JPS6295141A - Preparation of coated catalyst - Google Patents

Preparation of coated catalyst

Info

Publication number
JPS6295141A
JPS6295141A JP23236185A JP23236185A JPS6295141A JP S6295141 A JPS6295141 A JP S6295141A JP 23236185 A JP23236185 A JP 23236185A JP 23236185 A JP23236185 A JP 23236185A JP S6295141 A JPS6295141 A JP S6295141A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
coated
catalyst powder
planetary motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23236185A
Other languages
Japanese (ja)
Inventor
Kazuyuki Matsuda
松田 一之
Hiroshi Muromoto
室本 博
Iwao Abe
安部 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP23236185A priority Critical patent/JPS6295141A/en
Publication of JPS6295141A publication Critical patent/JPS6295141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To prepare a coated catalyst tightly sticking on a carrier by subjecting a carrier group to violent planetary motion and simultaneously scattering catalyst powder for coating it and spraying a binder liquid and subjecting it to planetary motion while supplying slit air after stopping the supply of both raw materials. CONSTITUTION:A centrifugal fluidized bed is formed by giving planetary motion a carrier group in 150-800cm/sec peripheral speed due to a granulator while ventilating slit air from an under part of a system. Simultaneously, the carrier group is coated by scattering catalyst powder to the inside of the system and together spraying binder liquid through the other port with 70-110% saturated water absorption quantity of the catalyst powder. After stopping the supply of both raw materials, the carrier group is dried with slit air and finished while continuing the planetary motion and regulating the grains of a product. Thereby a coated catalyst tightly sticking on the carrier can be prepared in a simple process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被覆触媒の製造方法に関し、更に詳しくは担体
群を激しく遊星運動させると同時に、被覆用触媒粉末を
散布し、バインダー液を噴霧して担体及び触媒粉末に一
定湿分を維持させ、両者の混合、流動さらに衝突を強化
するスリットエヤーを下方から供給し乍ら、担体上に被
覆用触媒粉末を強固に付着させる方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a coated catalyst, and more specifically, the present invention relates to a method for producing a coated catalyst, and more specifically, a method for producing a coated catalyst, in which a group of carriers is made to move violently in a planetary motion, and at the same time, a coated catalyst powder is scattered and a binder liquid is sprayed. This invention relates to a method of firmly adhering catalyst powder for coating onto a carrier while maintaining a constant moisture content in the carrier and catalyst powder, and supplying slit air from below to strengthen the mixing, flow, and collision of the two. .

〔従来の技術及び問題点〕[Conventional technology and problems]

触媒を担体に担持させることは公知のことであり、当業
界では多用されている。担体への触媒の担持方法として
は、触媒粉末と担体粉末を均一に混合した後、適当な形
に成型して使用する均一触媒法や、触媒粉末を担体上に
被覆して使用する被覆触媒法等が一般的であり、本発明
は後者の方法を提供するものである。
Supporting a catalyst on a carrier is well known and is widely used in the art. The catalyst can be supported on a carrier using the homogeneous catalyst method, in which the catalyst powder and carrier powder are mixed uniformly and then molded into an appropriate shape, and the coated catalyst method, in which the catalyst powder is coated on the carrier. etc. are common, and the present invention provides the latter method.

担体上に触媒粉末を被覆することの利点は、反応単位容
積に対して高価な触媒の使用量を抑え、廉価な触媒を製
造できることにある。また、もう一つの大きな利点は触
媒の特性を改良できることにある。即ち、酸化反応等強
烈な発熱を伴う反応の場合、均一な触媒では発生熱を充
分除去することができず、反応の制御に問題が発生した
り、望まない2次酸化反応が起き、選択率が低下する等
の問題があるが、被覆触媒を使用すれば担体物質への熱
伝導により局所的加熱が回避され、反応の制御性、選択
率等が改善されるのである。
The advantage of coating a catalyst powder on a carrier is that the amount of expensive catalyst used per unit reaction volume can be suppressed and an inexpensive catalyst can be produced. Another great advantage is that the properties of the catalyst can be improved. In other words, in the case of a reaction that generates intense heat, such as an oxidation reaction, a uniform catalyst cannot sufficiently remove the generated heat, which may cause problems in reaction control, or cause undesired secondary oxidation reactions, resulting in a decrease in selectivity. However, if a coated catalyst is used, local heating can be avoided due to heat conduction to the support material, and reaction controllability, selectivity, etc. can be improved.

被覆触媒は上記した様な利点があるが、現在まで触媒を
担体上に強固に付着させる技術がまだ充分に確立されて
いない為、工業的に多用されるまでに至っていない。
Although coated catalysts have the above-mentioned advantages, they have not been widely used industrially because the technology for firmly adhering the catalyst to a carrier has not yet been sufficiently established.

例えば、特公昭58−26973号公報には、直径が少
なくとも20μ閑を有する不活性担体を水で前湿潤し、
その後にこれに乾燥している粉末状触媒物質を加え、粉
末が付着しなくなるまでゆっくりと攪拌を行う方法が提
案されている。しかしながらこの方法による場合、担体
の前湿潤状態で担持量が異なり、従前に含水量と担持量
を測定する必要がある。また担持後、場合によっては、
穏やかに振盪し、緩やかに付着した触媒を除去する工程
が必要になり、工業的に問題があり、さらに摩耗試験で
2.5〜29.9%の剥離があるように、強度的にも満
足できるものではない。
For example, Japanese Patent Publication No. 58-26973 discloses that an inert carrier having a diameter of at least 20 μm is pre-wetted with water;
A method has been proposed in which a dry powdered catalyst material is then added thereto and the mixture is slowly stirred until the powder no longer adheres. However, when using this method, the amount supported varies depending on the pre-wet state of the carrier, and it is necessary to measure the water content and the amount supported in advance. In addition, after carrying, in some cases,
It requires a process of gentle shaking to remove loosely adhered catalyst, which is an industrial problem, and is also unsatisfactory in terms of strength, as peeling of 2.5 to 29.9% was observed in abrasion tests. It's not possible.

また、特開昭58−3644号公報には流動した担体上
に被覆用触媒の懸濁液を噴霧する方法が提案されている
。しかしながら、この方法による場合、可溶性の物質が
存在すると、それが懸濁液中に溶出し、被覆工程におい
て溶出した触媒の一部が担体の細孔中に侵入してしまい
、完全な被覆触媒ではなくなり、被覆触媒の利点が失わ
れるという問題があった。また活性物質が溶出すること
により、触媒自身が変化し活性が低下することがある等
の欠点があった。
Furthermore, Japanese Patent Laid-Open No. 58-3644 proposes a method of spraying a suspension of a coating catalyst onto a fluidized carrier. However, when using this method, if soluble substances exist, they will be eluted into the suspension, and some of the eluted catalyst will enter the pores of the carrier during the coating process, making it impossible to completely coat the catalyst. There was a problem that the advantages of the coated catalyst were lost. Furthermore, there are drawbacks such as the fact that the catalyst itself may change due to the elution of the active substance, resulting in a decrease in activity.

このように従来のいずれの方法も工業的に満足できるも
のではなく、単純な工程で担体に強固に付着した被覆触
媒を製造する方法の開発が望まれていた。
As described above, none of the conventional methods are industrially satisfactory, and there has been a desire to develop a method for producing a coated catalyst firmly adhered to a carrier using a simple process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等はこれ等の問題点を解決するため鋭意検討を
重ね、本発明に到達した。
The inventors of the present invention have conducted extensive studies to solve these problems and have arrived at the present invention.

即ち本発明は、系の下方からスリットエヤーを通気しつ
つ、回転可能な構成部を有する造粒装置による周速度1
50〜800cm/secの強力な機械的混合で、担体
群に遊星運動を与えることで遠心流動層を形成させるの
と同時に、系内に触媒粉末を散布すると共に別口からバ
インダー液を実質上、触媒粉末の飽和吸水量の70〜1
10%の範囲で噴霧する被覆工程と、両原料の供給を停
止した後、該遊星運動を継続して、生成物を整粒しつつ
スリットエヤーで乾燥させる仕上工程を、同一系内で連
続して実施することを特徴とする被覆触媒の製造方法で
ある。
That is, in the present invention, a peripheral speed of 1 by a granulating device having a rotatable component is achieved while a slit air is vented from below the system.
With strong mechanical mixing at 50 to 800 cm/sec, a planetary motion is applied to the carrier group to form a centrifugal fluidized bed. At the same time, the catalyst powder is dispersed into the system and the binder liquid is substantially poured from a separate port. 70 to 1 of the saturated water absorption amount of the catalyst powder
The coating process of spraying in a range of 10% and the finishing process of drying with a slit air while sizing the product by continuing the planetary motion after stopping the supply of both raw materials are carried out in the same system. This is a method for producing a coated catalyst, characterized in that it is carried out by:

本発明の方法において、担体群に強力な機械的混合によ
る遊星運動を与え、そして遠心流動層を形成させるには
相応する造粒装置が採用される。
In the process according to the invention, a corresponding granulation device is employed to impart a planetary motion to the carrier mass through intensive mechanical mixing and to form a centrifugal fluidized bed.

例えば、遠心流動型コーチング造粒装置(フロイント産
業株式会社製)を使用すると特にを利であることが判っ
た。この装置は特公昭46−10878号、特公昭46
−22544号及び特公昭54−992号等各公報に記
載されているものである。即ち、回転可能な皿状部及び
これと円滑に連なる曲面固定壁を組み合わせて、固体粒
子を遠心力、重力、摩擦力を利用して流動(渦巻状循環
流)させることにより、流動性、研磨性及び固体粉末、
液の展延性を良好ならしめ、更に、流動固体層の底部か
ら送気することにより乾燥効率も高めることができるも
のである。また、8亥装置を自動制御装置と関係づけす
ることにより、完全自動で連続操作を実施することが可
能である。
For example, it has been found that the use of a centrifugal fluid coating granulator (manufactured by Freund Sangyo Co., Ltd.) is particularly advantageous. This device is designated as Special Publication No. 10878, Special Publication No. 46-10878.
These are described in various publications such as No.-22544 and Japanese Patent Publication No. 54-992. In other words, by combining a rotatable dish-shaped part and a curved fixed wall that smoothly connects with the dish-shaped part, solid particles are made to flow (spiral circulation flow) using centrifugal force, gravity, and frictional force, thereby improving fluidity and polishing. powder and solid powder,
This improves the spreadability of the liquid and also improves the drying efficiency by supplying air from the bottom of the fluidized solid bed. Further, by associating the 8-unit with an automatic control device, it is possible to carry out continuous operation fully automatically.

ここで、上記装置においては、強力な機械的混合によっ
て、担体に遊星運動を与えるほどの遠心力を惹起させる
のに好適な皿状部の回転は、周速度で150〜800c
m/sec′である。ここで遊星運動とは、皿状部の回
転と後述のスリットエヤーの通気により得られる担体の
自転及び公転運動をいう。
Here, in the above device, the rotation of the dish-shaped portion is preferably 150 to 800 c at a circumferential speed to induce a centrifugal force sufficient to give planetary motion to the carrier by strong mechanical mixing.
m/sec'. Here, the planetary motion refers to the rotation and revolution motion of the carrier obtained by rotation of the dish-shaped portion and ventilation with slit air, which will be described later.

系の下方、即ち上記装置の曲面固定壁の下方から通気す
るスリットエヤーは、系内の担体及び触媒粉末の混合、
流動及び衝突を助長し、且つ両者を一定湿分に保持する
役割を果たす。その量は担体や触媒粉末の性状により異
なり、実験的に最適量を決める必要があるが、通常20
〜20ONl1分/1−担体から選ばれる。また、スリ
ットエヤーの温度は被覆工程での系内の湿分を一定に保
持し、更に仕上工程での生成物を乾燥するのに最適な温
度にその都度任意に選定することができる。
The slit air venting from below the system, that is, from below the curved fixed wall of the above device, is used to mix the carrier and catalyst powder in the system.
It promotes flow and collision, and serves to maintain a constant moisture content between the two. The amount varies depending on the properties of the carrier and catalyst powder, and it is necessary to determine the optimum amount experimentally, but it is usually 20
~20 ONl 1 min/1-carrier. Further, the temperature of the slit air can be arbitrarily selected each time to the optimum temperature for keeping the humidity in the system constant in the coating process and drying the product in the finishing process.

本発明の方法は対象とされる担体の種類及び被覆する触
媒粉末の種類で限定されるものではない。
The method of the present invention is not limited by the type of target carrier or the type of catalyst powder to be coated.

使用する担体としては、反応に対して不活性なものが有
利であり、この種の担体として一般的に多用されている
シリカ、アルミナ、アルミナ−シリカ、シリコンカーバ
イド、チタニア及びジルコニア等が挙げられる。特に好
ましい担体は低表面積のシリカ、α−アルミナ、シリコ
ンカーバイドである。担体の形状は塊状であればどの様
なタイプでも使用することが可能である。しかし作業性
を考慮した場合、球状のものが有利であり、その直径は
1〜10mmのものが選ばれる。また担体表面は粗面で
あることがより好ましい。
The carrier used is advantageously inert to the reaction, and examples of this type of carrier that are commonly used include silica, alumina, alumina-silica, silicon carbide, titania, and zirconia. Particularly preferred supports are low surface area silica, alpha alumina, silicon carbide. Any type of carrier can be used as long as it is in the form of a block. However, in consideration of workability, a spherical shape is advantageous, and a diameter of 1 to 10 mm is selected. Further, it is more preferable that the surface of the carrier is rough.

使用する触媒粉末としては、従来一般的に用いられてい
る触媒ならば、いかなる種類のものも本発明に用いるこ
とができる。例えば好ましい触媒は、活性触媒成分とし
てアルカリ金属、アルカリ土類金属、V lCrlAg
lTl% MOlW %Mn−Fe% Cos N1%
 Cus Zn、 In、 TI、Sn、 Sm、 T
a。
As the catalyst powder to be used, any type of catalyst that has been commonly used can be used in the present invention. For example, preferred catalysts include alkali metals, alkaline earth metals, V lCrlAg as active catalyst components.
lTl% MOLW %Mn-Fe% Cos N1%
Cus Zn, In, TI, Sn, Sm, T
a.

Sb、 Bi、 P 、、As及びSi等の元素を1種
又は2種以上含有する触媒物質が挙げられる。特にバナ
ジウムを含むバナジウム系触媒物質や、モリブデンを含
むモリブデン系触媒物質は有用である。
Examples include catalyst materials containing one or more elements such as Sb, Bi, P, As, and Si. In particular, vanadium-based catalyst materials containing vanadium and molybdenum-based catalyst materials containing molybdenum are useful.

被覆する触媒粉末の粒径は少なくとも使用する担体の粒
径よりも小さい必要があり、実質的には250μm以下
のものが望ましい。触媒粉末と担体の割合は特に制限さ
れるものではなく、触媒の活性で必然的に決められるが
、通常、担体の重量に対して触媒活性成分は10ないし
300重量%の範囲から選ばれる。
The particle size of the catalyst powder to be coated must be at least smaller than the particle size of the carrier used, and is preferably substantially 250 μm or less. The ratio of the catalyst powder to the carrier is not particularly limited and is necessarily determined by the activity of the catalyst, but the catalytically active component is usually selected from a range of 10 to 300% by weight based on the weight of the carrier.

担体上に触媒粉末を強固に付着させる役割を果たすバイ
ンダー液としては水が一般的である。
Water is generally used as the binder liquid that serves to firmly adhere the catalyst powder onto the carrier.

その量は実質上、触媒粉末の飽和吸水量の70〜110
χの範囲で供給することが望ましく、触媒の種類にもよ
るが、通常、触媒の重量に対して173〜174程度の
量である。また、水の代わりにポリビニルアルコール、
カルボキシメチルセルロース、ヒドロキシエチルセルロ
ースの様な有機接着剤の水溶液あるいはシリカゾル水溶
液等を噴霧することもできる。
The amount is substantially 70 to 110 of the saturated water absorption amount of the catalyst powder.
It is desirable to supply in the range of χ, and although it depends on the type of catalyst, the amount is usually about 173 to 174 based on the weight of the catalyst. Also, polyvinyl alcohol instead of water,
It is also possible to spray an aqueous solution of an organic adhesive such as carboxymethyl cellulose or hydroxyethyl cellulose, or an aqueous silica sol solution.

以上の被覆工程に次いで仕上工程が行われる。Following the above coating process, a finishing process is performed.

仕上工程は、触媒粉末並びにバインダー液の供給を停止
した後、上記遊星運動を継続して生成物を整粒(圧縮)
しつつ、これをスリットエヤーで乾燥させる工程である
In the finishing process, after stopping the supply of catalyst powder and binder liquid, the above planetary motion is continued to size (compress) the product.
At the same time, this is dried using a slit air.

尚、上記仕上工程終了後、生成した被覆触媒を系外に取
り出し、更に乾燥器で乾燥させることも勿論可能であり
、好ましい。
Incidentally, after the completion of the above finishing step, it is of course possible and preferable to take out the produced coated catalyst outside the system and further dry it in a dryer.

〔発明の効果〕〔Effect of the invention〕

かくして、本発明の方法により製造された被覆触媒は、
原則的にはどの様な種類の反応系の触媒としても使用し
得るが、被覆触媒の長所を活かす意味からは、特に発熱
反応に適用して優れた効果を発揮する。例えば、オレフ
ィンの酸化又はアンモ酸化、不飽和アルデヒドの酸化、
芳香族化合物の酸化又はアンモ酸化、アルキルピリジン
類の酸化、脱アルキル等の激しい発熱を伴う反応等が挙
げられる。
Thus, the coated catalyst produced by the method of the present invention is
In principle, it can be used as a catalyst for any type of reaction system, but from the perspective of taking advantage of the advantages of coated catalysts, it is particularly effective when applied to exothermic reactions. For example, oxidation or ammoxidation of olefins, oxidation of unsaturated aldehydes,
Examples include reactions involving intense heat generation such as oxidation or ammoxidation of aromatic compounds, oxidation of alkylpyridines, and dealkylation.

〔実 施 例〕〔Example〕

以下本発明の方法を実施例及び参考例を挙げて更に詳細
に説明する。
The method of the present invention will be explained in more detail below with reference to Examples and Reference Examples.

(バナジウム系触媒物質) 実施例1 特公昭60−16937号公報に記載された公知の方法
で、V+Cro、 Jgo、 1603. bz (1
5重量%) −Ti02(85重量%)を調合し、45
0℃×3時間で焼成した後、これを粉砕して(80me
sh通過)、触媒粉末を得た。
(Vanadium-based catalyst material) Example 1 V+Cro, Jgo, 1603. bz (1
5% by weight) -Ti02 (85% by weight) was prepared, and 45% by weight was prepared.
After baking at 0°C for 3 hours, this was crushed (80me
(passed through sh) to obtain catalyst powder.

次いで装置として、遠心流動型コーチング造粒装置CF
−360(フロイント産業株式会社製)を使用して、コ
ーチング槽に、担体(α−Aha、、211+IIlφ
)1.33kgを投入し、回転板を17Orpmで回転
させ、且つ下方のスリットより60℃に加熱した空気を
100 ff /分の割合で吹き込むことによって、担
体群を激しく混合し、遊星運動させた。
Next, as a device, a centrifugal flow type coating granulator CF
-360 (manufactured by Freund Sangyo Co., Ltd.), the carrier (α-Aha, 211+IIlφ) was placed in the coating bath.
) 1.33 kg was input, the rotating plate was rotated at 17 Orpm, and air heated to 60°C was blown through the lower slit at a rate of 100 ff/min to mix the carrier group vigorously and cause it to move planetarily. .

この流動した担体上に、自動給粉機により上記で得た触
媒粉末(2kg)を70g/分の割合で散布すると同時
に、スプレーガンにより 0.3%ポバール水溶液を2
0m7/分の割合で噴霧した。29分経過後、触媒粉末
の供給を終了し、30分経過後ポバール水溶液の供給を
停止した。
On this fluidized carrier, the catalyst powder (2 kg) obtained above was sprinkled at a rate of 70 g/min using an automatic powder feeder, and at the same time, 2 kg of 0.3% poval aqueous solution was sprayed using a spray gun.
It was sprayed at a rate of 0 m7/min. After 29 minutes, the supply of catalyst powder was stopped, and after 30 minutes, the supply of Poval aqueous solution was stopped.

次に、該遊星流動を継続させながら空気を4002/分
の割合で吹き込み、触媒の整粒と乾燥を行った。40分
経過でポバール水溶液を20+r+7/分の割合で30
秒間噴霧した。45分経過後、作業を完了した。更に、
これを系外へ取り出し、乾燥器で乾燥後、400”CX
 3時間で焼成して被覆触媒を得た。
Next, while continuing the planetary flow, air was blown at a rate of 4002/min to size and dry the catalyst. After 40 minutes, add poval aqueous solution at a rate of 20+r+7/min to 30%
Sprayed for seconds. After 45 minutes, the work was completed. Furthermore,
Take this out of the system, dry it in a dryer, and then
It was calcined for 3 hours to obtain a coated catalyst.

得られた被覆触媒は16n+eshスクリーン上で激し
く15分間攪拌して(ロータツブ標準篩振盪機5S−1
00、株式会社丸菱科学機械製作所製を使用)、摩耗度
を測定した結果、0.2%であった。
The obtained coated catalyst was vigorously stirred for 15 minutes on a 16N+esh screen (Rottub standard sieve shaker 5S-1).
00, manufactured by Marubishi Kagaku Kikai Seisakusho Co., Ltd.), the degree of wear was measured and found to be 0.2%.

また、被覆触媒を31の上空より鉄板上へ落下させる強
度試験を100粒について行った結果、被覆の剥離、亀
裂が生じたものは全(観察されなかった。
In addition, as a result of conducting a strength test on 100 catalysts by dropping the coated catalyst from above 31 onto an iron plate, peeling of the coating or cracking was not observed in all of the catalysts.

実施例2 バインダー液を3%シリカゾル水溶液に変更した以外は
実施例1と同様に処理して被覆触媒を製造した。
Example 2 A coated catalyst was produced in the same manner as in Example 1 except that the binder liquid was changed to a 3% silica sol aqueous solution.

得られた被覆触媒は、摩耗度が0.2%であり、また強
度試験では被覆の剥離、亀裂が全く観察されなかった。
The obtained coated catalyst had an abrasion degree of 0.2%, and no peeling or cracking of the coating was observed in the strength test.

(モリブデン系触媒物質) 実施例3 特公昭54−22795号公報に記載された公知の方法
で、Mo+zFe7.5BizKo、40so、s  
(33重量%)−5iO□(67重量%)を調合し、5
60℃×4時間で焼成した後、これを粉砕して(8Qm
esh通過)触媒粉末を得た。
(Molybdenum-based catalyst material) Example 3 Mo+zFe7.5BizKo, 40so, s
(33% by weight)-5iO□ (67% by weight),
After baking at 60°C for 4 hours, this was crushed (8Qm
(passed through esh) catalyst powder was obtained.

また、装置は実施例1と同一の装置を使用した。Moreover, the same apparatus as in Example 1 was used.

コーチング槽に、担体(α−A1203.3mmφ)2
kgを投入し、回転板を170rpmで回転させ、且つ
下方のスリットより60℃に加熱した空気を1004/
分の割合で吹き込むことによって、担体群を激しく混合
し、遊星運動させた。この流動した担体上に、自動給粉
機により上記で得た触媒粉末(2kg)を100 g/
分の割合で散布すると同時に、スプレーガンにより0.
3%ポバール水溶液を30mZ/分の割合で噴霧した。
In the coating tank, carrier (α-A1203.3mmφ) 2
kg, the rotating plate was rotated at 170 rpm, and the air heated to 60°C through the lower slit was heated to 1004/kg.
The carrier group was mixed vigorously and planetary by blowing at a rate of 1.5 min. On this fluidized carrier, 100 g/100 g of the catalyst powder (2 kg) obtained above was added using an automatic powder feeder.
At the same time, use a spray gun to spray at a rate of 0.
A 3% aqueous poval solution was sprayed at a rate of 30 mZ/min.

20分経過後、触媒粉末の供給を終了し、同時にポバー
ル水溶液の供給も終了した。
After 20 minutes, the supply of the catalyst powder was terminated, and at the same time, the supply of the Poval aqueous solution was also terminated.

次に、7.S N星運動を′m続させながら、空気を4
002/分の割合で吹き込み、触媒の整粒と乾燥を行っ
た。30分経過後、作業を完了した。更に、これを系外
へ取り出し、乾燥器で乾燥後、500℃×3時間で焼成
して被覆触媒を得た。
Next, 7. SN While continuing the star motion, the air is
The catalyst was sized and dried by blowing at a rate of 0.002/min. After 30 minutes, the work was completed. Furthermore, this was taken out of the system, dried in a drier, and then calcined at 500° C. for 3 hours to obtain a coated catalyst.

得られた被覆触媒は実施例1と同様にテストした結果、
摩耗度は0.4%であり、強度試験では被覆の剥離、亀
裂が全く観察されなかった。
The obtained coated catalyst was tested in the same manner as in Example 1, and the results were as follows:
The degree of wear was 0.4%, and no peeling or cracking of the coating was observed in the strength test.

実施例4 公知の方法(常法)で、MO+JitCOaFezT1
o、asの組成を有する触媒を調製し、これを粉砕して
(60mesh通過)触媒粉末を得た。
Example 4 MO+JitCOaFezT1 by a known method (normal method)
A catalyst having a composition of o and as was prepared and pulverized (passed through 60 mesh) to obtain a catalyst powder.

投入する担体を1 、33kgとし、また触媒粉末(2
kg)の散布速度及びバインダー液の噴霧速度を夫々9
1g/分、25rnl/分に変更した以外は実施例3と
同様に処理し、被覆触媒を製造した。なお、各処理時間
はそれと相似のパターンを採用した。
The carrier to be charged was 1.33 kg, and the catalyst powder (2
kg) and the spraying speed of the binder liquid were set to 9.
A coated catalyst was produced in the same manner as in Example 3 except that the rates were changed to 1 g/min and 25 rnl/min. Note that a similar pattern was adopted for each processing time.

得られた被覆触媒は、摩耗度が0.2%であり、強度試
験では被覆の剥離、亀裂が全く観察されなかった。更に
、これを400℃に加熱した電気炉中に投入し、3分経
過後、室温中に取り出し急冷した。そして、この加熱と
冷却を10回繰り返したが、被覆の剥離、亀裂は皆無で
あった。
The obtained coated catalyst had an abrasion degree of 0.2%, and no peeling or cracking of the coating was observed in the strength test. Furthermore, this was put into an electric furnace heated to 400°C, and after 3 minutes, it was taken out to room temperature and rapidly cooled. This heating and cooling process was repeated 10 times, but there was no peeling or cracking of the coating.

実施例5 バインダー液を、水(単独)に変更した以外は実施例4
と同様にして被覆触媒を製造した。
Example 5 Example 4 except that the binder liquid was changed to water (single)
A coated catalyst was produced in the same manner as above.

得られた被覆触媒は、摩耗度は0.43%であり、強度
試験では100粒中1粒の被覆面にヒビが発生したが、
剥離は観察されなかった。
The resulting coated catalyst had an abrasion degree of 0.43%, and in the strength test, cracks occurred on the coated surface of 1 out of 100 grains.
No peeling was observed.

実施例6〜12 特公昭51−11603号、特公昭51−12604号
及び特開昭53−146288号等、各公報に記載され
た公知の方法で、第1表に記載した触媒組成を有する触
媒を調製し、これを粉砕して(60mesh通過)触媒
粉末を得た。
Examples 6 to 12 Catalysts having the catalyst compositions listed in Table 1 were prepared using known methods described in Japanese Patent Publications No. 51-11603, Japanese Patent Publication No. 51-12604, and Japanese Unexamined Patent Publication No. 146288/1983. was prepared and pulverized (passed through 60 mesh) to obtain catalyst powder.

上記で得た触媒粉末及び担持量を変更した以外は実施例
4と同様に処理し、被覆触媒を製造した。
A coated catalyst was produced in the same manner as in Example 4, except that the catalyst powder obtained above and the amount supported were changed.

得られた被覆触媒の強度試験の結果は第1表の通りであ
った。
The results of the strength test of the obtained coated catalyst are shown in Table 1.

第  1  表 (β−ピコリンの脱アルキル) 参考列1 実施例1で製造した被覆触媒6o−を充填した反応管(
内径271φ)に、β−ピコリン:水:空気=1:16
:12の組成(容量比)の混合ガスを接触時間6.4秒
で供給し、反応させた。また比較のため、同じ触媒粉末
をタブレット状に成型した後、400℃×3時間焼成し
て得た打錠触媒を用いて同様に処理した。
Table 1 (dealkylation of β-picoline) Reference column 1 Reaction tube filled with the coated catalyst 6o produced in Example 1 (
(inner diameter 271φ), β-picoline:water:air=1:16
A mixed gas having a composition (volume ratio) of :12 was supplied for a contact time of 6.4 seconds to cause a reaction. For comparison, the same catalyst powder was molded into a tablet shape and then calcined at 400° C. for 3 hours, and the same treatment was performed using a tablet catalyst obtained.

反応成績は第2表に示す通りであった。The reaction results were as shown in Table 2.

第  2  表 (プロピレンの酸化) 参考例2.3 実施例3 (参考例2に対応)及び実施例4(参考例3
に対応)で製造した被覆触媒60mを充填した反応管(
内径27n+mφ)に、プロピレン:空気:窒素:水=
 6 : 37 : 34.1 : 22.8の組成(
容量比)の混合ガスを接触時間5.5秒で供給し、反応
させた。また比較のため、各々同じ触媒粉末をタブレフ
ト状に成型した後、500℃×3時間焼成して得た打錠
触媒を用いて同様に処理した。
Table 2 (Oxidation of propylene) Reference Example 2.3 Example 3 (corresponding to Reference Example 2) and Example 4 (Reference Example 3)
A reaction tube (corresponding to
Inner diameter 27n+mφ), propylene:air:nitrogen:water=
Composition of 6: 37: 34.1: 22.8 (
A mixed gas of a volume ratio) was supplied for a contact time of 5.5 seconds to cause a reaction. For comparison, the same catalyst powder was molded into a tablet shape and then calcined at 500° C. for 3 hours. The tablet catalysts were then treated in the same manner.

反応成績は第3表に示す通りであった。The reaction results were as shown in Table 3.

手続主甫正書1発) 昭和60年11月18日 1、事件の表示 特願昭60−232361号 2、発明の名称 被覆触媒の製造方法 3、補正をする者 事件との関係  特許出願人 (290)ダイセル化学工業株式会社 4、代理人 東京都中央区日本橋横山町1の3中井ビル明細書の発明
の詳細な説明の欄 6、補正の内容 (1)  明細書8頁11〜12行「バナジウム」およ
び同8頁12行「バナジウム系触媒物質」を夫々「バナ
ジウム」、「バナジウム系触媒物質」と訂正 (1)同10頁12行「(バナジウム系触媒物質)」を
「(バナジウム系触媒物質)」と訂正手続(甫正書岨発
) 昭和61年1月13日
Proceeding Officer (Authentication 1) November 18, 1985 1, Indication of the case Patent Application No. 60-232361 2, Name of the invention Method for producing coated catalysts 3, Person making the amendment Relationship with the case Patent applicant (290) Daicel Chemical Industries, Ltd. 4, Agent Nakai Building, 1-3 Nihonbashi Yokoyama-cho, Chuo-ku, Tokyo Column 6 of the detailed explanation of the invention in the specification, Contents of amendment (1) Specification page 8, lines 11-12 "Vanadium" and "vanadium-based catalytic material" on page 8, line 12 are corrected to "vanadium" and "vanadium-based catalytic material," respectively. Catalytic Substances)” and Correction Procedures (from Fuzheng Shue) January 13, 1985

Claims (1)

【特許請求の範囲】[Claims] 系の下方からスリットエヤーを通気しつつ、回転可能な
構成部を有する造粒装置による周速度150〜800c
m/secの強力な機械的混合で、担体群に遊星運動を
与えることで遠心流動層を形成させるのと同時に、系内
に触媒粉末を散布すると共に別口からバインダー液を実
質上、触媒粉末の飽和吸水量の70〜110%の範囲で
噴霧する被覆工程と、両原料の供給を停止した後、該遊
星運動を継続して、生成物を整粒しつつスリットエヤー
で乾燥させる仕上工程を、同一系内で連続して実施する
ことを特徴とする被覆触媒の製造方法。
Peripheral speed of 150 to 800 c using a granulator with rotatable components while venting slit air from below the system
With strong mechanical mixing at m/sec, a centrifugal fluidized bed is formed by imparting planetary motion to the carrier group. At the same time, the catalyst powder is dispersed into the system, and the binder liquid is substantially mixed with the catalyst powder from a separate port. A coating process in which the product is sprayed in a range of 70 to 110% of the saturated water absorption of A method for producing a coated catalyst, characterized in that it is carried out continuously in the same system.
JP23236185A 1985-10-18 1985-10-18 Preparation of coated catalyst Pending JPS6295141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23236185A JPS6295141A (en) 1985-10-18 1985-10-18 Preparation of coated catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23236185A JPS6295141A (en) 1985-10-18 1985-10-18 Preparation of coated catalyst

Publications (1)

Publication Number Publication Date
JPS6295141A true JPS6295141A (en) 1987-05-01

Family

ID=16938005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23236185A Pending JPS6295141A (en) 1985-10-18 1985-10-18 Preparation of coated catalyst

Country Status (1)

Country Link
JP (1) JPS6295141A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047387A1 (en) * 1996-06-12 1997-12-18 Basf Aktiengesellschaft Process for producing a catalyst consisting of a substrate and a catalytically active compound applied to the upper surface of said substrate
JP2012045516A (en) * 2010-08-30 2012-03-08 Nippon Shokubai Co Ltd Method of manufacturing catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and the catalyst, and method of manufacturing acrolein and/or acrylic acid using the catalyst
JP2015096497A (en) * 2013-10-10 2015-05-21 日本化薬株式会社 Unsaturated carboxylic acid production process and supported catalyst
JPWO2015163020A1 (en) * 2014-04-22 2017-04-13 株式会社ダイセル Solid catalyst for producing aldehydes, and method for producing aldehydes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117292A (en) * 1976-03-30 1977-10-01 Takeda Chem Ind Ltd Production of granular catalyst or catalyst carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117292A (en) * 1976-03-30 1977-10-01 Takeda Chem Ind Ltd Production of granular catalyst or catalyst carrier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047387A1 (en) * 1996-06-12 1997-12-18 Basf Aktiengesellschaft Process for producing a catalyst consisting of a substrate and a catalytically active compound applied to the upper surface of said substrate
JP2012045516A (en) * 2010-08-30 2012-03-08 Nippon Shokubai Co Ltd Method of manufacturing catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and the catalyst, and method of manufacturing acrolein and/or acrylic acid using the catalyst
JP2015096497A (en) * 2013-10-10 2015-05-21 日本化薬株式会社 Unsaturated carboxylic acid production process and supported catalyst
JPWO2015163020A1 (en) * 2014-04-22 2017-04-13 株式会社ダイセル Solid catalyst for producing aldehydes, and method for producing aldehydes

Similar Documents

Publication Publication Date Title
JP3834087B2 (en) Method for producing catalyst, outer shell catalyst, method for producing acrylic acid, acrolein and methacrolein, and method for catalytic gas phase oxidation
US4621072A (en) Process for preparing abrasion-resistant coated catalysts
US4077912A (en) Catalysts useful for exothermic reactions
JPS58930A (en) Manufacture of acrolein or methacrolein by oxidating propylene, isobutylene or t-butanol in oxygen-containing mixture
US4305843A (en) Preparation of coated catalysts
CN105612141B (en) The manufacture method and supported catalyst of unsaturated carboxylic acid
TWI634948B (en) Catalyst for preparation of an unsaturated carboxylic acid by gas phase oxidation of an unsaturated aldehyde
KR20030003241A (en) Shell Catalysts, Method for Producing the Same, and the Use Thereof
JP5481372B2 (en) Method for applying a washcoat suspension to a carrier structure
JP2007506540A (en) Apparatus for mixing, drying and coating powdered, granular or shaped bulk material in a fluidized bed and method for producing a supported catalyst using said apparatus
CN101175569A (en) Method for preparing catalyst for production of methacrylic acid
CN102802790A (en) Method for producing a catalyst for producing methacrylic acid, and method for producing methacrylic acid
TW200526321A (en) Process for producing a catalyst for gas-phase oxidations
HU196717B (en) Apparatus and method for fluidization contacting materials
US4332971A (en) Process for the oxidation of olefinically unsaturated hydrocarbons to aldehydes using attrition resistant catalysts
US2200522A (en) Catalyzer and method of preparing it
JPS6295141A (en) Preparation of coated catalyst
US4508848A (en) Catalysts and process of making
JPS5814254B2 (en) Supported catalyst for the oxidation of o-xylol and/or naphthalene to phthalic anhydride
NL8003061A (en) WEAR-RESISTANT CATALYSTS.
US3214145A (en) Method and apparatus for mixing glass batch materials
JP3910939B2 (en) Single-substance spherical particles, foods and medicines using them, and methods for producing them
JP3258679B2 (en) Granulation method
JP3354172B2 (en) Heavy granulation of high drug content powder
CN1005404B (en) Method for preparing silica gel with adjustable pore structure and without cracking when meeting water