JP2883454B2 - Method for producing unsaturated carboxylic acid - Google Patents

Method for producing unsaturated carboxylic acid

Info

Publication number
JP2883454B2
JP2883454B2 JP3019897A JP1989791A JP2883454B2 JP 2883454 B2 JP2883454 B2 JP 2883454B2 JP 3019897 A JP3019897 A JP 3019897A JP 1989791 A JP1989791 A JP 1989791A JP 2883454 B2 JP2883454 B2 JP 2883454B2
Authority
JP
Japan
Prior art keywords
catalyst
unsaturated carboxylic
carboxylic acid
reaction
methacrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3019897A
Other languages
Japanese (ja)
Other versions
JPH04257540A (en
Inventor
一之 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAISERU KAGAKU KOGYO KK
Original Assignee
DAISERU KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAISERU KAGAKU KOGYO KK filed Critical DAISERU KAGAKU KOGYO KK
Priority to JP3019897A priority Critical patent/JP2883454B2/en
Publication of JPH04257540A publication Critical patent/JPH04257540A/en
Application granted granted Critical
Publication of JP2883454B2 publication Critical patent/JP2883454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は不飽和アルデヒドから不
飽和カルボン酸を製造する方法に関し、特に特定の触媒
を用いたメタクロレインの気相接触酸化によるメタクリ
ル酸の製造方法に関するものである。
The present invention relates to a method for producing an unsaturated carboxylic acid from an unsaturated aldehyde, and more particularly to a method for producing methacrylic acid by gas phase catalytic oxidation of methacrolein using a specific catalyst.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
不飽和アルデヒドを気相接触酸化して不飽和カルボン酸
を製造する方法に関して、極めて数多くの特許が提案さ
れている。これらは主としてアクロレインからアクリル
酸を製造する方法であり、この中にメタクロレインから
のメタクリル酸の製造も含まれた特許請求がなされてい
るが、メタクロレインの酸化反応例が具体的に開示され
ているものは希である。又開示されていたとしてもこれ
ら触媒により実際にメタクロレインの酸化反応を行う
と、その多くはメタクロレインの燃焼反応が著しく、変
化率、選択率、製造量が極端に低い場合が多く、しかも
寿命が短く実用的でなかった。
2. Description of the Related Art
Numerous patents have been proposed for methods of producing unsaturated carboxylic acids by gas phase catalytic oxidation of unsaturated aldehydes. These are mainly methods for producing acrylic acid from acrolein, and claims have been made that include the production of methacrylic acid from methacrolein, but examples of the oxidation reaction of methacrolein are specifically disclosed. Are rare. Even if disclosed, methacrolein oxidation reaction is actually carried out by these catalysts, and in many cases, the combustion reaction of methacrolein is remarkable, and the rate of change, selectivity, and production amount are extremely low in many cases. Was short and impractical.

【0003】一方、メタクロレインからメタクリル酸を
製造する方法に関しても近年多数の触媒が提案されてい
る。例えば特開昭50−41811号公報、特開昭53
−3165号公報や、活性向上を目的に希土類元素をモ
リブドバナドリン酸に添加した触媒として特開昭60−
239439号公報などがある。
[0003] On the other hand, a number of catalysts have recently been proposed for a method for producing methacrylic acid from methacrolein. For example, Japanese Patent Application Laid-Open Nos.
No. 3165 and JP-A No. 60-165165 as a catalyst in which a rare earth element is added to molybdovanadophosphoric acid for the purpose of improving the activity.
No. 239439.

【0004】しかし、反応成績が充分でなかったり、触
媒活性の経時低下が大きかったり、反応温度が高すぎた
り、触媒製造時に含窒素ヘテロ環化合物を使用するため
触媒製造が煩雑である等の欠点を有し、工業触媒として
の使用に際しては更に改良が望まれているのが現状であ
る。
[0004] However, disadvantages are that the reaction results are not sufficient, the catalyst activity is greatly reduced with time, the reaction temperature is too high, and the production of the catalyst is complicated because a nitrogen-containing heterocyclic compound is used during the production of the catalyst. At present, further improvements are desired when used as industrial catalysts.

【0005】[0005]

【課題を解決するための手段】本発明者らは不飽和アル
デヒドから不飽和カルボン酸、特にメタクロレインから
メタクリル酸を工業的に有利に製造するため、活性が高
くしかも触媒寿命の長い触媒の開発を目的とし、鋭意検
討した結果、従来から良く知られているモリブドバナド
リン酸を主体とする触媒組成の下で、触媒にランタンと
サマリウムを併用することにより、活性、選択性、寿命
ともに実用性の高い触媒と成ることを見出し、本発明を
完成した。
DISCLOSURE OF THE INVENTION The present inventors have developed an industrially advantageous catalyst for producing unsaturated carboxylic acids from unsaturated aldehydes, particularly methacrylic acid from methacrolein, which has a high activity and a long catalyst life. As a result of intensive studies, the use of lanthanum and samarium as the catalyst under the well-known catalyst composition mainly composed of molybdovanadophosphoric acid enables practical use in both activity, selectivity and life. The present inventors have found that the catalyst has high catalytic properties and completed the present invention.

【0006】即ち、本発明は、不飽和アルデヒドを分子
状酸素で気相接触酸化し不飽和カルボン酸を製造するに
当たり、一般式 Pa Mob c Lad Sme Cuf g h (ここでP,Mo,V,La,Sm,Cu及びOはそれ
ぞれリン、モリブデン、バナジウム、ランタン、サマリ
ウム、銅及び酸素を示し、Xはカリウム、ルビジウム、
セシウム及びタリウムから選ばれた少なくとも一種を示
し、a,b,c,d,e,f,g,hは各元素の原子比
率を表し、b=12のときa=0.5 〜3,c=0.1 〜3,
d=0.01〜3,eは0を含まない1以下の値、f=0.1
〜3、g=0.01〜2であり、hは前記各成分の原子価を
満足するのに必要な酸素原子数を表す。)で表される触
媒を使用することを特徴とする不飽和カルボン酸の製造
方法を提供するものである。
That is, the present invention relates to an unsaturated aldehyde
To produce unsaturated carboxylic acid by gas phase catalytic oxidation with oxygen
Hit, general formula PaMobVcLadSmeCufXgOh  (Where P, Mo, V, La, Sm, Cu and O are
Phosphorus, molybdenum, vanadium, lantern, summary
X, potassium, rubidium,
Indicates at least one selected from cesium and thallium
And a, b, c, d, e, f, g, and h are the atomic ratios of each element.
A = 0.5-3, c = 0.1-3, when b = 12
d = 0.01-3, e is a value of 1 or less not including 0, f = 0.1
And g = 0.01 to 2, and h is the valence of each of the above components.
Indicates the number of oxygen atoms required to satisfy. Touch represented by)
Production of unsaturated carboxylic acids characterized by using a solvent
It provides a method.

【0007】本発明においては、リン、モリブデン、バ
ナジウム及びその他の特定元素を含む触媒において、ラ
ンタンとサマリウムを併用して導入することを特色とし
ている。本発明に用いられる触媒は活性が高いため低い
温度でも充分な反応率を達成することができ、その結果
長期間に渡って高い触媒活性が維持されるので工業的価
値が極めて大きい。ランタンとサマリウムの併用が触媒
に与える効果は明らかでないが恐らく酸化−還元のバラ
ンスが理想的な状態になるものと推定される。
The present invention is characterized in that lanthanum and samarium are used in combination in a catalyst containing phosphorus, molybdenum, vanadium and other specific elements. Since the catalyst used in the present invention has a high activity, a sufficient reaction rate can be achieved even at a low temperature. As a result, a high catalyst activity is maintained over a long period of time, so that the industrial value is extremely large. Although the effect of the combined use of lanthanum and samarium on the catalyst is not clear, it is presumed that the balance between oxidation and reduction probably becomes an ideal state.

【0008】本発明に用いる触媒を製造する方法として
は特殊な方法である必要はなく、従来から良く知られて
いる調製法が採用できる。例えば各成分元素を含有する
化合物を水の存在下に混合して溶解または分解させ、得
られた混合溶液またはスラリーを蒸発乾固し、乾燥後成
型し焼成して触媒を得る。
The method for producing the catalyst used in the present invention does not need to be a special method, and a conventionally well-known preparation method can be employed. For example, a compound containing each component element is mixed and dissolved or decomposed in the presence of water, and the obtained mixed solution or slurry is evaporated to dryness, dried, molded and calcined to obtain a catalyst.

【0009】触媒の調製に用いる原料化合物としては各
元素のアンモニウム塩、硝酸塩、炭酸塩、ハロゲン化
物、酸化物などを組み合わせて使用することができる。
例えばモリブデン原料としてパラモリブデン酸アンモニ
ウム、三酸化モリブデン、バナジウム原料としてメタバ
ナジン酸アンモニウム、五酸化バナジウム等が使用でき
る。
As the raw material compound used for preparing the catalyst, ammonium salts, nitrates, carbonates, halides, oxides and the like of each element can be used in combination.
For example, as a molybdenum raw material, ammonium paramolybdate, molybdenum trioxide, and as a vanadium raw material, ammonium metavanadate, vanadium pentoxide, and the like can be used.

【0010】本発明の触媒を製造する場合、各成分化合
物の混合順序は特に制限はない。混合する場合の温度は
一般には20〜 100℃が適当であり、混合時間は均一に混
合出来れば特に制限されないが、混合後50〜 100℃で1
〜20時間熟成するのが望ましい。
In producing the catalyst of the present invention, there is no particular limitation on the mixing order of the component compounds. The temperature for mixing is generally 20 to 100 ° C., and the mixing time is not particularly limited as long as mixing can be performed uniformly.
Aging for ~ 20 hours is desirable.

【0011】こうして得られた触媒前駆体スラリーを濃
縮乾固した後焼成工程を経て触媒とするが、焼成条件は
空気中ならば 300〜 400℃が適当であるが、窒素などの
不活性気流中で焼成する場合は 380〜 500℃の温度で焼
成するのが望ましい。本触媒の活性を充分発揮させる為
には不活性気流中で焼成するのが好ましい。用いる不活
性気体としては、窒素、アルゴン、炭酸ガスなどが挙げ
られる。空気中で400℃以上の高い温度で焼成した場合
はヘテロポリ酸の構造が崩れ活性が著しく低下するので
好ましくない。
The catalyst precursor slurry thus obtained is concentrated to dryness and then calcined to obtain a catalyst. The calcining condition is suitably 300 to 400 ° C. if it is in the air. When baking is performed at a temperature of 380 to 500 ° C., it is desirable. In order to sufficiently exhibit the activity of the present catalyst, it is preferable to perform calcination in an inert gas stream. Examples of the inert gas used include nitrogen, argon, and carbon dioxide. Firing at a high temperature of 400 ° C. or more in air is not preferable because the structure of the heteropolyacid is destroyed and the activity is significantly reduced.

【0012】本発明に用いる触媒は無担体でも高い活性
を示すが、更に担体に担持させて使用することも出来
る。用いられる担体は、不活性なアルミナ、シリカ、シ
リコンカーバイドなどであるが、触媒の活性を充分に発
揮するためには使用する担体の物性が重要である。担体
の具備すべき物性としては、見かけ気孔率が35〜60%、
吸水率が20〜50%、比表面積が5m2/g以下、粒径が2
〜10mmのものが好ましい。本発明において、比表面積は
窒素ガス吸着法によるB. E. T 法で、また見かけ気孔
率、吸水率は、JIS・R−2205に準じて次の式で求め
る。
Although the catalyst used in the present invention exhibits high activity even without a carrier, it can be used by being supported on a carrier. The carrier used is inert alumina, silica, silicon carbide or the like, but the physical properties of the carrier used are important for sufficiently exhibiting the activity of the catalyst. As the physical properties that the carrier should have, the apparent porosity is 35 to 60%,
Water absorption 20-50%, specific surface area 5 m 2 / g or less, particle size 2
~ 10 mm is preferred. In the present invention, the specific surface area is determined by the BET method using a nitrogen gas adsorption method, and the apparent porosity and the water absorption are determined by the following equations according to JIS R-2205.

【0013】[0013]

【数1】 (Equation 1)

【0014】〔W1 :担体10gの乾燥重量(g)、
2 :飽和水試料の水中重量(g)、W3:飽和水試料
の重量(g)〕担体への触媒物質の担持方法は、前記触
媒のスラリー中に投入し、皿型造粒機、ドラム造粒機な
どを用いて転動しながら熱風など適当な方法で濃縮、乾
燥し、担体に担持させるか、前記触媒乾燥物を遠心流動
コーティング装置等により担体に担持させる事ができ
る。
[W 1 : dry weight (g) of 10 g of carrier,
W 2 : weight of the saturated water sample in water (g); W 3 : weight of the saturated water sample (g)] The method of loading the catalyst substance on the carrier is as follows. It can be concentrated and dried by a suitable method such as hot air while being rolled using a drum granulator or the like, and supported on a carrier, or the dried catalyst can be supported on a carrier by a centrifugal flow coating device or the like.

【0015】本発明の実施に際し、原料ガス中の不飽和
アルデヒドの濃度は広い範囲で変える事が出来るが、1
〜20重量%の範囲が適当であり、特に3〜10重量%が好
ましい。原料不飽和アルデヒドは水、低級飽和アルデヒ
ド等の不純物を少量含んでいてもよく、これらの不純物
は反応に実質的な影響を与えない。
In practicing the present invention, the concentration of unsaturated aldehyde in the raw material gas can be changed in a wide range.
The range of from 20 to 20% by weight is appropriate, and the range of from 3 to 10% by weight is particularly preferable. The starting unsaturated aldehyde may contain a small amount of impurities such as water and lower saturated aldehyde, and these impurities do not substantially affect the reaction.

【0016】酸素源としては空気を用いる事が経済的で
あるが、必要ならば純酸素で富化した空気も用い得る。
原料ガス中の酸素濃度は不飽和アルデヒドに対するモル
比で規制され、この値は0.3 〜4、特に 0.4〜 2.5が好
ましい。
Although it is economical to use air as the oxygen source, air enriched with pure oxygen can be used if necessary.
The oxygen concentration in the source gas is regulated by the molar ratio to the unsaturated aldehyde, and this value is preferably from 0.3 to 4, particularly preferably from 0.4 to 2.5.

【0017】原料ガスは窒素、水蒸気、炭酸ガス等の不
活性ガスを加えて希釈してもよいが、希釈ガスとして反
応排ガスを一部使用するのが経済的である。
The raw material gas may be diluted by adding an inert gas such as nitrogen, water vapor or carbon dioxide gas, but it is economical to partially use the reaction exhaust gas as the diluting gas.

【0018】反応は常圧、加圧、減圧のいずれで実施し
てもよいが、一般的には常圧下で実施するのが便利であ
る。反応温度は 230〜 400℃、好ましくは 250〜 360℃
が適当である。接触時間は、反応温度により異なるが、
0.1 〜15秒、好ましくは0.5〜10秒が適当である。
The reaction may be carried out at normal pressure, increased pressure or reduced pressure, but it is generally convenient to carry out the reaction at normal pressure. Reaction temperature is 230-400 ° C, preferably 250-360 ° C
Is appropriate. The contact time depends on the reaction temperature,
0.1 to 15 seconds, preferably 0.5 to 10 seconds is suitable.

【0019】[0019]

【実施例】以下、本発明を具体的な実施例により説明す
るが、本発明はその主旨を越えない限り本実施例により
規制されるものではない。
Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited by the examples unless it exceeds the gist of the present invention.

【0020】実施例、比較例中、メタクロレインの変化
率、生成するメタクリル酸の選択率は以下のように定義
される。
In Examples and Comparative Examples, the rate of change of methacrolein and the selectivity of methacrylic acid to be formed are defined as follows.

【0021】[0021]

【数2】 (Equation 2)

【0022】実施例1 パラモリブデン酸アンモニウム 100gとメタバナジン酸
アンモニウム2.8g及び硝酸カリウム4.8 gを純水 300m
lに加熱溶解する。この溶液に85%リン酸6.2gを純水10
mlに溶解したものを添加する。一方、硝酸銅1.14g、酸
化ランタン0.77g及び酸化サマリウム0.8 gを純水30ml
に加えた溶液を調製する。この溶液を前記溶液に撹拌し
ながら添加する。充分撹拌しながら90℃で15時間熟成し
た後、 100℃で加熱撹拌しながら蒸発乾固した。この乾
固品を 450℃で4時間窒素気流中で焼成して触媒を得
た。得られた触媒の酸素以外の元素の組成(以下は同じ)
は P1.5 Mo120.5 La0.1 1 Cu0.1 Sm0.1
であった。
Example 1 100 g of ammonium paramolybdate, 2.8 g of ammonium metavanadate and 4.8 g of potassium nitrate were added to 300 m of pure water.
Heat and dissolve in l. 6.2 g of 85% phosphoric acid in pure water 10
Add the one dissolved in ml. Meanwhile, 1.14 g of copper nitrate, 0.77 g of lanthanum oxide and 0.8 g of samarium oxide were added to 30 ml of pure water.
Prepare the solution added to. This solution is added to the solution with stirring. After aging at 90 ° C. for 15 hours with sufficient stirring, the mixture was evaporated to dryness while heating and stirring at 100 ° C. The dried product was calcined at 450 ° C. for 4 hours in a nitrogen stream to obtain a catalyst. Composition of elements other than oxygen in the obtained catalyst (the same applies hereinafter)
0.5 P 1.5 Mo 12 V is La 0.1 K 1 Cu 0.1 Sm 0.1
Met.

【0023】この触媒を反応器に充填し、メタクロレイ
ン5モル%、酸素10モル%、水蒸気30モル%、窒素55モ
ル%からなる混合ガスを反応温度 270℃、空間速度を 1
200hr-1で反応を行った。その結果、メタクロレインの
変化率87.1%でメタクリル酸選択率86.2%を得た。
This catalyst was charged into a reactor, and a mixed gas consisting of 5 mol% of methacrolein, 10 mol% of oxygen, 30 mol% of steam, and 55 mol% of nitrogen was reacted at a reaction temperature of 270 ° C. and a space velocity of 1 mol.
The reaction was performed at 200 hr- 1 . As a result, a methacrylic acid selectivity of 86.2% was obtained at a methacrolein change rate of 87.1%.

【0024】実施例2〜5 実施例1に準じて下記表1の各触媒を調製し、実施例1
と同一反応条件で反応し表1の結果を得た。
Examples 2 to 5 Each of the catalysts shown in Table 1 below was prepared according to Example 1, and
The reaction was carried out under the same reaction conditions as described above to obtain the results shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例6 実施例1と同様にして得たスラリーを皿型造粒機に移し
これに直径3mmの球形多孔質α−アルミナ(敷島マルビ
ー社品 Ma−2063、見かけ気孔率46%、吸水率30%、
比表面積1m2/g以下) 100gを投入し、転動させなが
ら60℃の熱風を吹きつけて蒸発乾固した。これを 420℃
で4時間窒素気流中で焼成して触媒を得た。得られた触
媒の酸素以外の元素の組成はP1.5 Mo120.5 La
0.1 1 Cu0.1 Sm0.1 であった。
Example 6 The slurry obtained in the same manner as in Example 1 was transferred to a dish-type granulator, into which spherical porous α-alumina having a diameter of 3 mm (Ma-2063 manufactured by Shikishima Malby Co., apparent porosity 46%, 30% water absorption,
(Specific surface area: 1 m 2 / g or less) 100 g was charged, and hot air of 60 ° C. was blown while rolling to evaporate to dryness. 420 ℃
For 4 hours in a nitrogen stream to obtain a catalyst. The composition of the elements other than oxygen in the obtained catalyst was P 1.5 Mo 12 V 0.5 La
It was 0.1 K 1 Cu 0.1 Sm 0.1 .

【0027】この触媒を用い、反応温度を 280℃に変更
した以外は実施例1と同一反応条件で反応し、メタクロ
レインの変化率86.8%でメタクリル酸選択率88.1%を得
た。
Using this catalyst, the reaction was carried out under the same reaction conditions as in Example 1 except that the reaction temperature was changed to 280 ° C., and a selectivity of methacrylic acid of 88.1% was obtained with a conversion of methacrolein of 86.8%.

【0028】比較例1 パラモリブデン酸アンモニウム 100gとメタバナジン酸
アンモニウム2.8g及び硝酸セシウム9.2 gを純水 300m
lに加熱溶解する。この溶液に85%リン酸6.2gを純水10
mlに溶解したものを添加する。一方、硝酸銅1.14g、及
び酸化サマリウム0.8 gを純水30mlに加えた溶液を調製
する。この溶液を前記溶液に攪拌しながら添加する。10
0 ℃で加熱撹拌しながら蒸発乾固した。この乾固品を 4
50℃で4時間空気気流中で焼成して触媒を得た。得られ
た触媒の酸素以外の元素の組成は P1.5 Mo120.5
Cs1 Cu0.1 Sm0.1 であった。
Comparative Example 1 100 g of ammonium paramolybdate, 2.8 g of ammonium metavanadate and 9.2 g of cesium nitrate were added to 300 m of pure water.
Heat and dissolve in l. 6.2 g of 85% phosphoric acid in pure water 10
Add the one dissolved in ml. On the other hand, a solution is prepared by adding 1.14 g of copper nitrate and 0.8 g of samarium oxide to 30 ml of pure water. This solution is added to the solution with stirring. Ten
The mixture was evaporated to dryness while heating and stirring at 0 ° C. This dried product 4
The catalyst was obtained by calcining at 50 ° C. for 4 hours in an air stream. The composition of elements other than oxygen in the obtained catalyst was P 1.5 Mo 12 V 0.5
Cs 1 Cu 0.1 Sm 0.1 .

【0029】この触媒を用い、反応温度を 335℃に変更
した以外は実施例1と同一反応条件で反応し、メタクロ
レインの変化率73.0%でメタクリル酸選択率77.4%を得
た。
Using this catalyst, the reaction was carried out under the same reaction conditions as in Example 1 except that the reaction temperature was changed to 335 ° C., and a selectivity of methacrylic acid of 77.4% was obtained with a conversion of methacrolein of 73.0%.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不飽和アルデヒドを分子状酸素で気相接
触酸化し不飽和カルボン酸を製造するに当たり、一般式 Pa Mob c Lad Sme Cuf g h (ここでP,Mo,V,La,Sm,Cu及びOはそれ
ぞれリン、モリブデン、バナジウム、ランタン、サマリ
ウム、銅及び酸素を示し、Xはカリウム、ルビジウム、
セシウム及びタリウムから選ばれた少なくとも一種を示
し、a,b,c,d,e,f,g,hは各元素の原子比
率を表し、b=12のときa=0.5 〜3,c=0.1 〜3,
d=0.01〜3,eは0を含まない1以下の値、f=0.1
〜3、g=0.01〜2であり、hは前記各成分の原子価を
満足するのに必要な酸素原子数を表す。)で表される触
媒を使用することを特徴とする不飽和カルボン酸の製造
方法。
1. Gas phase contact of unsaturated aldehyde with molecular oxygen
In producing an unsaturated carboxylic acid by catalytic oxidation, a general formula PaMobVcLadSmeCufXgOh  (Where P, Mo, V, La, Sm, Cu and O are
Phosphorus, molybdenum, vanadium, lantern, summary
X, potassium, rubidium,
Indicates at least one selected from cesium and thallium
And a, b, c, d, e, f, g, and h are the atomic ratios of each element.
A = 0.5-3, c = 0.1-3, when b = 12
d = 0.01-3, e is a value of 1 or less not including 0, f = 0.1
And g = 0.01 to 2, and h is the valence of each of the above components.
Indicates the number of oxygen atoms required to satisfy. Touch represented by)
Production of unsaturated carboxylic acids characterized by using a solvent
Method.
【請求項2】 不飽和アルデヒドがメタクロレインであ
り、不飽和カルボン酸がメタクリル酸である請求項1記
載の製造方法。
2. The method according to claim 1, wherein the unsaturated aldehyde is methacrolein and the unsaturated carboxylic acid is methacrylic acid.
JP3019897A 1991-02-13 1991-02-13 Method for producing unsaturated carboxylic acid Expired - Lifetime JP2883454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3019897A JP2883454B2 (en) 1991-02-13 1991-02-13 Method for producing unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3019897A JP2883454B2 (en) 1991-02-13 1991-02-13 Method for producing unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JPH04257540A JPH04257540A (en) 1992-09-11
JP2883454B2 true JP2883454B2 (en) 1999-04-19

Family

ID=12011990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3019897A Expired - Lifetime JP2883454B2 (en) 1991-02-13 1991-02-13 Method for producing unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP2883454B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069152B2 (en) * 2008-03-07 2012-11-07 三菱レイヨン株式会社 Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst

Also Published As

Publication number Publication date
JPH04257540A (en) 1992-09-11

Similar Documents

Publication Publication Date Title
JP5379475B2 (en) Catalyst for oxidizing methacrolein and its production and use
JP2003117397A (en) Production method of catalyst for ammoxidation
JPH11319562A (en) Method for regenerating molybdenum-containing oxide fluidizerd bed catalyst
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPS5826329B2 (en) Seizouhou
JP4081824B2 (en) Acrylic acid production method
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
JPH09299803A (en) Oxidation catalyst, manufacture thereof and preparation of methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2883454B2 (en) Method for producing unsaturated carboxylic acid
EP0543019B1 (en) Process for preparing catalyst for producing methacrylic acid
JPS584012B2 (en) Anisaldehyde
JP2883455B2 (en) Method for producing unsaturated carboxylic acid
JP2928397B2 (en) Method for producing unsaturated carboxylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP2006102740A (en) Catalyst for producing methacrylic acid, process for producing the same and process for producing methacrylic acid
WO2000072964A1 (en) Catalyst for methacrylic acid production and process for producing methacrylic acid
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JP2003190798A (en) Method for producing catalyst used for production of methacrylic acid, catalyst produced by the same, and method for producing methacrylic acid
JPH03167152A (en) Production of methacrylic acid
JP3036948B2 (en) Method for producing α, β-unsaturated compound
JPH0242034A (en) Production of methacrylic acid and/or methacrolein
JPS6115855B2 (en)
JPS5829289B2 (en) Deck steam pipe with thermal insulation coating