができる量であれば特に限定されないが、a液に含まれるモリブデン1質量部に対して0.1〜100質量部が好ましい。 The solvent of the liquid a is not particularly limited as long as it is a compound that can dissolve a compound that becomes a solute. Examples of such a solvent include water and alcohol. Of these, water is preferred. Although the quantity of a solvent will not be specifically limited if it is the quantity which can melt | dissolve the compound used as a solute, 0.1-100 mass parts is preferable with respect to 1 mass part of molybdenum contained in a liquid.
a液を調製する際の液の温度は、尿素類が含まれていないときは特に限定されないが、尿素類を含んでから以降は尿素類が実質的に分解しない60℃未満とする。また調製後のa液の温度は、モリブデン、リン、バナジウムおよび尿素類の各元素および化合物の90モル%以上が溶液側に分配されるような温度とする。 Although the temperature of the liquid at the time of preparing the liquid a is not particularly limited when ureas are not included, it is set to less than 60 ° C. at which the ureas are not substantially decomposed after the ureas are included. The temperature of the solution a after the preparation is such that 90 mol% or more of each element and compound of molybdenum, phosphorus, vanadium, and urea are distributed to the solution side.
工程(ii)では、a液の温度を60℃以上とし、60℃以上の期間に100℃を超えないようにし、かつ60℃以上の期間に前記式(2)で定義されるアンモニウムイオン生成係数が0.01〜0.7mol-NH4 +/(hr・L・mol-Mo)となる条件(以下、条件2という)、好ましくは0.05〜0.6mol-NH4 +/(hr・L・mol-Mo)となる条件にして尿素類を分解とa液中にアンモニウムイオンが発生し、これによってモリブデンおよびリンを含む沈殿が生成する。このようにしてスラリー状のA液を製造する。アンモニウムイオン生成係数は、高いほど反応成績の優れた触媒が得られ、低いほど流動性に優れた乾燥粉が得られる。 In step (ii), the temperature of the liquid a is set to 60 ° C. or higher so that it does not exceed 100 ° C. during the period of 60 ° C. Is 0.01 to 0.7 mol-NH 4 + / (hr · L · mol-Mo) (hereinafter referred to as condition 2), preferably 0.05 to 0.6 mol-NH 4 + / (hr · Under the condition of (L · mol-Mo), ureas are decomposed and ammonium ions are generated in the liquid a, thereby forming a precipitate containing molybdenum and phosphorus. In this way, slurry A liquid is produced. The higher the ammonium ion production coefficient, the better the catalyst with excellent reaction results, and the lower the ammonium ion production coefficient, the more dry powder with excellent fluidity.
式(2)において、t(加熱期間)は液温が60℃以上の期間(単位:時間)、xは加熱期間に生成するアンモニウムイオンの量(単位:mol-NH4 +)、yはa液の体積(単位:L)、zはa液に含まれるモリブデン原子の量(単位:mol-Mo)である。xは加熱開始時の液のpH値と加熱終了時の液のpH値からpH変化が全てアンモニウムイオンによるものとして算出する。pHは液の一部をサンプリングして30℃に冷却したサンプルについて測定する。zはa液の調製に使用したモリブデン化合物の量から計算により求めることができる。 In the formula (2), t (heating period) is a period when the liquid temperature is 60 ° C. or more (unit: time), x is the amount of ammonium ions generated during the heating period (unit: mol-NH 4 + ), y is a The volume of the liquid (unit: L), z is the amount of molybdenum atoms contained in the liquid a (unit: mol-Mo). x is calculated from the pH value of the liquid at the start of heating and the pH value of the liquid at the end of heating, assuming that all pH changes are due to ammonium ions. The pH is measured on a sample obtained by sampling a part of the liquid and cooling to 30 ° C. z can be obtained by calculation from the amount of the molybdenum compound used in the preparation of solution a.
この工程では、60℃未満のa液を加熱し、液の温度が60℃以上になったところで60〜100℃の範囲で一定時間保持し、その後60℃未満にするように操作することが好ましい。その際の保持温度は65〜90℃が好ましい。また、液の温度は60℃以上とした後、60℃未満とし、再び60℃以上にするというように断続的に60〜100℃にすることもできる。この場合は、液の温度が60〜100℃の範囲にある期間の合計時間を加熱期間とする。保持温度は高いほど反応成績の優れた触媒が得られ、低いほど流動性に優れた乾燥粉が得られる。加熱期間は1〜30時間が好ましく、1.5〜18時間がより好ましい。加熱期間は長いほど触媒原料同士の反応を十分に進行させることができ、短いほど沈殿粒子の凝集を抑えることができる。 In this step, it is preferable to operate so that the liquid “a” of less than 60 ° C. is heated and kept at a temperature in the range of 60 to 100 ° C. for a certain period of time when the temperature of the solution becomes 60 ° C. or higher. . The holding temperature at that time is preferably 65 to 90 ° C. Moreover, after setting the temperature of a liquid to 60 degreeC or more, it can also be 60-100 degreeC intermittently so that it may be set to less than 60 degreeC and 60 degreeC or more again. In this case, the total period of the period in which the temperature of the liquid is in the range of 60 to 100 ° C. is set as the heating period. The higher the holding temperature, the better the catalyst with excellent reaction results, and the lower the temperature, the more dry powder with excellent fluidity. The heating period is preferably 1 to 30 hours, more preferably 1.5 to 18 hours. The longer the heating period, the more the reaction between the catalyst raw materials can proceed, and the shorter the heating period, the more agglomerated precipitated particles can be suppressed.
工程(ii)のようにすることによって、工程(iv)で得られる乾燥物の流動性が良くなり、得られる触媒のメタクリル酸収率が向上する理由は明らかではない。しかし、乾燥粉の流動性が良くなる理由としては、a液を条件2で処理することによってアンモニウムイオンの発生速度が制御されてメディアン径が大きな沈殿が得られるためと推定している。また、触媒のメタクリル酸収率が向上する理由としては、この沈殿に触媒の前駆体として好ましい結晶構造が含まれているためと推定している。 The reason for improving the methacrylic acid yield of the catalyst obtained by improving the fluidity of the dried product obtained in the step (iv) by performing the step (ii) is not clear. However, it is estimated that the reason why the fluidity of the dry powder is improved is that, by treating the liquid “a” under the condition 2, the generation rate of ammonium ions is controlled and precipitation with a large median diameter is obtained. The reason why the methacrylic acid yield of the catalyst is improved is presumed that this precipitate contains a crystal structure preferable as a catalyst precursor.
工程(iii)では、A液またはA液由来の液(これらをまとめてA液等という)とZ元素の化合物とを混合してスラリー(以下、C液という)を調製する。Z元素の化合物(触媒原料)は液体に溶解または懸濁させることなく、例えば粉末状態でA液等と混合してもよいが、液体に溶解した溶液または懸濁させたスラリー(これらをまとめてB液という)としてA液等と混合することが反応成績の優れた触媒が得られるという点で好ましく、均一な組成の触媒が得られるとう点でB液は溶液状態でA液等と混合することが特に好ましい。 In step (iii), A liquid or a liquid derived from A liquid (these are collectively referred to as A liquid) and a compound of Z element are mixed to prepare a slurry (hereinafter referred to as C liquid). The compound of element Z (catalyst raw material) may be mixed with liquid A or the like, for example, in a powder state without being dissolved or suspended in the liquid, but the solution dissolved in the liquid or the suspended slurry (collectively It is preferable to mix with A liquid or the like as B liquid) in that a catalyst having excellent reaction results can be obtained, and B liquid is mixed with A liquid or the like in a solution state in that a catalyst with a uniform composition can be obtained. It is particularly preferred.
ここで、A液由来の液とはA液に各種の化合物を加えた液を加えたり、A液に各種の処理を施したりしたものことである。A液に加えることのできる化合物としては、例えば、銅化合物、アンチモン化合物、ビスマス化合物、砒素化合物、ゲルマニウム化合物、ジルコニウム化合物、テルル化合物、銀化合物、セレン化合物、ケイ素化合物、タングステン化合物、ホウ素化合物、鉄化合物、亜鉛化合物、クロム化合物、マグネシウム化合物、タンタル化合物、コバルト化合物、マンガン化合物、バリウム化合物、ガリウム化合物、セリウム化合物、ランタン化合物等が挙げられる。加える化合物は何種類でもよい。加えるときの化合物の性状は特に限定されず、例えば、固体粉末状、液体等が挙げられる。また、水等の液体に溶解あるいは懸濁させた状態で加えてもよい。A液に施すことができる処理としては、例えば、加熱、冷却、攪拌、熟成等が挙げられる。 Here, the liquid derived from the liquid A is a liquid obtained by adding various compounds to the liquid A or performing various treatments on the liquid A. Examples of compounds that can be added to the liquid A include copper compounds, antimony compounds, bismuth compounds, arsenic compounds, germanium compounds, zirconium compounds, tellurium compounds, silver compounds, selenium compounds, silicon compounds, tungsten compounds, boron compounds, irons. Examples thereof include compounds, zinc compounds, chromium compounds, magnesium compounds, tantalum compounds, cobalt compounds, manganese compounds, barium compounds, gallium compounds, cerium compounds, and lanthanum compounds. Any number of compounds may be added. The properties of the compound when added are not particularly limited, and examples thereof include solid powder and liquid. Moreover, you may add in the state melt | dissolved or suspended in liquids, such as water. Examples of the treatment that can be applied to the liquid A include heating, cooling, stirring, and aging.
混合方法は特に限定されず、例えば、A液等が入った容器にB液を加える方法、B液が入った容器に加熱したA液等を加える方法、容器にA液等とB液を同時に加える方法等の任意の方法が利用できる。混合は、攪拌しながら行うことが好ましい。前駆体混合液の調製温度は特に限定されないが、必要に応じて100℃程度まで加熱して攪拌しながら調製してもかまわない。 The mixing method is not particularly limited. For example, the method of adding the B solution to the container containing the A solution, the method of adding the heated A solution to the container containing the B solution, the A solution and the B solution in the container at the same time. Any method, such as an adding method, can be used. The mixing is preferably performed while stirring. The preparation temperature of the precursor mixed solution is not particularly limited, but may be prepared while heating to about 100 ° C. and stirring as necessary.
使用できるZ元素の化合物としては、例えば、硝酸塩、炭酸塩、水酸化物等が挙げられる。具体的には、Z元素がセシウムの場合は、硝酸セシウム、炭酸セシウム、水酸化セシウム等である。Z元素の化合物は1種を用いても、2種以上を併用してもよい。また、Z元素の種類は1種類であっても、2種類以上であってもよい。Z元素はセシウムの場合により寿命の長い触媒が得られる。Z元素の化合物の量は目的とする触媒の組成となるように適宜設定すればよい。 Examples of Z element compounds that can be used include nitrates, carbonates, hydroxides, and the like. Specifically, when the Z element is cesium, they are cesium nitrate, cesium carbonate, cesium hydroxide, and the like. The compound of Z element may use 1 type, or may use 2 or more types together. Moreover, the kind of Z element may be one kind, or two or more kinds. When the element Z is cesium, a catalyst having a longer life can be obtained. What is necessary is just to set suitably the quantity of the compound of Z element so that it may become the composition of the target catalyst.
A液等とZ元素の化合物を混合する際には、式(1)の組成に含まれる元素(酸素は除く)の化合物も同時期に混合してもよい。その際はこれらの化合物をB液に含めることができるが、B液にはZ元素の化合物以外の触媒原料は実質的に含まないことが好ましい。 When mixing the liquid A and the compound of the Z element, the compound of the element (excluding oxygen) included in the composition of the formula (1) may be mixed at the same time. In this case, these compounds can be contained in the B liquid, but it is preferable that the B liquid does not substantially contain any catalyst raw material other than the Z element compound.
B液を調製する場合に使用する液体としては、例えば、水、アルコール等が挙げられる。中でも水が好ましい。液体の量は特に限定されないが、B液に含まれる全ての触媒原料1質量部に対して0.1〜100質量部であることが好ましい。B液は、常温で攪拌して調製することが好ましいが、適宜50℃程度まで加熱して調製しても構わない。 As a liquid used when preparing B liquid, water, alcohol, etc. are mentioned, for example. Of these, water is preferred. Although the quantity of a liquid is not specifically limited, It is preferable that it is 0.1-100 mass parts with respect to 1 mass part of all the catalyst raw materials contained in B liquid. Liquid B is preferably prepared by stirring at room temperature, but it may be prepared by appropriately heating to about 50 ° C.
このようにして得られたC液には、式(1)の組成に含まれる元素(酸素は除く)の化合物をさらに混合してもよい。その際はこれらの化合物の溶液またはスラリーで混合することが好ましい。このようにして得られたスラリーおよびC液は以下まとめてC液等という。 The liquid C thus obtained may further be mixed with a compound of an element (excluding oxygen) contained in the composition of the formula (1). In that case, it is preferable to mix with the solution or slurry of these compounds. The slurry and C liquid thus obtained are collectively referred to as C liquid and the like hereinafter.
工程(iv)では、このようにして得られたC液等を乾燥して乾燥物を得る。乾燥方法は特に限定されず、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等の種々の乾燥方法を用いることができる。中でも、取り扱いやすい粉状の乾燥物が得られることからドラム乾燥法、噴霧乾燥法、気流乾燥法が好ましく、ドラム乾燥法、噴霧乾燥法が特に好ましい。また、乾燥時の温度、時間等の条件は特に限定されず、乾燥条件を適宜変えることによって目的に応じた乾燥物を得ることができる。 In step (iv), the liquid C obtained in this way is dried to obtain a dried product. The drying method is not particularly limited, and various drying methods such as an evaporation to dryness method, a spray drying method, a drum drying method, and an airflow drying method can be used. Of these, a drum drying method, a spray drying method, and an air flow drying method are preferable because a powdery dried product that is easy to handle is obtained, and a drum drying method and a spray drying method are particularly preferable. Moreover, conditions, such as temperature at the time of drying, time, are not specifically limited, The dried material according to the objective can be obtained by changing drying conditions suitably.
このようにして得られた乾燥物は、必要により粉砕した後、成形せずにそのまま次の焼成を行ってもよいが、成形した成形品を焼成することが好ましい。成形方法は特に限定されず、公知の乾式および湿式の種々の成形法が適用できる。具体的な成形方法としては、例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状についても特に限定されず、例えば、円柱状、リング状、球状等の所望の形状を選択することができる。成形はシリカ等の担体を含めずに行うことが好ましい。成形に際しては、公知の添加剤、例えば、グラファイト、タルク等を添加してもよい。 The dried product thus obtained may be pulverized if necessary and then directly fired without being molded, but it is preferred to fire the molded product. The molding method is not particularly limited, and various known dry and wet molding methods can be applied. Specific examples of the molding method include tableting molding, press molding, extrusion molding, and granulation molding. The shape of the molded product is not particularly limited, and for example, a desired shape such as a columnar shape, a ring shape, or a spherical shape can be selected. The molding is preferably performed without including a carrier such as silica. In molding, known additives such as graphite and talc may be added.
得られた乾燥物の成形品または非成形の乾燥物は焼成して、本発明のメタクリル酸製造用触媒を得る。非成形の乾燥物を焼成した場合、得られた焼成物を成形して触媒とすることが好ましい。焼成方法や焼成条件は特に限定されず、公知の処理方法および条件を適用することができる。焼成の最適条件は、用いる触媒原料、触媒組成、調製法等によって異なるが、通常、空気等の酸素含有ガス流通下および/または不活性ガス流通下で、200〜500℃、好ましくは300〜450℃で、0.5時間以上、好ましくは1〜40時間で行う。ここで、不活性ガスとは、触媒の反応活性を低下させないような気体のことをいい、具体的には、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。 The obtained dried product or non-molded product is calcined to obtain the catalyst for producing methacrylic acid of the present invention. When a non-molded dried product is calcined, the obtained calcined product is preferably molded into a catalyst. The firing method and firing conditions are not particularly limited, and known treatment methods and conditions can be applied. Optimum conditions for calcination vary depending on the catalyst raw material, catalyst composition, preparation method, and the like, but are usually 200 to 500 ° C., preferably 300 to 450 under an oxygen-containing gas flow such as air and / or an inert gas flow. It is carried out at 0 ° C. for 0.5 hour or longer, preferably 1 to 40 hours. Here, the inert gas refers to a gas that does not decrease the reaction activity of the catalyst, and specifically includes nitrogen, carbon dioxide, helium, argon, and the like.
次に、本発明のメタクリル酸の製造方法について説明する。本発明のメタクリル酸の製造方法は、上記のようにして得られた本発明の触媒の存在下でメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するものである。反応は、通常、固定床で行い、その場合の触媒層は1層でも2層以上でもよく、触媒層は触媒を希釈担体等の不活性固体で希釈したものであってもよい。反応は、メタクロレインと分子状酸素とを含む原料ガスを触媒と接触させて行う。原料ガス中のメタクロレイン濃度は広い範囲で変えることができるが、1〜20容量%が好ましく、特に3〜10容量%が好ましい。分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気等も用いることができる。原料ガス中の分子状酸素濃度はメタクロレイン1モルに対して0.4〜4モルが好ましく、特に0.5〜3モルが好ましい。原料ガスの接触時間は通常1.5〜15秒であり、好ましくは2〜5秒である。原料ガスは水蒸気を含んでいてもよい。水蒸気の存在下で反応を行うと、より高収率でメタクリル酸が得られる。原料ガス中の水蒸気の濃度は、0.1〜50容量%、特に1〜40容量%が好ましい。また、原料ガスには低級飽和アルデヒド等の不純物を少量含んでいてもよいが、その量はできるだけ少ないことが好ましい。反応圧力は大気圧から数気圧まで用いられる。反応温度は230〜450℃が好ましく、特に250〜400℃が好ましい。 Next, the manufacturing method of methacrylic acid of this invention is demonstrated. The method for producing methacrylic acid of the present invention is a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen in the presence of the catalyst of the present invention obtained as described above. The reaction is usually carried out in a fixed bed, and the catalyst layer in that case may be one layer or two or more layers, and the catalyst layer may be obtained by diluting the catalyst with an inert solid such as a diluent carrier. The reaction is carried out by bringing a raw material gas containing methacrolein and molecular oxygen into contact with the catalyst. The concentration of methacrolein in the raw material gas can be varied within a wide range, but is preferably 1 to 20% by volume, particularly 3 to 10% by volume. Although it is economical to use air as the molecular oxygen source, air or the like enriched with pure oxygen can also be used if necessary. The molecular oxygen concentration in the raw material gas is preferably 0.4 to 4 mol, particularly preferably 0.5 to 3 mol, relative to 1 mol of methacrolein. The contact time of the source gas is usually 1.5 to 15 seconds, preferably 2 to 5 seconds. The source gas may contain water vapor. When the reaction is carried out in the presence of water vapor, methacrylic acid is obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably 0.1 to 50% by volume, particularly 1 to 40% by volume. The source gas may contain a small amount of impurities such as lower saturated aldehyde, but the amount is preferably as small as possible. The reaction pressure is from atmospheric pressure to several atmospheres. The reaction temperature is preferably 230 to 450 ° C, particularly preferably 250 to 400 ° C.
以下、実施例および比較例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。加熱期間に生成したアンモニウムイオンの量xは加熱開始時(昇温時に60℃になったとき)の液のpH値と加熱終了時(降温時に60℃になったとき)の液のpH値からpH変化が全てアンモニウムイオンによるものとして算出した。pHは液の一部をサンプリングして30℃に冷却したサンプルについて測定した。触媒前駆体のメディアン径測定にはレーザー回折・散乱法を用い、分布基準には体積基準を用いた。乾燥物の流動性は、Carr,R.L.,Chem.Eng.72.Jan.18(1965)に記載の流動性指数を用いて評価した。この流動性指数は大きいほど流動性が良いことを示す。また、メタクロレインの反応率、生成したメタクリル酸の選択率、メタクリル酸の単流収率は以下のように定義される。
メタクロレイン(MAL)の反応率(%)=(B/A)×100
メタクリル酸(MAA)の選択率(%)=(C/B)×100
メタクリル酸(MAA)の単流収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples. The amount x of ammonium ions generated during the heating period is based on the pH value of the liquid at the start of heating (when the temperature rises to 60 ° C.) and the pH value of the liquid at the end of the heating (when it reaches 60 ° C. when the temperature decreases). All pH changes were calculated based on ammonium ions. The pH was measured on a sample that was sampled from a portion of the liquid and cooled to 30 ° C. A laser diffraction / scattering method was used to measure the median diameter of the catalyst precursor, and a volume reference was used as the distribution reference. The flowability of the dried product is determined by Carr, R. L. , Chem. Eng. 72. Jan. 18 (1965). The larger the fluidity index, the better the fluidity. Moreover, the reaction rate of methacrolein, the selectivity of the produced | generated methacrylic acid, and the single flow yield of methacrylic acid are defined as follows.
Reaction rate (%) of methacrolein (MAL) = (B / A) × 100
Methacrylic acid (MAA) selectivity (%) = (C / B) × 100
Single flow yield (%) of methacrylic acid (MAA) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.
[実施例1]
(a液の調製) 純水800gにリンモリブデン酸63.2g、リンバナドモリブデン酸38.5g、硝酸第二銅1.02g、硝酸第二鉄0.85g、尿素78.44gを加え、攪拌して25℃のa液を調製した。なおa液は均一溶液であった。
[Example 1]
(Preparation of solution a) To 800 g of pure water, 63.2 g of phosphomolybdic acid, 38.5 g of phosphovanadomolybdic acid, 1.02 g of cupric nitrate, 0.85 g of ferric nitrate and 78.44 g of urea were added and stirred. A solution at 25 ° C. was prepared. Liquid a was a uniform solution.
(A液の調製) 25℃のa液を攪拌しながら昇温し80℃の還流下で4時間保持して液中に触媒前駆体を析出させた後、50℃まで降温してスラリー状のA液を調製した。このとき、加熱期間tは4.2時間、加熱期間に生成したアンモニウムイオンの量xは0.37mol、a液の体積yは0.81L、a液に含まれていたモリブデン原子の量zは0.51molであり、前記式(2)で定義されるアンモニウムイオン生成係数は0.215mol-NH4 +/(hr・L・mol-Mo)であった。また、A液中の固形物のメディアン径は23.8μmであった。 (Preparation of liquid A) The temperature of the liquid a at 25 ° C. was increased while stirring and held at reflux at 80 ° C. for 4 hours to precipitate the catalyst precursor in the liquid. A liquid A was prepared. At this time, the heating period t is 4.2 hours, the amount x of ammonium ions generated during the heating period is 0.37 mol, the volume y of the liquid a is 0.81 L, and the amount z of molybdenum atoms contained in the liquid a is The ammonium ion production coefficient defined by the formula (2) was 0.215 mol-NH 4 + / (hr · L · mol-Mo). Moreover, the median diameter of the solid substance in A liquid was 23.8 micrometers.
(B液の調製) 純水100gに硝酸セシウム8.24gを25℃で溶解させてB液を調製した。 (Preparation of Liquid B) Liquid B was prepared by dissolving 8.24 g of cesium nitrate at 25 ° C. in 100 g of pure water.
(前駆体混合液の調製) 50℃のA液を攪拌しながらB液を加えてスラリー状のC液を調製した。 (Preparation of Precursor Mixture) A liquid B was added while stirring the liquid A at 50 ° C. to prepare a slurry C liquid.
(乾燥・焼成) C液を表面温度が130℃のドラム乾燥機で乾燥し、得られた固形分を130℃で16時間乾燥して流動性指数が76の乾燥物を得た。この乾燥物を外径4mm、内径1mm、高さ4mmのリング形状に打錠成形した後、空気流通下、375℃にて10時間焼成して触媒を得た。得られた触媒の組成はP1.0Mo12V0.65Cu0.15Fe0.1Cs1.0であった。 (Drying / Baking) The liquid C was dried with a drum dryer having a surface temperature of 130 ° C., and the obtained solid content was dried at 130 ° C. for 16 hours to obtain a dried product having a fluidity index of 76. The dried product was tablet-molded into a ring shape having an outer diameter of 4 mm, an inner diameter of 1 mm, and a height of 4 mm, and then calcined at 375 ° C. for 10 hours in an air stream to obtain a catalyst. The composition of the obtained catalyst was P 1.0 Mo 12 V 0.65 Cu 0.15 Fe 0.1 Cs 1.0 .
(メタクリル酸の合成反応) この触媒を反応管に充填し、メタクロレイン5%、酸素10%、水蒸気30%、窒素55%(容量%)の混合ガスを、大気圧下、反応温度285℃、接触時間3.6秒で通じて1時間の連続反応テストを行った。表2にA液中の固形物のメディアン径、乾燥物の流動性指数、製造した触媒組成、連続反応テストの反応結果を示した。 (Synthesis reaction of methacrylic acid) The catalyst was charged into a reaction tube, and a mixed gas of 5% methacrolein, 10% oxygen, 30% water vapor, 55% nitrogen (volume%) was reacted at 285 ° C. under atmospheric pressure, A one hour continuous reaction test was conducted with a contact time of 3.6 seconds. Table 2 shows the median diameter of the solid in the liquid A, the fluidity index of the dried product, the catalyst composition produced, and the reaction results of the continuous reaction test.
[実施例2〜6]
調製条件を表1のように変更した以外は実施例1と同様にして同じ組成の触媒を調製し連続反応テストを行った。結果を表2に示した。
[Examples 2 to 6]
A catalyst having the same composition was prepared in the same manner as in Example 1 except that the preparation conditions were changed as shown in Table 1, and a continuous reaction test was performed. The results are shown in Table 2.
[比較例1]
調製条件を表1のように変更した以外は実施例1と同様にして同じ組成の触媒を調製し連続反応テストを行った。結果を表2に示した。
[Comparative Example 1]
A catalyst having the same composition was prepared in the same manner as in Example 1 except that the preparation conditions were changed as shown in Table 1, and a continuous reaction test was performed. The results are shown in Table 2.
[比較例2]
a液の調製に使用する純水量を500gに変更し、さらに調製条件を表1のように変更した以外は実施例1と同様にして同じ組成の触媒を調製し連続反応テストを行った。結果を表2に示した。
[Comparative Example 2]
A catalyst having the same composition was prepared and subjected to a continuous reaction test in the same manner as in Example 1 except that the amount of pure water used for preparation of solution a was changed to 500 g and the preparation conditions were changed as shown in Table 1. The results are shown in Table 2.
[比較例3,4]
a液をオートクレーブを用いて調製し、a液の調製に使用する純水量を450gに変更し、さらに調製条件を表1のように変更した以外は実施例1と同様にして同じ組成の触媒を調製し連続反応テストを行った。結果を表2に示した。
[Comparative Examples 3 and 4]
Prepare a catalyst having the same composition as in Example 1 except that the liquid a was prepared using an autoclave, the amount of pure water used for preparing the liquid a was changed to 450 g, and the preparation conditions were changed as shown in Table 1. Prepared and subjected to continuous reaction test. The results are shown in Table 2.
[比較例5]
a液の調製に使用する純水量を450gに変更し、さらに調製条件を表1のように変更した以外は実施例1と同様にして同じ組成の触媒を調製し連続反応テストを行った。結果を表2に示した。
[Comparative Example 5]
A catalyst having the same composition was prepared and subjected to a continuous reaction test in the same manner as in Example 1 except that the amount of pure water used for preparation of solution a was changed to 450 g and the preparation conditions were changed as shown in Table 1. The results are shown in Table 2.
[比較例6]
a液の調製に使用する純水量を2000gに変更し、さらに調製条件を表1のように変更した以外は実施例1と同様にして同じ組成の触媒を調製し連続反応テストを行った。結果を表2に示した。
[Comparative Example 6]
A catalyst having the same composition was prepared and subjected to a continuous reaction test in the same manner as in Example 1 except that the amount of pure water used for preparation of solution a was changed to 2000 g and the preparation conditions were changed as shown in Table 1. The results are shown in Table 2.
[比較例7]
a液の調製に使用する純水量を770gに変更し、さらに調製条件を表1のように変更した以外は実施例1と同様にして同じ組成の触媒を調製し連続反応テストを行った。結果を表2に示した。
[Comparative Example 7]
A catalyst having the same composition was prepared in the same manner as in Example 1 except that the amount of pure water used for preparation of solution a was changed to 770 g and the preparation conditions were changed as shown in Table 1, and a continuous reaction test was performed. The results are shown in Table 2.
Claims (2)
PaMobVcCudXeYfZgOh (1)
(式(1)中、P、Mo、V、CuおよびOは、それぞれリン、モリブデン、バナジウム、銅および酸素を示し、Xはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウムおよびセシウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
次の(i)から(iv)の工程を含むことを特徴とする製造方法。
(i) 少なくともモリブデン、リン、バナジウムおよび尿素類を含み、モリブデン、リンおよびバナジウムの各元素、ならびに尿素類の90モル%以上が溶液側に分配されている溶液またはスラリー(a液)を調製する工程、
(ii) a液の温度を60℃以上とし、60℃以上の期間に100℃を超えないようにし、かつ60℃以上の期間に下記式(2)で定義されるアンモニウムイオン生成係数が0.01〜0.7mol-NH4 +/(hr・L・mol-Mo)となる条件で液中に沈殿を生じさせスラリー(A液)を調製する工程、
アンモニウムイオン生成係数[mol-NH4 +/(hr・L・mol-Mo)]=x/(t×y×z) (2)
t:液温が60℃以上の期間(加熱期間)[時間]
x:加熱期間に生成するアンモニウムイオンの量[mol-NH4 +]
y:a液の体積[L]
z:a液に含まれるモリブデン原子の量[mol-Mo]
(iii) A液またはA液由来の液とZ元素の化合物とを混合してスラリー(C液)を調製する工程、
(iv) C液またはC液由来の液を乾燥する工程 A method for producing a catalyst having a composition represented by the following formula (1), which is used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen,
P a Mo b V c Cu d X e Y f Z g O h (1)
(In the formula (1), P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, and X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium and silicon. , Y represents at least one element selected from the group consisting of tungsten and boron, Y is at least selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium and cesium, a, b, c, d, e, f, g and h are atomic ratios of the respective elements When b = 12, a = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0-3, f = 0-3, = Is 0.01 to 3, h is an atomic ratio of oxygen required to satisfy the valence of each component.)
A production method comprising the following steps (i) to (iv):
(I) Prepare a solution or slurry (liquid a) containing at least molybdenum, phosphorus, vanadium and urea, each element of molybdenum, phosphorus and vanadium, and 90 mol% or more of urea being distributed to the solution side Process,
(Ii) The temperature of the liquid a is set to 60 ° C. or higher, does not exceed 100 ° C. during a period of 60 ° C. or higher, and the ammonium ion production coefficient defined by the following formula (2) is 0. A step of preparing a slurry (liquid A) by causing precipitation in the liquid under the conditions of 01 to 0.7 mol-NH 4 + / (hr · L · mol-Mo);
Ammonium ion formation coefficient [mol-NH 4 + / (hr · L · mol-Mo)] = x / (t × y × z) (2)
t: Period when the liquid temperature is 60 ° C. or higher (heating period) [hour]
x: Amount of ammonium ion generated during the heating period [mol-NH 4 + ]
y: Volume of liquid a [L]
z: Molybdenum atom content in liquid a [mol-Mo]
(Iii) A step of preparing a slurry (liquid C) by mixing liquid A or liquid derived from liquid A and a compound of element Z,
(Iv) Step of drying C liquid or C liquid-derived liquid
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004377189A JP4601420B2 (en) | 2004-12-27 | 2004-12-27 | Method for producing a catalyst for methacrylic acid production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004377189A JP4601420B2 (en) | 2004-12-27 | 2004-12-27 | Method for producing a catalyst for methacrylic acid production |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006181463A JP2006181463A (en) | 2006-07-13 |
JP4601420B2 true JP4601420B2 (en) | 2010-12-22 |
Family
ID=36734951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004377189A Active JP4601420B2 (en) | 2004-12-27 | 2004-12-27 | Method for producing a catalyst for methacrylic acid production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4601420B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4961132B2 (en) * | 2005-11-09 | 2012-06-27 | 三菱レイヨン株式会社 | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid |
JP2008155126A (en) * | 2006-12-22 | 2008-07-10 | Mitsubishi Rayon Co Ltd | Method for producing metal component-containing catalyst |
JP5327969B2 (en) * | 2009-10-23 | 2013-10-30 | 三菱レイヨン株式会社 | Method for producing noble metal-containing supported catalyst, catalyst therefor, and method for producing α, β-unsaturated carboxylic acid |
JP6487242B2 (en) * | 2015-03-18 | 2019-03-20 | 株式会社日本触媒 | Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000296336A (en) * | 1999-02-08 | 2000-10-24 | Mitsubishi Rayon Co Ltd | Catalyst for production of methacrylic acid and production of methacrylic acid |
JP2003190798A (en) * | 2001-12-27 | 2003-07-08 | Mitsubishi Rayon Co Ltd | Method for producing catalyst used for production of methacrylic acid, catalyst produced by the same, and method for producing methacrylic acid |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0667477B2 (en) * | 1988-10-27 | 1994-08-31 | 三菱レイヨン株式会社 | Method for preparing catalyst for methacrylic acid production |
-
2004
- 2004-12-27 JP JP2004377189A patent/JP4601420B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000296336A (en) * | 1999-02-08 | 2000-10-24 | Mitsubishi Rayon Co Ltd | Catalyst for production of methacrylic acid and production of methacrylic acid |
JP2003190798A (en) * | 2001-12-27 | 2003-07-08 | Mitsubishi Rayon Co Ltd | Method for producing catalyst used for production of methacrylic acid, catalyst produced by the same, and method for producing methacrylic acid |
Also Published As
Publication number | Publication date |
---|---|
JP2006181463A (en) | 2006-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20110044266A (en) | Catalyst for methacrylic acid production, process for producing same, and process for producing methacrylic acid | |
JP4691359B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP4925415B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP4601420B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP5100520B2 (en) | Method for producing catalyst for synthesizing α, β-unsaturated carboxylic acid | |
JP2004008834A (en) | Method for producing catalyst for use in manufacturing methacrylic acid | |
JP3995381B2 (en) | Catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP4766610B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP4372573B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP5261231B2 (en) | Method for producing catalyst for synthesis of unsaturated carboxylic acid | |
JP5362370B2 (en) | Method for producing catalyst for synthesis of methacrylic acid | |
JP2005058909A (en) | Production method for catalyst for synthesizing methacrylic acid | |
JP2005066476A (en) | Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid | |
JP4017864B2 (en) | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid | |
JP2005230720A (en) | Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same | |
JP4564317B2 (en) | Method for producing a catalyst for methacrylic acid production | |
JP4933736B2 (en) | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid | |
JP4895303B2 (en) | Method for producing catalyst for producing methacrylic acid, catalyst for producing methacrylic acid, and method for producing methacrylic acid | |
JP5842378B2 (en) | Method for producing catalyst for synthesis of unsaturated carboxylic acid | |
JPH11226412A (en) | Production of catalyst for production of methacrylic acid and production of methacrylic acid | |
JP2003154273A (en) | Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid | |
JP5149138B2 (en) | Method for producing catalyst for synthesis of unsaturated carboxylic acid | |
JP2008149262A (en) | Method for producing catalyst for unsaturated carboxylic acid synthesis | |
JP5424914B2 (en) | Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid | |
WO2000072964A1 (en) | Catalyst for methacrylic acid production and process for producing methacrylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100924 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100928 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4601420 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |