JP6422764B2 - Catalyst filling method - Google Patents
Catalyst filling method Download PDFInfo
- Publication number
- JP6422764B2 JP6422764B2 JP2014257971A JP2014257971A JP6422764B2 JP 6422764 B2 JP6422764 B2 JP 6422764B2 JP 2014257971 A JP2014257971 A JP 2014257971A JP 2014257971 A JP2014257971 A JP 2014257971A JP 6422764 B2 JP6422764 B2 JP 6422764B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- reaction tube
- measuring device
- temperature measuring
- length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 136
- 238000000034 method Methods 0.000 title claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 94
- 239000002245 particle Substances 0.000 claims description 25
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000000465 moulding Methods 0.000 description 10
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- TYARMXWNXXYBMN-UHFFFAOYSA-N 2-acetamido-3-[(1-acetamido-1-carboxy-2-methylpropan-2-yl)disulfanyl]-3-methylbutanoic acid Chemical compound CC(=O)NC(C(O)=O)C(C)(C)SSC(C)(C)C(C(O)=O)NC(C)=O TYARMXWNXXYBMN-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- WJCNZQLZVWNLKY-UHFFFAOYSA-N thiabendazole Chemical compound S1C=NC(C=2NC3=CC=CC=C3N=2)=C1 WJCNZQLZVWNLKY-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Catalysts (AREA)
Description
本発明は、温度計測装置を備える反応管を少なくとも1つ有する固定床多管式反応器への触媒の充填方法に関する。 The present invention relates to a method of filling a catalyst in a fixed bed multitubular reactor having at least one reaction tube equipped with a temperature measuring device.
化学物質を製造する際、その物質に応じて反応器が選択されるが、その1つとして固定床多管式反応器がある。この固定床多管式反応器には、数千から数万本の反応管が収容されており、例えば、反応管に触媒を充填しておき、この反応管に原料ガスを供給し、反応管内を一方向に原料ガスを流通させながら原料ガスを反応させることにより目的とする反応生成物の製造が行われる。この固定床多管式反応器を用いる場合、発熱反応により生じた熱を効率的に除去することができる。 When producing a chemical substance, a reactor is selected according to the substance, and one of them is a fixed bed multitubular reactor. This fixed-bed multitubular reactor contains thousands to tens of thousands of reaction tubes. For example, the reaction tube is filled with a catalyst, and a raw material gas is supplied to the reaction tube. The target reaction product is produced by reacting the raw material gas while flowing the raw material gas in one direction. When this fixed bed multitubular reactor is used, the heat generated by the exothermic reaction can be efficiently removed.
しかしながら、固定床多管式反応器を用いた発熱反応においては、反応熱の除去効率が悪くなる箇所や触媒濃度が高く反応速度が大きい箇所等に、いわゆるホットスポットが生じる場合がある。ホットスポットにおいては過度の温度上昇のために触媒の劣化や反応生成物の純度低下が起こり易い傾向がある。 However, in an exothermic reaction using a fixed bed multitubular reactor, so-called hot spots may occur in places where the removal efficiency of reaction heat is poor or where the catalyst concentration is high and the reaction rate is high. In the hot spot, the catalyst tends to deteriorate and the purity of the reaction product tends to decrease due to an excessive temperature rise.
固定床多管式反応器中の反応管内の温度を制御するため、複数の反応管のうち一部の反応管に熱電対や抵抗温度計等の温度計測装置を配置することが一般に行なわれている。しかしながら、反応管内でこの温度計測装置が一定体積を占有するため、温度計測装置を備える反応管と備えていない反応管とで反応管内の温度環境に差が生じる。この差によって、各反応管で得られる反応生成物の品質が異なってしまう等の問題が生じる。 In order to control the temperature in the reaction tube in the fixed-bed multitubular reactor, it is common practice to place a temperature measuring device such as a thermocouple or resistance thermometer in some of the reaction tubes. Yes. However, since this temperature measuring device occupies a certain volume in the reaction tube, a difference occurs in the temperature environment in the reaction tube between the reaction tube provided with the temperature measuring device and the reaction tube not provided. This difference causes problems such as the quality of the reaction product obtained in each reaction tube being different.
この問題を解決するために、例えば、小粒径の触媒成型体を併用することによって、また異なる寸法や形状を有する触媒成型体を用いることによって、管型反応器の触媒層圧力損失を調整することができる(特許文献1)。 In order to solve this problem, for example, the catalyst layer pressure loss of the tubular reactor is adjusted by using a catalyst molded body having a small particle diameter, or by using a catalyst molded body having a different size or shape. (Patent Document 1).
しかしながら、異なる寸法や形状を有する触媒成型体を用いる場合、複数の触媒成型体を調製する必要があるため、複数の触媒成型体を調製するには長時間を要し、作業上の負担が大きく、効率的な触媒の充填を行うことは困難である。また、小粒径の触媒成型体を併用する場合、触媒層の急激な圧力損失が生じるためにその調整が困難であり、充填作業のやり直しを複数回行う必要がある。 However, when using catalyst molded bodies having different dimensions and shapes, it is necessary to prepare a plurality of catalyst molded bodies. Therefore, it takes a long time to prepare a plurality of catalyst molded bodies, and the work burden is large. It is difficult to perform efficient catalyst filling. Moreover, when using a catalyst molded body having a small particle size in combination, a sudden pressure loss of the catalyst layer occurs, so that adjustment is difficult, and it is necessary to repeat the filling operation a plurality of times.
そこで、本発明は、複数の反応管を有し、少なくとも1つの反応管が温度計測装置を備える固定床多管式反応器への触媒の充填方法において、各反応管における圧力損失のばらつきを良好に抑制し、作業上の負担を抑えながら、効率的な触媒充填が可能となる充填方法を提供することを課題とする。 Therefore, the present invention has a good variation in pressure loss in each reaction tube in a method of filling a catalyst into a fixed bed multi-tubular reactor having a plurality of reaction tubes and at least one reaction tube having a temperature measuring device. It is an object of the present invention to provide a filling method that enables efficient catalyst filling while suppressing the burden on work.
本発明者らは、温度計測装置を備える反応管を少なくとも1つ有する固定床多管式反応器への触媒の充填方法であって、反応管へ充填される触媒が、多角柱、円柱または楕円柱の形状を有し、温度計測装置を備える反応管へ充填される触媒の少なくとも一部は、温度計測装置を備えない反応管に充填される触媒と実質的に同一の粒径を有し、かつ温度計測装置を備えない反応管に充填される触媒より短い長さを有する充填方法によって、上記課題を解決できることを見出し、本発明を完成するに至った。 The inventors of the present invention provide a method of filling a catalyst in a fixed bed multitubular reactor having at least one reaction tube provided with a temperature measuring device, wherein the catalyst filled in the reaction tube is a polygonal column, a cylinder or an ellipse. At least a part of the catalyst filled in the reaction tube having a column shape and provided with the temperature measuring device has substantially the same particle size as the catalyst charged in the reaction tube not provided with the temperature measuring device, And it discovered that the said subject could be solved by the filling method which has a length shorter than the catalyst with which the reaction tube which does not have a temperature measuring device is filled, and came to complete this invention.
すなわち、本発明には、以下の好適な実施態様が含まれる。
〔1〕複数の反応管を有し、少なくとも1つの反応管が温度計測装置を備える固定床多管式反応器への触媒の充填方法であって、
触媒が、円柱状、楕円柱状または多角柱状の形状を有し、
温度計測装置を備える反応管へ充填される触媒の少なくとも一部は、温度計測装置を備えない反応管に充填される触媒と実質的に同一の粒径を有し、かつ温度計測装置を備えない反応管に充填される触媒より短い長さを有する、方法。
〔2〕温度計測装置を備える反応管へ充填される触媒は、温度計測装置を備えない反応管に充填される触媒と、同一の形状および実質的に同一の粒径を有し、かつ温度計測装置を備えない反応管に充填される触媒より短い長さを有する、〔1〕に記載の方法。
〔3〕温度計測装置を備えない反応管へ充填される触媒の長さと、温度計測装置を備える反応管へ充填される触媒の長さとの比率が1:0.67〜1:0.95である、〔1〕または〔2〕に記載の方法。
〔4〕触媒は不飽和カルボン酸製造用触媒である、〔1〕〜〔3〕のいずれかに記載の方法。
That is, the following preferred embodiments are included in the present invention.
[1] A method for charging a catalyst into a fixed-bed multitubular reactor having a plurality of reaction tubes, at least one of which is provided with a temperature measuring device,
The catalyst has a cylindrical shape, an elliptical columnar shape or a polygonal columnar shape,
At least a part of the catalyst filled in the reaction tube provided with the temperature measuring device has substantially the same particle size as the catalyst filled in the reaction tube not provided with the temperature measuring device, and does not include the temperature measuring device. A process having a shorter length than the catalyst charged into the reaction tube.
[2] The catalyst charged in the reaction tube provided with the temperature measuring device has the same shape and substantially the same particle size as the catalyst charged in the reaction tube not provided with the temperature measuring device, and the temperature measurement. The method according to [1], which has a shorter length than a catalyst charged in a reaction tube not equipped with an apparatus.
[3] The ratio of the length of the catalyst filled in the reaction tube not equipped with the temperature measuring device to the length of the catalyst filled in the reaction tube equipped with the temperature measuring device is 1: 0.67 to 1: 0.95 The method according to [1] or [2].
[4] The method according to any one of [1] to [3], wherein the catalyst is an unsaturated carboxylic acid production catalyst.
本発明によれば、複数の反応管を有し、少なくとも1つの反応管が温度計測装置を備える固定床多管式反応器への触媒の充填方法において、各反応管における圧力損失のばらつきを良好に抑制すると同時に、作業上の負担を抑え、効率的な触媒充填が可能となる充填方法を提供することができる。また、本発明によれば、温度計測装置を備える反応管に触媒を充填する際に、小粒径の触媒成型体を併用する場合のような急激な圧力損失を生じることがなく、容易に触媒充填を行うことができる。 According to the present invention, in a method of filling a catalyst in a fixed bed multitubular reactor having a plurality of reaction tubes and at least one reaction tube having a temperature measuring device, the pressure loss variation in each reaction tube is good. At the same time, it is possible to provide a filling method capable of reducing the burden on work and efficiently filling the catalyst. In addition, according to the present invention, when a catalyst is charged into a reaction tube equipped with a temperature measuring device, the catalyst can be easily produced without causing a sudden pressure loss as in the case of using a catalyst molded body having a small particle size together. Filling can be performed.
以下、本発明の実施の形態を説明する。
本発明における固定床多管式反応器は、工業的に使用される一般的なものであり、通常、数千〜数万本の反応管を有するものである。かかる反応管の内径は、通常22〜35mm程度であり、反応管の肉厚は、通常1〜5mm程度であり、反応管の長さは、通常0.3〜10m程度である。
各反応管は、通常、実質的に同一形状の金属管である。ここで「実質的に同一形状」とは、反応管の外径、肉厚および長さが設計誤差の範囲にあることを意味する。なお、設計誤差は通常±2.5%以内、好ましくは±0.5%以内が許容される。なお、反応管の内径は触媒径の4倍以上となるように、反応管の内径と触媒径とを決定するのが好ましいが、特に制限されるものではない。
Embodiments of the present invention will be described below.
The fixed-bed multitubular reactor in the present invention is a general one used industrially, and usually has several thousand to several tens of thousands of reaction tubes. The inner diameter of the reaction tube is usually about 22 to 35 mm, the thickness of the reaction tube is usually about 1 to 5 mm, and the length of the reaction tube is usually about 0.3 to 10 m.
Each reaction tube is usually a metal tube having substantially the same shape. Here, “substantially the same shape” means that the outer diameter, wall thickness, and length of the reaction tube are within the range of the design error. The design error is usually within ± 2.5%, preferably within ± 0.5%. Although it is preferable to determine the inner diameter of the reaction tube and the catalyst diameter so that the inner diameter of the reaction tube is four times or more the catalyst diameter, it is not particularly limited.
本発明における温度計測装置は、工業的に使用される一般的なものであり、例えば熱電対および抵抗温度計等の固定式温度計測装置が挙げられる。また、反応管中を移動させることができる可動式温度計測装置を用いることもできる。 The temperature measuring device in the present invention is a common one used industrially, and examples thereof include a fixed temperature measuring device such as a thermocouple and a resistance thermometer. A movable temperature measuring device that can be moved in the reaction tube can also be used.
温度計測装置は、必要に応じて、保護管に挿入して使用してもよい。保護管の形状としては、特に制限はされない。また、保護管の材質は、特に制限されず、例えばステンレス管、アルミニウム管等が挙げられる。 The temperature measuring device may be inserted into a protective tube and used as necessary. The shape of the protective tube is not particularly limited. Moreover, the material in particular of a protective tube is not restrict | limited, For example, a stainless tube, an aluminum tube, etc. are mentioned.
本発明において、上記反応管に充填される触媒は特に接触気相反応用の触媒であれば、特に限定されない。例えば、触媒として不飽和アルデヒド製造用触媒又は不飽和カルボン酸製造用触媒が挙げられる。ここでいう不飽和アルデヒド製造用触媒とは、不飽和アルデヒドを製造するための触媒であることができ、例えば、プロピレンを分子状酸素で酸化してアクロレインを製造するための触媒(アクロレイン製造用触媒)や、イソブチレン、ターシャリーブチルアルコールを分子状酸素で酸化してメタクロレインを製造するための触媒(メタクロレイン製造用触媒)等が挙げられる。また、不飽和カルボン酸製造用触媒とは、不飽和カルボン酸を製造するために用いる触媒であることができ、例えば、アクロレインを分子状酸素で酸化してアクリル酸を製造するための触媒(アクリル酸製造用触媒)や、メタクロレインを分子状酸素で酸化してメタクリル酸を製造するための触媒(メタクリル酸製造用触媒)等が挙げられる。中でも、メタクロレイン製造用触媒やメタクリル酸製造用触媒が好ましい。また、触媒は、上記の触媒反応に対して不活性な不活性充填材とともに用いてもよい In the present invention, the catalyst charged in the reaction tube is not particularly limited as long as it is a catalyst for catalytic gas phase reaction. Examples of the catalyst include an unsaturated aldehyde production catalyst and an unsaturated carboxylic acid production catalyst. The unsaturated aldehyde production catalyst as used herein can be a catalyst for producing an unsaturated aldehyde, for example, a catalyst for producing acrolein by oxidizing propylene with molecular oxygen (acrolein production catalyst). And a catalyst (a catalyst for producing methacrolein) for producing methacrolein by oxidizing isobutylene and tertiary butyl alcohol with molecular oxygen. The unsaturated carboxylic acid production catalyst may be a catalyst used for producing an unsaturated carboxylic acid. For example, a catalyst (acrylic acid) for producing acrylic acid by oxidizing acrolein with molecular oxygen. Acid production catalyst) and a catalyst for producing methacrylic acid by oxidizing methacrolein with molecular oxygen (catalyst for production of methacrylic acid). Among these, a catalyst for producing methacrolein and a catalyst for producing methacrylic acid are preferable. Further, the catalyst may be used together with an inert filler that is inactive to the catalytic reaction.
触媒の形状としては、円柱状、楕円柱状または多角柱状等の形状が挙げられる。作業上の負担を抑える観点から、触媒の形状は、円柱状、楕円柱状および多角柱状のいずれか1つであることが好ましい。 Examples of the shape of the catalyst include a columnar shape, an elliptical columnar shape, and a polygonal columnar shape. From the viewpoint of suppressing the work burden, the shape of the catalyst is preferably any one of a cylindrical shape, an elliptical column shape, and a polygonal column shape.
温度計測装置を備える反応管へ充填される触媒の少なくとも一部は、温度計測装置を備えない反応管に充填される触媒と実質的に同一の粒径を有し、かつ温度計測装置を備えない反応管に充填される触媒より短い長さを有する。好ましくは、温度計測装置を備える反応管へ充填される触媒は、温度計測装置を備えない反応管に充填される触媒と実質的に同一の粒径を有し、かつ温度計測装置を備えない反応管に充填される触媒より短い長さを有する。 At least a part of the catalyst filled in the reaction tube provided with the temperature measuring device has substantially the same particle size as the catalyst filled in the reaction tube not provided with the temperature measuring device, and does not include the temperature measuring device. It has a shorter length than the catalyst packed in the reaction tube. Preferably, the catalyst filled in the reaction tube provided with the temperature measuring device has substantially the same particle diameter as the catalyst filled in the reaction tube not provided with the temperature measuring device, and does not include the temperature measuring device. It has a shorter length than the catalyst filled in the tube.
本発明において、触媒の粒径および長さは、定規、ノギス、マイクロメータによって測定することができ、20個の触媒を測定して得られる平均値として決定することができる。 In the present invention, the particle size and length of the catalyst can be measured with a ruler, caliper, or micrometer, and can be determined as an average value obtained by measuring 20 catalysts.
ここで、「実質的に同一」とは、測定誤差が通常±2.5%以内、好ましくは±0.5%以内であることを意味する。 Here, “substantially the same” means that the measurement error is usually within ± 2.5%, preferably within ± 0.5%.
本発明において、触媒の粒径は、触媒を反応管に充填できるのであれ特に限定されない。温度計測装置を備える反応管へ充填される触媒と温度計測装置を備えない反応管に充填される触媒とは、好ましくは実質的に同一の粒径を有する。この場合、複数の粒径を有する触媒を製造する必要がなく、例えば製造装置の金型(ダイス)を取り替える必要がないため、作業効率が良好である。粒径は、好ましくは3〜10mm、より好ましくは4〜9mmである。円柱状の触媒の粒径が上記範囲内であれば、反応管への触媒充填作業をスムーズに行うことができる。 In the present invention, the particle size of the catalyst is not particularly limited as long as the catalyst can be filled in the reaction tube. The catalyst charged in the reaction tube provided with the temperature measuring device and the catalyst charged in the reaction tube not provided with the temperature measuring device preferably have substantially the same particle size. In this case, it is not necessary to produce a catalyst having a plurality of particle sizes, and for example, it is not necessary to replace a die (die) of the production apparatus, so that work efficiency is good. The particle size is preferably 3 to 10 mm, more preferably 4 to 9 mm. If the particle diameter of the columnar catalyst is within the above range, the catalyst filling operation into the reaction tube can be performed smoothly.
触媒の長さに関しては、温度計測装置を備える反応管へ充填される触媒の少なくとも一部は、温度計測装置を備えない反応管に充填される触媒より短い長さを有する。好ましくは、温度計測装置を備える反応管へ充填される触媒は、効率的な触媒充填の観点より、温度計測装置を備えない反応管に充填される触媒より短い長さを有する。より好ましくは、温度計測装置を備える反応管へ充填される触媒は、作業性の観点より、温度計測装置を備えない反応管に充填される触媒より短い長さを有する1種類の形状の触媒である。 Regarding the length of the catalyst, at least a part of the catalyst filled in the reaction tube provided with the temperature measuring device has a shorter length than the catalyst filled in the reaction tube not provided with the temperature measuring device. Preferably, the catalyst filled in the reaction tube provided with the temperature measuring device has a shorter length than the catalyst charged in the reaction tube not equipped with the temperature measuring device from the viewpoint of efficient catalyst filling. More preferably, the catalyst filled in the reaction tube provided with the temperature measuring device is a catalyst of one type having a shorter length than the catalyst charged in the reaction tube not equipped with the temperature measuring device from the viewpoint of workability. is there.
温度計測装置を備えない反応管へ充填される触媒の長さと、温度計測装置を備える反応管へ充填される触媒の長さとの比率は、好ましくは1:0.67〜1:0.95、より好ましくは1:0.7〜1:0.9、さらに好ましくは1:0.75〜1:0.88である。温度計測装置を備えない反応管へ充填される触媒の長さと、温度計測装置を備える反応管へ充填される触媒の長さとの比率が上記範囲内であると、触媒層の急激な圧力損失の上昇もなく、より効率的に触媒を充填することができる。 The ratio of the length of the catalyst filled in the reaction tube not equipped with the temperature measuring device to the length of the catalyst filled in the reaction tube equipped with the temperature measuring device is preferably 1: 0.67 to 1: 0.95, More preferably, it is 1: 0.7-1: 0.9, More preferably, it is 1: 0.75-5: 0.88. If the ratio of the length of the catalyst filled into the reaction tube not equipped with the temperature measuring device and the length of the catalyst filled into the reaction tube equipped with the temperature measuring device is within the above range, the sudden pressure loss of the catalyst layer There is no increase, and the catalyst can be filled more efficiently.
本発明において、触媒の粒径とは、触媒の形状が円柱状の場合には底面である円の直径を意味し、触媒の形状が底面である楕円形状の場合には楕円の長径を意味し、触媒の形状が多角柱の場合には底面である多角形の最も長い対角線の長さを意味する。また、触媒の長さとは、上記粒径と直交する柱の高さを意味する。 In the present invention, the catalyst particle size means the diameter of a circle that is the bottom surface when the shape of the catalyst is cylindrical, and the long diameter of the ellipse when the shape of the catalyst is an elliptic shape that is the bottom surface. When the shape of the catalyst is a polygonal column, it means the length of the longest diagonal line of the polygon that is the bottom surface. The length of the catalyst means the height of the column orthogonal to the particle size.
本発明において、触媒の嵩密度は、通常0.8〜2.0g/ml、好ましくは0.8〜1.5g/mlである。 In the present invention, the bulk density of the catalyst is usually 0.8 to 2.0 g / ml, preferably 0.8 to 1.5 g / ml.
本発明において、触媒の製造方法は特に限定されず、従来公知の方法を採用することができ、例えば、特開2004−188231号公報、特開2006−212520号公報、特開平6−192144号公報、特開2001−025664公報等に記載の製造方法が挙げられる。焼成を行う前の触媒前駆体の成型方法は特に限定されず、押出成型、ペレットミル成型、打錠成型、転動造粒成型および整粒機による成型によって行うことができる。押出成型は、従来公知の混錬押出し成形機を用いることができ、例えば宮崎鉄工社製FM−50E等が挙げられる。ペレットミル成型は、従来公知のペレットミルを用いることができ、例えば上田鉄工社製10HPペレットミル等が挙げられる。打錠成型は、従来公知の打錠成型機を用いて行うことができ、例えば(株)畑鉄工所製打錠機「AP−SS」等が挙げられる。転動造粒成型は、従来公知の転動造粒装置を用いることができ、例えばダルトン社製「マルメライザー」等が挙げられる。整粒機としては、例えば株式会社菊水製作所製OG−1型等が挙げられる。 In the present invention, the method for producing the catalyst is not particularly limited, and a conventionally known method can be employed. For example, JP 2004-188231 A, JP 2006-212520 A, JP 6-192144 A. And a production method described in JP-A-2001-025664. The molding method of the catalyst precursor before firing is not particularly limited, and can be performed by extrusion molding, pellet mill molding, tableting molding, rolling granulation molding, and molding by a granulator. For the extrusion molding, a conventionally known kneading extrusion molding machine can be used, and examples thereof include FM-50E manufactured by Miyazaki Tekko Co., Ltd. For the pellet mill molding, a conventionally known pellet mill can be used, and examples thereof include a 10HP pellet mill manufactured by Ueda Iron Works Co., Ltd. Tableting can be performed using a conventionally known tableting machine, and examples thereof include a tableting machine “AP-SS” manufactured by Hata Iron Works. For rolling granulation, a conventionally known rolling granulation apparatus can be used, and examples thereof include “Malmerizer” manufactured by Dalton. Examples of the granulator include OG-1 type manufactured by Kikusui Seisakusho Co., Ltd.
各成型装置を用いて触媒前駆体を成型製造する場合、触媒の粒径を変更するためには成型装置の金型を変更する必要があるため、作業工程が増加し、煩雑となる。一方、触媒の長さを変更する場合には、金型を変更する必要がなく、簡便な作業工程となる。そのため、本発明によれば、作業上の負担を抑えながら、効率的に触媒を充填することができる。 When the catalyst precursor is molded and produced using each molding apparatus, it is necessary to change the mold of the molding apparatus in order to change the particle size of the catalyst, which increases the number of work steps and becomes complicated. On the other hand, when the length of the catalyst is changed, there is no need to change the mold, which is a simple work process. Therefore, according to the present invention, it is possible to efficiently fill the catalyst while suppressing the work burden.
本発明において、触媒を反応管内に投入落下させて充填すればよい。充填速度は、特に限定されないが、略一定で、充填密度を均一になるようにすることが好ましい。 In the present invention, the catalyst may be charged and dropped into the reaction tube. The filling speed is not particularly limited, but it is preferable that the filling speed is substantially constant and the filling density is uniform.
圧力損失の測定方法は、反応管内に所定流量の空気を流し、そのときの大気圧との差圧を差圧計で読み取ることで行われる。また、触媒充填後の圧力損失は次の方法により測定することができる。まず、触媒を充填する前の反応管の圧力損失を差圧計にて測定する(ブランク)。続いて、触媒を充填した後に再び圧力損失を差圧計にて測定し、この圧力損失からブランクの圧力損失を差し引くことにより、触媒充填後の圧力損失を算出することができる。 The pressure loss is measured by flowing a predetermined flow rate of air through the reaction tube and reading the differential pressure from the atmospheric pressure with a differential pressure gauge. Moreover, the pressure loss after catalyst filling can be measured by the following method. First, the pressure loss of the reaction tube before filling the catalyst is measured with a differential pressure gauge (blank). Subsequently, after filling the catalyst, the pressure loss is measured again with a differential pressure gauge, and the pressure loss after filling the catalyst can be calculated by subtracting the pressure loss of the blank from this pressure loss.
かくして、複数の反応管を有し、少なくとも1つの反応管が温度計測装置を備える固定床多管式反応器への触媒の充填方法において、各反応管における圧力損失のばらつきを良好に抑制すると同時に、作業上の負担を抑え、効率的に触媒を充填することができる。 Thus, in the method of filling a catalyst into a fixed-bed multitubular reactor having a plurality of reaction tubes and at least one reaction tube having a temperature measuring device, it is possible to satisfactorily suppress variation in pressure loss in each reaction tube. The burden on the work can be suppressed and the catalyst can be efficiently filled.
以下に本発明の実施例を示すが、本発明はこれによって限定されるものではない。 Examples of the present invention are shown below, but the present invention is not limited thereto.
(触媒充填後の反応管の圧力損失測定)
まず、触媒充填前の反応管に15NL/分の空気を流し、デジタル式差圧計〔株式会社テストー社製のtesto506〕を用いて大気圧との差圧を測定し、これをブランク値とした。続いて、触媒充填後の反応管に、先ほどと同様、15NL/分の空気を流し、上記デジタル式差圧計を用いて大気圧との差圧を測定し、この値とブランク値との差分を、触媒充填後の反応管の圧力損失とした。
(Measurement of pressure loss in reaction tube after catalyst filling)
First, air of 15 NL / min was flowed into the reaction tube before the catalyst was charged, and the differential pressure from the atmospheric pressure was measured using a digital differential pressure gauge [testo 506 manufactured by Testo Co., Ltd.], and this was used as a blank value. Subsequently, 15 NL / min of air was allowed to flow through the reaction tube after filling the catalyst, and the differential pressure from the atmospheric pressure was measured using the digital differential pressure gauge, and the difference between this value and the blank value was calculated. The pressure loss of the reaction tube after filling the catalyst was taken.
(触媒の製造)
触媒として、特開2004−188231号公報に記載の方法に基づいて、リン、モリブデン及びバナジウムを含むケギン型へテロポリ酸の酸性塩の触媒成型体を製造した。粒径6mm、長さ6mmの円柱状の触媒成型体、および粒径6mm、長さ5mmの円柱状の触媒成型体を製造した。この際、粒径が同一である触媒成型体を製造したため、成型装置の金型(ダイス)は同じものを使用した。
(Manufacture of catalyst)
Based on the method described in JP-A No. 2004-188231, a catalyst molded body of an acid salt of Keggin type heteropolyacid containing phosphorus, molybdenum and vanadium was produced as a catalyst. A cylindrical catalyst molded body having a particle diameter of 6 mm and a length of 6 mm and a cylindrical catalyst molded body having a particle diameter of 6 mm and a length of 5 mm were produced. At this time, since a catalyst molded body having the same particle diameter was produced, the same mold (die) for the molding apparatus was used.
実施例1
鉛直方向に配置されている反応管(内径25mm、長さ4430mm)に、上記の円柱状の触媒成型体(粒径6mm、長さ6mm)を、13.3g/秒の充填速度で充填した。
充填後の反応管において、充填長は3700mmであった。圧力損失を測定したところ、494mmH2Oであった。
Example 1
A reaction tube (inner diameter: 25 mm, length: 4430 mm) arranged in the vertical direction was filled with the above-mentioned cylindrical catalyst molded body (particle size: 6 mm, length: 6 mm) at a filling rate of 13.3 g / second.
In the reaction tube after filling, the filling length was 3700 mm. The measured pressure loss was 494mmH 2 O.
次に、鉛直方向に配置されている反応管(内径25mm、長さ4430mm)中に、外径4mm、内径3mmの温度計測装置保護管を配置した。この反応管に、上記の円柱状の触媒成型体(粒径6mm、長さ5mm)を、0.44g/秒の充填速度で充填した。
充填後の反応管において、充填長は3750mmであった。圧力損失を測定したところ、492mmH2Oであった。
Next, a temperature measurement device protective tube having an outer diameter of 4 mm and an inner diameter of 3 mm was placed in a reaction tube (inner diameter: 25 mm, length: 4430 mm) arranged in the vertical direction. This reaction tube was filled with the above-mentioned cylindrical catalyst molded body (particle diameter 6 mm, length 5 mm) at a filling rate of 0.44 g / second.
In the reaction tube after filling, the filling length was 3750 mm. When the pressure loss was measured, it was 492 mmH 2 O.
比較例1
鉛直方向に配置されている反応管(内径25mm、長さ4430mm)中に、外径4mm、内径3mmの温度計測装置保護管を配置した。この反応管に、上記の円柱状の触媒成型体(粒径6mm、長さ6mm)を、0.44g/秒の充填速度で充填した。
充填後の反応管において、充填長は3750mmであった。圧力損失を測定したところ、403mmH2Oであった。
Comparative Example 1
A temperature measuring device protective tube having an outer diameter of 4 mm and an inner diameter of 3 mm was arranged in a reaction tube (inner diameter: 25 mm, length: 4430 mm) arranged in the vertical direction. This reaction tube was filled with the above-mentioned cylindrical catalyst molded body (particle diameter 6 mm, length 6 mm) at a filling rate of 0.44 g / second.
In the reaction tube after filling, the filling length was 3750 mm. When the pressure loss was measured, it was 403 mmH 2 O.
以上の結果より、本発明においては、成型装置の金型(ダイス)を交換することなく、複数の触媒成型体を製造された触媒成型体を用いることによって、温度計測装置を備える反応管と温度計測装置を備えない反応管とにおいて圧力損失のばらつきを良好に抑制することができることが明らかである。 From the above results, in the present invention, the reaction tube provided with the temperature measuring device and the temperature can be obtained by using the catalyst molded body in which a plurality of catalyst molded bodies are manufactured without replacing the mold (die) of the molding apparatus. It is clear that the pressure loss variation can be satisfactorily suppressed in the reaction tube not equipped with the measuring device.
Claims (3)
触媒が、円柱状、楕円柱状または多角柱状の形状を有し、
温度計測装置を備える反応管へ充填される触媒の少なくとも一部は、温度計測装置を備えない反応管に充填される触媒と実質的に同一の粒径を有し、かつ温度計測装置を備えない反応管に充填される触媒より短い長さを有し、ここで、温度計測装置を備えない反応管へ充填される触媒の長さと、温度計測装置を備える反応管へ充填される触媒の長さとの比率が1:0.67〜1:0.95である、方法。 A method for charging a catalyst into a fixed bed multi-tube reactor having a plurality of reaction tubes, at least one of which is provided with a temperature measuring device,
The catalyst has a cylindrical shape, an elliptical columnar shape or a polygonal columnar shape,
At least a part of the catalyst filled in the reaction tube provided with the temperature measuring device has substantially the same particle size as the catalyst filled in the reaction tube not provided with the temperature measuring device, and does not include the temperature measuring device. shorter than catalyst packed in a reaction tube length and chromatic, wherein the length of the catalyst packed into the reaction tube without the temperature measuring device, the length of the catalyst packed into the reaction tube with the temperature measuring device A ratio of 1: 0.67 to 1: 0.95 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014257971A JP6422764B2 (en) | 2014-12-19 | 2014-12-19 | Catalyst filling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014257971A JP6422764B2 (en) | 2014-12-19 | 2014-12-19 | Catalyst filling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016117014A JP2016117014A (en) | 2016-06-30 |
JP6422764B2 true JP6422764B2 (en) | 2018-11-14 |
Family
ID=56242570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014257971A Active JP6422764B2 (en) | 2014-12-19 | 2014-12-19 | Catalyst filling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6422764B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107875979B (en) * | 2016-09-29 | 2021-02-09 | 中国石油化工股份有限公司 | Grading filling method and application of fixed bed hydrogenation catalyst |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56141842A (en) * | 1980-04-07 | 1981-11-05 | Kanegafuchi Chem Ind Co Ltd | Catalyst formed in novel cylindrical shape |
JPS6384638A (en) * | 1986-09-26 | 1988-04-15 | Sumitomo Chem Co Ltd | Catalyst carrier and catalyst for oxychlorination |
JPH06198185A (en) * | 1992-12-30 | 1994-07-19 | Sekiyu Sangyo Kasseika Center | Production of hydrodesulfurization catalyst |
US5837128A (en) * | 1996-01-16 | 1998-11-17 | Amoco Corporation | Method for grading cylindrical catalyst particles in a bed to reduce pressure drop |
DE19717165A1 (en) * | 1997-04-23 | 1998-10-29 | Basf Ag | Device and method for temperature measurement in tubular reactors |
DE69918672T2 (en) * | 1999-05-21 | 2005-07-21 | Evc Technology Ag | Catalyst and oxychlorination process using the same |
JP4092090B2 (en) * | 2001-06-26 | 2008-05-28 | 株式会社日本触媒 | Solid particle packed reactor and catalytic gas phase oxidation method using the reactor |
-
2014
- 2014-12-19 JP JP2014257971A patent/JP6422764B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016117014A (en) | 2016-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4838585B2 (en) | Fixed-bed multitubular reactor | |
JP6527499B2 (en) | Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid | |
WO2009147965A1 (en) | Catalyst and method of producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP6199972B2 (en) | Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid | |
RU2621715C2 (en) | Method of obtaining an unsaturated aldehyde and/or unsaturated carboxylic acid | |
JP2003340267A (en) | Method for packing catalyst and multitubular heat exchange type reactor | |
JP6422764B2 (en) | Catalyst filling method | |
JP4582039B2 (en) | How to install a temperature measuring device or its protective tube | |
JP2006142288A (en) | Fixed bed multitubular reactor | |
JP2010132584A (en) | Method for operating vapor-phase oxidation reaction by using multitubular heat exchanger-type reactor | |
CN105705229A (en) | Packing for reaction tube, reaction tube, and reaction method using same | |
JP5618800B2 (en) | FIXED BED MULTITUBE REACTOR AND METHOD FOR PRODUCING UNSATURATED ALDEHYDE AND / OR UNSATURATED CARBOXYLIC ACID USING THE FIXED BED MULTITUBE REACTOR | |
JP5326218B2 (en) | Catalyst filling method | |
JP5500775B2 (en) | Fixed bed reactor | |
JP4194359B2 (en) | Gas phase catalytic oxidation method | |
JP5479803B2 (en) | Method for producing (meth) acrolein or (meth) acrylic acid | |
JP2011183313A (en) | Method for starting up vapor phase catalytic oxidation reaction and method for manufacturing (meta)acrylic acid using the same | |
JP2009082865A (en) | Method for packing catalyst for unsaturated aldehyde production or catalyst for unsaturated carboxylic acid production | |
WO2022250030A1 (en) | Method of producing (meth)acrolein and/or (meth)acrylic acid | |
JP2019166458A (en) | Vertical multi tubular reactor | |
JP2010235504A (en) | Method for producing acrolein and acrylic acid | |
JP5902374B2 (en) | Acrylic acid production method | |
JP2005162744A (en) | Method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP2016106082A (en) | Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid | |
JP2011245394A (en) | Fixed bed multitubular reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170419 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170605 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180320 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6422764 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |