JP2021133295A - Filling method of granular material into multi-tube reactor - Google Patents

Filling method of granular material into multi-tube reactor Download PDF

Info

Publication number
JP2021133295A
JP2021133295A JP2020030810A JP2020030810A JP2021133295A JP 2021133295 A JP2021133295 A JP 2021133295A JP 2020030810 A JP2020030810 A JP 2020030810A JP 2020030810 A JP2020030810 A JP 2020030810A JP 2021133295 A JP2021133295 A JP 2021133295A
Authority
JP
Japan
Prior art keywords
tube
reaction
filling
granules
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020030810A
Other languages
Japanese (ja)
Other versions
JP7287312B2 (en
Inventor
宏透 伊藤
Hiroyuki Ito
宏透 伊藤
聡一郎 山田
Soichiro Yamada
聡一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020030810A priority Critical patent/JP7287312B2/en
Publication of JP2021133295A publication Critical patent/JP2021133295A/en
Application granted granted Critical
Publication of JP7287312B2 publication Critical patent/JP7287312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

To provide a filling method of granular material into a multi-tube reactor capable of implementing equalization of a filling layer height in each reaction tube in a short period, in filing of granular material to each reaction tube of the multi-tube reactor.SOLUTION: In a multi-tube reactor having a structure in which more than 10,000 vertically arranged reaction tubes and both ends of the reaction tube are attached to a tube plate, a method of filling granular material into a reaction tube from an upper tube plate, in which a target filling layer height is set by the following method, and the reactor tube that does not reach the target filling layer height is selected.SELECTED DRAWING: None

Description

本発明は、多管式反応器への粒状物の充填方法に関する。 The present invention relates to a method for filling a multi-tube reactor with granules.

従来、多管式反応器への粒状物の充填方法は種々提案されている。 Conventionally, various methods for filling granules in a multi-tube reactor have been proposed.

例えば、特許文献1には、少なくとも一つの反応管内に計測装置を設置してなる多管式
反応器に固体粒子を充填するにあたり、該計測装置が設置してある反応管と他の反応管と
に同一の固体粒子を充填し、該計測装置が設置してある反応管への充填をゆっくり充填す
ることで、固体粒子層長、圧力損失が実質的に同一となることが記載されている。
For example, in Patent Document 1, when solid particles are filled in a multi-tube reactor in which a measuring device is installed in at least one reaction tube, a reaction tube in which the measuring device is installed and another reaction tube are used. It is described that the solid particle layer length and the pressure loss are substantially the same by filling the reactor with the same solid particles and slowly filling the reactor in which the measuring device is installed.

特許文献2には、固体充填物を充填した多管式反応器において、目標層高又は目標差圧
に達しない反応管を検知及び特定し、該反応管から固体充填物を抜き出すことが記載され
ている。
Patent Document 2 describes that in a multi-tube reactor filled with a solid filling, a reaction tube that does not reach the target layer height or the target differential pressure is detected and specified, and the solid filling is extracted from the reaction tube. ing.

特開2003−1094号公報Japanese Unexamined Patent Publication No. 2003-1094 特開2008−238044号公報Japanese Unexamined Patent Publication No. 2008-238044

しかしながら、従前知られた多管式反応器における粒状物の充填方法では、何を基準と
して目標に達しない充填(以下「不良充填」と称する場合がある。)と決めたのか不明で
ある。例えば、特許文献1等には反応管の計装装置の有無による充填方法については記載
されているが、各反応管の充填の基準は開示されていない。また、特許文献2等には、目
標層高と記載があるが、いかにして該目標層高を決めたのかの記載がない。
多管式反応管への粒状物の充填において、前記した従来方法では、充填層高の均一化が
困難であり、又、充填に要する時間が長くなる、という問題があった。とりわけ、オレフ
ィンを酸素含有ガスにより気相で接触酸化して、対応する不飽和アルデヒドを製造するた
めの多管式反応器(以下「前段多管式反応器」と称する場合がある)、又は、不飽和アル
デヒドを酸素含有ガスにより気相で接触酸化して対応する不飽和カルボン酸を製造するた
めの多管式反応器(以下「後段多管式反応器」と称する場合がある。)への粒状物の充填
においては、粒状物の形状や粒径にばらつきがあったり、各反応管への粒状物の充填速度
を一定にしようとしても、特に充填開始時や充填終了時には各反応管に充填速度のばらつ
きが生じる可能性がある、さらに複数種の粒状物を混合して一つの充填層に充填する場合
や、充填層が多層となる場合があることより、前記した反応管内の充填層高の均一化、充
填時間の短縮が大きな課題となる。尚、本発明における粒状物とは、触媒、不活性物質、
又は触媒と不活性物質の混合物である。
However, it is unclear on what basis the previously known method for filling granules in a multi-tube reactor was determined to be filling that does not reach the target (hereinafter, may be referred to as "defective filling"). For example, Patent Document 1 and the like describe a filling method depending on the presence or absence of an instrumentation device for reaction tubes, but do not disclose the criteria for filling each reaction tube. Further, in Patent Document 2 and the like, there is a description of the target layer height, but there is no description of how the target layer height was determined.
In filling the multi-tube reaction tube with granules, the above-mentioned conventional method has a problem that it is difficult to make the packed layer height uniform and the time required for filling becomes long. In particular, a multi-tube reactor (hereinafter sometimes referred to as "pre-stage multi-tube reactor") for producing the corresponding unsaturated aldehyde by catalytically oxidizing an olefin with an oxygen-containing gas in the gas phase, or To a multi-tube reactor for producing a corresponding unsaturated carboxylic acid by catalytically oxidizing an unsaturated aldehyde with an oxygen-containing gas in a gas phase (hereinafter, may be referred to as a “post-stage multi-tube reactor”). In the filling of granules, even if the shape and particle size of the granules vary, or even if the filling rate of the granules in each reactor is to be constant, each reactor is filled especially at the start and end of filling. Since there is a possibility that the speed may vary, and when a plurality of types of granules are mixed and filled in one packed bed, or when the packed bed is multi-layered, the height of the packed bed in the reactor tube described above may occur. Uniformity and shortening of filling time are major issues. The granules in the present invention are catalysts, inert substances, and the like.
Alternatively, it is a mixture of a catalyst and an inert substance.

本発明は上記従来技術の問題点を解決し、多管式反応器の各反応管への粒状物の充填に
おいて、各反応菅における充填層高の均一化を短時間で実施することができる多管式反応
器への粒状物の充填方法を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, and in filling each reaction tube of a multi-tube reactor with granules, it is possible to make the height of the packed bed uniform in each reaction tube in a short time. It is an object of the present invention to provide a method for filling a tubular reactor with granules.

本発明者は、上記課題を解決すべく検討を重ねた結果、多管式反応器の反応管に粒状物
を充填する方法であって、該多管式反応管の全反応管に対し特定割合の反応管(以下、「
反応管A」と称する場合がある。)に、多管式反応器の反応管に充填する粒状物と同量の
粒状物を充填し、粒状物が充填された反応管Aの平均充填層高をもとに目標充填層高を決
めて、それを基準とすることにより、上記課題を解決することができることを見いだし、
本発明に至った。
即ち、本発明は以下を要旨とする。
As a result of repeated studies to solve the above problems, the present inventor is a method of filling the reaction tube of a multi-tube reactor with granules, and a specific ratio to all the reaction tubes of the multi-tube reactor. Reaction tube (hereinafter, ""
It may be referred to as "reaction tube A". ) Is filled with the same amount of granules as the granules to be filled in the reaction tube of the multi-tube reactor, and the target packed bed height is determined based on the average packed bed height of the reaction tube A filled with the granules. We found that the above problems could be solved by using it as a standard.
The present invention has been reached.
That is, the gist of the present invention is as follows.

[1] 10,000本以上の鉛直方向に配置された反応管と、該反応管の両端部が管
板に取り付けられた構造を有する多管式反応器において、上側管板上より粒状物を反応管
に充填する方法であって、目標充填層高を以下の方法で設定し、目標充填層高に達しない
反応管を選別することを含む、粒状物の充填方法。
(1)多管式反応器の反応管の本数に対し0.3%以上5%以下の本数の反応管(以下、
「反応管A」という。)それぞれに、多管式反応器の反応管に充填する粒状物と同量の粒
状物を充填する。
(2)粒状物が充填された反応管Aの平均充填層高を求める。
(3)目標充填層高の上限は、該平均充填層高をm、反応管Aにおる充填層高の標準偏差
をδとした場合、下記式(I)を満たす。
m+0.5δ≦目標充填層高の上限≦m+6δ (I)
(4)目標充填層高の下限は、該平均充填層高をm、反応管Aにおる充填層高の標準偏差
をδとした場合、下記式(II)を満たす。
m−6δ≦目標充填層高の下限≦m−0.5δ (II)
[1] In a multi-tube reactor having a structure in which 10,000 or more reaction tubes are arranged in the vertical direction and both ends of the reaction tubes are attached to a tube plate, granules are discharged from the upper tube plate. A method for filling a reaction tube, which comprises setting a target packed bed height by the following method and selecting a reaction tube that does not reach the target packed bed height.
(1) The number of reaction tubes of 0.3% or more and 5% or less with respect to the number of reaction tubes of the multi-tube reactor (hereinafter,
It is called "reaction tube A". ) Each is filled with the same amount of granules as the granules to be filled in the reaction tube of the multi-tube reactor.
(2) The average packed layer height of the reaction tube A filled with the granular material is obtained.
(3) The upper limit of the target packed bed height satisfies the following formula (I) when the average packed bed height is m and the standard deviation of the packed bed height in the reaction tube A is δ.
m + 0.5δ ≤ upper limit of target packed bed height ≤ m + 6δ (I)
(4) The lower limit of the target packed bed height satisfies the following formula (II) when the average packed bed height is m and the standard deviation of the packed bed height in the reaction tube A is δ.
m-6δ ≤ lower limit of target packed bed height ≤ m-0.5δ (II)

[2] 前記全反応管の端部が管板上で同一円内に取り付けられており、前記反応管Aの
端部が、管板上の該円の中心を通る直線により、該円を均等に分割した複数の区画毎に均
等に分配されている[1]に記載の粒状物の充填方法。
[2] The ends of all the reaction tubes are mounted in the same circle on the tube plate, and the ends of the reaction tube A are made uniform by a straight line passing through the center of the circle on the tube plate. The method for filling granules according to [1], which is evenly distributed in each of a plurality of compartments divided into.

[3] 前記反応管Aの平均充填層高が500mm以上4,000mm以下である[1]
又は[2]に記載の粒状物の充填方法。
[3] The average packed bed height of the reaction tube A is 500 mm or more and 4,000 mm or less [1].
Alternatively, the method for filling granules according to [2].

[4] 前記選別された目標充填層高に達しない反応管は、粒状物を抜き出したのちに再
充填する[1]乃至[3]のいずれかに記載の粒状物の充填方法。
[4] The method for filling granules according to any one of [1] to [3], wherein the reaction tube that does not reach the selected target packing layer height is refilled after extracting the granules.

[5] 前記多管式反応器が不飽和アルデヒド製造用反応器である[1]乃至[4]のい
ずれかに記載の粒状物の充填方法。
[6] 前記多管式反応器が不飽和カルボン酸製造用反応器である[1]乃至[4]のい
ずれかに記載の粒状物の充填方法。
[5] The method for filling granules according to any one of [1] to [4], wherein the multi-tube reactor is a reactor for producing unsaturated aldehydes.
[6] The method for filling granules according to any one of [1] to [4], wherein the multi-tube reactor is a reactor for producing unsaturated carboxylic acid.

本発明によれば、多管式反応器の各反応管への粒状物の充填において、各反応管におけ
る充填層高の均一化を短時間で実施することができる。
According to the present invention, in filling each reaction tube of a multi-tube reactor with granules, the height of the packed bed in each reaction tube can be made uniform in a short time.

以下、本発明の粒状物の充填方法について、詳細に説明するが、本発明は何ら以下の説
明内容に限定されるものではなく、本発明の要旨の範囲内で種々変更して実施することが
できる。
Hereinafter, the method for filling the granular material of the present invention will be described in detail, but the present invention is not limited to the following description, and various modifications can be made within the scope of the gist of the present invention. can.

本発明の粒状物の充填方法は、多管式反応器の反応管に適用される。該多管式反応器と
は鉛直方向に配置された複数の反応管と、該複数の反応管の両端部が管板に取り付けられ
た構造を有する多管式反応器である。又、該複数の反応管は管状胴体に収納されているこ
とが好ましく、該管板は該管状胴体の上端側、下端側それぞれに配置されていることが好
ましい。該管状胴体には熱媒体を通液することにより、反応温度を制御することが可能と
なる。該複数の反応管の本数は10,000本以上であり、13,000本以上であるこ
とが好ましく、20,000本以上であることより好ましい。上限は80,000本であ
ることが好ましく、60,000本であることがより好ましい。本数が前記範囲内である
ことにより、多管式反応器として経済的かつ安定な操業が可能となる。又、反応管の配置
は、反応温度の制御を目的として、各反応管は近接する反応管との間隔を等しくするため
、反応管の両端部は管板に千鳥状に取り付けられていることが好ましく、45°千鳥状に
取り付けられていることがより好ましく、60°千鳥状に取り付けられていることがさら
に好ましい。更に、各反応管の管形状は反応管内の粒状物の充填密度が不均一となったり
、反応ガスの偏流が発生することを避けるため、円柱状であることが好ましい。加えて、
各反応管において反応が均一に進行することより、管径は均一であることが好ましい。更
に加えて、各反応管で反応にバラつきを生じることなく、効率的に反応を進行させるため
に、全反応管の両端部が管板上で同一円内に取り付けられていることが好ましい。
The granular material filling method of the present invention is applied to the reaction tube of a multi-tube reactor. The multi-tube reactor is a multi-tube reactor having a plurality of reaction tubes arranged in the vertical direction and a structure in which both ends of the plurality of reaction tubes are attached to a tube plate. Further, the plurality of reaction tubes are preferably housed in a tubular body, and the tube plates are preferably arranged on the upper end side and the lower end side of the tubular body, respectively. The reaction temperature can be controlled by passing a heat medium through the tubular body. The number of the plurality of reaction tubes is 10,000 or more, preferably 13,000 or more, and more preferably 20,000 or more. The upper limit is preferably 80,000, more preferably 60,000. When the number of reactors is within the above range, economical and stable operation as a multi-tube reactor becomes possible. In addition, the arrangement of the reaction tubes is such that both ends of the reaction tubes are attached to the tube plate in a staggered manner in order to equalize the distance between each reaction tube and the adjacent reaction tubes for the purpose of controlling the reaction temperature. It is preferably mounted in a 45 ° staggered pattern, more preferably in a 60 ° staggered pattern. Further, the tube shape of each reaction tube is preferably columnar in order to prevent the filling density of the granules in the reaction tube from becoming uneven and the drift of the reaction gas from occurring. father,
Since the reaction proceeds uniformly in each reaction tube, it is preferable that the tube diameter is uniform. Furthermore, in order to allow the reaction to proceed efficiently without causing variation in the reaction in each reaction tube, it is preferable that both ends of all the reaction tubes are mounted in the same circle on the tube plate.

本発明の粒状物の充填方法は目標充填層高を以下の方法で設定する。まず、多管式反応
器の反応管の本数に対し0.3%以上5%以下の本数の反応管(以下。「反応管A」と称
する場合がある。)を設定する。反応管Aの本数の下限は多管式反応器の反応管の本数に
対し0.5%が好ましく、0.8%がより好ましい。反応管Aの本数の上限は多管式反応
器の反応管の本数に対し3%が好ましく、2%がより好ましい。前記範囲内とすることで
、各反応管の充填層高が均一化を短時間で実施することが可能となる。
In the granular material filling method of the present invention, the target packed layer height is set by the following method. First, the number of reaction tubes (hereinafter, sometimes referred to as "reaction tube A") of 0.3% or more and 5% or less with respect to the number of reaction tubes of the multi-tube reactor is set. The lower limit of the number of reaction tubes A is preferably 0.5%, more preferably 0.8%, based on the number of reaction tubes of the multi-tube reactor. The upper limit of the number of reaction tubes A is preferably 3% and more preferably 2% with respect to the number of reaction tubes of the multi-tube reactor. Within the above range, the height of the packed bed in each reaction tube can be made uniform in a short time.

前記反応管Aの管径、菅形状は、該多管式反応器内の反応管の管径、菅形状と同一であ
る。該反応管Aは、該多管式反応器内の反応管であっても、該多管式反応器とは別の反応
管であってもよいが、該多管式反応器内の反応管であることが好ましい。
The tube diameter and tube shape of the reaction tube A are the same as the tube diameter and tube shape of the reaction tube in the multi-tube reactor. The reaction tube A may be a reaction tube in the multi-tube reactor or a reaction tube different from the multi-tube reactor, but the reaction tube in the multi-tube reactor. Is preferable.

さらに、該反応管Aが多管式反応器内の反応管である場合、該多管式反応器の全反応管
の両端部が管板上で同一円内に取り付けられており、該反応管Aの端部が、管板上の該円
の中心を通る直線により、該円を均等に分割した複数の区画毎に均等に分配されているこ
とが好ましい。さらに、複数の区画の数は3〜16であることが好ましく、6〜12であ
ることがより好ましい。又、複数の区画のそれぞれを、該円の中心から円周の間、長さで
三つの区分に分けると、三つの区分それぞれに反応管Aの端部が分散されて存在すること
が好ましい。又、複数の区画のそれぞれの反応管Aの端部の位置はすべての区画において
略同じ位置であることが好ましい。「略同じ位置である」とは、すべての区画の全く同じ
位置に反応管の端部があるとは限らないので、反応管Aの端部は、複数の区画の同じ位置
か又はその近傍に存在することを意味する。
全反応管の両端部が管板上で同一円内に取り付けることで、前述した通り、粒状物を充
填したのちに、効率的な反応を進行させることが可能であると共に、粒状物の充填におい
ても、効率的な粒状物の充填、目標充填層高に達しているかの確認を容易とすることがで
きる。更に、前記した、該反応管Aの端部を管板上の該円を基本として特定位置とするこ
とより、充填場所による充填状況のばらつきがあったとしても、反応管Aそれぞれにおけ
る充填が全反応管の充填を代表できる可能性があり、各反応管における充填層高の均一化
を短時間で実施することが可能となる。
Further, when the reaction tube A is a reaction tube in a multi-tube reactor, both ends of all the reaction tubes of the multi-tube reactor are mounted in the same circle on the tube plate, and the reaction tube is attached. It is preferable that the end portion of A is evenly distributed to each of a plurality of evenly divided sections of the circle by a straight line passing through the center of the circle on the tube plate. Further, the number of the plurality of compartments is preferably 3 to 16, and more preferably 6 to 12. Further, when each of the plurality of sections is divided into three sections by length from the center of the circle to the circumference, it is preferable that the end portions of the reaction tube A are dispersed in each of the three sections. Further, it is preferable that the positions of the ends of the reaction tubes A of the plurality of compartments are substantially the same in all the compartments. Since "substantially the same position" does not mean that the end of the reaction tube is located at exactly the same position in all the compartments, the end of the reaction tube A is at or near the same position in a plurality of compartments. It means that it exists.
By mounting both ends of all reaction tubes in the same circle on the tube plate, as described above, it is possible to proceed with an efficient reaction after filling the granules, and in filling the granules. Also, efficient filling of granules and confirmation of reaching the target packed bed height can be facilitated. Further, since the end portion of the reaction tube A is set to a specific position based on the circle on the tube plate as described above, even if the filling situation varies depending on the filling place, the filling in each of the reaction tubes A is complete. There is a possibility that the filling of the reaction tube can be represented, and the height of the packed layer in each reaction tube can be made uniform in a short time.

前記反応管Aには多管式反応器の反応管に充填する粒状物と同じ粒状物を充填する。「
同じ粒状物を充填する」とは、多管式反応器の反応管に充填する粒状物と、種類が同じで
あり、且つ量も同じである粒状物を該反応管Aに充填することである。該反応管Aに充填
する時期は、多管式反応管に充填する時期と同じであっても、相違してもかまわないが、
充填する環境の差異による充填層高への影響を抑えるため、充填時期を同じとすることが
好ましい。
The reaction tube A is filled with the same granules as the granules to be filled in the reaction tube of the multi-tube reactor. "
"Filling the same granules" means filling the reaction tube A with granules of the same type and the same amount as the granules to be filled in the reaction tube of the multi-tube reactor. .. The time of filling the reaction tube A may be the same as or different from the time of filling the multi-tube reaction tube.
It is preferable that the filling time is the same in order to suppress the influence on the filling layer height due to the difference in the filling environment.

前記反応管Aに粒状物を充填したのちに、充填層高を測定し、平均充填層高を計算によ
り求める。尚、充填層高は、粒状物を充填したのちに、反応管の上端から充填層上面まで
の長さを測定し、予め把握していた反応管の充填層下端から上側管板上にある反応管の端
までの長さ(以下「有効長さ」と称する場合がある。)から、該反応管の上端から充填層
上面までの長さを引くことにより求めることができる。本発明の粒状物の充填方法では、
目標充填層高を設定する。目標充填層高の上限は、該平均充填層高をm、反応管Aにおる
充填層高の標準偏差をδとした場合、下記式(I)を満たす。
After filling the reaction tube A with granules, the packed layer height is measured and the average packed layer height is calculated. The packed layer height is the reaction from the lower end of the packed layer to the upper tube plate of the reaction tube, which was previously grasped by measuring the length from the upper end of the reaction tube to the upper surface of the packed layer after filling the granules. It can be obtained by subtracting the length from the upper end of the reaction tube to the upper surface of the packed bed from the length to the end of the tube (hereinafter sometimes referred to as "effective length"). In the method for filling granules of the present invention,
Set the target packed bed height. The upper limit of the target packed bed height satisfies the following formula (I) when the average packed bed height is m and the standard deviation of the packed bed height in the reaction tube A is δ.

m+0.5δ≦目標充填層高の上限≦m+6δ (I) m + 0.5δ ≤ upper limit of target packed bed height ≤ m + 6δ (I)

目標充填層高の下限は、該平均充填層高をm、反応管Aにおる充填層高の標準偏差をδ
とした場合、下記式(II)を満たす。
The lower limit of the target packed bed height is m for the average packed bed height and δ for the standard deviation of the packed bed height in the reaction tube A.
If, the following formula (II) is satisfied.

m−6δ≦目標充填層高の下限≦m−0.5δ (II) m-6δ ≤ lower limit of target packed bed height ≤ m-0.5δ (II)

前記式(I)における左辺は「m+δ」が好ましく、「m+2δ」がより好ましい。前
記式(I)における右辺は「m+5δ」が好ましく、「m+4δ」がより好ましい。又、
前記式(II)における左辺は「m−5δ」が好ましく、「m−4δ」がより好ましい。
前記式(I)における右辺は「m−δ」が好ましく、「m−2δ」がより好ましい。目標
充填層高の上下限を前記範囲内とすることにより、各反応管における充填層高の均一化を
短時間で実施することが可能となる。
The left side of the formula (I) is preferably "m + δ", more preferably "m + 2δ". The right side of the formula (I) is preferably "m + 5δ", more preferably "m + 4δ". or,
The left side of the formula (II) is preferably "m-5δ", more preferably "m-4δ".
The right side of the formula (I) is preferably "m-δ", more preferably "m-2δ". By setting the upper and lower limits of the target packed bed height within the above range, it is possible to make the packed bed height uniform in each reaction tube in a short time.

前記反応管Aの平均充填層高は500mm以上4,000mm以下であることが好まし
い。上限は2,500mmであることがより好ましく、下限は600mmであることがよ
り好ましい。前記範囲であることにより、効率の良い充填作業が可能となり、時間をおか
ず充填された粒状物により反応を実施することができる。
The average packed layer height of the reaction tube A is preferably 500 mm or more and 4,000 mm or less. The upper limit is more preferably 2,500 mm, and the lower limit is more preferably 600 mm. Within the above range, efficient filling work becomes possible, and the reaction can be carried out with the filled granules in a short time.

次いで、多管式反応器の粒状物が充填された反応管において、前記設定した目標充填層
高に達しない反応管を選別する。選別する方法としては、予め把握していた反応管の有効
長さから、設定した目標充填層高を引き算した数値を、メジャー又は棒状の器具の箇所に
印としてつけておき、それを使用することにより、簡易に選別することができる。
Next, in the reaction tube filled with the granules of the multi-tube reactor, the reaction tube that does not reach the set target packed layer height is selected. As a method of sorting, a numerical value obtained by subtracting the set target filling layer height from the effective length of the reaction tube that has been grasped in advance is marked at the place of the measure or rod-shaped instrument and used. Therefore, it can be easily sorted.

前記選別された目標充填層高に達しない反応管は、粒状物を抜き出したのちに再度粒状
物を充填することが好ましい。再度充填する粒状物は、抜き出した粒状物をそのまま再度
充填する粒状物として使用してもよく、新たな粒状物を再度充填する粒状物として使用し
てもよいが、抜き出した粒状物は損傷している可能性があるので、新たな粒状物により再
度充填することが好ましい。
It is preferable that the reaction tube that does not reach the selected target packing layer height is filled with the granules after extracting the granules. The refilled granules may be used as granules to be refilled with the extracted granules as they are, or may be used as granules to be refilled with new granules, but the extracted granules are damaged. It is preferable to refill with new granules.

前記多管式反応器で行われる反応は特に限定されず、反応管に導入する反応原料も特に
限定されないが、気相反応であることが好ましい。とりわけ、該多管式反応器は不飽和ア
ルデヒド製造用であることが好ましく、アクロレイン製造用であることがより好ましい。
又、該多管式反応器は不飽和カルボン酸製造用であることが好ましく、アクリル酸製造用
であることがより好ましい。不飽和アルデヒド製造用多管式反応器とは、プロピレン等の
オレフィン又はターシャリーブタノールを酸素含有ガスと気相接触酸化させてアクロレイ
ン等の対応する不飽和アルデヒドとするための多管式反応器である。又、不飽和カルボン
酸製造用多管式反応器とは不飽和アルデヒドを酸素含有ガスと気相接触酸化させてアクリ
ル酸等の対応する不飽和カルボン酸とするための多管式反応器である。該不飽和アルデヒ
ド製造用多管式反応器や該不飽和カルボン酸製造用多管式反応器である場合、充填される
粒状物の形状や粒径にばらつきがあったり、各反応管への粒状物の充填速度を一定にしよ
うとしても、特に充填開始時や充填終了時には各反応管に充填速度のばらつきが生じる可
能性があり、さらに複数種の粒状物を混合して一つの充填層に充填する場合や、充填層が
多層となる場合があるため、本発明を適用することが有用である。
The reaction carried out in the multi-tube reactor is not particularly limited, and the reaction raw material to be introduced into the reaction tube is not particularly limited, but a gas phase reaction is preferable. In particular, the multi-tube reactor is preferably for the production of unsaturated aldehydes, more preferably for the production of acrolein.
Further, the multi-tube reactor is preferably for producing unsaturated carboxylic acid, and more preferably for producing acrylic acid. The multi-tube reactor for producing unsaturated aldehydes is a multi-tube reactor for vapor-phase catalytic oxidation of olefins such as propylene or tertiary butanol with oxygen-containing gas to obtain corresponding unsaturated aldehydes such as acrolein. be. The multi-tube reactor for producing unsaturated carboxylic acid is a multi-tube reactor for vapor-phase catalytic oxidation of unsaturated aldehyde with an oxygen-containing gas to obtain a corresponding unsaturated carboxylic acid such as acrylic acid. .. In the case of the multi-tube reactor for producing unsaturated aldehyde or the multi-tube reactor for producing unsaturated carboxylic acid, the shape and particle size of the granules to be filled may vary, or the granules in each reaction tube may be different. Even if an attempt is made to keep the filling rate of a substance constant, the filling rate may vary in each reactor tube, especially at the start and end of filling, and a plurality of types of granules are mixed and filled in one packed layer. It is useful to apply the present invention because there are cases where the packing layer is multi-layered.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない
限り、以下の実施例に何ら限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.

(実施例1)
鉛直方向に配置された、円柱状であり、内径が25.4mm、有効長さが3.8mの2
5,000本の反応管と、該反応管の両端部が管板に同一円内に取り付けられた構造を有
するアクロレイン製造用多管式反応器において、該アクロレイン製造用多管式反応器の上
側管板上より、25,000本の各反応管に同量の粒状物を充填した。全反応管へ粒状物
の充填を完了した後に、約1%の本数に当たる256本の反応管を選定した。尚、反応管
を選定した方法は、上側管板上の25,000個の反応管の端部が形成する円を円の中心
を通る線により八区画に等分し、ある区画において円の中心から円周までの間、長さで三
つの区分に分け、三つの区分それぞれで反応管を選び、32本の反応管を選択し、次いで
、その他七区画も同じ位置又はその近傍にある32本の反応管を選び、計256本を選定
した。
(Example 1)
2 in a columnar shape arranged in the vertical direction, with an inner diameter of 25.4 mm and an effective length of 3.8 m.
In a multi-tube reactor for achloraine production having a structure in which 5,000 reaction tubes and both ends of the reaction tube are attached to a tube plate in the same circle, the upper side of the multi-tube reactor for achloraine production. From the top of the tube plate, each of the 25,000 reaction tubes was filled with the same amount of granules. After completing the filling of all the reaction tubes with the granular material, 256 reaction tubes, which corresponded to about 1% of the number, were selected. The method of selecting the reaction tube is to divide the circle formed by the ends of the 25,000 reaction tubes on the upper tube plate into eight sections by a line passing through the center of the circle, and in a certain section, the center of the circle. From to the circumference, divide into three sections by length, select reaction tubes in each of the three sections, select 32 reaction tubes, and then 32 other sections at the same position or in the vicinity. A total of 256 reaction tubes were selected.

該256本の各反応管それぞれにおいて、反応管の有効長さから、上側管板面から充填
された充填層の上面までの長さを引き、充填層高を求め、平均充填層高を計算したところ
1,943mmであった。また充填層高の標準偏差は28mmであった。目標充填層高の
上限は該平均充填層高に、該標準偏差の約3倍である83mmを加え、1,943+83
=2,026mmとした。目標充填層高の下限は該平均充填層高に、該標準偏差の約3倍
である83mmを引き、1,943−83=1,860mmとした。すなわち1,860
mm〜2,026mmが目標充填層高である。
In each of the 256 reaction tubes, the length from the upper tube plate surface to the upper surface of the filled packed layer was subtracted from the effective length of the reaction tube to obtain the packed layer height, and the average packed layer height was calculated. However, it was 1,943 mm. The standard deviation of the packed bed height was 28 mm. The upper limit of the target packed bed height is 1,943 + 83 by adding 83 mm, which is about three times the standard deviation, to the average packed bed height.
= 2,026 mm. The lower limit of the target packed bed height is set to 1,943-83 = 1,860 mm by subtracting 83 mm, which is about three times the standard deviation, from the average packed bed height. That is, 1,860
The target packing layer height is mm to 2,026 mm.

次いで、市販の巻き尺(メジャー)20個に、反応管の有効長さから目標充填層高の上
下限である1,860mm、1968mmそれぞれを引いた数値の箇所に印をつけた。2
5,000本の全反応管に対して上側管板面より該巻き尺を反応管内に挿入し、その先端
が充填された粒状物の上面に達した際の印の位置を確認して、目標充填層高に達している
か否をチェックした。
Next, 20 tape measures on the market were marked with the values obtained by subtracting the upper and lower limits of the target packed bed height of 1,860 mm and 1968 mm from the effective length of the reaction tube. 2
For all 5,000 reaction tubes, insert the tape measure into the reaction tube from the upper tube plate surface, check the position of the mark when the tip reaches the upper surface of the filled granules, and target filling. I checked whether I had reached the height.

その結果、目標充填層高に達しなかった反応管は、114本であり、その反応管に充填
された粒状物は反応管から抜き出し、再度、新たに粒状物を充填し、前記と同様に充填高
さをチェックし、目標充填層高となるまで繰り返し、充填作業を終了した。
尚、全反応管に粒状物の充填が完了してから、目標充填層高に達しなかった反応管検知
に要した時間はのべ20名かけて約4時間を要した。
As a result, the number of reaction tubes that did not reach the target packed bed height was 114, and the granules filled in the reaction tubes were extracted from the reaction tube, filled with new granules again, and filled in the same manner as described above. The height was checked and repeated until the target filling layer height was reached, and the filling work was completed.
It took about 4 hours for a total of 20 people to detect the reaction tubes that did not reach the target packed bed height after the filling of all the reaction tubes with the granular material was completed.

(実施例2)
鉛直方向に配置された、円柱状であり、内径が27.2mm、有効長さが3.3mの2
6,000本の反応管と、該反応管の両端部が管板に同一円内に取り付けられた構造を有
するアクリル酸製造用多管式反応器において、該アクリル酸製造用多管式反応器の上側管
板上より、26,000本の各反応管に同量の粒状物を充填した。全反応管へ粒状物の充
填完了後に、約1%の本数に当たる264本の反応管を選定した。尚、反応管を選定した
方法は、上側管板上の26,000個の反応管の端部が形成する円を円の中心を通る線に
より八区画に等分し、ある区画において円の中心から円周までの間、長さで三つの区分に
分け、三つの区分それぞれで反応管を選び、33本の反応管を選択し、次いで、その他七
区画も同じ位置又はその近傍にある33本の反応管を選び、計264本を選定した。
(Example 2)
2 in a columnar shape arranged in the vertical direction, with an inner diameter of 27.2 mm and an effective length of 3.3 m.
In a multi-tube reactor for producing acrylic acid having a structure in which 6,000 reaction tubes and both ends of the reaction tubes are attached to a tube plate in the same circle, the multi-tube reactor for producing acrylic acid Each of the 26,000 reactor tubes was filled with the same amount of granules from the upper tube plate of the above. After the completion of filling all the reaction tubes with the granular material, 264 reaction tubes, which corresponded to about 1% of the number, were selected. The method of selecting the reaction tube is to divide the circle formed by the ends of the 26,000 reaction tubes on the upper tube plate into eight sections by a line passing through the center of the circle, and in a certain section, the center of the circle. From to the circumference, divide into three sections by length, select reaction tubes in each of the three sections, select 33 reaction tubes, and then 33 in the other seven sections at or near the same position. A total of 264 reaction tubes were selected.

該264本の各反応管それぞれにおいて、反応管の有効長さから、上側管板面から充填
された充填層の上面までの長さを引き、充填層高を求め、平均充填層高を計算したところ
1,491mmであった。また、充填層高の標準偏差は21mmであった。目標充填層高
の上限は該平均充填層高に、該標準偏差の3倍である63mmを加え、1,491+63
=1,554mmとした。目標充填層高の下限は該平均充填層高に、該標準偏差の3倍で
ある63mmを引き、1,491−63=1,428mmとした。すなわち1,428m
m〜1,554mmが目標充填層高である。
In each of the 264 reaction tubes, the length from the upper tube plate surface to the upper surface of the filled packed layer was subtracted from the effective length of the reaction tube to obtain the packed layer height, and the average packed layer height was calculated. However, it was 1,491 mm. The standard deviation of the packed bed height was 21 mm. The upper limit of the target packed bed height is 1,491 + 63 by adding 63 mm, which is three times the standard deviation, to the average packed bed height.
= 1,554 mm. The lower limit of the target packed bed height is 1,491-63 = 1,428 mm by subtracting 63 mm, which is three times the standard deviation, from the average packed bed height. That is, 1,428 m
The target packing layer height is m to 1,554 mm.

次いで、市販の巻き尺(メジャー)20個に、反応管の有効長さから目標充填層高の上
下限である1,428mm、1,554mmそれぞれを引いた数値の箇所に印をつけた。
26,000本の全反応管に対して上側管板面より該巻き尺を反応管内に挿入し、その先
端が充填された粒状物の上面に達した際の印の位置を確認して、目標充填層高に達してい
るか否をチェックした。
Next, 20 tape measures on the market were marked with values obtained by subtracting the upper and lower limits of the target packed bed height of 1,428 mm and 1,554 mm from the effective length of the reaction tube.
For all 26,000 reaction tubes, insert the tape measure into the reaction tube from the upper tube plate surface, check the position of the mark when the tip reaches the upper surface of the filled granules, and target filling. I checked whether I had reached the height.

その結果、目標充填層高に達しなかった不良充填の反応管は13本であった。その反応
管に充填された粒状物は反応管から抜き出し、再度、新たに粒状物を充填し、前記と同様
に充填高さをチェックし、目標充填層高となるまで繰り返し、充填作業を終了した。
尚、全反応管に粒状物の充填が完了してから、目標充填層高に達しなかった反応管検知
に要した時間はのべ20名かけて約4時間を要した。
As a result, the number of defectively filled reaction tubes that did not reach the target packed layer height was 13. The granules filled in the reaction tube were extracted from the reaction tube, filled with new granules, the filling height was checked in the same manner as described above, and the filling operation was completed until the target filling layer height was reached. ..
It took about 4 hours for a total of 20 people to detect the reaction tubes that did not reach the target packed bed height after the filling of all the reaction tubes with the granular material was completed.

(比較例1)
実施例1と同じアクロレイン製造用多管式反応器において、実施例1と同様に25,0
00本の各反応管に同量の粒状物を充填した。全反応管へ粒状物の充填完了後に、約20
%の本数に当たる5,000本の反応管を選定した。尚、反応管は無作為に選定した。
(Comparative Example 1)
In the same multi-tube reactor for acrolein production as in Example 1, 25.0 as in Example 1.
Each of the 00 reaction tubes was filled with the same amount of granules. Approximately 20 after the completion of filling all reaction tubes with granules
5,000 reaction tubes, which corresponds to the number of%, were selected. The reaction tube was randomly selected.

該5,000本の各反応管それぞれにおいて、反応管の有効長さから、上側管板面から
充填された充填層の上面までの長さを引き、充填層高を求めた。平均充填層高は1,94
3mm、標準偏差は28mmであった。
尚、目標充填層高は実施例1と同様1,860mm〜2,026mmとした。
次いで、市販の巻き尺(メジャー)20個に、目標充填層高の上下限に対応する充填高
さの箇所に各々印をつけた。25,000本の全反応管に対して上側管板面より該巻き尺
を反応管内に挿入し、その先端が充填された粒状物の上面に達した際の印の位置を確認し
て、目標充填層高に達しているか否をチェックした。
In each of the 5,000 reaction tubes, the length from the upper tube plate surface to the upper surface of the filled packed layer was subtracted from the effective length of the reaction tubes to obtain the packed layer height. Average packed bed height is 1,94
It was 3 mm and the standard deviation was 28 mm.
The target packing layer height was set to 1,860 mm to 2,026 mm as in Example 1.
Next, 20 tape measures on the market were marked at the filling heights corresponding to the upper and lower limits of the target packing layer height. For all 25,000 reaction tubes, insert the tape measure into the reaction tube from the upper tube plate surface, check the position of the mark when the tip reaches the upper surface of the filled granules, and target filling. I checked whether I had reached the height.

その結果、目標充填層高に達しなかった不良充填の反応管の本数を得た。その反応管に
充填された粒状物は反応管から抜き出し、再度、新たに粒状物を充填し、前記と同様に充
填高さをチェックし、目標充填層高となるまで繰り返し、充填作業を終了した。
尚、全反応管に粒状物の充填が完了してから、目標充填層高に達しなかった反応管検知
に要した時間はのべ20名かけて約7時間を要した。これは実施例1の1.8倍である。
As a result, the number of defectively filled reaction tubes that did not reach the target packed layer height was obtained. The granules filled in the reaction tube were extracted from the reaction tube, filled with new granules, the filling height was checked in the same manner as described above, and the filling operation was completed until the target filling layer height was reached. ..
It took about 7 hours for a total of 20 people to detect the reaction tubes that did not reach the target packed bed height after the filling of all the reaction tubes with the granular material was completed. This is 1.8 times that of Example 1.

(比較例2)
実施例2と同じアクリル酸製造用多管式反応器において、実施例2と同様に26,00
0本の各反応管に同量の粒状物を充填した。全反応管へ粒状物の充填完了後に、約20%
の本数に当たる5,200本の反応管を選定した。尚、反応管を選定する方法は、無作為
であった。
(Comparative Example 2)
In the same multi-tube reactor for acrylic acid production as in Example 2, 26,000 as in Example 2.
Each of the 0 reaction tubes was filled with the same amount of granules. Approximately 20% after completion of filling all reaction tubes with granules
5,200 reaction tubes, which corresponds to the number of the above, were selected. The method of selecting the reaction tube was random.

該5,200本の各反応管それぞれにおいて、反応管の有効長さから、上側管板面から
充填された充填層の上面までの長さを引き、充填層高を求めた。平均充填層高は1,49
1mm、標準偏差は21mmであった。
尚、目標充填層高は実施例2と同様1,428mm〜1,554mmとした。
次いで、市販の巻き尺(メジャー)20個に、目標充填層高の上下限に対応する充填高
さの箇所に各々印をつけた。26,000本の全反応管に対して上側管板面より該巻き尺
を反応管内に挿入し、その先端が充填された粒状物の上面に達した際の印の位置を確認し
て、目標充填層高に達しているか否をチェックした。
In each of the 5,200 reaction tubes, the length from the upper tube plate surface to the upper surface of the filled packed layer was subtracted from the effective length of the reaction tubes to obtain the packed layer height. Average packed bed height is 1,49
It was 1 mm and the standard deviation was 21 mm.
The target packed bed height was set to 1,428 mm to 1,554 mm as in Example 2.
Next, 20 tape measures on the market were marked at the filling heights corresponding to the upper and lower limits of the target packing layer height. For all 26,000 reaction tubes, insert the tape measure into the reaction tube from the upper tube plate surface, check the position of the mark when the tip reaches the upper surface of the filled granules, and target filling. I checked whether I had reached the height.

その結果、目標充填層高に達しない不良充填の反応管の本数を得た。その反応管に充填
された粒状物は反応管から抜き出し、再度、新たに粒状物を充填し、前記と同様に充填高
さをチェックし、目標充填層高となるまで繰り返し、充填作業を終了した。
尚、全反応管に粒状物の充填が完了してから、目標充填層高に達しなかった反応管検知に
要した時間はのべ20名かけて約7時間を要した。これは実施例2の1.8倍である。
As a result, the number of defectively filled reaction tubes that did not reach the target packed layer height was obtained. The granules filled in the reaction tube were extracted from the reaction tube, filled with new granules, the filling height was checked in the same manner as described above, and the filling operation was completed until the target filling layer height was reached. ..
It took about 7 hours for a total of 20 people to detect the reaction tubes that did not reach the target packed bed height after the filling of all the reaction tubes with the granular material was completed. This is 1.8 times that of Example 2.

Claims (6)

10,000本以上の鉛直方向に配置された反応管と、該反応管の両端部が管板に取り
付けられた構造を有する多管式反応器において、上側管板上より粒状物を反応管に充填す
る方法であって、目標充填層高を以下の方法で設定し、目標充填層高に達しない反応管を
選別することを含む、粒状物の充填方法。
(1)多管式反応器の反応管の本数に対し0.3%以上5%以下の本数の反応管(以下、
「反応管A」という。)それぞれに、多管式反応器の反応管に充填する粒状物と同量の粒
状物を充填する。
(2)粒状物が充填された反応管Aの平均充填層高を求める。
(3)目標充填層高の上限は、該平均充填層高をm、反応管Aにおる充填層高の標準偏差
をδとした場合、下記式(I)を満たす。
m+0.5δ≦目標充填層高の上限≦m+6δ (I)
(4)目標充填層高の下限は、該平均充填層高をm、反応管Aにおる充填層高の標準偏差
をδとした場合、下記式(II)を満たす。
m−6δ≦目標充填層高の下限≦m−0.5δ (II)
In a multi-tube reactor having a structure in which 10,000 or more reaction tubes are arranged in the vertical direction and both ends of the reaction tube are attached to a tube plate, granules are put into the reaction tube from the upper tube plate. A method for filling granules, which comprises setting a target packed bed height by the following method and selecting a reaction tube that does not reach the target packed bed height.
(1) The number of reaction tubes of 0.3% or more and 5% or less with respect to the number of reaction tubes of the multi-tube reactor (hereinafter,
It is called "reaction tube A". ) Each is filled with the same amount of granules as the granules to be filled in the reaction tube of the multi-tube reactor.
(2) The average packed layer height of the reaction tube A filled with the granular material is obtained.
(3) The upper limit of the target packed bed height satisfies the following formula (I) when the average packed bed height is m and the standard deviation of the packed bed height in the reaction tube A is δ.
m + 0.5δ ≤ upper limit of target packed bed height ≤ m + 6δ (I)
(4) The lower limit of the target packed bed height satisfies the following formula (II) when the average packed bed height is m and the standard deviation of the packed bed height in the reaction tube A is δ.
m-6δ ≤ lower limit of target packed bed height ≤ m-0.5δ (II)
前記全反応管の端部が管板上で同一円内に取り付けられており、前記反応管Aの端部が
、管板上の該円の中心を通る直線により、該円を均等に分割した複数の区画毎に均等に分
配されている請求項1に記載の粒状物の充填方法。
The ends of all the reaction tubes are mounted in the same circle on the tube plate, and the ends of the reaction tube A are evenly divided by a straight line passing through the center of the circle on the tube plate. The method for filling granules according to claim 1, wherein the granules are evenly distributed in each of a plurality of compartments.
前記反応管Aの平均充填層高が500mm以上4,000mm以下である請求項1又は
2に記載の粒状物の充填方法。
The method for filling granules according to claim 1 or 2, wherein the average packed layer height of the reaction tube A is 500 mm or more and 4,000 mm or less.
前記選別された目標充填層高に達しない反応管は、粒状物を抜き出したのちに再充填す
る請求項1乃至3のいずれか1項に記載の粒状物の充填方法。
The method for filling granules according to any one of claims 1 to 3, wherein the reaction tube that does not reach the selected target packing layer height is refilled after extracting the granules.
前記多管式反応器が不飽和アルデヒド製造用反応器である請求項1乃至4のいずれか1
項に記載の粒状物の充填方法。
Any one of claims 1 to 4, wherein the multi-tube reactor is a reactor for producing unsaturated aldehydes.
The method for filling granules according to the section.
前記多管式反応器が不飽和カルボン酸製造用反応器である請求項1乃至4のいずれか1
項に記載の粒状物の充填方法。
Any 1 of claims 1 to 4, wherein the multi-tube reactor is a reactor for producing unsaturated carboxylic acid.
The method for filling granules according to the section.
JP2020030810A 2020-02-26 2020-02-26 Method for filling granular material into multitubular reactor Active JP7287312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030810A JP7287312B2 (en) 2020-02-26 2020-02-26 Method for filling granular material into multitubular reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030810A JP7287312B2 (en) 2020-02-26 2020-02-26 Method for filling granular material into multitubular reactor

Publications (2)

Publication Number Publication Date
JP2021133295A true JP2021133295A (en) 2021-09-13
JP7287312B2 JP7287312B2 (en) 2023-06-06

Family

ID=77659626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030810A Active JP7287312B2 (en) 2020-02-26 2020-02-26 Method for filling granular material into multitubular reactor

Country Status (1)

Country Link
JP (1) JP7287312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023048284A1 (en) * 2021-09-27 2023-03-30

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306953A (en) * 2001-01-25 2002-10-22 Nippon Shokubai Co Ltd Fixed bed multitubular reactor and its usage
JP2003001094A (en) * 2001-06-26 2003-01-07 Nippon Shokubai Co Ltd Solid particle-packed reactor and gas-phase catalytic oxidation method using the same
JP2003340267A (en) * 2002-05-30 2003-12-02 Mitsubishi Rayon Co Ltd Method for packing catalyst and multitubular heat exchange type reactor
US20040017875A1 (en) * 2002-06-28 2004-01-29 Catalyst Services Inc. Measuring catalyst(s) for filling reactor tubes in reactor vessels
JP2013233503A (en) * 2012-05-08 2013-11-21 Nippon Kayaku Co Ltd Method for filling solid catalyst
JP2013257171A (en) * 2012-06-11 2013-12-26 Anritsu Sanki System Co Ltd Metering device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306953A (en) * 2001-01-25 2002-10-22 Nippon Shokubai Co Ltd Fixed bed multitubular reactor and its usage
JP2003001094A (en) * 2001-06-26 2003-01-07 Nippon Shokubai Co Ltd Solid particle-packed reactor and gas-phase catalytic oxidation method using the same
JP2003340267A (en) * 2002-05-30 2003-12-02 Mitsubishi Rayon Co Ltd Method for packing catalyst and multitubular heat exchange type reactor
US20040017875A1 (en) * 2002-06-28 2004-01-29 Catalyst Services Inc. Measuring catalyst(s) for filling reactor tubes in reactor vessels
JP2013233503A (en) * 2012-05-08 2013-11-21 Nippon Kayaku Co Ltd Method for filling solid catalyst
JP2013257171A (en) * 2012-06-11 2013-12-26 Anritsu Sanki System Co Ltd Metering device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023048284A1 (en) * 2021-09-27 2023-03-30
WO2023048284A1 (en) * 2021-09-27 2023-03-30 日本化薬株式会社 Method for supporting operation of multi-tube reactor or supporting actions to prepare same
JP7345072B2 (en) 2021-09-27 2023-09-14 日本化薬株式会社 Methods to support the operation of shell-and-tube reactors or their preparatory actions

Also Published As

Publication number Publication date
JP7287312B2 (en) 2023-06-06

Similar Documents

Publication Publication Date Title
KR100708509B1 (en) Fixed-bed multitubular reactor
US8969618B2 (en) Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid
EP1270065B1 (en) Apparatus for pressure and temperature measurements in tube reactors
JPH0892154A (en) Catalytic oxidizing method for acrolein into acrylic acid invapor phase
JP6334518B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the catalyst, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP2021133295A (en) Filling method of granular material into multi-tube reactor
WO2014014041A1 (en) Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
JP2695372B2 (en) Hydrocarbon hydrotreating
US7597529B2 (en) Method for filling a vertical tube with catalyst particles
KR20120098834A (en) Gas phase reaction method
US2783898A (en) Solids withdrawal system
WO2021124696A1 (en) Fixed bed multi-tubular reactor for producing alkenyl acetate
SA516370991B1 (en) Method for producing meth acrylic acid
JP4194359B2 (en) Gas phase catalytic oxidation method
RU2732413C1 (en) Method of producing unsaturated nitrile
JP2005325044A (en) Method for conducting pilot test of multitubular reactor
JP6422764B2 (en) Catalyst filling method
WO2024080208A1 (en) Method for producing unsaturated aldehyde and device for producing unsaturated aldehyde
US7087767B2 (en) Method for producing maleic anhydride
US7549341B2 (en) Method of maintaining a multitubular reactor
JP7471904B2 (en) Fluid catalytic cracking gasoline manufacturing method
JP2018153741A (en) Method for filling granular material into multi-tubular reactor
JP7322756B2 (en) Particulate filling method
JPH0683783B2 (en) Method of controlling bubbles in gas-solid fluidized bed and gas-solid fluidized bed apparatus
JP2016106082A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R151 Written notification of patent or utility model registration

Ref document number: 7287312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151