JP2003340267A - Method for packing catalyst and multitubular heat exchange type reactor - Google Patents

Method for packing catalyst and multitubular heat exchange type reactor

Info

Publication number
JP2003340267A
JP2003340267A JP2002157344A JP2002157344A JP2003340267A JP 2003340267 A JP2003340267 A JP 2003340267A JP 2002157344 A JP2002157344 A JP 2002157344A JP 2002157344 A JP2002157344 A JP 2002157344A JP 2003340267 A JP2003340267 A JP 2003340267A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
filling
reaction tubes
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002157344A
Other languages
Japanese (ja)
Inventor
Tomomichi Hino
智道 日野
Akira Ogawa
朗 小川
Hideyasu Takezawa
英泰 竹沢
Toshihiro Sato
俊裕 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002157344A priority Critical patent/JP2003340267A/en
Publication of JP2003340267A publication Critical patent/JP2003340267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for packing a catalyst in a multitubular heat exchange type reactor which can improve a yield and a conversion ratio in a catalytic gas-phase oxidation reaction and a reaction rate, and the multitubular heat exchange type reactor. <P>SOLUTION: In the method for packing the catalyst into a number of reaction tubes 12, 12, 12, and the like, the quantity of the catalyst to be packed in each tube 12 is controlled to be within a target quantity of the catalyst ±10%, and the length of a part of each tube 12 where the catalyst is packed is controlled to be within a target length ±20%, or the pressure loss of each tube 12 is controlled to be within a target pressure loss ±20%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、反応管に固定床用
触媒を充填する触媒の充填方法およびその方法により触
媒が充填された多管式熱交換型反応器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst filling method for filling a reaction tube with a fixed bed catalyst and a multi-tube heat exchange reactor filled with the catalyst by the method.

【0002】[0002]

【従来の技術】例えば、プロピレンを原料としてアクロ
レインやアクリル酸を工業的に製造する場合、あるい
は、イソブチレンを原料としてメタクロレインやメタク
リル酸を工業的に製造する場合には、多数の反応管を具
備する多管式熱交換型反応器を用いた接触気相酸化反応
を行うことがある。この接触気相酸化反応では、多数の
反応管内に充填された固定床用酸化触媒に、原料となる
ガスや分子状酸素を流通させるとともに、各反応管の外
側を熱媒により加熱もしくは除熱することで酸化反応を
進行させている。
2. Description of the Related Art For example, when acrolein or acrylic acid is industrially produced from propylene or when methacrolein or methacrylic acid is industrially produced from isobutylene, a large number of reaction tubes are provided. A catalytic gas phase oxidation reaction using a multi-tube heat exchange type reactor is sometimes performed. In this catalytic gas-phase oxidation reaction, the raw material gas and molecular oxygen are circulated through the fixed bed oxidation catalyst packed in a large number of reaction tubes, and the outside of each reaction tube is heated or removed by a heat medium. This promotes the oxidation reaction.

【0003】ところで、多管式熱交換型反応器での反応
では、反応を均一にするために、多数の反応管のガス流
量が均一であることが好ましい。しかしながら、従来の
多管式熱交換型反応器においては、触媒充填の管理が必
ずしも十分ではなかった。例えば、管径が均一で、触媒
量を同量としても、触媒の充填密度が各反応管間で異な
ることがあり、その結果、圧力損失が各反応管間で異な
り、ガス流量が不均一になることがあった。ガス流量が
不均一になった場合、反応時間である接触時間が不均一
になるので、各反応管における反応にばらつきが生じ、
副反応を制御できず、収率が低下したり、トータルの反
応率が低下するなどして生産性を低下させることがあっ
た。そこで、例えば、多管式熱交換型反応器を用いた水
素添加反応においては、固定床用触媒を充填した各反応
管の圧力損失を一定の範囲内に管理することで、各反応
管間のガス流量を均一化して、各反応管間の反応のばら
つきを防止する方法が提案されている(特開平5−27
9269号公報)。
By the way, in the reaction in the multi-tube heat exchange type reactor, it is preferable that the gas flow rates of a large number of reaction tubes are uniform in order to make the reaction uniform. However, in the conventional multitubular heat exchange type reactor, the control of the catalyst filling was not always sufficient. For example, even if the tube diameter is uniform and the amount of catalyst is the same, the packing density of the catalyst may differ between reaction tubes, which results in different pressure loss between reaction tubes and uneven gas flow rates. There was a chance When the gas flow rate becomes non-uniform, the contact time, which is the reaction time, becomes non-uniform, which causes variations in the reaction in each reaction tube.
There was a case where the side reaction could not be controlled, the yield was lowered, the total reaction rate was lowered, etc., and the productivity was lowered. Therefore, for example, in a hydrogenation reaction using a multi-tube heat exchange reactor, by controlling the pressure loss of each reaction tube filled with a fixed bed catalyst within a certain range, A method has been proposed in which the gas flow rate is made uniform to prevent variations in the reaction among the reaction tubes (JP-A-5-27).
9269).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この方
法では、各反応管の圧力損失のみをある一定の範囲内に
するために、触媒の充填量を反応管ごとに変えることが
あった。そのため、ガス流量は均一となるものの、触媒
充填量が均一ではなく、触媒負荷が均一とならないた
め、反応が各反応管間で均一でなく、収率の低下、反応
率の低下を防止することが困難であった。特に、アクロ
レインやアクリル酸、メタクロレインやメタクリル酸等
を製造する気相接触酸化反応の場合、反応熱が非常に大
きいため、反応管ごとの触媒充填量が異なってしまう
と、反応管内の触媒層の温度が反応管ごとに大きく変わ
ってしまい、収率や反応率も大きく異なってしまうとい
う問題があった。すなわち、気相接触酸化反応において
は、単に各反応管の圧力損失をある一定の範囲内にする
だけでは十分に多数の反応管の反応を均一にできず、そ
の結果、生産性を十分に向上させることができなかっ
た。
However, in this method, in order to keep only the pressure loss of each reaction tube within a certain range, the catalyst filling amount may be changed for each reaction tube. Therefore, although the gas flow rate is uniform, the catalyst filling amount is not uniform and the catalyst load is not uniform, so the reaction is not uniform among the reaction tubes, and the decrease in yield and the decrease in reaction rate are prevented. Was difficult. In particular, in the case of a gas-phase catalytic oxidation reaction for producing acrolein, acrylic acid, methacrolein, methacrylic acid, etc., the reaction heat is very large, so if the catalyst filling amount differs for each reaction tube, the catalyst layer in the reaction tube There is a problem in that the temperature of 1 changes greatly depending on the reaction tube, and the yield and the reaction rate also change greatly. That is, in the gas-phase catalytic oxidation reaction, it is not possible to make the reactions in a large number of reaction tubes uniform by simply setting the pressure loss of each reaction tube within a certain range, and as a result, the productivity is sufficiently improved. I couldn't do it.

【0005】本発明は、反応熱が大きい、アクロレイン
やアクリル酸、メタクロレインやメタクリル酸等を合成
する気相接触酸化反応においても、各反応管の接触時間
および触媒負荷を均一にし、収率および反応率を向上さ
せることが可能な、多管式熱交換型反応器の反応管への
触媒の充填方法および多管式熱交換型反応器を提供する
ことを目的とする。
According to the present invention, even in a gas phase catalytic oxidation reaction for synthesizing acrolein, acrylic acid, methacrolein, methacrylic acid, etc., which has a large heat of reaction, the contact time and the catalyst load of each reaction tube are made uniform, and the yield and An object of the present invention is to provide a method for charging a catalyst into a reaction tube of a multitubular heat exchange reactor and a multitubular heat exchange reactor capable of improving the reaction rate.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究した結果、各反応管のガス流量を
一定の範囲として各反応管間の接触時間を均一にすると
ともに、各反応管内の触媒量を一定の範囲として各反応
管間の触媒負荷を均一にすることで、アクロレインやア
クリル酸、メタクロレインやメタクリル酸等を合成する
気相接触酸化反応のような反応熱が非常に大きい反応に
おいても、収率や反応率を均一化し、製造効率を向上さ
せることができることを見出し、以下の発明を完成する
に到った。すなわち、本願請求項1の触媒の充填方法
は、実質的に同一形状の多数本の反応管に触媒を充填す
る触媒の充填方法において、各反応管に充填する触媒を
管理目標量の±10%以内で計量し、各反応管の充填長
と、それら充填長の平均値との差が、充填長の平均値の
±20%以内となるようにして、各反応管に触媒を充填
することを特徴としている。ここで、充填長とは、反応
管に触媒を充填した際に触媒が充填された部分の長さの
ことである。なお、本発明において、触媒とは、通常の
触媒以外にも、触媒の反応強度を調節するため等に使わ
れる触媒希釈材および反応管内に充填されうるもの全て
のものを含む。
As a result of intensive studies to solve the above problems, the present inventors have made the gas flow rate of each reaction tube within a certain range to make the contact time between each reaction tube uniform, and By making the amount of catalyst in each reaction tube within a certain range and making the catalyst load between each reaction tube uniform, reaction heat such as gas phase catalytic oxidation reaction for synthesizing acrolein, acrylic acid, methacrolein, methacrylic acid, etc. The inventors have found that even in a very large reaction, the yield and the reaction rate can be made uniform, and the production efficiency can be improved, and the following inventions have been completed. That is, the method of filling a catalyst according to claim 1 of the present application is a method of filling a catalyst in which a plurality of reaction tubes having substantially the same shape are filled with the catalyst. Weigh it within the range and fill the catalyst into each reaction tube so that the difference between the filling length of each reaction tube and the average value of those filling lengths is within ± 20% of the average value of the filling length. It has a feature. Here, the filling length is the length of the portion filled with the catalyst when the reaction tube is filled with the catalyst. In the present invention, the term "catalyst" includes not only ordinary catalysts but also catalyst diluents used for adjusting the reaction strength of catalysts and all those that can be filled in the reaction tube.

【0007】また、本願請求項2の触媒の充填方法は、
実質的に同一形状の多数本の反応管に触媒を充填する触
媒の充填方法において、各反応管に充填する触媒を管理
目標量の±10%以内で計量し、各反応管の圧力損失
と、それら圧力損失の平均値との差が、圧力損失の平均
値の±20%以内となるようにして、各反応管に触媒を
充填することを特徴としている。
The catalyst filling method according to claim 2 of the present application is
In a catalyst filling method for filling a large number of reaction tubes of substantially the same shape with a catalyst, the catalyst to be filled in each reaction tube is weighed within ± 10% of a control target amount, and the pressure loss of each reaction tube is It is characterized in that each reaction tube is filled with a catalyst so that the difference from the average value of the pressure loss is within ± 20% of the average value of the pressure loss.

【0008】本願請求項3の触媒の充填方法は、実質的
に同一形状の多数本の反応管に触媒を充填する触媒の充
填方法において、各反応管に充填する触媒を管理目標量
の±10%以内で計量し、各反応管の充填長と、それら
充填長の平均値との差が、充填長の平均値の±20%以
内となるようにし、各反応管の圧力損失と、それら圧力
損失の平均値との差が、圧力損失の平均値の±20%以
内となるようにして、各反応管に触媒を充填することを
特徴としている。
The catalyst filling method according to claim 3 of the present application is a catalyst filling method in which a large number of reaction tubes having substantially the same shape are filled with the catalyst. % So that the difference between the filling length of each reaction tube and the average value of those filling lengths is within ± 20% of the average value of the filling length, and the pressure loss of each reaction tube and the pressure It is characterized in that each reaction tube is filled with the catalyst so that the difference from the average value of the loss is within ± 20% of the average value of the pressure loss.

【0009】上述した触媒の充填方法において、反応管
本数が50本以上である場合、10本以上で、かつ、全
反応管本数の0.5〜99.5%の範囲の自然数からな
る本数の反応管を抽出し、これらの抽出した反応管の充
填長を平均した値を、前記充填長の平均値とすることが
好ましい。
In the above-mentioned catalyst packing method, when the number of reaction tubes is 50 or more, the number of reaction tubes is 10 or more and is a natural number in the range of 0.5 to 99.5% of the total number of reaction tubes. It is preferable that the reaction tubes are extracted, and the value obtained by averaging the filling lengths of the extracted reaction tubes is set as the average value of the filling lengths.

【0010】また、多管式熱交換型反応器の反応管本数
が50本以上である場合、10本以上で、かつ、全反応
管本数の0.5〜99.5%の範囲の自然数からなる本
数の反応管を抽出し、これらの抽出した反応管の圧力損
失を平均した値を、前記圧力損失の平均値とすることが
できる。また、反応管本数が略同数となるように2以上
の群に分け、各群から同じ本数の反応管を抽出して充填
長の平均値および/または圧力損失の平均値を求めるこ
とができる。また、本発明の触媒の充填方法において
は、各反応管について二回以上触媒を充填することがで
きる。
When the number of reaction tubes in the multi-tube heat exchange type reactor is 50 or more, it is 10 or more and from a natural number in the range of 0.5 to 99.5% of the total number of reaction tubes. It is possible to extract a certain number of reaction tubes and average the pressure loss of the extracted reaction tubes to be the average value of the pressure loss. Further, the reaction tube can be divided into two or more groups so that the number of reaction tubes is approximately the same, and the same number of reaction tubes are extracted from each group to obtain the average value of the filling length and / or the average value of the pressure loss. Further, in the catalyst filling method of the present invention, each reaction tube can be filled with the catalyst twice or more.

【0011】本発明の多管式熱交換型反応器は、上述し
た触媒の充填方法によって反応管に触媒が充填されたこ
とを特徴としている。また、本発明の多管式熱交換型反
応器は、プロピレンと分子状酸素とを反応させてアクロ
レインを合成するアクロレイン合成反応および/または
アクロレインと分子状酸素とを反応させてアクリル酸を
合成するアクリル酸合成反応に好適に用いられる。ま
た、本発明の多管式熱交換型反応器は、イソブチレンも
しくはターシャリーブチルアルコールと分子状酸素とを
反応させてメタクロレインを合成するメタクロレイン合
成反応および/またはメタクロレインと分子状酸素とを
反応させてメタクリル酸を合成するメタクリル酸合成反
応に好適に用いられる。
The multi-tube heat exchange type reactor of the present invention is characterized in that the reaction tube is filled with the catalyst by the above-mentioned catalyst filling method. In the multitubular heat exchange reactor of the present invention, an acrolein synthesis reaction of reacting propylene with molecular oxygen to synthesize acrolein and / or a reaction of acrolein with molecular oxygen to synthesize acrylic acid. It is preferably used for acrylic acid synthesis reaction. Further, the multitubular heat exchange reactor of the present invention is a methacrolein synthesis reaction in which isobutylene or tertiary butyl alcohol is reacted with molecular oxygen to synthesize methacrolein and / or methacrolein and molecular oxygen. It is preferably used in a methacrylic acid synthesis reaction in which methacrylic acid is reacted to synthesize methacrylic acid.

【0012】[0012]

【発明の実施の形態】本発明の触媒の充填方法および多
管式熱交換型反応器の第1の実施形態例について説明す
る。この実施形態例では、イソブチレンおよび/または
ターシャリーブチルアルコールと分子状酸素とを原料と
したメタクロレイン合成反応を行う。はじめに、本発明
の多管式熱交換型反応器について図1を参照しながら説
明する。この多管式熱交換型反応器10は、触媒11が
充填された多数の反応管12,12,12・・・と、反
応器下部に設けられた原料ガス入口13と、反応器上部
に設けられた反応生成物出口14と、反応管12を加熱
または除熱するための熱媒体を反応器内に導入する熱媒
体入口15と、熱媒体を反応器内から排出する熱媒体出
口16と、熱媒体の流動のショートカットを防止する切
欠型の邪魔板17とを有して概略構成される。この多管
式熱交換型反応器10では、多数の反応管12,12,
12・・・は、実質的に同一形状である。実質的に同一
形状とは、形状の差異が反応管の外径、肉厚、及び長さ
が設計誤差の範囲にあることを意味する。実質的に同一
形状でない場合、反応管内の流路抵抗が均一でなくな
り、各反応管の間のガス流量が不均一になる。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the method for filling a catalyst and the shell-and-tube heat exchange reactor of the present invention will be described. In this embodiment, a methacrolein synthesis reaction using isobutylene and / or tertiary butyl alcohol and molecular oxygen as raw materials is performed. First, the multi-tube heat exchange reactor of the present invention will be described with reference to FIG. This multi-tubular heat exchange reactor 10 includes a large number of reaction tubes 12, 12, 12, ... Filled with a catalyst 11, a raw material gas inlet 13 provided in the lower part of the reactor, and an upper part of the reactor. The obtained reaction product outlet 14, a heat medium inlet 15 for introducing a heat medium for heating or removing heat from the reaction tube 12 into the reactor, and a heat medium outlet 16 for discharging the heat medium from the inside of the reactor, A baffle plate 17 of a notch type that prevents a shortcut of the flow of the heat medium is provided. In this multitubular heat exchange reactor 10, a large number of reaction tubes 12, 12,
12 ... have substantially the same shape. The “substantially the same shape” means that the difference in shape is such that the outer diameter, wall thickness, and length of the reaction tube are within the design error range. If the shapes are not substantially the same, the flow path resistance in the reaction tube becomes non-uniform, and the gas flow rate between the reaction tubes becomes non-uniform.

【0013】このような多管式熱交換型反応器10を用
いたメタクロレインの合成では、まず、イソブチレンお
よび/またはターシャリーブチルアルコールと分子状酸
素とを含んだ原料ガスを、原料ガス入口13から多管式
熱交換型反応器10に供給する。次いで、触媒11が充
填され、熱媒体によって加熱された各反応管12内に、
原料ガスを流通させる。そして、触媒11に原料ガスが
下から上に流通した時に、イソブチレンが酸化、および
/またはターシャリーブチルアルコールが脱水、酸化し
て、メタクロレインが生成する。そして、メタクロレイ
ンを含む反応生成物を反応生成物出口14から多管式熱
交換型反応器10外に排出する。
In the synthesis of methacrolein using such a multitubular heat exchange reactor 10, first, a raw material gas containing isobutylene and / or tertiary butyl alcohol and molecular oxygen is fed into the raw material gas inlet 13 To the multi-tubular heat exchange reactor 10. Then, in each reaction tube 12 filled with the catalyst 11 and heated by the heat medium,
Distribute the source gas. Then, when the raw material gas flows through the catalyst 11 from the bottom to the top, isobutylene is oxidized and / or tertiary butyl alcohol is dehydrated and oxidized to generate methacrolein. Then, the reaction product containing methacrolein is discharged from the reaction product outlet 14 to the outside of the multitubular heat exchange reactor 10.

【0014】この多管式熱交換型反応器10の反応管1
2に触媒11を充填する際には、触媒11を反応管ご
と、または充填回ごとに管理目標量を計り取り、計量し
た触媒を上部開口部から各反応管12にそれぞれ充填す
る。ここで、管理目標量は体積でも質量でもよいが、精
度が高くなるという面で、質量で計量することが好まし
い。管理目標量が体積の場合、その量は反応管12の容
積から、質量の場合は反応管12の容積と別途予備的に
測定される触媒充填密度から容易に算出される。また、
触媒を計量する際には、各反応管に充填する触媒量と、
それら管理目標量との差は、触媒量の平均値の±10%
以内、好ましくは±5%以内とする。各反応管に充填す
る触媒量と管理目標量との差が、この範囲でない場合に
は、各反応管の間の触媒負荷が不均一となる。また、計
量した触媒11を反応管12に全て充填し終わる前に、
反応管12が満たされた場合には、反応管12内での触
媒のブリッジ等による充填ミスが考えられるので、その
反応管12については触媒の再充填を行う必要がある。
The reaction tube 1 of the multitubular heat exchange reactor 10
When 2 is filled with the catalyst 11, the control target amount of the catalyst 11 is measured for each reaction tube or each filling time, and the measured catalyst is filled in each reaction tube 12 from the upper opening. Here, the management target amount may be a volume or a mass, but it is preferable to measure by the mass because the accuracy is high. When the control target amount is a volume, the amount is easily calculated from the volume of the reaction tube 12, and when it is a mass, it is easily calculated from the volume of the reaction tube 12 and the catalyst packing density separately preliminarily measured. Also,
When measuring the catalyst, the amount of catalyst filled in each reaction tube,
The difference from these control target amounts is ± 10% of the average value of the catalyst amount.
Within, preferably within ± 5%. If the difference between the amount of catalyst filled in each reaction tube and the control target amount is not within this range, the catalyst load between the reaction tubes becomes uneven. In addition, before the reaction tube 12 is completely filled with the measured catalyst 11,
When the reaction tube 12 is filled, a filling error due to a catalyst bridge or the like in the reaction tube 12 may occur, so that the reaction tube 12 needs to be refilled with the catalyst.

【0015】また、触媒11を充填する際には、各反応
管の充填長と充填長の平均値との差が一定の範囲内にな
るようにする。すなわち、充填長の平均値に対する各反
応管の充填長と充填長の平均値との差の割合(この割合
を管理巾ともいう)が、±20%以内、好ましくは±1
5%以内、更に好ましくは±10%以内、最も好ましく
は±5%以内となるようにする。このようにすれば、触
媒のブリッジや破砕による触媒充填ミスを容易に発見で
き、全ての反応管の触媒充填密度を均一にできる。な
お、充填長が管理巾から外れた場合は、各反応管間での
反応が不均一になり、反応率および収率が低下するの
で、管理巾の範囲となるまで、その反応管の触媒充填を
やり直す。
When the catalyst 11 is filled, the difference between the filling length of each reaction tube and the average value of the filling length is set within a certain range. That is, the ratio of the difference between the filling length of each reaction tube and the average value of the filling length with respect to the average value of the filling length (this ratio is also referred to as the control width) is within ± 20%, preferably ± 1.
Within 5%, more preferably within ± 10%, and most preferably within ± 5%. In this way, catalyst packing mistakes due to catalyst bridging and crushing can be easily found, and the catalyst packing density of all reaction tubes can be made uniform. If the filling length deviates from the control width, the reaction between the reaction tubes becomes non-uniform, and the reaction rate and the yield decrease. Start over.

【0016】触媒11の充填長は、上部の管板面18か
らの反応管12の無充填空間の深さを充填前後に測定
し、その差として求められる。無充填空間の深さは、例
えば、針金等を差し込み、その針金等の長さを測定して
求めることができる。
The filling length of the catalyst 11 is determined as the difference between the depths of the unfilled space of the reaction tube 12 from the upper tube sheet surface 18 before and after filling. The depth of the non-filled space can be obtained, for example, by inserting a wire or the like and measuring the length of the wire or the like.

【0017】工業的に接触気相酸化反応を行う場合、生
産量が多いため、多管式熱交換型反応器の反応管本数が
50本以上となることがある。このような場合、全反応
管の充填長を測定して平均値を算出してもよいが、平均
値算出の作業時間を短縮させることを目的として、平均
値を算出する対象の反応管本数を、10本以上で、か
つ、全反応管本数の0.5%〜99.5%、好ましくは
1%〜60%、更に好ましくは1.5%〜40%、最も
好ましくは2%〜20%の範囲の自然数からなる本数と
することが好ましい。この場合、平均値算出対象となる
反応管に先に触媒を充填し、それらの充填長の平均値を
算出した後、それ以外の反応管に触媒を充填、及び充填
長の測定を行えば、より簡単に充填作業を進めることが
できる。また、測定の対象とする反応管本数は、多いほ
ど正確な平均値を求めることができる。一方、少ないほ
ど作業時間が短くなる。
When the catalytic gas phase oxidation reaction is industrially performed, the number of reaction tubes in the multi-tube heat exchange type reactor may be 50 or more because the production amount is large. In such a case, the filling length of all the reaction tubes may be measured to calculate the average value, but for the purpose of shortening the working time of the average value calculation, the number of reaction tubes for which the average value is calculated is set. 10 or more and 0.5% to 99.5%, preferably 1% to 60%, more preferably 1.5% to 40%, most preferably 2% to 20% of the total number of reaction tubes. It is preferable that the number is a natural number in the range. In this case, the reaction tube to be the average value is first charged with the catalyst, and after calculating the average value of their filling lengths, the other reaction tubes are filled with the catalyst, and if the filling length is measured, The filling operation can be carried out more easily. Further, the larger the number of reaction tubes to be measured, the more accurate the average value can be obtained. On the other hand, the smaller the number, the shorter the working time.

【0018】その際、平均値算出対象とする反応管の抽
出方法は無作為であることが好ましい。無作為に抽出す
る方法としては、例えば、反応管本数が略同数となるよ
うに2以上の群に分け、各群から同じ本数の反応管を抽
出する方法が挙げられる。この方法によると、反応管を
偏りなく抽出できるので、平均値の信頼性を高くでき
る。ここで、略同等とは、全本数の10%以内の本数の
違いのことである。全本数の10%以内の違いであれば
平均値の誤差を無視できる。さらに、2以上の群に分け
るには、反応管12の長さ方向に対して垂直方向に配置
され、各反応管12の端部が取り付けられる管板面18
を、各区域当りの面積が等しくなるように2以上の区域
に分け、各区域に取り付けられた反応管を一群とする
と、反応管の抽出が簡便となる。なお、上述したよう
に、平均値を算出する対象の反応管本数を減少させても
よいが、充填長の測定はより多くの反応管で行うことが
好ましく、特に全ての反応管で行うことが好ましい。
At this time, it is preferable that the method of extracting the reaction tube from which the average value is to be calculated is random. As a method of randomly extracting, for example, a method of dividing into two or more groups so that the number of reaction tubes is approximately the same and extracting the same number of reaction tubes from each group can be mentioned. According to this method, the reaction tubes can be uniformly extracted, so that the reliability of the average value can be increased. Here, “substantially equal” means a difference in the number of lines within 10% of the total number. If the difference is within 10% of the total number, the error of the average value can be ignored. Further, in order to divide the reaction tube 12 into two or more groups, the tube plate surface 18 is arranged in the direction perpendicular to the length direction of the reaction tube 12 and the end of each reaction tube 12 is attached.
Is divided into two or more areas so that the area of each area is the same, and the reaction tubes attached to each area are grouped together, so that the extraction of the reaction tube becomes simple. Note that, as described above, the number of reaction tubes for which the average value is calculated may be reduced, but the measurement of the filling length is preferably performed in more reaction tubes, and particularly in all reaction tubes. preferable.

【0019】各反応管12への触媒の充填は二回以上行
うこともできる。反応管本数が50本以上の場合には、
充填長の平均値を算出する対象の反応管を、各回ごとに
選択し直してもよいし、全ての回に渡って同じ反応管を
選択してもよい。各回ごとに反応管を選択し直せば、平
均値の精度をより向上させることができ、全ての回で同
じ反応管を選択すれば、各回ごとに反応管を選び直す手
間を省くことができる。
The catalyst can be filled in each reaction tube 12 twice or more. If the number of reaction tubes is 50 or more,
The reaction tube for which the average value of the filling length is calculated may be reselected every time, or the same reaction tube may be selected over all times. If the reaction tube is selected again for each time, the accuracy of the average value can be further improved, and if the same reaction tube is selected for all times, it is possible to save the trouble of selecting the reaction tube for each time.

【0020】充填作業を各反応管について二回以上行う
のは、例えば、次のような場合である。すなわち、反応
管12に種類の異なる触媒を充填して複数の触媒層を形
成させる場合、あるいは、触媒と触媒希釈材等との混合
物の、混合率が異なる数種を充填して複数の層を形成さ
せる場合、あるいは、反応を効率的に行うため、反応管
と多管式熱交換型反応器の上下管板との接合部に担体や
触媒希釈材のみを充填する場合などである。このよう
に、触媒を二回以上充填する場合には、各反応管の反応
強度を調節することができるので、反応管の反応率や収
率をより均一化できる。なお、充填作業を各反応管につ
いて二回以上行う場合でも、触媒の計量を各充填回(各
層)ごとに行い、更に層ごとの充填長を測定し、各反応
管の各層ごとの充填長と充填長の平均値との差が、充填
長の平均値の±20%以下となるようにする。
The filling operation is performed twice or more for each reaction tube in the following cases, for example. That is, when the reaction tube 12 is filled with different kinds of catalysts to form a plurality of catalyst layers, or when a mixture of a catalyst and a catalyst diluent or the like is filled with several kinds having different mixing ratios, a plurality of layers are formed. For example, in the case of forming it, or in the case of efficiently carrying out the reaction, the joint between the reaction tube and the upper and lower tube plates of the multi-tube heat exchange reactor is filled with only the carrier or the catalyst diluent. As described above, when the catalyst is charged twice or more, the reaction strength of each reaction tube can be adjusted, and thus the reaction rate and yield of the reaction tube can be made more uniform. Even when the filling work is performed twice or more for each reaction tube, the catalyst is weighed for each filling time (each layer), and the filling length for each layer is further measured to obtain the filling length for each layer of each reaction tube. The difference from the average value of the filling length is set to be ± 20% or less of the average value of the filling length.

【0021】反応管12に充填される触媒11として
は、多管式熱交換型反応器用として利用される酸化触媒
であれば特に限定されず、例えば、触媒成分を含有する
粉末触媒を打錠したもの、押出等によってペレット状も
しくは円筒状に成型したもの、アルミナ、シリカ、カー
ボン、チタニア等を球形もしくはペレット状もしくは円
筒状に成型した担体表面に、触媒成分を担持させたもの
等が挙げられる。触媒成分としては、例えば、モリブデ
ン、ビスマス等の複合酸化物等が挙げられる。触媒11
の大きさは、その有効面積と反応器内の圧力損失等を考
慮して決定されるが、通常直径及び長さが0.1mm〜
20mm程度の範囲である。また、触媒希釈材として
は、例えば、アルミナ、シリカ、カーボン、チタニア等
を球形もしくはペレット状もしくは円筒状に成型した担
体や反応に不活性な金属等で作られたリング等が挙げら
れる。
The catalyst 11 packed in the reaction tube 12 is not particularly limited as long as it is an oxidation catalyst used for a multi-tube heat exchange type reactor, and for example, a powder catalyst containing a catalyst component is tableted. Examples thereof include those molded into pellets or cylinders by extrusion or the like, those in which alumina, silica, carbon, titania, etc. are molded into spherical shapes or pellets or cylinders, and the catalyst components are supported on the surfaces of the carriers. Examples of the catalyst component include complex oxides such as molybdenum and bismuth. Catalyst 11
The size of is determined in consideration of its effective area, pressure loss in the reactor, etc.
The range is about 20 mm. Examples of the catalyst diluent include a carrier formed by molding alumina, silica, carbon, titania or the like into a spherical shape, a pellet shape or a cylindrical shape, or a ring made of a metal inert to the reaction.

【0022】反応管12の外径、肉厚、長さ、本数は特
に限定されないが、外径は通常7mm〜60mmであ
る。また、肉厚は通常1mm〜4mmである。また、長
さは通常0.5m〜10mである。また、本数は通常1
0本〜40000本である。
The outer diameter, wall thickness, length, and number of the reaction tubes 12 are not particularly limited, but the outer diameter is usually 7 mm to 60 mm. The wall thickness is usually 1 mm to 4 mm. The length is usually 0.5 m to 10 m. Also, the number is usually 1
It is 0 to 40,000.

【0023】反応管12を加熱または除熱する熱媒体と
してはナイターが好適に利用される。ここで、ナイター
とは亜硝酸ナトリウム、硝酸カリウム、硝酸ナトリウム
等を含んだ高温用熱媒体である。熱媒体は、図1に示す
ように、熱媒体入口15から多管式熱交換型反応器10
内に流入し、熱媒体出口16へ流出する。
A niter is preferably used as a heat medium for heating or removing heat from the reaction tube 12. Here, the niter is a high temperature heat medium containing sodium nitrite, potassium nitrate, sodium nitrate and the like. As shown in FIG. 1, the heat medium is supplied from the heat medium inlet 15 to the shell-and-tube heat exchange reactor 10.
It flows in and flows out to the heat medium outlet 16.

【0024】この多管式熱交換型反応器10を用いたメ
タクロレインの合成では、反応効率を高めることから、
反応圧力50kPa〜500kPa、反応温度(熱媒体
温度)200℃〜500℃、原料ガス中のイソブチレン
および/またはターシャリーブチルアルコールの濃度は
0.5質量%〜10質量%、原料ガス中の酸素モル比
は、イソブチレンおよび/またはターシャリーブチルア
ルコールに対して0.5倍〜30倍、原料ガスの空間時
間は500h-1〜3000h-1(NTP)程度とされる
ことが好ましい。
In the synthesis of methacrolein using the multitubular heat exchange reactor 10, since the reaction efficiency is increased,
Reaction pressure 50 kPa to 500 kPa, reaction temperature (heat medium temperature) 200 ° C. to 500 ° C., concentration of isobutylene and / or tertiary butyl alcohol in the raw material gas is 0.5% by mass to 10% by mass, oxygen mole in the raw material gas The ratio is preferably 0.5 to 30 times that of isobutylene and / or tertiary butyl alcohol, and the space time of the raw material gas is preferably about 500 h -1 to 3000 h -1 (NTP).

【0025】上述した第1の実施形態例では、各反応管
12に充填される触媒質量が一定範囲内とされているの
で、原料ガスに接触する触媒の反応管ごとの充填量が均
一である。その結果、各反応管12の間の触媒負荷が均
一になる。また、各反応管12に充填された触媒11の
充填長が一定範囲内とされているので、触媒のブリッジ
や破砕による触媒充填ミスを高い精度で発見することが
でき、充填密度を均一化できる。その結果、ガス流量を
均一化することができるので、各反応管12での原料ガ
スの接触時間を均一化にできる。各反応管12の間の触
媒負荷および接触時間が均一となった結果、各反応管1
2における反応が均一となる。したがって、反応熱が大
きいメタクロレインやメタクリル酸を製造する気相接触
酸化反応においても、副反応を制御でき、反応率を向上
させることができるので、生産性を向上させることがで
きる。
In the above-described first embodiment, since the mass of the catalyst filled in each reaction tube 12 is within a certain range, the filling amount of the catalyst in contact with the raw material gas is uniform in each reaction tube. . As a result, the catalyst load between the reaction tubes 12 becomes uniform. Further, since the filling length of the catalyst 11 filled in each reaction tube 12 is set within a certain range, it is possible to detect a catalyst filling error due to a bridge or crushing of the catalyst with high accuracy and to make the filling density uniform. . As a result, since the gas flow rate can be made uniform, the contact time of the source gas in each reaction tube 12 can be made uniform. As a result of uniform catalyst load and contact time between each reaction tube 12, each reaction tube 1
The reaction in 2 becomes uniform. Therefore, even in the gas-phase catalytic oxidation reaction for producing methacrolein or methacrylic acid, which has a large reaction heat, side reactions can be controlled and the reaction rate can be improved, so that the productivity can be improved.

【0026】本発明は、各反応管の触媒質量が均一化さ
れ、各反応管のガス流量が均一化されればよいので、上
述した第1の実施形態例に限定されない。以下に、各反
応管の触媒質量を均一化するとともに、各反応管の圧力
損失を均一化する第2の実施形態例について説明する。
The present invention is not limited to the above-described first embodiment, as long as the catalyst mass of each reaction tube is made uniform and the gas flow rate of each reaction tube is made uniform. Hereinafter, a second embodiment will be described in which the catalyst mass of each reaction tube is made uniform and the pressure loss of each reaction tube is made uniform.

【0027】第2の実施形態例においても、図1に示し
た多管式熱交換型反応器の各反応管12への触媒充填の
際に、第1の実施形態例と同様に、触媒負荷を均一にす
るために、各反応管に充填する触媒量と管理目標量との
差が、管理目標量の±10%、好ましくは±5%以内と
する。また、触媒充填の際には、各反応管12の圧力損
失が一定の範囲となるようにする。すなわち、圧力損失
の平均値に対する各反応管の圧力損失と圧力損失の平均
値との差の割合(管理巾ともいう)が、圧力損失の平均
値の±20%以内、好ましくは±15%以内、さらに好
ましくは±10%以内、最も好ましくは±5%となるよ
うに触媒を充填する。圧力損失が管理巾から外れた場合
には、各反応管間のガス流量が均一でなくなるので、管
理巾の範囲になるまで、その反応管の触媒充填をやり直
す。なお、触媒11としては、第1の実施形態例と同様
のものを使用できる。
Also in the second embodiment, when the catalyst is charged into the reaction tubes 12 of the multi-tube heat exchange reactor shown in FIG. 1, the catalyst load is the same as in the first embodiment. In order to make the temperature uniform, the difference between the amount of catalyst charged in each reaction tube and the control target amount is within ± 10% of the control target amount, preferably within ± 5%. Further, when the catalyst is charged, the pressure loss of each reaction tube 12 is set within a certain range. That is, the ratio (also called the control width) of the difference between the pressure loss of each reaction tube and the average value of the pressure loss with respect to the average value of the pressure loss is within ± 20%, preferably within ± 15% of the average value of the pressure loss. , More preferably within ± 10%, most preferably within ± 5%. When the pressure loss deviates from the control width, the gas flow rate between the reaction tubes becomes uneven, so that the catalyst is charged again in the reaction tube until it falls within the control width. As the catalyst 11, the same catalyst as in the first embodiment can be used.

【0028】ここで、圧力損失とは、触媒を充填した反
応管12の一方の開口部から窒素等の不活性ガスもしく
は空気を一定流量で連続的に流入させるとともに、大気
開放とした他方の開口部からガスを流出させた際の流入
側圧力のことである。圧力損失の測定条件は特に限定さ
れないが、通常ガス流量が1m3/時間〜10m3/時間
程度である。ガス流量が1m3/時間未満であると圧力
損失が正しく測定できないことがあり、10m3/時間
を超えると圧力で触媒が破砕することがある。
Here, the pressure loss means that an inert gas such as nitrogen or air is continuously introduced at a constant flow rate from one opening of the reaction tube 12 filled with a catalyst, and the other opening is opened to the atmosphere. It is the pressure on the inflow side when the gas is let out from the section. Although the measurement conditions of the pressure loss is not particularly limited, it is usually gas flow rate 1 m 3 / time through 10m 3 / time order. If the gas flow rate is less than 1 m 3 / hour, the pressure loss may not be measured correctly, and if it exceeds 10 m 3 / hour, the catalyst may be crushed by the pressure.

【0029】反応管本数が50本以上となる場合には、
充填長の平均値算出と同様に、圧力損失の平均値を算出
する対象の反応管本数を、10本以上で、かつ、全反応
管本数の0.5%〜99.5%、好ましくは1%〜60
%、更に好ましくは1.5%〜40%、最も好ましくは
2%〜20%の範囲の自然数からなる本数とすることが
できる。この場合、平均値算出対象となる反応管に先に
触媒を充填し、それらの圧力損失の平均値を算出した
後、それ以外の反応管に触媒を充填、及び圧力損失の測
定を行えば、より簡単に充填作業を進めることができ
る。測定の対象とする反応管本数は、多いほど正確な平
均値を求めることができる。一方、少ないほど作業時間
が短くなる。平均値算出対象とする反応管を無作為に抽
出する方法についても、充填長の平均値算出と同様に、
反応管本数が略同数となるように2以上の群に分け、各
群から同じ本数の反応管を抽出する方法が挙げられる。
この方法によると、反応管を偏りなく抽出できるので、
平均値の信頼性を高くできる。さらに、2以上の群に分
けるには、反応管12の長さ方向に対して垂直方向に配
置され、各反応管12の端部が取り付けられる管板面1
8を、各区域当りの面積が等しくなるように2以上の区
域に分け、各区域に取り付けられた反応管を一群と見な
すと反応管の抽出が簡便となる。なお、上述したよう
に、平均値を算出する対象の反応管本数を減少させても
よいが、圧力損失の測定はより多くの反応管で行うこと
が好ましく、特に全ての反応管で行うことが好ましい。
また、第1の実施形態と同様、各反応管12への触媒の
充填は二回以上行うこともできる。反応管本数が50本
以上の場合には、圧力損失の平均値を算出する対象の反
応管を、各回ごとに選択し直してもよいし、全ての回に
渡って同じ反応管を選択してもよい。各回ごとに反応管
を選択し直せば、平均値の精度をより向上させることが
でき、全ての回で同じ反応管を選択すれば、各回ごとに
反応管を選び直す手間を省くことができる。
When the number of reaction tubes is 50 or more,
Similar to the calculation of the average value of the filling length, the number of reaction tubes for which the average value of pressure loss is calculated is 10 or more, and 0.5% to 99.5% of the total number of reaction tubes, preferably 1 % ~ 60
%, More preferably 1.5% to 40%, and most preferably 2% to 20%, which is a natural number. In this case, the reaction tube to be averaged is first charged with the catalyst, and after calculating the average value of those pressure losses, the other reaction tubes are charged with the catalyst, and if the pressure loss is measured, The filling operation can be carried out more easily. The greater the number of reaction tubes to be measured, the more accurate the average value can be obtained. On the other hand, the smaller the number, the shorter the working time. Regarding the method of randomly extracting the reaction tubes that are the target of the average value calculation, similar to the calculation of the average value of the filling length,
A method may be mentioned in which the reaction tubes are divided into two or more groups so that the number of reaction tubes is approximately the same, and the same number of reaction tubes are extracted from each group.
According to this method, the reaction tubes can be extracted without bias,
The reliability of the average value can be increased. Further, to divide into two or more groups, the tube plate surface 1 is arranged in a direction perpendicular to the length direction of the reaction tube 12 and the end of each reaction tube 12 is attached.
If 8 is divided into two or more areas so that the area per area is equal and the reaction tubes attached to each area are regarded as a group, the extraction of the reaction tube becomes simple. As described above, the number of reaction tubes for which the average value is calculated may be reduced, but the pressure loss measurement is preferably performed in more reaction tubes, and particularly in all reaction tubes. preferable.
Also, as in the first embodiment, the catalyst can be filled in each reaction tube 12 twice or more. When the number of reaction tubes is 50 or more, the reaction tube for which the average value of pressure loss is calculated may be reselected for each time, or the same reaction tube may be selected for all times. Good. If the reaction tube is selected again for each time, the accuracy of the average value can be further improved, and if the same reaction tube is selected for all times, it is possible to save the trouble of selecting the reaction tube for each time.

【0030】上述した第2の実施形態例では、各反応管
12に充填される触媒量が一定範囲内とされているの
で、原料ガスに接触する触媒の反応管ごとの充填量が均
一である。その結果、各反応管12の間の触媒負荷が均
一になる。また、各反応管12の圧力損失が一定範囲内
とされているので、触媒のブリッジや破砕による触媒充
填ミスを高い精度で発見することができ、充填密度を均
一化できる。その結果、ガス流量を均一化することがで
きるので、各反応管12での原料ガスの接触時間を均一
化できる。各反応管12の間の触媒負荷および接触時間
が均一となった結果、各反応管12における反応が均一
となる。したがって、反応熱が大きいメタクロレインや
メタクリル酸を製造する気相接触酸化反応においても、
副反応を制御でき、反応率を向上させることができるの
で、生産性を向上させることができる。
In the above-described second embodiment, since the amount of catalyst filled in each reaction tube 12 is within a certain range, the amount of catalyst contacting the source gas is uniform in each reaction tube. . As a result, the catalyst load between the reaction tubes 12 becomes uniform. Further, since the pressure loss of each reaction tube 12 is within a certain range, it is possible to detect the catalyst filling error due to the bridge or crushing of the catalyst with high accuracy, and to make the filling density uniform. As a result, since the gas flow rate can be made uniform, the contact time of the source gas in each reaction tube 12 can be made uniform. As the catalyst load and contact time between the reaction tubes 12 become uniform, the reaction in each reaction tube 12 becomes uniform. Therefore, even in the gas-phase catalytic oxidation reaction for producing methacrolein or methacrylic acid, which has a large reaction heat,
Since the side reaction can be controlled and the reaction rate can be improved, the productivity can be improved.

【0031】第1の実施形態例では、触媒の充填長を一
定範囲とし、第2の実施形態例では、圧力損失を一定範
囲としたが、本発明では第3の実施形態例として、これ
らの両実施形態例を併せて、触媒の充填長と圧力損失と
の両方を一定範囲にすることもできる。すなわち、各反
応管に触媒を充填する際に、各反応管に充填する触媒量
と管理目標量との差を、管理目標量の±10%以内と
し、各反応管の充填長の管理巾を±20%以内とし、各
反応管の圧力損失の管理巾を±20%以内とする。この
場合、充填長と圧力損失とを一定範囲にするので、触媒
の充填密度の均一度が増し、ガス流量をより均一化する
ことができる。その結果、各反応管での原料ガスの接触
時間をより均一化にでき、各反応管12における反応を
より均一にできる。したがって、副反応をより制御で
き、反応率をより向上させることができるので、生産性
をより向上させることができる。
In the first embodiment, the packing length of the catalyst is set to a certain range, and in the second embodiment, the pressure loss is set to a certain range. However, in the present invention, these are set as the third embodiment. By combining both the embodiment examples, both the packing length and the pressure loss of the catalyst can be set within a certain range. That is, when the catalyst is filled in each reaction tube, the difference between the amount of the catalyst filled in each reaction tube and the control target amount is set within ± 10% of the control target amount, and the control width of the filling length of each reaction tube is set. Within ± 20%, and control width of pressure loss of each reaction tube within ± 20%. In this case, since the filling length and the pressure loss are within a certain range, the uniformity of the packing density of the catalyst is increased, and the gas flow rate can be made more uniform. As a result, the contact time of the raw material gas in each reaction tube can be made more uniform, and the reaction in each reaction tube 12 can be made more uniform. Therefore, the side reaction can be more controlled, and the reaction rate can be further improved, so that the productivity can be further improved.

【0032】また、反応管本数が50本以上の場合、充
填長の平均値を算出する際に抽出した反応管と、圧力損
失の平均値を算出する際に抽出した反応管が同じであっ
てもよい。このようにすると、圧力損失測定のために新
たに反応管を選択する作業を簡略化できる。また、触媒
の充填長および圧力損失のいずれか一方を、より多くの
反応管、好ましくは全反応管について測定していれば、
他方の測定を行う反応管本数は減じても構わない。すな
わち、いずれか一方を測定してあれば、充填密度を均一
化するという効果は十分に発揮されている上に、反応管
本数が多ければ、他方を測定していない反応管の中によ
り満足な程度に充填されていない反応管があったとして
も、その影響は小さいので、収率および反応率の向上を
達成できる。また、第1の実施形態、第2の実施形態と
同様に、各反応管12への触媒の充填は二回以上行うこ
ともできる。また、反応管本数が50本以上の場合、触
媒の充填長および圧力損失の両方を各層ごとに測定して
もよいが、各層ごとに触媒の充填長および圧力損失のい
ずれか一方を測定していれば、前述の内容と同様の理由
で、他方については各層ごとに測定しなくてもよい。こ
のようにすることで、充填管理に関する労力が大幅に低
減される。
When the number of reaction tubes is 50 or more, the reaction tube extracted when calculating the average value of the filling length is the same as the reaction tube extracted when calculating the average value of pressure loss. Good. In this way, the work of newly selecting a reaction tube for pressure loss measurement can be simplified. Also, if either one of the packing length and pressure loss of the catalyst is measured for more reaction tubes, preferably for all reaction tubes,
The number of reaction tubes for the other measurement may be reduced. That is, if either one is measured, the effect of making the packing density uniform is sufficiently exerted, and if the number of reaction tubes is large, it is more satisfactory in the reaction tubes not measuring the other. Even if there is a reaction tube that is not filled to a certain degree, its influence is small, so that the yield and the reaction rate can be improved. Further, as in the first and second embodiments, the catalyst can be filled into each reaction tube 12 twice or more. When the number of reaction tubes is 50 or more, both the catalyst filling length and the pressure loss may be measured for each layer, but either the catalyst filling length or the pressure loss is measured for each layer. Then, for the same reason as described above, the other does not have to be measured for each layer. By doing so, the labor for filling management is significantly reduced.

【0033】なお、上述した第1、第2および第3の実
施形態例では、イソブチレンおよび/またはターシャリ
ーブチルアルコールと分子状酸素とを原料としてメタク
ロレインを合成したが、本発明はこれに限定されず、多
数の反応管内に固定床用触媒を充填し、この反応管内に
原料ガスを流通させる反応であれば制限はない。例え
ば、プロピレンと分子状酸素とを反応させてアクロレイ
ンを合成するアクロレイン合成反応、アクロレインと分
子状酸素とを反応させてアクリル酸を合成するアクリル
酸合成反応、メタクロレインと分子状酸素とを反応させ
てメタクリル酸を合成するメタクリル酸合成反応等であ
ってもよい。その際、反応条件は、反応器仕様、反応
率、反応時間、固定床用触媒の性能等によって適宜決定
することが好ましい。また、上述した第1の実施形態例
および第2の実施形態例では、熱媒体および原料ガスを
下方から上方へのアップフローで供給していたが、場合
によっては上方から下方へのダウンフローで供給するこ
ともできる。ダウンフローであっても、本発明の効果は
発揮される。
Although methacrolein was synthesized using isobutylene and / or tertiary butyl alcohol and molecular oxygen as raw materials in the above-mentioned first, second and third embodiments, the present invention is not limited to this. However, there is no limitation as long as it is a reaction in which a fixed bed catalyst is filled in a large number of reaction tubes and a raw material gas is circulated in the reaction tubes. For example, an acrolein synthesis reaction for reacting propylene with molecular oxygen to synthesize acrolein, an acrylic acid synthesis reaction for reacting acrolein with molecular oxygen to synthesize acrylic acid, and a reaction between methacrolein and molecular oxygen. It may be a methacrylic acid synthesis reaction for synthesizing methacrylic acid. At that time, the reaction conditions are preferably appropriately determined according to the reactor specifications, the reaction rate, the reaction time, the performance of the fixed bed catalyst, and the like. Further, in the above-described first embodiment example and second embodiment example, the heat medium and the raw material gas are supplied by the upflow from the lower side to the upper side. It can also be supplied. The effect of the present invention is exhibited even in the downflow.

【0034】[0034]

【実施例】以下に、実施例を挙げて本発明を具体的に説
明する。 (実施例1〜13、比較例1〜4)図1に示す多管式熱
交換型反応器10と反応管本数が異なる以外は同形式の
多管式熱交換型反応器を用い、イソブチレン及び分子状
酸素を原料としてメタクロレインを気相接触酸化にて合
成した。その際の反応圧力は200kPa、反応温度
(熱媒体温度)は340℃、原料ガス中のイソブチレン
濃度は5vol%、原料ガス中の酸素モル比は2、原料
ガスの空間時間は980h-1(NTP)とした。また、
固定床用触媒(触媒11)はモリブデン、ビスマス系の
酸化触媒を押出によって円筒状に成型したものを用い
た。全ての反応管12はステンレス鋼製で、外径31.
8mm、肉厚2.3mm、長さ5.5mのものを用い
た。各反応管12内には上部管版面18から触媒11を
二回に分けて充填し、二層の触媒層とした。すなわち、
一回目には、円筒形に成型した触媒と触媒希釈材である
ステンレス鋼製リングを質量比で7:3で混合したもの
を1500g(管理目標量)充填し、一層目とし、二回
目には、円筒形に成型した触媒のみを500g(管理目
標量)充填し、二層目とした。なお、触媒の計量は各反
応管の触媒層ごとに行い、反応管に充填する触媒量と管
理目標量との差が、管理目標量の5%以内となるように
した。
EXAMPLES The present invention will be specifically described below with reference to examples. (Examples 1 to 13 and Comparative Examples 1 to 4) Using a multitubular heat exchange reactor of the same type except that the multitubular heat exchange reactor 10 shown in FIG. Methacrolein was synthesized by vapor-phase catalytic oxidation using molecular oxygen as a raw material. At that time, the reaction pressure was 200 kPa, the reaction temperature (heat medium temperature) was 340 ° C., the isobutylene concentration in the raw material gas was 5 vol%, the oxygen molar ratio in the raw material gas was 2, and the space time of the raw material gas was 980 h −1 (NTP ). Also,
As the fixed bed catalyst (catalyst 11), a molybdenum-bismuth-based oxidation catalyst molded into a cylindrical shape by extrusion was used. All reaction tubes 12 are made of stainless steel and have an outer diameter of 31.
The one having a thickness of 8 mm, a thickness of 2.3 mm and a length of 5.5 m was used. Each reaction tube 12 was filled with the catalyst 11 from the upper stencil plate 18 in two divided portions to form two catalyst layers. That is,
The first time, 1500 g (control target amount) of a mixture of a cylindrically shaped catalyst and a stainless steel ring that is a catalyst diluent at a mass ratio of 7: 3 was filled, and the first time, and the second time Then, only the catalyst molded in a cylindrical shape was filled with 500 g (control target amount) to form a second layer. The catalyst was weighed for each catalyst layer in each reaction tube so that the difference between the amount of catalyst filled in the reaction tube and the control target amount was within 5% of the control target amount.

【0035】表1の条件に基づいて、実施例1〜13、
比較例1〜4のイソブチレンの気相接触酸化反応を行っ
た。ここで、「反応管本数」は多管式熱交換型反応器の
反応管本数、「平均値算出対象割合」は充填長または圧
力損失の平均値を算出するために抽出した反応管の割
合、「抽出法」は充填長または圧力損失の平均値を算出
するための反応管を抽出する方法、「管理巾」は充填長
または圧力損失の平均値に対する各反応管の充填長また
は圧力損失と平均値との差の割合のことである。なお、
充填長あるいは圧力損失の測定を実施する場合、全反応
管を測定対象としている。また、「抽出法」で「同」は
いずれの層に対しても同じ反応管を平均値の算出対象と
すること、「異」は各層ごとに反応管を抽出し平均値の
算出対象とすること、「後」は全層が充填された後に全
反応管に対して値を測定し、その後、反応管の抽出、平
均値の算出を行うことである。また、充填長と圧力損失
の両方を測定する場合、平均値の算出対象となる反応管
はそれぞれ別に抽出を行った。また、反応管の本数が5
0本を超える場合、反応管の抽出は、反応管群を4つに
分割し、その中から同じ本数の反応管を選択することで
行った。ただし、それぞれの反応管群の反応管数の差
は、全反応管本数の5%以内となるようにした。反応の
結果について表1に示す。反応の結果として、原料ガス
中のイソブチレンの反応率、イソブチレンからメタクロ
レインへの選択率、反応率と選択率を乗じた収率を示
す。ここで、イソブチレンの反応率とは、酸化反応で消
費されたイソブチレンのモル数の、原料ガス中のイソブ
チレンモル数に対する割合である。また、メタクロレイ
ンへの選択率とは、メタクロレインのモル数の、酸化反
応に消費されたイソブチレンのモル数に対する割合であ
る。
Based on the conditions of Table 1, Examples 1 to 13,
A vapor phase catalytic oxidation reaction of isobutylene of Comparative Examples 1 to 4 was performed. Here, "the number of reaction tubes" is the number of reaction tubes of the multi-tube heat exchange reactor, "average value calculation target ratio" is the ratio of the reaction tubes extracted to calculate the average value of the filling length or pressure loss, "Extraction method" is a method of extracting the reaction tube for calculating the average value of the filling length or pressure loss, and "control width" is the filling length or pressure loss of each reaction tube and the average for the average value of the filling length or pressure loss. It is the ratio of the difference from the value. In addition,
When measuring the filling length or pressure loss, all reaction tubes are the measurement targets. Also, in the "extraction method", "the same" means that the same reaction tube is the target for calculating the average value for all layers, and "different" is the target for calculating the average value by extracting the reaction tube for each layer. In other words, “after” means that the values are measured for all reaction tubes after all layers are filled, and then the reaction tubes are extracted and the average value is calculated. Further, when measuring both the filling length and the pressure loss, the reaction tubes for which the average value was calculated were extracted separately. Also, the number of reaction tubes is 5
When the number of reaction tubes exceeds 0, the reaction tubes were extracted by dividing the reaction tube group into four and selecting the same number of reaction tubes from them. However, the difference in the number of reaction tubes in each reaction tube group was set to be within 5% of the total number of reaction tubes. The results of the reaction are shown in Table 1. As a result of the reaction, the reaction rate of isobutylene in the raw material gas, the selectivity of isobutylene to methacrolein, and the yield obtained by multiplying the reaction rate and the selectivity are shown. Here, the reaction rate of isobutylene is the ratio of the number of moles of isobutylene consumed in the oxidation reaction to the number of moles of isobutylene in the raw material gas. The selectivity to methacrolein is the ratio of the number of moles of methacrolein to the number of moles of isobutylene consumed in the oxidation reaction.

【0036】[0036]

【表1】 [Table 1]

【0037】実施例1〜13では、充填長および/また
は圧力損失の管理巾が±20%以内であったので、反応
率が高くかつ選択率が高く、メタクロレインの収率が高
かった。一方、比較例1〜4では、充填長および/また
は圧力損失の管理巾が±20%を超えていたので、反応
率が低くかつ選択率が低く、メタクロレインの収率が低
かった。
In Examples 1 to 13, since the control length of the filling length and / or the pressure loss was within ± 20%, the reaction rate was high and the selectivity was high, and the yield of methacrolein was high. On the other hand, in Comparative Examples 1 to 4, since the control length of the filling length and / or the pressure loss exceeded ± 20%, the reaction rate was low and the selectivity was low, and the yield of methacrolein was low.

【0038】(実施例14〜16)表2に示した条件で
触媒の充填を行った以外は実施例1〜13と同様にして
反応を行った。ただし、充填長は全ての反応管について
測定したが、圧力損失は平均値算出の対象として抽出し
た反応管についてのみ測定した。実施例14〜16で
は、反応率が高くかつ選択率が高かったので、メタクロ
レインの収率が高かった。
(Examples 14 to 16) Reactions were carried out in the same manner as in Examples 1 to 13 except that the catalyst was charged under the conditions shown in Table 2. However, the filling length was measured for all the reaction tubes, but the pressure loss was measured only for the reaction tubes extracted as the target for calculating the average value. In Examples 14 to 16, the reaction rate was high and the selectivity was high, so that the yield of methacrolein was high.

【0039】[0039]

【表2】 [Table 2]

【0040】(実施例17〜19)表3に示した条件で
触媒の充填を行った以外は実施例1〜13と同様にして
反応を行った。ただし、圧力損失は全ての反応管につい
て測定したが、充填長は平均値算出の対象として抽出し
た反応管についてのみ測定した。実施例17〜19で
は、反応率が高くかつ選択率が高かったので、メタクロ
レインの収率が高かった。
(Examples 17 to 19) The reaction was carried out in the same manner as in Examples 1 to 13 except that the catalyst was charged under the conditions shown in Table 3. However, the pressure loss was measured for all the reaction tubes, but the filling length was measured only for the reaction tubes extracted as the target for calculating the average value. In Examples 17 to 19, the reaction rate was high and the selectivity was high, so that the yield of methacrolein was high.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【発明の効果】本発明では、充填される触媒量が一定範
囲内となるように、各反応管に触媒を充填するので、各
反応管間の触媒負荷が均一となる。それとともに、各反
応管の充填長および圧力損失の少なくとも一方を一定範
囲内とするので、原料ガスの接触時間が均一となる。触
媒負荷と接触時間が均一になることによって、各反応管
間の反応が均一になるので、反応熱が非常に大きい接触
気相酸化反応であっても、副反応が抑制され、反応率お
よび収率を高くでき、生産性を向上させることができ
る。
According to the present invention, each reaction tube is filled with the catalyst so that the amount of the catalyst loaded is within a certain range, so that the catalyst load between the reaction tubes becomes uniform. At the same time, since at least one of the filling length and the pressure loss of each reaction tube is set within a certain range, the contact time of the raw material gas becomes uniform. By making the catalyst load and contact time uniform, the reaction between each reaction tube becomes uniform, so even if it is a catalytic gas-phase oxidation reaction with a very large reaction heat, side reactions are suppressed and the reaction rate and yield are reduced. The rate can be increased and the productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の多管式熱交換型反応器の一実施形態
例を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a multi-tube heat exchange reactor of the present invention.

【符号の説明】[Explanation of symbols]

10 多管式熱交換型反応器 11 触媒 12 反応管 10 Multi-tube heat exchange reactor 11 catalyst 12 reaction tubes

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年6月25日(2002.6.2
5)
[Submission date] June 25, 2002 (2002.6.2)
5)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Name of item to be corrected] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 57/05 C07C 57/05 // C07B 61/00 300 C07B 61/00 300 (72)発明者 竹沢 英泰 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社大竹事業所内 (72)発明者 佐藤 俊裕 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社大竹事業所内 Fターム(参考) 4G070 AA01 AB05 BB02 CB07 CB17 CC07 DA22 4H006 AA02 AA04 AC45 AC46 BA13 BA14 BA30 BA82 BE31 BS10 4H039 CA62 CA65 CC30 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C07C 57/05 C07C 57/05 // C07B 61/00 300 C07B 61/00 300 (72) Inventor Hidezawa Takezawa Hiroshima Prefecture 20-1 Miyukicho, Otake-shi Mitsubishi Rayon Co., Ltd. Otake Works (72) Inventor Toshihiro Sato 20-1 Miyukicho, Otake-shi, Hiroshima Mitsubishi Rayon Co., Ltd. F-term inside Otake Works 4G070 AA01 AB05 BB02 CB07 CB17 CC07 DA22 4H006 AA02 AA04 AC45 AC46 BA13 BA14 BA30 BA82 BE31 BS10 4H039 CA62 CA65 CC30

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 実質的に同一形状の多数本の反応管に触
媒を充填する触媒の充填方法において、 各反応管に充填する触媒を管理目標量の±10%以内で
計量し、 各反応管の充填長と、それら充填長の平均値との差が、
充填長の平均値の±20%以内となるようにして、各反
応管に触媒を充填することを特徴とする触媒の充填方
法。
1. A catalyst filling method for filling a plurality of reaction tubes of substantially the same shape with a catalyst, wherein the catalyst to be filled in each reaction tube is weighed within ± 10% of a control target amount, and each reaction tube is The difference between the filling length of and the average value of those filling lengths is
A method for filling a catalyst, wherein each reaction tube is filled with the catalyst such that the average filling length is within ± 20%.
【請求項2】 実質的に同一形状の多数本の反応管に触
媒を充填する触媒の充填方法において、 各反応管に充填する触媒を管理目標量の±10%以内で
計量し、 各反応管の圧力損失と、それら圧力損失の平均値との差
が、圧力損失の平均値の±20%以内となるようにし
て、各反応管に触媒を充填することを特徴とする触媒の
充填方法。
2. A catalyst filling method for filling a plurality of reaction tubes of substantially the same shape with a catalyst, wherein the catalyst to be filled in each reaction tube is weighed within ± 10% of a control target amount, and each reaction tube is The method for filling a catalyst is characterized in that each reaction tube is filled with the catalyst such that the difference between the pressure loss and the average value of the pressure loss is within ± 20% of the average value of the pressure loss.
【請求項3】 実質的に同一形状の多数本の反応管に触
媒を充填する触媒の充填方法において、 各反応管の充填長と、それら充填長の平均値との差が、
充填長の平均値の±20%以内となるようにし、 各反応管の圧力損失と、それら圧力損失の平均値との差
が、圧力損失の平均値の±20%以内となるようにし
て、各反応管に触媒を充填することを特徴とする触媒の
充填方法。
3. In a method of packing a catalyst for packing a catalyst into a large number of reaction tubes of substantially the same shape, the difference between the packing length of each reaction tube and the average value of the packing lengths is
It should be within ± 20% of the average value of the filling length, and the difference between the pressure loss of each reaction tube and the average value of those pressure losses should be within ± 20% of the average value of the pressure loss. A method for filling a catalyst, which comprises filling each reaction tube with a catalyst.
【請求項4】 反応管本数が50本以上である場合、1
0本以上で、かつ、全反応管本数の0.5〜99.5%
の範囲の自然数からなる本数の反応管を抽出し、これら
の抽出した反応管の充填長を平均した値を、前記充填長
の平均値とすることを特徴とする請求項1または3に記
載の触媒の充填方法。
4. When the number of reaction tubes is 50 or more, 1
0 or more and 0.5 to 99.5% of the total number of reaction tubes
The number of reaction tubes consisting of natural numbers in the range is extracted, and a value obtained by averaging the filling lengths of the extracted reaction tubes is set as an average value of the filling lengths. How to fill the catalyst.
【請求項5】 反応管本数が50本以上である場合、1
0本以上で、かつ、全反応管本数の0.5〜99.5%
の範囲の自然数からなる本数の反応管を抽出し、これら
の抽出した反応管の充填長を平均した値を、前記充填長
の平均値とし、全ての反応管の圧力損失を平均した値
を、前記圧力損失の平均値とすることを特徴とする請求
項3に記載の触媒の充填方法。
5. When the number of reaction tubes is 50 or more, 1
0 or more and 0.5 to 99.5% of the total number of reaction tubes
The number of reaction tubes consisting of natural numbers in the range of is extracted, the value obtained by averaging the filling lengths of these extracted reaction tubes is taken as the average value of the filling length, and the value obtained by averaging the pressure loss of all the reaction tubes, The catalyst filling method according to claim 3, wherein the average value of the pressure loss is used.
【請求項6】 反応管本数が50本以上である場合、1
0本以上で、かつ、全反応管本数の0.5〜99.5%
の範囲の自然数からなる本数の反応管を抽出し、これら
の抽出した反応管の圧力損失を平均した値を、前記圧力
損失の平均値とすることを特徴とする請求項2または3
に記載の触媒の充填方法。
6. When the number of reaction tubes is 50 or more, 1
0 or more and 0.5 to 99.5% of the total number of reaction tubes
The number of reaction tubes consisting of natural numbers in the range is extracted, and a value obtained by averaging the pressure loss of the extracted reaction tubes is set as the average value of the pressure loss.
The method for filling a catalyst according to item 1.
【請求項7】 反応管本数が略同数となるように2以上
の群に分け、各群から同じ本数の反応管を抽出すること
を特徴とする請求項4〜6のいずれかに記載の触媒の充
填方法。
7. The catalyst according to claim 4, wherein the reaction tubes are divided into two or more groups so that the number of reaction tubes is substantially the same, and the same number of reaction tubes are extracted from each group. Filling method.
【請求項8】 各反応管について触媒を二回以上に分け
て充填することを特徴とする請求項1〜7のいずれかに
記載の触媒の充填方法。
8. The catalyst packing method according to claim 1, wherein the catalyst is packed in each reaction tube twice or more.
【請求項9】 充填毎に、同じ反応管の触媒の充填長お
よび/または圧力損失を測定することを特徴とする請求
項8に記載の触媒の充填方法。
9. The catalyst packing method according to claim 8, wherein the packing length and / or pressure loss of the catalyst in the same reaction tube is measured for each packing.
【請求項10】 請求項1〜9のいずれかに記載の触媒
の充填方法で、反応管に触媒が充填されたことを特徴と
する多管式熱交換型反応器。
10. A multi-tube heat exchange reactor characterized in that the reaction tube is filled with the catalyst by the method for filling the catalyst according to any one of claims 1 to 9.
【請求項11】 プロピレンと分子状酸素とを反応させ
てアクロレインを合成するアクロレイン合成反応および
/またはアクロレインと分子状酸素とを反応させてアク
リル酸を合成するアクリル酸合成反応を行うことを特徴
とする請求項10に記載の多管式熱交換型反応器。
11. An acrolein synthesis reaction for reacting propylene with molecular oxygen to synthesize acrolein and / or an acrylic acid synthesis reaction for reacting acrolein with molecular oxygen to synthesize acrylic acid. The multitubular heat exchange reactor according to claim 10.
【請求項12】 イソブチレンもしくはターシャリーブ
チルアルコールと分子状酸素とを反応させてメタクロレ
インを合成するメタクロレイン合成反応および/または
メタクロレインと分子状酸素とを反応させてメタクリル
酸を合成するメタクリル酸合成反応を行うことを特徴と
する請求項10に記載の多管式熱交換型反応器。
12. A methacrolein synthesis reaction in which isobutylene or tert-butyl alcohol is reacted with molecular oxygen to synthesize methacrolein and / or a methacrylic acid in which methacrolein is reacted with molecular oxygen to synthesize methacrylic acid. The multi-tube heat exchange reactor according to claim 10, wherein a multi-tubular heat exchange reactor is performed.
JP2002157344A 2002-05-30 2002-05-30 Method for packing catalyst and multitubular heat exchange type reactor Pending JP2003340267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002157344A JP2003340267A (en) 2002-05-30 2002-05-30 Method for packing catalyst and multitubular heat exchange type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002157344A JP2003340267A (en) 2002-05-30 2002-05-30 Method for packing catalyst and multitubular heat exchange type reactor

Publications (1)

Publication Number Publication Date
JP2003340267A true JP2003340267A (en) 2003-12-02

Family

ID=29773258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002157344A Pending JP2003340267A (en) 2002-05-30 2002-05-30 Method for packing catalyst and multitubular heat exchange type reactor

Country Status (1)

Country Link
JP (1) JP2003340267A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005051532A1 (en) * 2003-11-28 2005-06-09 Mitsubishi Rayon Co., Ltd. Method for packing catalyst and multi-tubular heat exchanger type reactor
JP2005334852A (en) * 2004-05-31 2005-12-08 Mitsubishi Chemicals Corp Maintenance method for multi-tubular reactor
JP2006150357A (en) * 2005-12-16 2006-06-15 Sumitomo Chemical Co Ltd Multitubular reaction apparatus
JP2006218434A (en) * 2005-02-14 2006-08-24 Mitsubishi Rayon Co Ltd Method for re-filling with molded body
JP2008238044A (en) * 2007-03-27 2008-10-09 Mitsubishi Chemicals Corp Method for specifying faultily-packed reaction tube
JP2008246284A (en) * 2007-03-29 2008-10-16 Sumitomo Chemical Co Ltd Method for packing catalyst
JP2009082865A (en) * 2007-10-02 2009-04-23 Sumitomo Chemical Co Ltd Method for packing catalyst for unsaturated aldehyde production or catalyst for unsaturated carboxylic acid production
US7667072B2 (en) 2001-12-28 2010-02-23 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
KR100978627B1 (en) 2007-05-15 2010-08-27 주식회사 엘지화학 The method of charging catalysts with minimizing mechanical loss of the catalysts
JP2010532248A (en) * 2007-06-15 2010-10-07 ビーエーエスエフ ソシエタス・ヨーロピア A method for charging a partial amount of a bundled tube reactor taken out from at least one production charge of the annular shell catalyst K into the reaction tube
JP2012121842A (en) * 2010-12-09 2012-06-28 Nippon Shokubai Co Ltd Fixed bed multitubular reactor and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the same
JP2013233503A (en) * 2012-05-08 2013-11-21 Nippon Kayaku Co Ltd Method for filling solid catalyst
JP2014508739A (en) * 2010-12-29 2014-04-10 ローム アンド ハース カンパニー Reactor and process for propane oxidation
CN104923130A (en) * 2014-03-21 2015-09-23 中石化洛阳工程有限公司 Radial fixed bed reactor and application thereof in preparing hydrocarbon from oxygenated compounds
US9713800B2 (en) 2012-04-04 2017-07-25 Sumitomo Chemical Company, Limited Multi-tubular reactor and multi-tubular reactor design and fabrication method
CN108654523A (en) * 2018-06-15 2018-10-16 中国五环工程有限公司 The filling structure of shell and tube reactor catalyst
CN109647191A (en) * 2019-02-13 2019-04-19 江苏鲲鹏环保工程技术有限公司 A kind of air preheater device with denitration function
WO2021006142A1 (en) 2019-07-09 2021-01-14 株式会社日本触媒 Distance-measuring device and distance-measuring method
JP2021133295A (en) * 2020-02-26 2021-09-13 三菱ケミカル株式会社 Filling method of granular material into multi-tube reactor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667072B2 (en) 2001-12-28 2010-02-23 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
WO2005051532A1 (en) * 2003-11-28 2005-06-09 Mitsubishi Rayon Co., Ltd. Method for packing catalyst and multi-tubular heat exchanger type reactor
JP2005334852A (en) * 2004-05-31 2005-12-08 Mitsubishi Chemicals Corp Maintenance method for multi-tubular reactor
JP4543756B2 (en) * 2004-05-31 2010-09-15 三菱化学株式会社 Maintenance method for multi-tube reactors
JP2006218434A (en) * 2005-02-14 2006-08-24 Mitsubishi Rayon Co Ltd Method for re-filling with molded body
JP2006150357A (en) * 2005-12-16 2006-06-15 Sumitomo Chemical Co Ltd Multitubular reaction apparatus
JP4549290B2 (en) * 2005-12-16 2010-09-22 住友化学株式会社 Multi-tube reactor
JP2008238044A (en) * 2007-03-27 2008-10-09 Mitsubishi Chemicals Corp Method for specifying faultily-packed reaction tube
JP2008246284A (en) * 2007-03-29 2008-10-16 Sumitomo Chemical Co Ltd Method for packing catalyst
KR100978627B1 (en) 2007-05-15 2010-08-27 주식회사 엘지화학 The method of charging catalysts with minimizing mechanical loss of the catalysts
JP2010532248A (en) * 2007-06-15 2010-10-07 ビーエーエスエフ ソシエタス・ヨーロピア A method for charging a partial amount of a bundled tube reactor taken out from at least one production charge of the annular shell catalyst K into the reaction tube
JP2009082865A (en) * 2007-10-02 2009-04-23 Sumitomo Chemical Co Ltd Method for packing catalyst for unsaturated aldehyde production or catalyst for unsaturated carboxylic acid production
JP2012121842A (en) * 2010-12-09 2012-06-28 Nippon Shokubai Co Ltd Fixed bed multitubular reactor and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the same
JP2014508739A (en) * 2010-12-29 2014-04-10 ローム アンド ハース カンパニー Reactor and process for propane oxidation
US9713800B2 (en) 2012-04-04 2017-07-25 Sumitomo Chemical Company, Limited Multi-tubular reactor and multi-tubular reactor design and fabrication method
JP2013233503A (en) * 2012-05-08 2013-11-21 Nippon Kayaku Co Ltd Method for filling solid catalyst
CN104923130A (en) * 2014-03-21 2015-09-23 中石化洛阳工程有限公司 Radial fixed bed reactor and application thereof in preparing hydrocarbon from oxygenated compounds
CN108654523A (en) * 2018-06-15 2018-10-16 中国五环工程有限公司 The filling structure of shell and tube reactor catalyst
CN108654523B (en) * 2018-06-15 2023-10-13 中国五环工程有限公司 Filling structure of tube reactor catalyst
CN109647191A (en) * 2019-02-13 2019-04-19 江苏鲲鹏环保工程技术有限公司 A kind of air preheater device with denitration function
WO2021006142A1 (en) 2019-07-09 2021-01-14 株式会社日本触媒 Distance-measuring device and distance-measuring method
KR20220005580A (en) 2019-07-09 2022-01-13 가부시기가이샤 닛뽕쇼꾸바이 Distance Measuring Devices and Methods of Measuring Distances
JP2021133295A (en) * 2020-02-26 2021-09-13 三菱ケミカル株式会社 Filling method of granular material into multi-tube reactor
JP7287312B2 (en) 2020-02-26 2023-06-06 三菱ケミカル株式会社 Method for filling granular material into multitubular reactor

Similar Documents

Publication Publication Date Title
JP2003340267A (en) Method for packing catalyst and multitubular heat exchange type reactor
US7588739B2 (en) Fixed bed multitube reactor
CN103347845B (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
US7667072B2 (en) Method for vapor phase catalytic oxidation
EP1156027B1 (en) A process for producing unsaturated aldehydes and unsaturated carboxylic acids
TWI292755B (en) Method of producing unsaturated aldehyde and/or unsaturated fatty acid
JPS58119346A (en) Catalyst for oxidizing propylene
KR20060100397A (en) Method for long term operation of a heterogeneously catalysed gas phase partial oxidation of propene in order to form acrolein
WO2014014041A1 (en) Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
US20100015017A1 (en) Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with high efficiency
CN100383101C (en) Long term operation of a heterogeneously catalysed gas phase partial oxidation of propene in order to form acrolein
JP2002306953A (en) Fixed bed multitubular reactor and its usage
WO2008120956A1 (en) Method for preparing unsaturated aldehyde and/or unsaturated fatty acid using fixed-bed catalytic partial oxidation reactor
JP2005325044A (en) Method for conducting pilot test of multitubular reactor
JP2004002209A (en) Method for producing unsaturated aldehyde
WO2005051532A1 (en) Method for packing catalyst and multi-tubular heat exchanger type reactor
JP4194359B2 (en) Gas phase catalytic oxidation method
KR100694950B1 (en) Method for producing methacrylic acid
JP7551027B2 (en) Method and apparatus for producing unsaturated aldehyde
WO2022250030A1 (en) Method of producing (meth)acrolein and/or (meth)acrylic acid
JP5479803B2 (en) Method for producing (meth) acrolein or (meth) acrylic acid
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4543756B2 (en) Maintenance method for multi-tube reactors
JP2024140286A (en) Method for producing oxidation products using a multi-tubular reactor
JP2016106082A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A131 Notification of reasons for refusal

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A02 Decision of refusal

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A02