JP2021069962A - Method for producing catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst - Google Patents

Method for producing catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst Download PDF

Info

Publication number
JP2021069962A
JP2021069962A JP2019196202A JP2019196202A JP2021069962A JP 2021069962 A JP2021069962 A JP 2021069962A JP 2019196202 A JP2019196202 A JP 2019196202A JP 2019196202 A JP2019196202 A JP 2019196202A JP 2021069962 A JP2021069962 A JP 2021069962A
Authority
JP
Japan
Prior art keywords
catalyst
producing
processing container
unsaturated
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019196202A
Other languages
Japanese (ja)
Inventor
雄作 右田
Yusaku Uda
雄作 右田
谷本 道雄
Michio Tanimoto
道雄 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2019196202A priority Critical patent/JP2021069962A/en
Publication of JP2021069962A publication Critical patent/JP2021069962A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a method for producing a catalyst for producing a corresponding unsaturated aldehyde and/or unsaturated carboxylic acid by catalytic gas-phase oxidation of an unsaturated hydrocarbon in an efficient and stable manner, and to provide a method for producing an unsaturated aldehyde and/or an unsaturated carboxylic acid using the catalyst.SOLUTION: The method for producing a catalyst includes a step of continuously supplying a raw material containing an inert carrier and a supported powder to a processing container part 2 while rotating the processing container part of a rolling granulator 1 and supplying a binder liquid to perform carrying treatment. When a substantially circular cross section orthogonal to a rotation axis 3 of the processing container part is used as a projection plane, and the projection plane is divided into two semicircular regions by a straight line in the vertical direction passing through the center point thereof, at least a part of the binder liquid is supplied to a part of a place of the processing container part corresponding to the semicircular region on the downward rotation direction side.SELECTED DRAWING: Figure 1

Description

本発明は、不飽和炭化水素を接触気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を得るための触媒を製造する方法、および、得られた触媒を用いて不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法に関する。 The present invention relates to a method for producing a catalyst for catalytic vapor phase oxidation of an unsaturated hydrocarbon to obtain a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid, and using the obtained catalyst to obtain an unsaturated aldehyde and / or an unsaturated carboxylic acid. / Or a method for producing an unsaturated carboxylic acid.

従来、プロピレンを接触気相酸化してアクロレインおよび/またはアクリル酸を製造する際に用いる触媒や、イソブチレンを接触気相酸化してメタクロレインおよび/またはメタクリル酸を製造する際に用いる触媒の製造方法として、不活性担体に触媒活性成分を担持する数多くの提案がなされている。 Conventionally, a method for producing a catalyst used for producing acrolein and / or acrylic acid by catalytic vapor phase oxidation of propylene, and a method for producing a catalyst used for producing methacrolein and / or methacrylic acid by catalytic vapor phase oxidation of isobutylene. As a result, many proposals have been made to support a catalytically active component on an inert carrier.

たとえば、特許文献1および特許文献2には、モリブデンを必須成分とする複合金属酸化物を含有する触媒活性成分粉体を、転動造粒機を用いて不活性担体に担持することにより、プロピレンやイソブチレンの接触気相酸化反応用触媒を製造することが記載されている。このような転動造粒法による担持処理を行なって担持触媒を製造する場合、原料として使用した触媒活性成分粉体の一部が担体に担持されずに転動造粒機の処理容器の内面に付着したままになることがあり、その結果、触媒の歩留まりが低く、触媒の機械的強度も低くなるという問題がある。 For example, in Patent Document 1 and Patent Document 2, propylene is obtained by supporting a catalytically active ingredient powder containing a composite metal oxide containing molybdenum as an essential ingredient on an inert carrier using a rolling granulator. It is described that a catalyst for the catalytic gas phase oxidation reaction of or isobutylene is produced. When a supported catalyst is produced by carrying out a supported treatment by such a rolling granulation method, a part of the catalyst active component powder used as a raw material is not supported on the carrier and the inner surface of the processing container of the rolling granulator As a result, there is a problem that the yield of the catalyst is low and the mechanical strength of the catalyst is also low.

そのような問題を解消する目的で、たとえば、特許文献3では担持処理後の処理容器の表面を金属やセラミックスなどの無機物を用いて洗浄する方法が提案されている。また、特許文献4では、触媒活性成分の粉体等とバインダーをそれぞれ分割してオートフィーダー等を用いて添加速度を調節しながら交互に添加する方法が提案されている。 For the purpose of solving such a problem, for example, Patent Document 3 proposes a method of cleaning the surface of the processing container after the loading treatment with an inorganic substance such as metal or ceramics. Further, Patent Document 4 proposes a method in which powder or the like of a catalytically active ingredient and a binder are each divided and alternately added while adjusting the addition rate using an auto feeder or the like.

国際公開第2013/161703号パンフレットInternational Publication No. 2013/161703 Pamphlet 特開2012−45516号公報Japanese Unexamined Patent Publication No. 2012-45516 特開2015−85265号公報JP-A-2015-85265 特開2017−124384号公報JP-A-2017-124384

しかしながら、特許文献3の方法は、担持処理後に処理容器の内面に付着した触媒活性粉体を剥がし落とすものであるため、担持処理中における処理容器内面への触媒活性成分粉体の付着という問題自体は解消されない。また、特許文献4のような触媒活性成分の粉体等とバインダーを交互に添加する方法では、処理容器内面への触媒活性成分粉体の付着はある程度抑制されるものの、少なからず付着物が存在したまま残ってしまう。処理容器内面に触媒活性成分粉体が付着したままの状態で担持処理を連続的に継続すると、付着した触媒活性成分粉体が核となって経時でその付着量がさらに増大してしまい、その結果、歩留まりの低下を引き起こし、所望の担持触媒が効率よく得られなくなる。また、担持処理中に担体などと物理的に接触することによって、触媒活性成分粉体の付着物が塊の状態で剥がれ落ちたり、微粉が発生したりすると、所望の担持触媒にそのような不所望の粉体やその塊状物が混入してしまうことがある。そのようにして得られた触媒を接触気相酸化反応に用いると、転化率や選択率の低下を引き起こしたり、場合によっては反応が暴走したりすることがある。 However, since the method of Patent Document 3 peels off the catalytically active powder adhering to the inner surface of the processing container after the supporting treatment, the problem itself of adhesion of the catalytically active component powder to the inner surface of the processing container during the supporting treatment itself. Is not resolved. Further, in the method of alternately adding the catalyst-active ingredient powder or the like and the binder as in Patent Document 4, the adhesion of the catalyst-active ingredient powder to the inner surface of the processing container is suppressed to some extent, but there are not a few deposits. It remains as it is. If the carrier treatment is continuously continued with the catalytically active component powder adhering to the inner surface of the treatment container, the adhered catalytically active component powder becomes a nucleus and the amount of the adhering amount further increases over time. As a result, the yield is lowered, and the desired supported catalyst cannot be efficiently obtained. Further, if the deposits of the catalyst active component powder are peeled off in a lump state or fine powder is generated due to physical contact with a carrier or the like during the loading process, the desired loading catalyst is not affected. The desired powder or its lumps may be mixed. When the catalyst thus obtained is used in the catalytic gas phase oxidation reaction, the conversion rate and selectivity may decrease, and in some cases, the reaction may run out of control.

したがって、本発明の目的は、処理容器の内面に触媒活性成分などの担持粉体が付着することを抑制し、担持処理状態を継続して安定化させることで、所望の品質および性能を有する担持触媒を安定的に、かつ、高い歩留まりで得ることができる製造方法を提供することにある。 Therefore, an object of the present invention is to prevent the supported powder such as a catalytically active component from adhering to the inner surface of the processing container, and to continuously stabilize the supported processing state, thereby supporting the product with desired quality and performance. An object of the present invention is to provide a production method capable of obtaining a catalyst stably and with a high yield.

担体、担持粉体およびバインダー液などの原料を転動造粒機の処理容器内へ連続的に供給して担持処理を行なう際、従来は、バインダー液は、担体や担持粉体ならびにそれらが担持または造粒された造粒物が転動(流動)する領域にのみ供給することが一般的に行なわれていた。しかしながらこの方法では、上述したように、担体もしくは造粒物に担持されなかった担持粉体が、経時により処理容器の内面に徐々に付着していくことで歩留まりが低下するだけでなく、処理容器内の担体や造粒物の流動状態を悪化させ、ひいては製品品質および触媒性能に悪影響を与える。そこで本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、担持処理を行なう際に、流動状態にある担体および造粒物が存在しない位置にあえてバインダー液を供給することで、処理容器内に付着した担持粉体が担体もしくは造粒物に担持されて回収されることで、上記課題を解決できることを見出し、本発明に至った。 When raw materials such as a carrier, a supported powder, and a binder liquid are continuously supplied into a processing container of a rolling granulator to perform a supporting treatment, conventionally, the binder liquid is a carrier, a supported powder, and the supported powder. Alternatively, it has generally been practiced to supply only to the region where the granulated granules roll (flow). However, in this method, as described above, the supported powder that was not supported on the carrier or the granulated material gradually adheres to the inner surface of the processing container over time, which not only reduces the yield but also the processing container. It deteriorates the flow state of the carrier and granules inside, which in turn adversely affects the product quality and catalytic performance. Therefore, as a result of intensive research to solve the above problems, the present inventors have carried out the treatment by intentionally supplying the binder solution to a position where the carrier and the granulated material in a fluid state do not exist. We have found that the above problems can be solved by supporting and recovering the supported powder adhering to the inside of the container on a carrier or a granulated material, and have reached the present invention.

すなわち、本発明は以下である。
[1]不飽和炭化水素の接触気相酸化反応により不飽和アルデヒドおよび/または不飽和カルボン酸を製造するための触媒の製造方法であって、転動造粒機の処理容器部を回転させながら、前記処理容器部に不活性担体および担持粉体を含む原料を連続的に供給するとともにバインダー液を供給して担持処理する工程を含み、前記処理容器部の回転軸に直交する断面の形状が略円形であり、前記断面を投影面とし、前記投影面をその中心点を通る鉛直方向の直線で2つの半円領域に分割したとき、回転下り方向側の半円領域にあたる前記処理容器部の箇所の一部に前記バインダー液の少なくとも一部を供給することを特徴とする、不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法。
[2]前記2つの半円領域のうち、回転上り方向側の半円領域にあたる前記処理容器部の箇所の一部にも前記バインダー液の少なくとも一部を供給する、[1]に記載の触媒の製造方法。
[3]前記回転下り方向側の半円領域の一部に供給する前記バインダー液の量が、前記処理容器部に供給される前記バインダー液の全量に対して10〜70質量%である、[1]または[2]に記載の触媒の製造方法。
[4]前記担持粉体が、モリブデン、ビスマスおよび鉄を必須成分として含有する、[1]から[3]のいずれかに記載の触媒の製造方法。
[5]不飽和炭化水素を接触気相酸化して不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法であって、[1]から[4]のいずれかに記載の製造方法により得られる触媒を用いる、不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
That is, the present invention is as follows.
[1] A method for producing a catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid by a catalytic vapor phase oxidation reaction of unsaturated hydrocarbons, while rotating the processing container portion of the rolling granulator. Including a step of continuously supplying a raw material containing an inert carrier and a supported powder to the processing container portion and supplying a binder solution for supporting treatment, the shape of the cross section orthogonal to the rotation axis of the processing container portion is formed. It is substantially circular, and when the cross section is used as a projection surface and the projection surface is divided into two semicircular regions by a straight line in the vertical direction passing through the center point thereof, the processing container portion corresponding to the semicircular region on the rotational downward direction side. A method for producing a catalyst for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, which comprises supplying at least a part of the binder solution to a part of the portions.
[2] The catalyst according to [1], wherein at least a part of the binder liquid is supplied to a part of the processing container portion corresponding to the semicircular region on the rotation up direction side of the two semicircular regions. Manufacturing method.
[3] The amount of the binder liquid supplied to a part of the semicircular region on the downward rotation direction side is 10 to 70% by mass with respect to the total amount of the binder liquid supplied to the processing container portion. The method for producing a catalyst according to 1] or [2].
[4] The method for producing a catalyst according to any one of [1] to [3], wherein the supported powder contains molybdenum, bismuth and iron as essential components.
[5] A method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid by catalytic vapor phase oxidation of an unsaturated hydrocarbon, which can be obtained by the production method according to any one of [1] to [4]. A method for producing unsaturated aldehydes and / or unsaturated carboxylic acids using a catalyst.

本発明によれば、不飽和炭化水素を接触気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するための触媒を、高い歩留まりで、かつ、再現性よく安定して製造することが可能となる。また、触媒の担持処理工程で用いる転動造粒機の処理容器内面への担持粉体の付着進行が抑制されるため、担持処理状態を安定に維持継続することができ、ひいては、処理容器部の洗浄作業頻度を大幅に少なくすることができる。さらに、均質な担持触媒が得られるため、これを用いて不飽和炭化水素の接触気相酸化反応を行なうことで、不飽和アルデヒドおよび/または不飽和カルボン酸を安定して高収率で製造することができる。 According to the present invention, a catalyst for producing a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by catalytic vapor phase oxidation of an unsaturated hydrocarbon is produced stably with high yield and with good reproducibility. It becomes possible to do. In addition, since the progress of adhesion of the supported powder to the inner surface of the processing container of the rolling granulator used in the catalyst supporting processing step is suppressed, the supported processing state can be stably maintained and continued, and by extension, the processing container portion. The frequency of cleaning work can be significantly reduced. Furthermore, since a homogeneous supported catalyst can be obtained, unsaturated aldehydes and / or unsaturated carboxylic acids can be stably produced in high yields by performing a catalytic vapor phase oxidation reaction of unsaturated hydrocarbons using the catalyst. be able to.

本発明に用いる転動造粒機の一例である皿型(パン型)転動造粒機を模式的に示す側面図である。ここで、点線は処理容器部の回転軸を表し、θは水平面に対する前記回転軸の角度、すなわち、処理容器部の傾斜角度を表す。It is a side view which shows typically the dish type (pan type) rolling granulator which is an example of the rolling granulator used in this invention. Here, the dotted line represents the rotation axis of the processing container portion, and θ represents the angle of the rotation axis with respect to the horizontal plane, that is, the inclination angle of the processing container portion. 図1の皿型転動造粒機における皿型(パン型)の処理容器部を模式的に示す斜視図である。ここで矢印は処理容器部の回転方向を表し、斜線部分は処理容器部の回転中における担体や担持粉体、造粒物などの存在位置の概要を表す。It is a perspective view which shows typically the dish type (bread type) processing container part in the dish type rolling granulator of FIG. Here, the arrow indicates the rotation direction of the processing container portion, and the shaded portion indicates the outline of the existence position of the carrier, the supported powder, the granules, etc. during the rotation of the processing container portion. 処理容器部の回転軸に直交する断面、すなわち、本発明における処理容器部の投影面と、回転上り方向側の半円領域および回転下り方向側の半円領域を模式的に示す図である。It is a figure which shows typically the cross section orthogonal to the rotation axis of the processing container part, that is, the projection plane of the processing container part in this invention, the semicircular region on the rotation up direction side, and the semicircle region on the rotation down direction side. 図3における半円領域をさらに投影面の中心点を通る水平方向の直線で分割したときの下方の領域を模式的に示す図である。FIG. 3 is a diagram schematically showing a lower region when the semicircular region in FIG. 3 is further divided by a horizontal straight line passing through the center point of the projection plane.

以下、本発明にかかる触媒の製造方法および該方法で得られた触媒を用いる不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。 Hereinafter, the method for producing a catalyst according to the present invention and the method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid using the catalyst obtained by the method will be described in detail, but the scope of the present invention is bound by these explanations. In addition to the following examples, the present invention can be appropriately modified and implemented without impairing the gist of the present invention.

本発明の触媒の製造方法では、転動造粒機の処理容器部を回転させながら、前記処理容器部に不活性担体および担持粉体を含む原料を連続的に供給するとともにバインダー液を供給して担持処理する工程において、前記処理容器部の回転軸に直交する略円形の断面を投影面として、前記投影面をその中心点を通る鉛直方向の直線で2つの半円領域に分割したときに、回転下り方向側の半円領域にあたる前記処理容器部の箇所の一部に前記バインダー液の少なくとも一部を供給する。 In the method for producing a catalyst of the present invention, a raw material containing an inert carrier and a supporting powder is continuously supplied to the processing container while rotating the processing container of the rolling granulator, and a binder solution is supplied. When a substantially circular cross section orthogonal to the rotation axis of the processing container is used as a projection surface and the projection surface is divided into two semicircular regions by a straight line in the vertical direction passing through the center point thereof. At least a part of the binder liquid is supplied to a part of the processing container portion corresponding to the semicircular region on the rotation downward direction side.

本発明の担持処理工程において用いられる担体は、その表面に担持粉体を担持することができ、かつ、接触気相酸化反応において触媒活性に悪影響を与えない不活性な担体であれば特に限定されない。よって、本明細書において「担体」および「不活性担体」なる用語の意味は同義である。このような不活性担体としては、アルミナ、シリカ、シリカ−アルミナ、チタニア、マグネシア、ステアタイト、コージェライト、シリカ−マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。その形状についても特に制限はなく、球状、円柱状、リング状など公知の形状のものが使用できるが、アスペクト比1.2未満の球状ないし略球状のものが好ましい。 The carrier used in the loading treatment step of the present invention is not particularly limited as long as it is an inert carrier that can support the supported powder on its surface and does not adversely affect the catalytic activity in the catalytic vapor phase oxidation reaction. .. Therefore, the terms "carrier" and "inactive carrier" are synonymous herein. Examples of such an inert carrier include alumina, silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, zeolite and the like. The shape is not particularly limited, and known shapes such as spherical, cylindrical, and ring-shaped can be used, but spherical or substantially spherical shapes having an aspect ratio of less than 1.2 are preferable.

本発明で使用する担持粉体は、不飽和炭化水素を接触気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を得るための触媒として作用しうる触媒活性成分および/または当該触媒活性成分の前駆体を含有するものであれば特に限定されず、当該触媒活性成分としては、モリブデン、ビスマスおよび鉄を必須成分として含有する複合酸化物が好ましく、さらに下記一般式(1)で表される複合酸化物が好適に用いられる。すなわち、本発明で使用する担持粉体としては、モリブデン、ビスマスおよび鉄を必須成分とする触媒活性成分を含有するものが好ましい。
Mo12BiFe (1)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルからなる群より選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムからなる群より選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンからなる群より選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素、ホウ素および亜鉛からなる群より選ばれる少なくとも1種の元素、Oは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0<a≦10、0<b≦20、2≦c≦20、0≦d≦10、0≦e≦30、0≦f≦4であり、xはそれぞれの元素の酸化状態によって定まる数値である。)
The supported powder used in the present invention is a catalytically active ingredient and / or the catalyst that can act as a catalyst for catalytic vapor oxidation of unsaturated hydrocarbons to obtain the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid. The catalyst is not particularly limited as long as it contains a precursor of the active ingredient, and the catalytically active ingredient is preferably a composite oxide containing molybdenum, bismuth and iron as essential ingredients, and is further represented by the following general formula (1). The composite oxide to be used is preferably used. That is, as the supported powder used in the present invention, those containing a catalytically active component containing molybdenum, bismuth and iron as essential components are preferable.
Mo 12 Bi a Fe b A c B d C e D f O x (1)
(Here, Mo is selected from the group consisting of molybdenum, Bi is bismuth, Fe is iron, A is selected from the group consisting of cobalt and nickel, and B is selected from the group consisting of alkali metal, alkaline earth metal and thalium. At least one element, C is at least one element selected from the group consisting of tungsten, silicon, aluminum, zirconium and titanium, D is phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic, boron At least one element selected from the group consisting of and zinc, O is oxygen, and a, b, c, d, e, f and x are the atoms of Bi, Fe, A, B, C, D and O, respectively. Representing a ratio, 0 <a ≦ 10, 0 <b ≦ 20, 2 ≦ c ≦ 20, 0 ≦ d ≦ 10, 0 ≦ e ≦ 30, 0 ≦ f ≦ 4, and x is the oxidation state of each element. It is a numerical value determined by.)

前記一般式(1)で表される触媒活性成分の原料としては、具体的には、各成分元素の酸化物、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類やそれらの水溶液、ゾルなど、あるいは、複数の元素を含む化合物などが使用できる。 Specific examples of the raw material of the catalytically active component represented by the general formula (1) include oxides, hydroxides, ammonium salts, nitrates, carbonates, sulfates, and organic acid salts of each component element. Salts, their aqueous solutions, sol, etc., or compounds containing a plurality of elements can be used.

これらの原料を、例えば、水に混合して水溶液あるいは水性スラリー(以下、「出発原
料混合液」ともいう)とする。次に、得られた出発原料混合液を加熱や減圧など各種方法により乾燥させることで、触媒活性成分前駆体とする。加熱による乾燥方法としては、例えば、スプレードライヤー、ドラムドライヤー等を用いて粉末状の触媒活性成分前駆体を得ることもできるし、箱型乾燥機、トンネル型乾燥機等を用いて空気や窒素などの不活性ガスあるいはその他窒素酸化物などの気流中で加熱して、ブロック状またはフレーク状の触媒活性成分前駆体を得ることもできる。また、一旦、出発原料混合液を濃縮、蒸発乾固してケーキ状の固形物を得て、この固形物を上記のように加熱処理する方法も採用できる。減圧による乾燥方法としては、例えば、真空乾燥機を用いて、ブロック状または粉末状の触媒活性成分前駆体を得ることができる。さらに必要に応じて、得られた前記触媒活性成分前駆体を予備的に焼成して触媒活性成分とすることもできる。
These raw materials are mixed with water, for example, to obtain an aqueous solution or an aqueous slurry (hereinafter, also referred to as “starting raw material mixture”). Next, the obtained mixture of starting materials is dried by various methods such as heating and depressurization to obtain a catalyst active ingredient precursor. As a drying method by heating, for example, a powdery catalytically active component precursor can be obtained using a spray dryer, a drum dryer, or the like, or air, nitrogen, or the like can be obtained using a box-type dryer, a tunnel-type dryer, or the like. It is also possible to obtain a block-shaped or flake-shaped catalytically active component precursor by heating in an air stream such as an inert gas or other nitrogen oxides. Further, a method can also be adopted in which the starting material mixture is once concentrated, evaporated to dryness to obtain a cake-like solid, and the solid is heat-treated as described above. As a drying method under reduced pressure, for example, a block-shaped or powder-shaped catalytically active ingredient precursor can be obtained by using a vacuum dryer. Further, if necessary, the obtained catalytically active ingredient precursor can be preliminarily calcined to obtain a catalytically active ingredient.

上記のように得られた触媒活性成分および/またはその前駆体は、必要に応じて粉砕工程や分級工程を経て適当な粒度の粉体ないしは粉粒物とし、これを担持粉体として担持処理工程に供してもよい。担持粉体は、続く担持処理工程において不活性担体に担持され担持体(以下、「担持造粒物」ともいう)を得る。なお、上記担持粉体の粒度は、特に限定されないが、取り扱い易さ、得られる担持体の均一性や歩留まりのよさなど、作業性や担持特性に優れる点で500μm以下が好ましい。 The catalytically active component and / or its precursor obtained as described above is subjected to a pulverization step or a classification step as necessary to prepare a powder or powder having an appropriate particle size, and this is used as a supported powder in a supporting treatment step. May be offered to. The supported powder is supported on an inert carrier in a subsequent supporting treatment step to obtain a carrier (hereinafter, also referred to as “supported granules”). The particle size of the supported powder is not particularly limited, but is preferably 500 μm or less in terms of excellent workability and supporting characteristics such as ease of handling, uniformity of the obtained carrier, and good yield.

担持処理工程においては、その担持状態を向上させるためにバインダー液を用いる。バインダーの具体例としては、エチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコールまたはフェノール類の有機化合物や水、硝酸、硝酸アンモニウム、炭酸アンモニウムなど、またはこれらのうちの2種以上の混合物が挙げられる。これらのバインダーは、単一成分からなる液、複数種の混合物からなる溶液、混合液または分散液(以下、これらを総称して「バインダー液」ともいう)として、担持処理中に転動造粒機の処理容器内に噴霧あるいは吹き付けるなどして供給する。なお、担持処理工程に供する前の不活性担体に予めバインダー液を噴霧あるいは含浸させておいてもよい。 In the supporting treatment step, a binder liquid is used to improve the supporting state. Specific examples of the binder include organic compounds such as ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol and phenols, water, nitric acid, ammonium nitrate, ammonium carbonate and the like, or two of them. The above mixture can be mentioned. These binders are rolled granulated during the carrying process as a liquid consisting of a single component, a solution consisting of a mixture of a plurality of types, a mixed liquid or a dispersion liquid (hereinafter, these are collectively referred to as "binder liquid"). It is supplied by spraying or spraying into the processing container of the machine. The binder solution may be sprayed or impregnated in advance on the inert carrier before being subjected to the loading treatment step.

本発明の担持処理工程では、転動造粒法という物理的な操作によって担持粉体を担体の表面上に担持させる。そのため、これら担持粉体と担体との間で、もしくは、これらの少なくともいずれかとバインダーとの間で仮に化学的な結合が生じたとしても、担持効果への影響はほとんど無視できる。したがって、上記の組成を有するものであれば、どのような組成のものであっても本発明における担持粉体として使用することができる。 In the supporting treatment step of the present invention, the supported powder is supported on the surface of the carrier by a physical operation called a rolling granulation method. Therefore, even if a chemical bond occurs between the supported powder and the carrier, or at least one of these and the binder, the effect on the supporting effect can be almost ignored. Therefore, any composition can be used as the supported powder in the present invention as long as it has the above composition.

上記担体、担持粉体およびバインダー液の他に、触媒に適度な細孔を形成させる目的で気孔形成剤を用いてもよく、また、触媒の機械的強度を向上させる目的で無機質繊維などを用いてもよい。前記気孔形成剤としては、特に制限はなく、でんぷん、セルロース、尿素、ポリビニルアルコール、メラミンシアヌレートなどを使用することができ、前記無機質繊維としては、特に制限はなく、ガラス繊維、セラミック繊維、金属繊維、鉱物繊維、炭素繊維などを使用することができる。その供給方法についても、担持処理工程において触媒活性成分中に均一に分散あるいは含有されるようにし得るものであれば特に制限されず、たとえば、上記気孔形成剤を予めバインダー液に添加する、担持粉体と上記無機質繊維とを粉粒状態で混合するなど、いずれの方法も用いることができる。 In addition to the above carrier, supported powder and binder liquid, a pore-forming agent may be used for the purpose of forming appropriate pores in the catalyst, and inorganic fibers or the like may be used for the purpose of improving the mechanical strength of the catalyst. You may. The pore forming agent is not particularly limited, and starch, cellulose, urea, polyvinyl alcohol, melamine cyanurate and the like can be used, and the inorganic fiber is not particularly limited, and is glass fiber, ceramic fiber, metal. Fiber, mineral fiber, carbon fiber and the like can be used. The supply method is also not particularly limited as long as it can be uniformly dispersed or contained in the catalytically active component in the supporting treatment step. For example, the supporting powder in which the pore-forming agent is added to the binder solution in advance. Any method can be used, such as mixing the body and the above-mentioned inorganic fiber in a powdery state.

本発明に用いられる転動造粒機としては、処理容器部を有し、該処理容器部を回転させながら内部に投入した原料混合物を転動させて造粒物もしくは担持物を製造できる装置であれば特に限定されず、たとえば、傾斜して回転する略円形の皿型(パン型)の底面部(皿部またはパンともいう)とその外周に接続される円筒状の外周側面部を有する回転容器部を備えた皿型(パン型)転動造粒機や、傾斜配置された円筒形の回転ドラム型の回転容器部を備えたドラム型転動造粒機、あるいは、回転に振動もしくは揺動を加えることが可能な水平振動パン型造粒機、振動撹拌造粒機、ロッキングミキサー、などが挙げられる。このうち、構造がシンプルで、容器内の造粒状態を直接確認することができ、かつ、比較的均一な粒度で高品質な担持物や造粒物を得ることができる点で、図1に示す皿型(パン型)転動造粒機を用いることが好ましい。なお、本発明に用いられる転動造粒機の処理容器部の材質は特に限定されず、一般的にはSUS304、SUS316などのステンレスや鉄が挙げられる。 The rolling granulator used in the present invention is an apparatus having a processing container portion and capable of producing a granulated product or a carrier by rolling the raw material mixture charged inside while rotating the processing container portion. If there is no particular limitation, for example, rotation having a substantially circular dish-shaped (pan-shaped) bottom surface (also referred to as a dish or pan) that rotates at an angle and a cylindrical outer peripheral side surface connected to the outer periphery thereof. A dish-type (pan-type) rolling granulator equipped with a container part, a drum-type rolling granulator equipped with a cylindrical rotating drum-type rotating container part arranged at an angle, or vibration or shaking during rotation. Examples include a horizontal vibrating pan-type granulator capable of applying motion, a vibrating stirring granulator, and a locking mixer. Of these, FIG. 1 shows that the structure is simple, the granulated state in the container can be directly confirmed, and a high-quality carrier or granulated product can be obtained with a relatively uniform particle size. It is preferable to use the dish-type (pan-type) rolling granulator shown. The material of the processing container portion of the rolling granulator used in the present invention is not particularly limited, and generally includes stainless steel and iron such as SUS304 and SUS316.

ここで、図1を用いて転動造粒機1の概要を説明する。転動造粒機1の処理容器部2は、その略中心点を通る回転軸(図1中、点線で示す直線3)に直交する断面の形状が略円形であり、通常、一定の傾斜角度θをつけて用いられる。前記傾斜角度θは、前記回転軸3を含み、かつ、水平面4に垂直な平面上において、前記水平面4に対する前記回転軸3の角度として定義され、鉛直上方を90°とした時に、0°を超え90°未満であり、10〜70°が好ましく、20〜60°がさらに好ましい。なおここで、処理容器部2の使用条件下における最大許容量のことを転動造粒機容量ともいい、この容量は、前記処理容器部2を所定の傾斜角度θで傾けたときに該処理容器部2に入れることのできる水の最大容積に等しい。転動造粒機容量としては、要求される生産量と担持処理装置の処理能力に合わせて設定されるものであるため一概に特定できないが、工業規模では通常、数十dm〜数mの容量のものが使用される。 Here, the outline of the rolling granulator 1 will be described with reference to FIG. The processing container portion 2 of the rolling granulator 1 has a substantially circular cross-sectional shape orthogonal to the rotation axis (straight line 3 indicated by the dotted line in FIG. 1) passing through the substantially center point thereof, and usually has a constant inclination angle. It is used with θ. The inclination angle θ is defined as the angle of the rotation axis 3 with respect to the horizontal plane 4 on a plane including the rotation axis 3 and perpendicular to the horizontal plane 4, and 0 ° is defined as 90 ° above the vertical plane. It exceeds 90 ° and is preferably 10 to 70 °, more preferably 20 to 60 °. Here, the maximum permissible amount under the usage conditions of the processing container unit 2 is also referred to as a rolling granulator capacity, and this capacity is the processing when the processing container unit 2 is tilted at a predetermined inclination angle θ. Equal to the maximum volume of water that can be placed in container 2. The capacity of the rolling granulator is set according to the required production amount and the processing capacity of the carrier processing device, so it cannot be specified unconditionally, but on an industrial scale, it is usually several tens of dm 3 to several m 3. The capacity of is used.

転動造粒機の処理容器部に、上記した不活性担体と担持粉体を含む原料を連続的に供給し、ここへバインダー液を供給することで担持粉体が不活性担体に順次担持され担持造粒物となる。担持量が増えるに従い担持造粒物の粒径は大きくなり、また転動造粒機の処理容器の内面との摩擦係数が小さくなるために、処理容器内で担体や担持粉体、担持造粒物などが混合した状態で転動流動している中で次第に上層の方へ移動する。一方、連続的に供給される新たな担持粉体や不活性担体ならびに担持量が少ない担持造粒物は、粒径が小さく、摩擦係数が大きいために、転動流動している上記混合物の中で下層の方へ移動する。処理容器の傾き、処理容器の深さ、回転数あるいはそれらの組み合わせにより所望の担持量あるいは所望の粒径となった担持造粒物が処理容器の外周側面部を越えて排出され、その排出された担持造粒物を回収することで連続的に所望の担持造粒物を得ることができる。つまり、本発明でいう「連続的に」とは、バッチ式ではないことを意味する。 The raw material containing the above-mentioned inert carrier and supported powder is continuously supplied to the processing container portion of the rolling granulator, and the supported powder is sequentially supported on the inert carrier by supplying the binder liquid to the raw material. It becomes a supported granule. As the amount of supported granules increases, the particle size of the supported granules increases, and the friction coefficient with the inner surface of the processing container of the rolling granulator decreases. It gradually moves toward the upper layer while rolling and flowing in a state where objects are mixed. On the other hand, the newly supported powders and inert carriers that are continuously supplied and the supported granules that carry a small amount are included in the above-mentioned mixture that is rolling and flowing because the particle size is small and the friction coefficient is large. Move to the lower layer with. A supported granule having a desired supported amount or a desired particle size depending on the inclination of the processing container, the depth of the processing container, the rotation speed, or a combination thereof is discharged beyond the outer peripheral side surface of the processing container, and is discharged. By recovering the supported granules, a desired supported granulated product can be continuously obtained. That is, "continuously" in the present invention means that it is not a batch type.

本発明の担持処理工程においては、不活性担体と担持粉体を含む原料を転動造粒機の処理容器部へ連続的に供給するが、担持処理を開始する初期の段階では、不活性担体と担持粉体の処理容器部への供給を必ずしも同時に開始する必要はない。たとえば、一部の不活性担体のみを予め転動造粒機の処理容器内に仕込み、その後、残りの不活性担体と担持粉体の供給を開始したり、まず担持粉体の供給を開始し、その後に遅れて不活性担体の供給を開始したりするなど、担持処理工程の大部分において不活性担体と担持粉体が連続的に供給されるようにすればよい。その中でも、よりスムーズに担持処理を開始するには、一部の不活性担体を予め処理容器内に仕込んだ後に残りの不活性担体と担持粉体を連続的に供給する方法が好ましい。その場合、予め処理容器内に仕込む不活性担体の量としては、転動造粒機容量に対して0.1〜0.9倍の容量を仕込むのが好ましい。 In the supporting treatment step of the present invention, the raw material containing the inactive carrier and the supporting powder is continuously supplied to the processing container portion of the rolling granulator, but in the initial stage when the supporting treatment is started, the inactive carrier is used. It is not always necessary to start supplying the supported powder to the processing container at the same time. For example, only a part of the inactive carrier is charged in the processing container of the rolling granulator in advance, and then the supply of the remaining inactive carrier and the supported powder is started, or the supply of the supported powder is started first. After that, the inactive carrier and the supported powder may be continuously supplied in most of the supporting treatment steps, such as starting the supply of the inactive carrier later. Among them, in order to start the supporting treatment more smoothly, a method in which a part of the inert carrier is charged in the treatment container in advance and then the remaining inert carrier and the supported powder are continuously supplied is preferable. In that case, the amount of the inert carrier to be charged in the processing container in advance is preferably 0.1 to 0.9 times the capacity of the rolling granulator.

また、不活性担体と担持粉体を連続的に供給するに際しては、その供給量の比(担持粉体の供給量:不活性担体の供給量)を1:0.3〜1:1.5(容積基準)とするのが好ましい。不活性担体と担持粉体を処理容器内に供給する供給装置については、振動式フィーダーやベルト式フィーダーなど供給量を調節できうるものであれば特に限定されない。 When the inert carrier and the supported powder are continuously supplied, the ratio of the supplied amounts (the supplied amount of the supported powder: the supplied amount of the inert carrier) is set to 1: 0.3 to 1: 1.5. (Volume standard) is preferable. The supply device for supplying the inert carrier and the supported powder into the processing container is not particularly limited as long as the supply amount can be adjusted, such as a vibration type feeder or a belt type feeder.

本発明の触媒の製造方法においては、転動造粒機の処理容器部を回転させながら担持処理を行なう担持処理工程の際、前記処理容器部の回転軸に直交する略円形の断面を投影面として、当該投影面をその中心点を通る鉛直方向の直線で2つの半円領域に分割して投影したときに、回転下り方向側の半円領域にあたる前記処理容器内面の箇所の一部に前記バインダー液の少なくとも一部を供給する。以下、この内容について具体的に説明する。 In the method for producing a catalyst of the present invention, a substantially circular cross section orthogonal to the rotation axis of the processing container portion is projected as a projection surface during the carrying treatment step in which the processing container portion of the rolling granulator is rotated and the carrying treatment is performed. As a result, when the projection surface is divided into two semicircular regions by a straight line in the vertical direction passing through the center point and projected, the above-mentioned portion of the inner surface of the processing container corresponding to the semicircular region on the rotational downward direction side is described. Supply at least a portion of the binder solution. Hereinafter, this content will be specifically described.

転動造粒機の処理容器部は、一般的に、上述したように、回転軸に直交する断面が略円形の皿型またはドラム型の容器である。一例として、図2に略円形の底面部5とその外周に接続される円筒状の外周側面部6を有する皿型の処理容器部2の斜視図を示す。ここで、図2中の矢印は処理容器部2の回転方向を表す。この処理容器内において、担体および担持粉体ならびに担持造粒物(以下、総称して「造粒混合物」ともいう)は、当該処理容器の回転中、その回転方向に追従するように、かつ、回転の遠心力によって当該処理容器内の底面部5の周縁部と外周側面部6に沿うように、上方へ向かって移動する(図2の「7」)。処理容器の回転速度(または遠心力)にもよるが、通常、上方へ向かって移動した上記造粒混合物7は、処理容器の鉛直方向の最高点に到達する前に自重によって下方へ落下する。転動造粒においては、これら造粒混合物7が処理容器部内でこのような移動を繰り返すことで転動し、略均一な球状の形で担体に担持または造粒される。なお、本発明における処理容器の回転速度は、工業的規模で一般的に使用できる転動造粒機の場合、1〜45rpmとすることが好ましい。 As described above, the processing container portion of the rolling granulator is generally a dish-shaped or drum-shaped container having a substantially circular cross section perpendicular to the rotation axis. As an example, FIG. 2 shows a perspective view of a dish-shaped processing container portion 2 having a substantially circular bottom surface portion 5 and a cylindrical outer peripheral side surface portion 6 connected to the outer peripheral portion thereof. Here, the arrows in FIG. 2 indicate the rotation direction of the processing container unit 2. In this processing container, the carrier, the supported powder, and the supported granules (hereinafter, also collectively referred to as “granulation mixture”) follow the rotation direction of the processing container during rotation, and Due to the centrifugal force of rotation, it moves upward along the peripheral edge portion and the outer peripheral side surface portion 6 of the bottom surface portion 5 in the processing container (“7” in FIG. 2). Although it depends on the rotational speed (or centrifugal force) of the processing container, the granulated mixture 7 that has moved upward usually falls downward by its own weight before reaching the highest point in the vertical direction of the processing container. In rolling granulation, these granulation mixtures 7 roll by repeating such movement in the processing container portion, and are supported or granulated on the carrier in a substantially uniform spherical shape. The rotation speed of the processing container in the present invention is preferably 1 to 45 rpm in the case of a rolling granulator that can be generally used on an industrial scale.

図3に、処理容器部2の回転軸に直交する略円形の断面を投影面8として見たときの模式図を示す。上記のような造粒混合物7の転動状態を、当該投影面8をその中心点Oを通る鉛直方向の直線で2つの半円領域に分割して投影して見たときに、回転上り方向側の半円領域9(図3における向かって左側の白抜きで表す半円領域)にあたる処理容器部の範囲において上記造粒混合物7が転動を繰り返している。したがって、担持処理工程では、処理容器部が回転しているときには、造粒混合物7のほぼ全量が当該処理容器内における上記領域9の箇所に存在していることになる。 FIG. 3 shows a schematic view when a substantially circular cross section orthogonal to the rotation axis of the processing container portion 2 is viewed as a projection surface 8. When the rolling state of the granulated mixture 7 as described above is projected by dividing the projection surface 8 into two semicircular regions by a straight line in the vertical direction passing through the center point O, the rotation up direction is observed. The granulated mixture 7 repeatedly rolls in the range of the processing container portion corresponding to the side semicircular region 9 (the semicircular region shown in white on the left side in FIG. 3). Therefore, in the loading treatment step, when the treatment container portion is rotating, almost the entire amount of the granulated mixture 7 is present at the location of the region 9 in the treatment container.

従来、転動造粒機による担持処理においては、バインダー液が処理容器部の内面に直接かかると、その部分に接触した担持粉体が過加湿状態となって粘性を有する凝集物が生じ、処理容器部内面に付着する現象が起きるという理由から、バインダー液は処理容器部の内面に直接接触させないようにすべきと考えられていた。よって、従来は前記回転上り方向側の半円領域9にあたる処理容器部の範囲に存在している造粒混合物7に直接当たるような位置にのみバインダー液を供給していた。しかしながら、このような従来法でも、供給されたバインダー液が造粒混合物中の担持粉体と接触して、前記凝集物が生じることは避けることができないため、処理容器への付着を完全に無くすことはできていなかった。 Conventionally, in the supporting treatment using a rolling granulator, when the binder liquid is directly applied to the inner surface of the processing container portion, the supported powder in contact with the portion is in an overhumidified state to generate viscous aggregates, which is treated. It has been considered that the binder liquid should not come into direct contact with the inner surface of the processing container because the phenomenon of adhering to the inner surface of the container may occur. Therefore, conventionally, the binder liquid is supplied only to the position where it directly hits the granulated mixture 7 existing in the range of the processing container portion corresponding to the semicircular region 9 on the rotation up direction side. However, even in such a conventional method, it is unavoidable that the supplied binder liquid comes into contact with the supported powder in the granulated mixture to form the agglomerates, so that the adhesion to the processing container is completely eliminated. I wasn't able to do that.

それに対し、本発明では、処理容器部を回転させながら連続して担持処理を行う際に、従来はバインダー液を直接接触させることを避けるべきと考えられていた領域、すなわち、前記処理容器部の回転下り方向側の半円領域10(図3における向かって右側の斜線で表す半円領域)にあたる箇所にバインダー液の全使用量の少なくとも一部を供給することで、担持処理状態、具体的には処理容器部内面への担持粉体の付着が改善され、所望の担持造粒物を安定に効率よく得ることができる。本発明の方法によって、従来の方法では考えられなかった上記のような特異な効果が発現される原因は明らかではないが、担体や担持造粒物が存在しておらず、かつ、担持粉体が付着している処理容器内面の箇所にバインダー液を供給すると、バインダー液により付着物が湿潤することで、付着物の処理容器内面に対する付着力が低下し、その状態で担体や担持造粒物などと接触することで造粒容器内面から剥がれて、担体や担持造粒物の表面上にさらに担持されるためと考えられる。 On the other hand, in the present invention, when carrying out the supporting treatment continuously while rotating the processing container portion, a region conventionally considered to avoid direct contact with the binder liquid, that is, the processing container portion. By supplying at least a part of the total amount of the binder liquid used to the portion corresponding to the semicircular region 10 (the semicircular region indicated by the diagonal line on the right side in FIG. 3) on the downward rotation direction side, the supported treatment state, specifically The adhesion of the supported powder to the inner surface of the processing container is improved, and a desired supported granule can be stably and efficiently obtained. Although it is not clear why the method of the present invention produces the above-mentioned peculiar effects that could not be considered by the conventional method, there is no carrier or supported granules, and the supported powder is not present. When the binder solution is supplied to the inner surface of the processing container to which the deposit is attached, the adhering material is moistened by the binder solution, so that the adhesive force of the adhering substance to the inner surface of the processing container is reduced, and the carrier or supported granules are in that state. It is considered that the contact with the granulated container is peeled off from the inner surface of the granulation container and further supported on the surface of the carrier or the supported granulated product.

なお、上記回転下り方向側の半円領域10にあたる箇所とは、処理容器部2が回転している際に当該領域にある底面部5および/または外周側面部6の箇所のことをいう。 The portion corresponding to the semicircular region 10 on the rotation downward direction side refers to the portion of the bottom surface portion 5 and / or the outer peripheral side surface portion 6 in the region when the processing container portion 2 is rotating.

ここで、前記投影面8において、その中心点Oを通る鉛直方向の直線は、すなわち、当該略円形の投影面8の直径に相当し、その長さとしては、上述の転動造粒機の容量に合わせて設定されるものであって一概に特定できないが、工業規模では通常、600mm〜2000mm程度のものが使用される。 Here, on the projection surface 8, the straight line in the vertical direction passing through the center point O corresponds to the diameter of the substantially circular projection surface 8, and the length thereof is the length of the above-mentioned rolling granulator. It is set according to the capacity and cannot be unequivocally specified, but on an industrial scale, a diameter of about 600 mm to 2000 mm is usually used.

バインダー液を供給する形式は特に限定されず、公知のノズルなどを用いて滴下、噴射または噴霧することができるが、ある程度広範囲の領域に比較的均一に供給することができる点で、噴霧形式が好ましい。また、バインダー液の供給は、常に連続して行ってもよいし、間欠的に供給してもよく、また、いずれの場合でも常時一定量となるように供給してもよく、供給量を適宜変更しながら行ってもよい。 The type of supplying the binder liquid is not particularly limited, and it can be dropped, sprayed or sprayed using a known nozzle or the like, but the spray type is characterized in that it can be supplied relatively uniformly over a wide range to some extent. preferable. Further, the binder liquid may be supplied continuously, intermittently, or in any case so as to be constantly supplied in a constant amount, and the supply amount may be appropriately supplied. You may change it.

前記2つの半円領域のうち、回転上り方向側の半円領域9にあたる処理容器部2の箇所の一部にも前記バインダー液の少なくとも一部を供給することが好ましく、前記回転上り方向側の半円領域9にあたる前記処理容器部2の箇所が、少なくとも担体と担持造粒物を含む混合物、すなわち、造粒混合物7が存在する箇所であることがより好ましい。 Of the two semicircular regions, it is preferable to supply at least a part of the binder liquid to a part of the processing container portion 2 corresponding to the semicircular region 9 on the rotation up direction side, and it is preferable to supply at least a part of the binder liquid on the rotation up direction side. It is more preferable that the portion of the processing container portion 2 corresponding to the semicircular region 9 is a portion where a mixture containing at least a carrier and a supported granule, that is, a granulation mixture 7 is present.

上記のとおり、本発明の触媒の製造方法においては、少なくとも担体と担持造粒物が存在しない処理容器内の箇所に該当する位置にバインダー液を供給しさえすればどのようなやり方でもよいが、例えば、バインダー液の供給は、下記の(a)および(b)の組合せの方法とするか、または、下記(c)を含む方法とすることがより好ましい。
(a)前記造粒混合物が存在する箇所に供給する、
(b)前記造粒混合物が存在しない前記処理容器部内面の箇所に供給する、
(c)前記造粒混合物が存在する箇所と、前記造粒混合物が存在しない前記処理容器部内面の箇所との両方に同時に供給する。
As described above, in the method for producing a catalyst of the present invention, any method may be used as long as the binder solution is supplied at least to a position in the processing container in which the carrier and the supported granules are not present. For example, it is more preferable that the binder solution is supplied by the method of the combination of the following (a) and (b), or by the method including the following (c).
(A) Supply to the place where the granulated mixture is present,
(B) Supply to a portion on the inner surface of the processing container where the granulated mixture does not exist.
(C) The granulated mixture is simultaneously supplied to both the location where the granulated mixture is present and the location on the inner surface of the processing container where the granulated mixture is not present.

前記転動造粒機が皿型転動造粒機であり、前記回転下り方向側の半円領域10にあたる前記処理容器部2の箇所が前記皿型転動造粒機の底面部(皿部、パン)5であることが好ましい。 The rolling granulator is a dish-type rolling granulator, and the portion of the processing container portion 2 corresponding to the semicircular region 10 on the downward rotation direction side is the bottom surface portion (dish portion) of the dish-type rolling granulator. , Bread) 5.

また、バインダー液を供給する領域は、前記半円領域9および10をさらに前記投影面8の中心点Oを通る水平方向の直線で分割したときの下方の領域であることが好ましい。すなわち、図4で示すところの領域11が前記半円領域9のさらに下方の領域であり、領域12が前記半円領域10のさらに下方の領域である。 Further, the region for supplying the binder liquid is preferably a region below when the semicircular regions 9 and 10 are further divided by a horizontal straight line passing through the center point O of the projection surface 8. That is, the region 11 shown in FIG. 4 is a region further below the semicircular region 9, and the region 12 is a region further below the semicircular region 10.

さらに、前記回転下り方向側の領域10または12に供給する前記バインダー液の量が、前記処理容器部に供給される前記バインダー液の全量に対して10〜70質量%であることが好ましく、20〜60質量%がより好ましく、30〜50質量%がさらに好ましい。 Further, the amount of the binder liquid supplied to the region 10 or 12 on the rotation downward direction side is preferably 10 to 70% by mass with respect to the total amount of the binder liquid supplied to the processing container portion. ~ 60% by mass is more preferable, and 30 to 50% by mass is further preferable.

前記担持処理工程で得られた担持造粒物は、必要により、続く乾燥工程および/または焼成工程にて、乾燥および/または焼成され、本発明にかかる不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒が得られる。 The supported granules obtained in the supported treatment step are dried and / or calcined in the subsequent drying step and / or calcining step, if necessary, to produce the unsaturated aldehyde and / or unsaturated carboxylic acid according to the present invention. A catalyst for use is obtained.

上記乾燥工程において、担持造粒物の乾燥は、一般的に使用される箱型乾燥機、トンネル型乾燥機などを用いて、空気、窒素などの不活性ガス、窒素酸化物、あるいはそれらの混合ガスなどの気流中で加熱すればよく、乾燥温度としては好ましくは80〜300℃、より好ましくは130〜250℃であり、乾燥時間としては好ましくは1〜20時間である。 In the above drying step, the supported granules are dried using a commonly used box-type dryer, tunnel-type dryer, or the like, using air, an inert gas such as nitrogen, a nitrogen oxide, or a mixture thereof. It may be heated in an air stream such as gas, and the drying temperature is preferably 80 to 300 ° C., more preferably 130 to 250 ° C., and the drying time is preferably 1 to 20 hours.

また、上記焼成工程において、焼成温度としては好ましくは350℃〜600℃、より好ましくは400℃〜550℃、さらに好ましくは420℃〜500℃であり、焼成時間としては好ましくは1〜20時間である。焼成時の雰囲気としては、触媒活性成分が酸化される酸化雰囲気であればよいが、分子状酸素含有ガス雰囲気が好ましく、特に、分子状酸素含有ガス流通下に焼成を行うのが好ましい。分子状酸素含有ガスとしては空気が好適に用いられる。また、前記乾燥工程後に焼成を行ってもよく、前記担持処理工程において上述したような予め焼成した触媒活性成分を用いて担持する場合は、必ずしも焼成工程は必要なく、乾燥工程のみを行うことでもよい。なお、焼成工程で用いる焼成装置としては特に制限はなく、一般的に使用される箱型焼成炉やトンネル型焼成炉などを用いることができる。 Further, in the above firing step, the firing temperature is preferably 350 ° C. to 600 ° C., more preferably 400 ° C. to 550 ° C., further preferably 420 ° C. to 500 ° C., and the firing time is preferably 1 to 20 hours. is there. The atmosphere at the time of firing may be an oxidizing atmosphere in which the catalytically active component is oxidized, but a molecular oxygen-containing gas atmosphere is preferable, and firing is particularly preferable under the flow of a molecular oxygen-containing gas. Air is preferably used as the molecular oxygen-containing gas. Further, firing may be performed after the drying step, and when the catalyst active component previously fired as described above is used in the supporting treatment step, the firing step is not always necessary, and only the drying step may be performed. Good. The firing apparatus used in the firing step is not particularly limited, and a box-type firing furnace, a tunnel-type firing furnace, or the like that is generally used can be used.

必要に応じて、前記担持処理工程後もしくは前記乾燥工程や焼成工程後に、粒度を揃えた触媒を得る目的で篩い分け工程を設けてもよいが、所望の粒径に満たない担持造粒物や篩い分けにより粉化した担持粉体をリサイクルすることができる点から、担持処理工程後に行うのが好ましい。なお、篩い分けられた所望の粒径に満たない担持造粒物については、前記担持処理工程にリサイクルしてもよく、所望の粒径になるように別途担持処理を行ってもよい。篩装置としては、特に限定はなく、例えば、網篩い、パンチングメタル、比重選別機、ローラー式選別機などを用いることができ、また、2つ以上の装置を組み合わせて用いてもよい。 If necessary, a sieving step may be provided after the supporting treatment step or after the drying step or the firing step for the purpose of obtaining a catalyst having a uniform particle size. Since the supported powder pulverized by sieving can be recycled, it is preferably performed after the supporting treatment step. The supported granulated product having a desired particle size that has been sieved may be recycled in the supporting treatment step, or may be separately supported so as to have a desired particle size. The sieving device is not particularly limited, and for example, a net sieving, a punching metal, a specific gravity sorter, a roller type sorter, or the like can be used, or two or more devices may be used in combination.

次に、本発明の不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法について述べる。 Next, a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid of the present invention will be described.

本発明の不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法は、不飽和炭化水素を含有する原料ガスを固定床反応器に供給して分子状酸素を用いて接触気相酸化反応を行なうにあたり、上記した本発明の製造方法によって得られた触媒を用いる。不飽和炭化水素としては、たとえば、プロピレンまたはイソブチレンが挙げられる。プロピレンを接触気相酸化することによりアクロレインおよび/またはアクリル酸が製造され、また、イソブチレンを接触気相酸化することによりメタクロレインおよび/またはメタクリル酸が製造される。 In the method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid of the present invention, a raw material gas containing an unsaturated hydrocarbon is supplied to a fixed bed reactor and a catalytic vapor phase oxidation reaction is carried out using molecular oxygen. In this case, the catalyst obtained by the above-mentioned production method of the present invention is used. Unsaturated hydrocarbons include, for example, propylene or isobutylene. Acrolein and / or acrylic acid is produced by catalytic vapor oxidation of propylene, and methacrolein and / or methacrylic acid is produced by catalytic vapor oxidation of isobutylene.

本発明の不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法に用いられる反応器については、固定床反応器である限り特段の制限はないが、特に複数の反応管を有する固定床多管式反応器が好ましい。その反応管の内径は通常15〜50mmが好ましく、より好ましくは20〜40mm、さらに好ましくは22〜38mmである。 The reactor used in the method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid of the present invention is not particularly limited as long as it is a fixed bed reactor, but in particular, a fixed bed multi-tube having a plurality of reaction tubes. Formula reactors are preferred. The inner diameter of the reaction tube is usually preferably 15 to 50 mm, more preferably 20 to 40 mm, still more preferably 22 to 38 mm.

固定床多管式反応器の各反応管には、本発明の製造方法によって得られた触媒を充填するが、必ずしも単一の組成を有する触媒のみを充填する必要はなく、従来公知の組成を有する複数種の触媒を、それぞれ層(以下、「反応帯」ともいう)をなすように充填することも可能である。たとえば、特開平4−217932号公報のような異なる占有容積を有する複数の触媒を原料ガス入口側から出口側に向かって占有容積が小さくなるように充填する方法、あるいは特開平10−168003号公報のような担持率の異なる複数の触媒を原料ガス入口側から出口側に向かって担持率が高くなるように充填する方法、あるいは特開2005−320315号公報のような触媒の一部を不活性物質などで希釈する方法、あるいはこれらを組み合わせる方法などを採用してもよい。この時、反応帯の数は、反応条件や反応器の規模により適宜決定されるが、反応帯の数が多すぎると触媒の充填作業が煩雑になるなどの問題が発生するため、工業的には2〜6程度が望ましい。 Each reaction tube of the fixed-bed multi-tube reactor is filled with the catalyst obtained by the production method of the present invention, but it is not always necessary to fill only the catalyst having a single composition, and a conventionally known composition is used. It is also possible to fill the plurality of types of catalysts having each of them so as to form a layer (hereinafter, also referred to as “reaction zone”). For example, a method of filling a plurality of catalysts having different occupied volumes, such as JP-A-4-217732, so that the occupied volumes decrease from the inlet side to the outlet side of the raw material gas, or JP-A-10-168003. A method of filling a plurality of catalysts having different loading rates from the inlet side to the outlet side of the raw material gas so that the loading rates increase, or a part of the catalyst as in JP-A-2005-320315 is inactive. A method of diluting with a substance or the like, or a method of combining these may be adopted. At this time, the number of reaction zones is appropriately determined depending on the reaction conditions and the scale of the reactor, but if the number of reaction zones is too large, problems such as complicated catalyst filling work occur. Is preferably about 2 to 6.

原料ガスとしては、たとえば、1〜15容量%、好ましくは4〜12容量%のプロピレンまたはイソブチレンと、0.5〜25容量%、好ましくは2〜20容量%の分子状酸素と、0〜30容量%、好ましくは0〜25容量%の水蒸気と、残部が窒素などの不活性ガスからなる混合ガスとすることができる。本発明における反応条件には特に制限は無く、この種の反応に一般に用いられている条件であればいずれも実施することが可能であり、たとえば、上記原料ガスを、250〜450℃の温度範囲で0.1〜1.0MPaの圧力下、300〜5,000hr−1(標準状態)の空間速度で触媒に接触させるように供給すればよい。なお、空間速度とは次式で示される値である。
空間速度(Space Velocity:SV[hr−1])=反応器に供給される原料ガスの体積流量(0℃、1気圧条件)/反応器に充填された触媒の体積(ただし、触媒と不活性物質を混合充填している場合は、不活性物質の体積を除く)
Examples of the raw material gas include 1 to 15% by volume, preferably 4 to 12% by volume of propylene or isobutylene, 0.5 to 25% by volume, preferably 2 to 20% by volume of molecular oxygen, and 0 to 30. It can be a mixed gas composed of% by volume, preferably 0 to 25% by volume of water vapor, and the balance of an inert gas such as nitrogen. The reaction conditions in the present invention are not particularly limited, and any conditions generally used for this type of reaction can be carried out. For example, the above-mentioned raw material gas is placed in a temperature range of 250 to 450 ° C. It may be supplied so as to come into contact with the catalyst at a space velocity of 300 to 5,000 hr -1 (standard state) under a pressure of 0.1 to 1.0 MPa. The space velocity is a value represented by the following equation.
Space velocity (SV [hr -1 ]) = volumetric flow rate of the raw material gas supplied to the reactor (0 ° C., 1 atmospheric pressure condition) / volume of the catalyst filled in the reactor (however, the catalyst and inertness) If the substance is mixed and filled, the volume of the inert substance is excluded)

原料ガスに用いる不飽和炭化水素のグレードについては特に制限はなく、たとえば、原料としてプロピレンを用いる場合、ポリマーグレードやケミカルグレードのプロピレンなどを用いることができる。また、プロパンの酸化脱水素反応によって得られるプロピレン含有の混合ガスも使用可能であり、必要に応じ、この混合ガスに空気または酸素などを添加して使用することもできる。 The grade of the unsaturated hydrocarbon used as the raw material gas is not particularly limited. For example, when propylene is used as the raw material, polymer grade, chemical grade propylene, or the like can be used. Further, a propylene-containing mixed gas obtained by an oxidative dehydrogenation reaction of propane can also be used, and if necessary, air, oxygen, or the like can be added to the mixed gas for use.

原料としてプロピレンを用いる場合、上記の接触気相酸化反応により、反応生成物としてアクロレインおよび/またはアクリル酸含有ガスが得られる。このアクロレイン含有ガスをさらに公知の方法による接触気相酸化反応に供し、アクリル酸を得ることができる。 When propylene is used as a raw material, acrolein and / or acrylic acid-containing gas can be obtained as a reaction product by the above-mentioned catalytic vapor phase oxidation reaction. This acrolein-containing gas can be further subjected to a contact vapor phase oxidation reaction by a known method to obtain acrylic acid.

また、原料としてイソブチレンを用いる場合、上記の接触気相酸化反応により、反応生成物としてメタクロレインおよび/またはメタクリル酸含有ガスが得られる。このメタクロレイン含有ガスをさらに公知の方法による接触気相酸化反応に供し、メタクリル酸を得ることができる。 When isobutylene is used as a raw material, methacrolein and / or methacrylic acid-containing gas can be obtained as a reaction product by the above-mentioned catalytic vapor phase oxidation reaction. This methacrolein-containing gas can be further subjected to a catalytic vapor phase oxidation reaction by a known method to obtain methacrylic acid.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記の実施例により制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the gist of the present invention. It is also possible to carry out, all of which are within the technical scope of the invention. In the following, for convenience, "parts by mass" may be simply referred to as "parts".

<比較例1>
[触媒の製造]
蒸留水3800部にパラモリブデン酸アンモニウム1000部および硝酸カリウム2.4部および20質量%シリカゾル425部を溶解した(A液)。また、蒸留水600部に60質量%硝酸50部を添加し、硝酸ビスマス275部、硝酸コバルト824部、硝酸鉄267部および硝酸ニッケル288部を溶解した(B液)。調製したA液にB液を添加し、1時間攪拌し続けてスラリーを得た。得られたスラリーを加熱攪拌してケーキ状の固形物とし、得られた固形物を空気雰囲気下220℃で3時間乾燥し、乾燥物を得た。得られた乾燥物を500μm以下に粉砕し、触媒活性成分前駆体の粉体を得た。
<Comparative example 1>
[Catalyst production]
1000 parts of ammonium paramolybdate, 2.4 parts of potassium nitrate and 425 parts of 20% by mass silica sol were dissolved in 3800 parts of distilled water (Liquid A). Further, 50 parts of 60% by mass nitric acid was added to 600 parts of distilled water to dissolve 275 parts of bismuth nitrate, 824 parts of cobalt nitrate, 267 parts of iron nitrate and 288 parts of nickel nitrate (Liquid B). Solution B was added to the prepared solution A, and stirring was continued for 1 hour to obtain a slurry. The obtained slurry was heated and stirred to form a cake-like solid, and the obtained solid was dried at 220 ° C. for 3 hours in an air atmosphere to obtain a dried product. The obtained dried product was pulverized to 500 μm or less to obtain a powder of a catalyst active ingredient precursor.

直径1300mmの円形のパン、高さ500mmの外周側面部を有するステンレス製の皿型処理容器を備えた転動造粒機を用い、処理容器の傾斜角度を55°に調整して、平均粒径4.0mmのシリカ−アルミナ球形担体0.04mを仕込んだ。次いで、処理容器を回転数15rpmで回転させながら、バインダー液として20質量%の硝酸アンモニウム水溶液を回転上り方向側の領域(図4に示す領域11)に0.05m/hの供給量で連続的に噴霧しながら、触媒活性成分前駆体粉体を0.51m/hの供給量で、また、上記と同じ担体を0.19m/hrの供給量で、それぞれベルトフィーダーを用いて上記と同じ領域11へ連続投入した。この条件下で5時間にわたり連続的に担持処理を行った。処理容器の外周側面部を越えて排出された造粒物を比重選別機で処理し、担体に触媒活性成分前駆体粉体が担持された担持造粒物を選別して採取した。次に、比重選別機で選別された担持造粒物を、以下のパンチングメタルをセットした自動ふるい機にて選別して、5.0〜6.0mmの粒径の担持造粒物を得た。
上側パンチングメタル:6.0mm、丸孔、60°チドリ配列
下側パンチングメタル:5.0mm、丸孔、60°チドリ配列
Using a rolling granulator equipped with a circular pan with a diameter of 1300 mm and a dish-shaped processing container made of stainless steel with an outer peripheral side surface having a height of 500 mm, the inclination angle of the processing container was adjusted to 55 °, and the average particle size was adjusted. A 4.0 mm silica-alumina spherical carrier 0.04 m 3 was charged. Next, while rotating the processing container at a rotation speed of 15 rpm, a 20 mass% ammonium nitrate aqueous solution as a binder liquid was continuously supplied to the region on the upstream side of rotation (region 11 shown in FIG. 4) at a supply amount of 0.05 m 3 / h. Using a belt feeder, the catalyst active ingredient precursor powder was supplied in an amount of 0.51 m 3 / h, and the same carrier as above was supplied in an amount of 0.19 m 3 / hr. It was continuously injected into the same area 11. Under these conditions, the carrier treatment was continuously carried out for 5 hours. The granulated material discharged beyond the outer peripheral side surface of the processing container was treated with a specific gravity sorter, and the supported granulated material on which the catalytically active component precursor powder was supported on the carrier was selected and collected. Next, the supported granules sorted by the specific gravity sorter were sorted by an automatic sieving machine set with the following punching metal to obtain a supported granule having a particle size of 5.0 to 6.0 mm. ..
Upper punching metal: 6.0 mm, round hole, 60 ° plover arrangement Lower punching metal: 5.0 mm, round hole, 60 ° plover arrangement

得られた所望の粒径の担持造粒物を空気雰囲気下470℃で6時間焼成して触媒1を得た。なお、担持処理後の処理容器内面には、触媒活性成分前駆体が最大約2mmの厚さで付着しており、処理容器内面の金属光沢は殆ど確認する事ができなかった。 The obtained supported granules having a desired particle size were calcined at 470 ° C. for 6 hours in an air atmosphere to obtain a catalyst 1. The catalyst active component precursor was adhered to the inner surface of the treatment container after the loading treatment with a maximum thickness of about 2 mm, and the metallic luster of the inner surface of the treatment container could hardly be confirmed.

この触媒1の担持効率は91質量%、分篩歩留まりは90質量%、製造歩留まりは82質量%であり、触媒活性成分の酸素を除く金属元素組成は次のとおりであった。
触媒1:Mo12Bi1.2Co6.0Ni2.1Fe1.4Si3.00.05
The loading efficiency of the catalyst 1 was 91% by mass, the sieving yield was 90% by mass, and the production yield was 82% by mass, and the metal element composition excluding oxygen as the catalyst active component was as follows.
Catalyst 1: Mo 12 Bi 1.2 Co 6.0 Ni 2.1 Fe 1.4 Si 3.0 K 0.05

また、触媒1の触媒性能試験(プロピレンの接触気相酸化反応試験)を行った結果、プロピレンの転化率は95.3mol%、アクロレインとアクリル酸の合計収率は90.2mol%であった。以上の結果をまとめて表1に示す。 Further, as a result of conducting a catalyst performance test (contact gas phase oxidation reaction test of propylene) of the catalyst 1, the conversion rate of propylene was 95.3 mol%, and the total yield of acrolein and acrylic acid was 90.2 mol%. The above results are summarized in Table 1.

以下に、担持効率、分篩歩留まり、製造歩留まりの算出方法、触媒性能試験の方法、および、転化率と収率の算出方法を述べる。 The method for calculating the loading efficiency, the sieving yield, the manufacturing yield, the method for the catalyst performance test, and the method for calculating the conversion rate and the yield will be described below.

[担持効率]
担持効率は下記(1)〜(3)の手順にて求めた。
(1)理論担持率の算出
担持処理工程で供給した触媒活性成分前駆体粉体を約10gサンプリングして計量し、空気雰囲気下470℃で30分間焼成した後、得られた焼成粉体の質量を計量して、下記の式により減量率を求めた。
減量率=(サンプリングした触媒活性成分前駆体粉体の質量[g]−焼成粉体の質量[g])/サンプリングした触媒活性成分前駆体粉体の質量[g]
[Carrying efficiency]
The loading efficiency was determined by the following procedures (1) to (3).
(1) Calculation of theoretical loading ratio About 10 g of the catalytically active component precursor powder supplied in the loading treatment step was sampled and weighed, and calcined at 470 ° C. for 30 minutes in an air atmosphere, and then the mass of the obtained calcined powder. Was weighed, and the weight loss rate was calculated by the following formula.
Weight loss rate = (mass of sampled catalytically active ingredient precursor powder [g] -mass of calcined powder [g]) / mass of sampled catalytically active ingredient precursor powder [g]

次に、担持処理工程で供給した触媒活性成分前駆体粉体の触媒活性成分としての質量(以下、「供給成分量」ともいう)を以下の式にて算出した。なお、下式中の供給粉体の質量とは、担持処理工程で供給した触媒活性成分前駆体粉体の質量を意味し、担持処理中に処理容器の外周側面部から担持造粒物が排出されはじめた時点から担持処理工程を終了した時点までの間に供給された触媒活性成分前駆体粉体の質量と定義する。
供給成分量[kg]=(1−減量率)×供給粉体の質量[kg]
Next, the mass of the catalytically active component precursor powder supplied in the loading treatment step as the catalytically active component (hereinafter, also referred to as “supplied component amount”) was calculated by the following formula. The mass of the supplied powder in the following formula means the mass of the catalytically active component precursor powder supplied in the supporting treatment step, and the supported granules are discharged from the outer peripheral side surface of the processing container during the supporting treatment. It is defined as the mass of the catalytically active component precursor powder supplied between the time when the coating is started and the time when the loading treatment step is completed.
Amount of supplied components [kg] = (1-weight loss rate) x mass of supplied powder [kg]

次に、供給された担持粉体が全て担体に担持された場合の理論担持率を以下の式にて算出した。なお、下式中の供給担体の質量とは、担持処理中に処理容器の外周側面部から担持造粒物が排出されはじめた時点から担持処理工程を終了した時点までの間に供給された担体の質量と定義する。
理論担持率[質量%]
=供給成分量[kg]/(供給成分量[kg]+供給担体の質量[kg])×100
Next, the theoretical loading ratio when all the supplied supported powders were supported on the carrier was calculated by the following formula. The mass of the supported carrier in the following formula is the carrier supplied between the time when the supported granules began to be discharged from the outer peripheral side surface of the processing container during the supporting treatment and the time when the supporting treatment step was completed. Is defined as the mass of.
Theoretical carrier rate [mass%]
= Supply component amount [kg] / (Supply component amount [kg] + mass of supply carrier [kg]) x 100

(2)実測担持率の算出
比重選別機で選別採取した担持造粒物から約100gをサンプリングし、空気雰囲気下470℃で6時間焼成した。この焼成後のサンプルの質量(A)を計量した後、当該サンプルを400mLの10%水酸化ナトリウム水溶液中で30分間煮沸し、担体上に担持されている触媒活性成分を溶解して担体から剥離除去した。煮沸後に得られた担体を400mLの蒸留水で30分間煮沸洗浄した後、100mLの蒸留水で3回水洗した。さらに200℃で1時間乾燥させた後、この乾燥後の担体の質量(B)を計量し、下記の式にて担持率を算出した。
実測担持率[質量%]=(A[g]−B[g])/A[g]×100
(2) Calculation of measured loading rate About 100 g of the supported granules sorted and collected by the specific gravity sorter was sampled and calcined at 470 ° C. for 6 hours in an air atmosphere. After weighing the mass (A) of the sample after firing, the sample is boiled in 400 mL of a 10% sodium hydroxide aqueous solution for 30 minutes to dissolve the catalytically active component supported on the carrier and peel off from the carrier. Removed. The carrier obtained after boiling was washed with 400 mL of distilled water for 30 minutes, and then washed with 100 mL of distilled water three times. After further drying at 200 ° C. for 1 hour, the mass (B) of the dried carrier was measured, and the loading ratio was calculated by the following formula.
Measured loading rate [mass%] = (A [g] -B [g]) / A [g] x 100

(3)担持効率の算出
上記(1)、(2)にて算出した理論担持率と実測担持率より、下記の式にて担持効率を算出した。
担持効率[質量%]=実測担持率[質量%]/理論担持率[質量%]×100
(3) Calculation of carrier efficiency From the theoretical carrier rate and the measured carrier rate calculated in (1) and (2) above, the carrier efficiency was calculated by the following formula.
Supporting efficiency [mass%] = measured loading rate [mass%] / theoretical loading rate [mass%] x 100

[分篩歩留まり]
分篩歩留まりとは、比重選別後の担持造粒物に対する自動ふるい機選別後の担持造粒物の割合を示し、下記式により求めた。
分篩歩留まり[質量%]=(自動ふるい機選別後の担持造粒物の質量[kg])/(比重選別後の担持造粒物の質量[kg])×100
[Division yield]
The sieving yield refers to the ratio of the supported granulated product after sorting by the automatic sieving machine to the supported granulated product after specific gravity sorting, and was calculated by the following formula.
Sieve yield [mass%] = (mass of supported granulated product after sorting by automatic sieving machine [kg]) / (mass of supported granulated product after specific gravity sorting [kg]) × 100

[製造歩留まり]
製造歩留まりは下記式により求めた。
製造歩留まり[質量%]=担持効率[質量%]×分篩歩留まり[質量%]/100
[Manufacturing yield]
The manufacturing yield was calculated by the following formula.
Manufacturing yield [mass%] = loading efficiency [mass%] x sieve yield [mass%] / 100

[触媒性能試験]
全長3000mm、内径25mmのステンレス製反応管およびこれを覆う熱媒体を流すためのシェルからなる反応器を鉛直方向に設置し、反応管の上部から得られた触媒1を落下させ、層長が2500mmとなるように充填した。前記反応管の下部より、プロピレン8容量%、酸素14容量%、水蒸気6容量%、残部が窒素からなる混合ガスを空間速度2000hr−1(標準状態)で導入し、熱媒体温度315℃にてプロピレン酸化反応を行った。
[Catalyst performance test]
A reactor consisting of a stainless steel reaction tube having a total length of 3000 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the reaction tube is installed in the vertical direction, and the catalyst 1 obtained from the upper part of the reaction tube is dropped to have a layer length of 2500 mm. It was filled so as to be. A mixed gas consisting of 8% by volume of propylene, 14% by volume of oxygen, 6% by volume of water vapor, and the balance of nitrogen was introduced from the lower part of the reaction tube at an air velocity of 2000 hr-1 (standard state), and at a heat medium temperature of 315 ° C. A propylene oxidation reaction was carried out.

[転化率および収率]
触媒性能試験におけるプロピレン転化率、および、アクロレインとアクリル酸の合計収率は下記式により求めた。
プロピレン転化率[mol%]
=(反応したプロピレンのmol数)/(供給したプロピレンのmol数)×100
アクロレイン+アクリル酸収率[mol%]
=(生成したアクロレインおよび生成したアクリル酸の合計mol数)/(供給したプロピレンのmol数)×100
[Conversion rate and yield]
The propylene conversion rate in the catalyst performance test and the total yield of acrolein and acrylic acid were calculated by the following formulas.
Propene conversion rate [mol%]
= (Mole number of reacted propylene) / (Mole number of supplied propylene) × 100
Acrolein + acrylic acid yield [mol%]
= (Total number of moles of acrolein produced and acrylic acid produced) / (Number of moles of supplied propylene) x 100

<実施例1>
比較例1において、回転下り方向側の領域(図4に示す領域12)にもバインダー液を噴霧できるようにノズルをセットし、領域11と領域12へのバインダー液の供給量比が90:10、かつ、バインダー液の供給量の合計が0.05m/hになるように流量調整したこと以外は比較例1と同様に担持処理および比重選別機と自動ふるい機による選別処理を実施した。得られた担持造粒物を空気雰囲気下470℃で6時間焼成して触媒2を得た。この触媒2の担持効率は94質量%、分篩歩留まりは91質量%、製造歩留まりは86質量%であった。処理容器内面への触媒活性成分前駆体の付着は少なく、比較例1に対して担持効率の向上が確認された。また、触媒2の触媒性能試験の結果を表1に示す。
<Example 1>
In Comparative Example 1, the nozzle was set so that the binder liquid could be sprayed on the region on the downward rotation direction side (region 12 shown in FIG. 4), and the supply amount ratio of the binder liquid to the region 11 and the region 12 was 90:10. In addition, the carrying treatment and the sorting treatment by the specific gravity sorter and the automatic sieving machine were carried out in the same manner as in Comparative Example 1 except that the flow rate was adjusted so that the total supply amount of the binder liquid was 0.05 m 3 / h. The obtained supported granulated product was calcined at 470 ° C. for 6 hours in an air atmosphere to obtain a catalyst 2. The loading efficiency of the catalyst 2 was 94% by mass, the sieving yield was 91% by mass, and the manufacturing yield was 86% by mass. Adhesion of the catalytically active component precursor to the inner surface of the treatment container was small, and it was confirmed that the loading efficiency was improved as compared with Comparative Example 1. Table 1 shows the results of the catalyst performance test of the catalyst 2.

<実施例2>
実施例1において、領域11と領域12へのバインダー液の供給量比が80:20になるように流量調整したこと以外は実施例1と同様に担持処理および比重選別機と自動ふるい機による選別処理を実施した。得られた担持造粒物を空気雰囲気下470℃で6時間焼成して触媒3を得た。この触媒3の担持効率は95質量%、分篩歩留まりは92質量%、製造歩留まりは87質量%となった。処理容器内面への触媒成分前駆体の付着は見られず、処理容器内面の金属光沢が確認できる状態であった。また、触媒3の触媒性能試験の結果を表1に示す。
<Example 2>
In Example 1, the carrier treatment and sorting by a specific gravity sorter and an automatic sieving machine were performed in the same manner as in Example 1 except that the flow rate was adjusted so that the supply amount ratio of the binder liquid to the regions 11 and 12 was 80:20. Processing was carried out. The obtained supported granulated product was calcined at 470 ° C. for 6 hours in an air atmosphere to obtain a catalyst 3. The supporting efficiency of the catalyst 3 was 95% by mass, the sieving yield was 92% by mass, and the manufacturing yield was 87% by mass. No adhesion of the catalyst component precursor was observed on the inner surface of the treatment container, and the metallic luster on the inner surface of the treatment container could be confirmed. Table 1 shows the results of the catalyst performance test of the catalyst 3.

<実施例3>
実施例1において、領域11と領域12へのバインダー液の供給量比が70:30になるように流量調整したこと以外は実施例1と同様に担持処理および比重選別機と自動ふるい機による選別処理を実施した。得られた担持造粒物を空気雰囲気下470℃で6時間焼成して触媒4を得た。この触媒4の担持効率は更に向上し99質量%、分篩歩留まりは99質量%、製造歩留まりは98質量%となった。処理容器内面への触媒成分前駆体の付着は見られず、処理容器内面の金属光沢が確認できる状態であった。また、触媒4の触媒性能試験の結果を表1に示す。
<Example 3>
In Example 1, the carrier treatment and sorting by a specific gravity sorter and an automatic sieving machine were performed in the same manner as in Example 1 except that the flow rate was adjusted so that the supply amount ratio of the binder liquid to the region 11 and the region 12 was 70:30. Processing was carried out. The obtained supported granulated product was calcined at 470 ° C. for 6 hours in an air atmosphere to obtain a catalyst 4. The loading efficiency of the catalyst 4 was further improved to 99% by mass, the sieving yield was 99% by mass, and the manufacturing yield was 98% by mass. No adhesion of the catalyst component precursor was observed on the inner surface of the treatment container, and the metallic luster on the inner surface of the treatment container could be confirmed. The results of the catalyst performance test of the catalyst 4 are shown in Table 1.

<実施例4>
実施例1において、領域11と領域12へのバインダー液の供給量比が50:50になるように流量調整したこと以外は実施例1と同様に担持処理および比重選別機と自動ふるい機による選別処理を実施した。得られた担持造粒物を空気雰囲気下470℃で6時間焼成して触媒5を得た。この触媒5の担持効率は99質量%、分篩歩留まりは98質量%、製造歩留まりは97質量%であった。処理容器内面への触媒成分前駆体の付着は見られず、処理容器内面の金属光沢が確認できる状態であった。また、触媒5の触媒性能試験の結果を表1に示す。
<Example 4>
In Example 1, the carrier treatment and sorting by a specific gravity sorter and an automatic sieving machine were performed in the same manner as in Example 1 except that the flow rate was adjusted so that the supply amount ratio of the binder liquid to the regions 11 and 12 was 50:50. Processing was carried out. The obtained supported granulated product was calcined at 470 ° C. for 6 hours in an air atmosphere to obtain a catalyst 5. The loading efficiency of the catalyst 5 was 99% by mass, the sieving yield was 98% by mass, and the manufacturing yield was 97% by mass. No adhesion of the catalyst component precursor was observed on the inner surface of the treatment container, and the metallic luster on the inner surface of the treatment container could be confirmed. Table 1 shows the results of the catalyst performance test of the catalyst 5.

<実施例5>
実施例1において、領域11と領域12へのバインダー液の供給量比が40:60になるように流量調整したこと以外は実施例1と同様に担持処理および比重選別機と自動ふるい機による選別処理を実施した。得られた担持造粒物を空気雰囲気下470℃で6時間焼成して触媒6を得た。この触媒6の担持効率は99質量%、分篩歩留まりは90質量%、製造歩留まりは89質量%であった。処理容器内面への触媒成分前駆体の付着は見られず、処理容器内面の金属光沢が確認できる状態であった。また、触媒6の触媒性能試験の結果を表1に示す。
<Example 5>
In Example 1, the carrier treatment and sorting by a specific gravity sorter and an automatic sieving machine were performed in the same manner as in Example 1 except that the flow rate was adjusted so that the supply amount ratio of the binder liquid to the regions 11 and 12 was 40:60. Processing was carried out. The obtained supported granulated product was calcined at 470 ° C. for 6 hours in an air atmosphere to obtain a catalyst 6. The loading efficiency of the catalyst 6 was 99% by mass, the sieving yield was 90% by mass, and the manufacturing yield was 89% by mass. No adhesion of the catalyst component precursor was observed on the inner surface of the treatment container, and the metallic luster on the inner surface of the treatment container could be confirmed. The results of the catalyst performance test of the catalyst 6 are shown in Table 1.

<実施例6>
実施例1において、領域11と領域12へのバインダー液の供給量比が30:70になるように流量調整したこと以外は実施例1と同様に担持処理および比重選別機と自動ふるい機による選別処理を実施した。得られた担持造粒物を空気雰囲気下470℃で6時間焼成して触媒7を得た。この触媒7の担持効率は99質量%、分篩歩留まりは89質量%、製造歩留まりは88質量%となった。処理容器内面への触媒成分前駆体の付着は見られず、処理容器内面の金属光沢が確認できる状態であった。また、触媒7の触媒性能試験の結果を表1に示す。
<Example 6>
In Example 1, the carrier treatment and sorting by a specific gravity sorter and an automatic sieving machine were performed in the same manner as in Example 1 except that the flow rate was adjusted so that the supply amount ratio of the binder liquid to the regions 11 and 12 was 30:70. Processing was carried out. The obtained supported granulated product was calcined at 470 ° C. for 6 hours in an air atmosphere to obtain a catalyst 7. The loading efficiency of the catalyst 7 was 99% by mass, the sieving yield was 89% by mass, and the manufacturing yield was 88% by mass. No adhesion of the catalyst component precursor was observed on the inner surface of the treatment container, and the metallic luster on the inner surface of the treatment container could be confirmed. Table 1 shows the results of the catalyst performance test of the catalyst 7.

<実施例7>
実施例1において、領域11へはバインダー液を供給せず、領域12へのみバインダー液を0.05m/hの供給量で供給するようにしたこと以外は実施例1と同様に担持処理および比重選別機と自動ふるい機による選別処理を実施した。得られた担持造粒物を空気雰囲気下470℃で6時間焼成して触媒8を得た。この触媒8の担持効率は99質量%、分篩歩留まりは89質量%、製造歩留まりは88質量%となった。処理容器内面への触媒成分前駆体の付着は見られず、処理容器内面の金属光沢が確認できる状態であった。また、触媒8の触媒性能試験の結果を表1に示す。
<Example 7>
In Example 1, the carrier treatment and the same as in Example 1 except that the binder liquid was not supplied to the region 11 and the binder liquid was supplied only to the region 12 at a supply amount of 0.05 m 3 / h. Sorting processing was carried out using a specific gravity sorter and an automatic sieving machine. The obtained supported granulated product was calcined at 470 ° C. for 6 hours in an air atmosphere to obtain a catalyst 8. The loading efficiency of the catalyst 8 was 99% by mass, the sieving yield was 89% by mass, and the manufacturing yield was 88% by mass. No adhesion of the catalyst component precursor was observed on the inner surface of the treatment container, and the metallic luster on the inner surface of the treatment container could be confirmed. The results of the catalyst performance test of the catalyst 8 are shown in Table 1.

Figure 2021069962
Figure 2021069962

1 転動造粒機
2 処理容器部
3 回転軸
4 水平面
5 底面部(皿部、パン)
6 外周側面部
7 造粒混合物
8 処理容器部の回転軸に直交する断面(投影面)
9 回転上り方向側の半円領域
10 回転下り方向側の半円領域
11 回転上り方向側の半円領域の下方の領域
12 回転下り方向側の半円領域の下方の領域
θ 傾斜角度
O 中心点
1 Rolling granulator 2 Processing container 3 Rotating shaft 4 Horizontal surface 5 Bottom (dish, pan)
6 Outer peripheral side surface 7 Granulated mixture 8 Cross section (projection surface) orthogonal to the rotation axis of the processing container
9 Semi-circular area on the up-rotation direction 10 Semi-circle area on the down-rotation side 11 Area below the semi-circle area on the up-rotation side 12 Area below the semi-circle area on the down-rotation direction θ Tilt angle O Center point

Claims (5)

不飽和炭化水素の接触気相酸化反応により不飽和アルデヒドおよび/または不飽和カルボン酸を製造するための触媒の製造方法であって、転動造粒機の処理容器部を回転させながら、前記処理容器部に不活性担体および担持粉体を含む原料を連続的に供給するとともにバインダー液を供給して担持処理する工程を含み、前記処理容器部の回転軸に直交する断面の形状が略円形であり、前記断面を投影面とし、前記投影面をその中心点を通る鉛直方向の直線で2つの半円領域に分割したとき、回転下り方向側の半円領域にあたる前記処理容器部の箇所の一部に前記バインダー液の少なくとも一部を供給することを特徴とする、不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法。 A method for producing a catalyst for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid by a catalytic vapor phase oxidation reaction of an unsaturated hydrocarbon, wherein the processing is performed while rotating the processing container portion of the rolling granulator. A step of continuously supplying a raw material containing an inert carrier and a supported powder to the container portion and supplying a binder solution for the supporting treatment is included, and the shape of the cross section orthogonal to the rotation axis of the processing container portion is substantially circular. When the cross section is used as a projection surface and the projection surface is divided into two semicircular regions by a straight line in the vertical direction passing through the center point thereof, one of the portions of the processing container portion corresponding to the semicircular region on the downward rotation direction side. A method for producing a catalyst for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, which comprises supplying at least a part of the binder solution to the portion. 前記2つの半円領域のうち、回転上り方向側の半円領域にあたる前記処理容器部の箇所の一部にも前記バインダー液の少なくとも一部を供給する、請求項1に記載の触媒の製造方法。 The method for producing a catalyst according to claim 1, wherein at least a part of the binder liquid is supplied to a part of the processing container portion corresponding to the semicircular region on the rotation up direction side of the two semicircular regions. .. 前記回転下り方向側の半円領域の一部に供給する前記バインダー液の量が、前記処理容器部に供給される前記バインダー液の全量に対して10〜70質量%である、請求項1または2に記載の触媒の製造方法。 Claim 1 or claim 1, wherein the amount of the binder liquid supplied to a part of the semicircular region on the rotation downward side is 10 to 70% by mass with respect to the total amount of the binder liquid supplied to the processing container portion. 2. The method for producing a catalyst according to 2. 前記担持粉体が、モリブデン、ビスマスおよび鉄を必須成分として含有する、請求項1から3のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 1 to 3, wherein the supported powder contains molybdenum, bismuth and iron as essential components. 不飽和炭化水素を接触気相酸化して不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法であって、請求項1から4のいずれか一項に記載の製造方法により得られる触媒を用いる、不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。 A method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid by catalytic vapor phase oxidation of an unsaturated hydrocarbon, using a catalyst obtained by the production method according to any one of claims 1 to 4. , A method for producing unsaturated aldehydes and / or unsaturated carboxylic acids.
JP2019196202A 2019-10-29 2019-10-29 Method for producing catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst Pending JP2021069962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019196202A JP2021069962A (en) 2019-10-29 2019-10-29 Method for producing catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019196202A JP2021069962A (en) 2019-10-29 2019-10-29 Method for producing catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst

Publications (1)

Publication Number Publication Date
JP2021069962A true JP2021069962A (en) 2021-05-06

Family

ID=75712038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019196202A Pending JP2021069962A (en) 2019-10-29 2019-10-29 Method for producing catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst

Country Status (1)

Country Link
JP (1) JP2021069962A (en)

Similar Documents

Publication Publication Date Title
CN1101273C (en) Preparation of catalyst consisting of carrier and catalytically active oxide material applied to surface of carrier
CN1290612C (en) Loading type mixed metal oxide catalyst
KR101288713B1 (en) Method for filling a reactor
TWI400129B (en) Process for charging of a reactor with catalyst particles
US20060205978A1 (en) Production process for catalyst
US8426335B2 (en) Catalyst and process for production of acrylic acid
JP5628930B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JPH08299797A (en) Catalyst and its production
KR20100031744A (en) Method for introducing into a reaction tube of a tube bundle reactor, a partial amount withdrawn from at least one production charge of annular-shaped shell catalysts k
KR20160068763A (en) Method for producing unsaturated carboxylic acid, and supported catalyst
CN106457225B (en) Oxidation catalyst with saddle-shaped carrier
JP4261946B2 (en) Method for producing catalyst for catalytic gas phase oxidation reaction
JP5586382B2 (en) Method for producing catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, catalyst therefor, and method for producing acrolein and / or acrylic acid using the catalyst
CN101175569A (en) Method for preparing catalyst for production of methacrylic acid
JP2011177616A (en) Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid and method of producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst
EP1526123A1 (en) Catalytic gas phase oxidation reaction
JP5628936B2 (en) Unsaturated carboxylic acid production catalyst and method for producing unsaturated carboxylic acid using the catalyst
KR100585285B1 (en) Production process for catalyst
JP2021069962A (en) Method for producing catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst
JP2004002209A (en) Method for producing unsaturated aldehyde
JP4253176B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid
JP6207346B2 (en) Method for cleaning supported treatment apparatus, method for producing unsaturated aldehyde and unsaturated carboxylic acid production catalyst having washing step by the washing method, catalyst therefor, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP7105395B1 (en) Catalyst precursor, catalyst using the same, method for producing compound, and method for producing catalyst
JP7325688B1 (en) Catalyst and method for producing compound using the same
WO2023100856A1 (en) Catalyst, and method for producing compound using same