JP4549290B2 - Multi-tube reactor - Google Patents
Multi-tube reactor Download PDFInfo
- Publication number
- JP4549290B2 JP4549290B2 JP2005362982A JP2005362982A JP4549290B2 JP 4549290 B2 JP4549290 B2 JP 4549290B2 JP 2005362982 A JP2005362982 A JP 2005362982A JP 2005362982 A JP2005362982 A JP 2005362982A JP 4549290 B2 JP4549290 B2 JP 4549290B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction tube
- reaction
- tube
- temperature
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Catalysts (AREA)
Description
本発明は、発熱反応の接触気相反応による工業ガスの製造における原料の転化率を向上させ、触媒寿命を維持するとともに、反応管の腐食または破損の防止が可能で、特に塩酸酸化反応等に対して好適に用いられる多管式反応装置に関する。 The present invention improves the conversion rate of raw materials in the production of industrial gas by catalytic gas phase reaction of exothermic reaction, maintains the catalyst life and prevents the corrosion or breakage of the reaction tube, especially for hydrochloric acid oxidation reaction etc. The present invention relates to a multitubular reactor that is preferably used.
従来、接触気相反応によって生成する塩素ガス、アクロレイン等の工業用ガスを製造する際には、発熱反応により生じた熱を効率的に除去するために多管式反応装置が一般的に用いられている。多管式反応装置は、触媒を充填した複数の反応管を反応器シェル内に備え、該反応器シェル内に熱媒を循環させることによって反応管を冷却し、反応熱を除去する。 Conventionally, when manufacturing industrial gases such as chlorine gas and acrolein produced by a catalytic gas phase reaction, a multi-tubular reactor is generally used to efficiently remove heat generated by an exothermic reaction. ing. The multi-tubular reactor includes a plurality of reaction tubes filled with a catalyst in a reactor shell, and circulates a heat medium in the reactor shell to cool the reaction tube and remove reaction heat.
多管式反応装置を用いた発熱反応においては、反応熱の除去効率が悪くなる箇所や触媒濃度が高く反応速度が大きい箇所等に、いわゆるホットスポットが生じる場合がある。ホットスポットにおいては過度の温度上昇のために触媒の劣化や反応生成物の純度低下が起こり易い傾向がある。 In an exothermic reaction using a multitubular reactor, so-called hot spots may occur in places where the removal efficiency of reaction heat is poor or where the catalyst concentration is high and the reaction rate is high. In the hot spot, the catalyst tends to deteriorate and the purity of the reaction product tends to decrease due to an excessive temperature rise.
多管式反応装置においては、反応管内の温度を制御するため、複数の反応管のうち一部の反応管に熱電対や抵抗温度計等の温度計測装置を設置することが一般に行なわれているが、反応管内で該温度計測装置が一定体積を占有するため、温度計測装置が設置されている反応管と設置されていない反応管とで反応管内の温度環境に差が生じる。 In a multi-tubular reactor, in order to control the temperature in the reaction tube, it is generally performed to install a temperature measuring device such as a thermocouple or a resistance thermometer in some of the reaction tubes. However, since the temperature measuring device occupies a certain volume in the reaction tube, a difference occurs in the temperature environment in the reaction tube between the reaction tube in which the temperature measuring device is installed and the reaction tube in which the temperature measuring device is not installed.
たとえば特許文献1には、温度計測装置が設置された反応管と設置されていない反応管との温度挙動を一致させる方法として、固体粒子を充填した少なくとも2つの同型の管形反応器からなり、少なくとも1つの管形反応器が温度測定ユニットを備えている反応装置において、それぞれの管形反応器の固体粒子質量と自由横断面積との比、および自由横断面に対し比例的に横方向で導入される不活性ガスにより測定される圧力降下の両者がそれぞれの管形反応器全体にわたり同一になるように管形反応器が設計され、特に温度測定ユニットを備えた反応器に微細フラクションを導入することを特徴とする反応装置が提案されている。
For example,
また、特許文献2には、少なくとも1つの反応管内に計測装置を設置してなる多管式反応器であって、計測装置を設置してなる反応管と計測装置を設置していない反応管とに実質的に同一の固体粒子が充填され、かつ、各反応管内の固体粒子層長およびガス供給時の固体粒子層圧力損失が実質的に同一になるように設定されてなることを特徴とする多管式反応器が提案されている。
特許文献1および2の方法は、温度計測装置を設置した反応管と設置していない反応管との圧力損失を一致させることを特徴とする。これにより、温度計測装置が設置された反応器と設置されていない反応器との温度分布がほぼ一致し、温度計測装置が設置された反応器において反応管内の触媒層の代表的温度を測定することによって、過度なホットスポットの生成を抑制できるとしている。
The methods of
しかし、多管式反応装置における反応管の数は通常3000〜30000本程度と多数であり、反応管の大多数を占める温度計測装置の設置されない反応管の圧力損失は、±15%程度のばらつき(変動係数:CV%)を有するのが通常である。よって、温度計測装置が設置された反応管と設置されない反応管との圧力損失を一致させようとしても、温度計測装置の設置されない反応管のうち、圧力損失の平均値から外れた大多数の反応管においては、温度計測装置の設置された反応管と圧力損失が一致せず、すべての反応管の圧力損失を一致させることは困難である。よって、温度計測装置の設置された反応管よりも温度が上昇した反応管においては過度のホットスポットが生成する場合があるという問題がある。
本発明は上記の課題を解決し、発熱反応における過度なホットスポットの生成を抑制して触媒の寿命を維持するとともに、高温による反応管の腐食または破損を防止することが可能で、特に塩酸酸化反応において好適に用いられる接触気相反応用の多管式反応装置を提供することを目的とする。 The present invention solves the above-mentioned problems, suppresses the generation of excessive hot spots in the exothermic reaction and maintains the life of the catalyst, and prevents corrosion or breakage of the reaction tube due to high temperature. It is an object of the present invention to provide a multitubular reactor for catalytic gas phase reaction that is suitably used in the reaction.
本発明は、複数の反応管が設置されてなる多管式反応装置であって、該反応管は、温度計測装置が設置された少なくとも1の反応管Aと温度計測装置が設置されていない複数の反応管Bとからなり、該反応管Aおよび該反応管Bには固体粒子が充填され、以下の式、
ΔP=(反応管上端部の圧力)−(反応管下端部の圧力)
で表される反応管の上端部と下端部との圧力の差として定義される圧力損失ΔPにおいて、反応管Aの圧力損失ΔPの平均値であるΔP(A)と、反応管Bの圧力損失ΔPの平均値であるΔP(B)とが、以下の式、
1.10≦ΔP(A)/ΔP(B)≦1.30
を満たす、多管式反応装置に関する。
The present invention is a multi-tube reaction apparatus in which a plurality of reaction tubes are installed, and the reaction tubes are at least one reaction tube A in which a temperature measurement device is installed and a plurality of devices in which a temperature measurement device is not installed. The reaction tube A and the reaction tube B are filled with solid particles, and the following formula:
ΔP = (pressure at the upper end of the reaction tube) − (pressure at the lower end of the reaction tube)
In the pressure loss ΔP defined as the difference in pressure between the upper end and the lower end of the reaction tube, ΔP (A), which is the average value of the pressure loss ΔP in the reaction tube A, and the pressure loss in the reaction tube B ΔP (B), which is an average value of ΔP, is expressed by the following equation:
1.10 ≦ ΔP (A) / ΔP (B) ≦ 1.30
The present invention relates to a multitubular reactor that satisfies the above requirements.
本発明はまた、上記のΔP(A)およびΔP(B)が、以下の式、
ΔP(A)≧ΔP(B)+3σB
(ただし、σBは反応管Bの圧力損失ΔPの標準偏差である)
を満たす多管式反応装置に関する。
The present invention also provides that the above ΔP (A) and ΔP (B) are represented by the following formulas:
ΔP (A) ≧ ΔP (B) + 3σ B
(Where σ B is the standard deviation of the pressure loss ΔP in the reaction tube B)
The present invention relates to a multitubular reactor that satisfies the above requirements.
本発明はまた、塩酸酸化反応に用いられる上記の多管式反応装置に関する。
本発明はまた、上記の固体粒子が触媒粒子および不活性粒子からなる多管式反応装置に関する。
The present invention also relates to the above multi-tubular reactor used for hydrochloric acid oxidation reaction.
The present invention also relates to a multitubular reactor in which the solid particles are composed of catalyst particles and inert particles.
本発明はまた、上記の反応管Aと上記の反応管Bとに同一の固体粒子が充填され、かつ、反応管Aにおける固体粒子の充填密度が、反応管Bにおける固体粒子の充填密度よりも大きくされてなる多管式反応装置に関する。 In the present invention, the reaction tube A and the reaction tube B are filled with the same solid particles, and the packing density of the solid particles in the reaction tube A is higher than the packing density of the solid particles in the reaction tube B. The present invention relates to a large tube reactor.
本発明の多管式反応装置によれば、反応管の実温が管理温度よりも低温となるように温度管理を行なうことにより過度なホットスポットの生成を確実に抑制し、触媒の寿命を維持するとともに、高温による反応管の腐食または破損を防止することが可能である。 According to the multitubular reactor of the present invention, by controlling the temperature so that the actual temperature of the reaction tube is lower than the control temperature, the generation of excessive hot spots is reliably suppressed and the life of the catalyst is maintained. In addition, it is possible to prevent corrosion or breakage of the reaction tube due to high temperature.
本発明の多管式反応装置は、複数の反応管のうち少なくとも1の反応管に温度計測装置が設置されるものであり、複数の反応管には固体粒子が充填されている。本発明においては、該固体粒子の種類および充填状態により反応管の圧力損失が精密に調整され得る。図1は、本発明の多管式反応装置の一例を示す断面図である。多管式反応装置1は、上部管板101、下部管板102、熱媒導入部103、熱媒排出部104、邪魔板105、温度計測装置106が設置された反応管A107および温度計測装置が設置されていない反応管B108からなる複数の反応管、を少なくとも備える。熱媒は、たとえば軸流ポンプ、遠心ポンプ等のポンプ(図示せず)等により分割管を介して熱媒導入部103から反応器シェル109の内部に導入され、矢印の方向に流れて熱媒排出部104から排出されることができる。
In the multitubular reactor of the present invention, a temperature measuring device is installed in at least one of the plurality of reaction tubes, and the plurality of reaction tubes are filled with solid particles. In the present invention, the pressure loss of the reaction tube can be precisely adjusted according to the type and packing state of the solid particles. FIG. 1 is a cross-sectional view showing an example of a multitubular reactor according to the present invention. The
なお図1の多管式反応装置においては、熱媒流れがアップフローとなる場合について示しているが、本発明はこれに限定されずアップフロー、ダウンフローのいずれが採用されても良い。また反応管Aおよび反応管Bに供給される接触気相反応の原料もアップフロー、ダウンフローのいずれで供給されても良い。すなわち原料と熱媒の流路は並流とされても向流とされても良く、目的に応じて適宜選択すれば良い。 In the multitubular reactor shown in FIG. 1, the case where the heating medium flow is an upflow is shown, but the present invention is not limited to this, and either an upflow or a downflow may be adopted. Further, the raw material for the catalytic gas phase reaction supplied to the reaction tube A and the reaction tube B may be supplied either by upflow or downflow. That is, the flow paths of the raw material and the heat medium may be cocurrent or countercurrent, and may be appropriately selected depending on the purpose.
なお本発明の接触気相反応用多管式反応装置においては、熱媒排出部104から排出された熱媒が冷却された後に再び熱媒導入部103から反応器シェル内に供給されるよう循環機構を設けることが好ましい。
In the multi-tubular reactor for catalytic gas phase reaction of the present invention, the circulation mechanism is arranged so that the heat medium discharged from the heat
本発明は、発熱反応による接触気相反応に対して特に適用され、たとえば塩化水素ガスと酸素ガスとを原料として塩素ガスを生成させる接触気相酸化反応(塩酸酸化反応)や、プロピレンまたはイソブチレンと酸素とを原料として(メタ)アクロレイン、さらには(メタ)アクリル酸を生成させる接触気相酸化反応等において採用され得るが、特に塩素ガスの製造における塩酸酸化反応に対して好ましく用いられることができる。また、本発明の多管式反応装置は、反応器のサイズが大きく熱媒流れの不均一等による反応装置内の温度不均一が生じやすい系に対して有効に採用され得る。 The present invention is particularly applied to a catalytic gas phase reaction by exothermic reaction, for example, a catalytic gas phase oxidation reaction (hydrochloric acid oxidation reaction) in which chlorine gas is generated using hydrogen chloride gas and oxygen gas as raw materials, propylene or isobutylene and Although it can be employed in a catalytic gas phase oxidation reaction for producing (meth) acrolein and further (meth) acrylic acid from oxygen as a raw material, it can be preferably used particularly for hydrochloric acid oxidation reaction in the production of chlorine gas. . In addition, the multi-tubular reactor of the present invention can be effectively employed for a system in which the reactor size is large and the temperature in the reactor is likely to be non-uniform due to non-uniform heat medium flow.
本発明の多管式反応装置の反応管は、同一流速の不活性ガスまたは空気により測定され、以下の式、
ΔP=(反応管上端部の圧力)−(反応管下端部の圧力)
で表される反応管の上端部と下端部との圧力の差として定義される圧力損失ΔPにおいて、温度計測装置が設置された反応管A(以下単に、反応管Aとも称する)の圧力損失ΔPの平均値であるΔP(A)(以下単にΔP(A)とも称する)と、温度計測装置が設置されていない反応管B(以下単に反応管Bとも称する)の圧力損失ΔPの平均値であるΔP(B)(以下単にΔP(B)とも称する)とが、以下の式、
1.10≦ΔP(A)/ΔP(B)≦1.30
を満たすように設計される。
The reaction tube of the multi-tube reactor of the present invention is measured by an inert gas or air having the same flow rate, and the following formula:
ΔP = (pressure at the upper end of the reaction tube) − (pressure at the lower end of the reaction tube)
In the pressure loss ΔP defined as the difference in pressure between the upper end portion and the lower end portion of the reaction tube, the pressure loss ΔP of the reaction tube A (hereinafter also simply referred to as the reaction tube A) in which the temperature measuring device is installed. ΔP (A) (hereinafter also simply referred to as ΔP (A)) and an average value of the pressure loss ΔP of the reaction tube B (hereinafter also simply referred to as reaction tube B) in which no temperature measuring device is installed. ΔP (B) (hereinafter also simply referred to as ΔP (B)) is expressed by the following equation:
1.10 ≦ ΔP (A) / ΔP (B) ≦ 1.30
Designed to meet.
ΔP(A)がΔP(B)よりも高くなるように設定される場合、導入された原料ガスの反応器内での平均的な滞留時間が反応管Aにおいて反応管Bよりも長くなるため、発熱反応においては反応管Aの内温が反応管Bより高くなる。本発明においては、上記のΔP(A)/ΔP(B)が1.10以上となるように設計される。この場合、統計学上十分高い確率で反応管Aの内温が反応管Bの内温より高く維持され、過度のホットスポットの生成による反応の暴走が防止されるため、転化率向上および触媒の劣化防止という効果を得ることができる。また、上記のΔP(A)/ΔP(B)が1.30以下とされることにより、反応管Aの温度計測装置が示す温度と反応管Bの内温との差が大きくなり過ぎず、反応管Aおよび反応管Bにおける反応速度が十分均一になるとともに、反応管Bを十分高温に維持できるために接触気相反応が良好に進行し、反応効率が良好となる。上記のΔP(A)/ΔP(B)は、さらに1.12以上、さらに1.15以上とされることが好ましく、また、さらに1.25以下、さらに1.20以下とされることが好ましい。なお、上記の圧力損失ΔP(A)およびΔP(B)は、反応管Aおよび反応管Bに同一流速の不活性ガスまたは空気を供給することにより測定される値である。 When ΔP (A) is set to be higher than ΔP (B), the average residence time of the introduced raw material gas in the reactor becomes longer in the reaction tube A than in the reaction tube B. In the exothermic reaction, the internal temperature of the reaction tube A is higher than that of the reaction tube B. In the present invention, the above-described ΔP (A) / ΔP (B) is designed to be 1.10 or more. In this case, the internal temperature of the reaction tube A is maintained higher than the internal temperature of the reaction tube B with a sufficiently high probability in statistics, and the runaway of the reaction due to the generation of excessive hot spots is prevented. The effect of preventing deterioration can be obtained. Further, by setting the above ΔP (A) / ΔP (B) to 1.30 or less, the difference between the temperature indicated by the temperature measuring device of the reaction tube A and the internal temperature of the reaction tube B does not become too large. The reaction rates in the reaction tube A and the reaction tube B are sufficiently uniform, and the reaction tube B can be maintained at a sufficiently high temperature, so that the catalytic gas phase reaction proceeds well and the reaction efficiency is improved. ΔP (A) / ΔP (B) is preferably 1.12 or more, more preferably 1.15 or more, more preferably 1.25 or less, and further preferably 1.20 or less. . The pressure losses ΔP (A) and ΔP (B) are values measured by supplying an inert gas or air at the same flow rate to the reaction tube A and the reaction tube B.
図2は、多管式反応装置の反応管における圧力損失ΔPのばらつきの例を示す図である。多管式反応装置においては、通常3000〜30000本程度という多数の反応管が設置されるため、反応管の圧力損失ΔPは、たとえば図2に示すような正規分布に近い統計的なばらつきを有する。本発明の多管式反応装置においては、ΔP(A)/ΔP(B)が1.10〜1.30の範囲内となるように設計されることにより、大多数の反応管Bの圧力損失値がΔP(A)よりも低い値となる。よって反応管Aのガス流量は、反応管ごとのばらつきを考慮しても、統計学上十分信頼できる確率で反応管Bのガス流量よりも低く維持される。ここで、発熱反応においては、反応管内のガス流量が少ない程、反応管内のガスの滞留時間が長くなり、反応管内での発熱反応がより進行するために反応管内の温度が高くなる。 FIG. 2 is a diagram showing an example of variations in pressure loss ΔP in a reaction tube of a multi-tube reactor. In a multi-tubular reactor, since a large number of reaction tubes of about 3000 to 30000 are usually installed, the pressure loss ΔP of the reaction tube has a statistical variation close to a normal distribution as shown in FIG. 2, for example. . In the multitubular reactor of the present invention, the pressure loss of the majority of reaction tubes B is designed by making ΔP (A) / ΔP (B) within the range of 1.10 to 1.30. The value is lower than ΔP (A). Therefore, the gas flow rate in the reaction tube A is maintained lower than the gas flow rate in the reaction tube B with a probability that can be statistically sufficiently reliable even when variations among the reaction tubes are taken into consideration. Here, in the exothermic reaction, the smaller the gas flow rate in the reaction tube, the longer the residence time of the gas in the reaction tube, and the more the exothermic reaction in the reaction tube proceeds, the higher the temperature in the reaction tube.
すなわち、本発明の多管式反応装置においては、温度計測装置の設置された反応管Aの温度を一定範囲内に設定するとともに、反応管Aおよび反応管Bの圧力損失の関係を調整することによって、多管式反応装置のほぼ全ての反応管の温度を所望の範囲内に制御することができ、反応管の内温の過度な上昇による発熱反応の暴走が確実性良く防止され得る。 That is, in the multitubular reactor of the present invention, the temperature of the reaction tube A in which the temperature measuring device is installed is set within a certain range, and the relationship between the pressure loss of the reaction tube A and the reaction tube B is adjusted. Thus, the temperatures of almost all the reaction tubes of the multi-tube reactor can be controlled within a desired range, and the runaway of the exothermic reaction due to the excessive increase in the internal temperature of the reaction tube can be reliably prevented.
特に、ΔP(A)およびΔP(B)が、以下の式、
ΔP(A)≧ΔP(B)+3σB
(ただし、σBは反応管Bの圧力損失ΔPの標準偏差である)
を満たす場合、信頼度約96.7%で各々の反応管BのΔPはΔP(A)よりも小さいことから、反応管Bの内温が統計学上十分信頼できる確率で反応管Aの内温よりも低く維持される点で好ましい。
In particular, ΔP (A) and ΔP (B) are
ΔP (A) ≧ ΔP (B) + 3σ B
(Where σ B is the standard deviation of the pressure loss ΔP in the reaction tube B)
In the case of satisfying the condition, ΔP of each reaction tube B is smaller than ΔP (A) with a reliability of about 96.7%, and therefore the probability that the internal temperature of the reaction tube B is statistically reliable is statistically reliable. This is preferable in that it is kept lower than the temperature.
本発明において充填される固体粒子は、典型的には触媒粒子を含む。触媒粒子としては、たとえば塩酸酸化反応の触媒であるルテニウムおよび/またはルテニウム化合物を含む触媒の粒子等が好ましく用いられる。ルテニウムおよび/またはルテニウム化合物を用いる場合、触媒成分の揮発や飛散による配管等の閉塞トラブルを防止するとともに、揮発または飛散した触媒成分の処理工程が不要となる。さらに、化学平衡の観点でもより有利な温度で塩素を製造できるため、乾燥工程、精製工程、吸収工程等の後工程を簡略化し、設備コスト及び運転コストを低く抑制することができる。特に、酸化ルテニウムを含む触媒を用いることが好ましい。酸化ルテニウムを含む触媒を用いた場合、塩化水素の転化率が著しく向上するという利点を有する。触媒中の酸化ルテニウムの含有量は、触媒活性と触媒価格とのバランスの点から、1〜20質量%の範囲内で好ましく設定されることができる。触媒は、たとえば、二酸化シリコン、グラファイト、ルチル型またはアナターゼ型の二酸化チタン、二酸化ジルコニウム、酸化アルミニウム等の担体に担持させて用いることができる。 The solid particles filled in the present invention typically include catalyst particles. As the catalyst particles, for example, catalyst particles containing ruthenium and / or ruthenium compounds which are catalysts for hydrochloric acid oxidation are preferably used. When ruthenium and / or ruthenium compounds are used, troubles of blockage of piping due to volatilization or scattering of the catalyst component are prevented, and a treatment process for the volatilized or scattered catalyst component becomes unnecessary. Furthermore, since chlorine can be produced at a more advantageous temperature from the viewpoint of chemical equilibrium, subsequent processes such as a drying process, a purification process, and an absorption process can be simplified, and facility costs and operation costs can be suppressed low. In particular, it is preferable to use a catalyst containing ruthenium oxide. When a catalyst containing ruthenium oxide is used, there is an advantage that the conversion rate of hydrogen chloride is remarkably improved. The content of ruthenium oxide in the catalyst can be preferably set within the range of 1 to 20% by mass from the viewpoint of the balance between the catalyst activity and the catalyst price. The catalyst can be used by being supported on a carrier such as silicon dioxide, graphite, rutile-type or anatase-type titanium dioxide, zirconium dioxide, and aluminum oxide.
また、本発明において充填される固体粒子は、触媒粒子と、接触気相反応に実質的に作用しない不活性粒子とからなることが好ましく、この場合、反応速度と反応管の圧力損失とを容易に調整できる。不活性粒子としては、アルミナ質耐火物、アルミナ・カーボン質耐火物、アルミナ・グラファイト質耐火物、アルミナ・シリカ質耐火物、アルミナ・シリコンカーバイド・カーボン質耐火物、アルミナ・スピネル質耐火物、ステンレススチール、鉄、炭化珪素、陶磁器、その他各種のセラミックス等が例示され、特に好ましい不活性粒子としては、α−アルミナからなる成形体等が挙げられる。 Further, the solid particles filled in the present invention are preferably composed of catalyst particles and inert particles that do not substantially act on the catalytic gas phase reaction. In this case, the reaction rate and the pressure loss of the reaction tube can be easily increased. Can be adjusted. Inert particles include alumina refractories, alumina / carbon refractories, alumina / graphite refractories, alumina / silica refractories, alumina / silicon carbide / carbon refractories, alumina / spinel refractories, stainless steel Examples include steel, iron, silicon carbide, ceramics, and other various ceramics, and particularly preferable inert particles include a molded body made of α-alumina.
本発明においては、ΔP(A)/ΔP(B)の値が1.10〜1.30の範囲内となるようにΔP(A)およびΔP(B)を所望の範囲内に調整することが必要である。具体的には、反応管Aおよび反応管Bに充填する固体粒子の種類、形状、粒径、充填量、充填速度等を制御する方法が採用でき、反応管Aおよび反応管Bに充填される固体粒子の種類は同一とされても異種とされても良い。たとえば固体粒子の粒径を小さくしたり、充填量を多くしたりすることによって該固体粒子の充填密度が高くなる傾向にあり、この場合反応管の圧力損失は大きくなる。また、充填速度を遅くすると固体粒子の充填密度が高くなる傾向にあり、この場合も反応管の圧力損失が大きくなる。より具体的な条件は、反応管のサイズ、使用する触媒粒子の種類、形状、設定される反応温度等に応じて最適化されることが好ましい。 In the present invention, ΔP (A) and ΔP (B) may be adjusted within a desired range so that the value of ΔP (A) / ΔP (B) is within the range of 1.10 to 1.30. is necessary. Specifically, a method of controlling the type, shape, particle size, filling amount, filling speed, etc. of the solid particles filled in the reaction tube A and the reaction tube B can be adopted, and the reaction tube A and the reaction tube B are filled. The kind of solid particles may be the same or different. For example, decreasing the particle size of the solid particles or increasing the packing amount tends to increase the packing density of the solid particles. In this case, the pressure loss of the reaction tube increases. Moreover, if the packing speed is slowed, the packing density of the solid particles tends to increase, and in this case also, the pressure loss of the reaction tube increases. More specific conditions are preferably optimized according to the size of the reaction tube, the type and shape of the catalyst particles used, the reaction temperature to be set, and the like.
たとえば、反応管Aと反応管Bとに同一の固体粒子を充填し、かつ、反応管Aにおける固体粒子の充填密度を反応管Bにおける固体粒子の充填密度よりも大きくする場合、反応管Aの圧力損失を反応管Bの圧力損失よりも高くすることが簡便に行なえる点で好ましい。 For example, when the reaction tube A and the reaction tube B are filled with the same solid particles, and the packing density of the solid particles in the reaction tube A is larger than the packing density of the solid particles in the reaction tube B, It is preferable that the pressure loss is higher than the pressure loss of the reaction tube B because it can be easily performed.
ΔP(A)およびΔP(B)を調整するための固体粒子のより具体的な充填方法としては、反応管Bに対する固体粒子の充填速度を反応管Aに対する固体粒子の充填速度の1/2〜1/10の範囲内となるように設定して調整する方法、固体粒子として、触媒粒子と、該触媒粒子の1/2〜1/10の範囲内の粒径の不活性粒子とを充填することにより触媒粒子間に不活性粒子を充填して調整する方法、触媒粒子を充填した上にアルミナボール等からなる不活性粒子を充填して不活性粒子の層を反応管上部に形成し、かつ該不活性粒子の充填量を増減させることにより調整する方法等が好ましく例示できる。 As a more specific filling method of solid particles for adjusting ΔP (A) and ΔP (B), the solid particle filling rate in the reaction tube B is set to 1/2 to the solid particle filling rate in the reaction tube A. Method of setting and adjusting so as to be within a range of 1/10, as solid particles, packed with catalyst particles and inert particles having a particle size within a range of 1/2 to 1/10 of the catalyst particles A method of adjusting by filling the catalyst particles with inert particles, filling the catalyst particles with inert particles made of alumina balls or the like to form a layer of inert particles at the top of the reaction tube, and A method of adjusting by increasing or decreasing the filling amount of the inert particles can be preferably exemplified.
本発明の多管式反応装置における反応管の好ましい材質としては、たとえば金属、ガラス、セラミック等が挙げられる。金属材料としては、Ni、SUS316L、SUS310、SUS304、ハステロイS、ハステロイCおよびインコネル等が挙げられるが、中でもNi、特に炭素含有量が0.02質量%以下のNiが好ましい。 Preferable materials for the reaction tube in the multitubular reaction apparatus of the present invention include, for example, metal, glass, ceramic and the like. Examples of the metal material include Ni, SUS316L, SUS310, SUS304, Hastelloy S, Hastelloy C, and Inconel. Among them, Ni, particularly Ni having a carbon content of 0.02% by mass or less is preferable.
本発明の多管式反応装置において使用される好ましい熱媒としては、接触気相反応の熱媒として一般的に用いられる熱媒が使用でき、たとえば溶融塩、有機熱媒または溶融金属等を挙げることができるが、熱安定性や取り扱いの容易さの点から溶融塩が好ましい。溶融塩の組成としては、硝酸カリウム50質量%と、亜硝酸ナトリウム50質量%との混合物、硝酸カリウム53質量%と亜硝酸ナトリウム40質量%と硝酸ナトリウム7質量%との混合物等を挙げることができる。 As a preferable heat medium used in the multitubular reactor of the present invention, a heat medium generally used as a heat medium for catalytic gas phase reaction can be used, and examples thereof include a molten salt, an organic heat medium, or a molten metal. However, a molten salt is preferable from the viewpoint of thermal stability and ease of handling. Examples of the composition of the molten salt include a mixture of 50% by mass of potassium nitrate and 50% by mass of sodium nitrite, a mixture of 53% by mass of potassium nitrate, 40% by mass of sodium nitrite, and 7% by mass of sodium nitrate.
本発明においては、反応管のサイズは特に限定されず、接触気相反応において一般的に使用される反応管を用いることができる。たとえば、内径10〜70mm、外径13〜80mm、管長1000〜10000mm程度のサイズを有する反応管は反応効率および除熱効率の点から好ましく採用され得る。 In the present invention, the size of the reaction tube is not particularly limited, and a reaction tube generally used in a catalytic gas phase reaction can be used. For example, a reaction tube having an inner diameter of 10 to 70 mm, an outer diameter of 13 to 80 mm, and a tube length of about 1000 to 10,000 mm can be preferably employed from the viewpoint of reaction efficiency and heat removal efficiency.
本発明の多管式反応装置における反応管のレイアウトは特に限定されないが、各反応管の中心の間隔が、反応管外径の1.1〜1.6倍の範囲内となるように配列されることが好ましく、さらに1.15〜1.4倍の範囲内とされることが好ましい。各反応管の中心の間隔が反応管外径の1.1倍以上であれば、熱媒の流路が十分確保されるために反応熱の除熱性が良好であり、1.6倍以下であれば、反応装置が大型化することによる製造コストの上昇が防止されるとともに、熱媒の線速低下および/または偏流による除熱性の低下も防止される。 The layout of the reaction tube in the multitubular reactor of the present invention is not particularly limited, but the reaction tube is arranged so that the interval between the centers of the reaction tubes is within a range of 1.1 to 1.6 times the outer diameter of the reaction tube. It is preferable to be within a range of 1.15 to 1.4 times. If the interval between the centers of each reaction tube is 1.1 times or more of the outer diameter of the reaction tube, the heat medium flow path is sufficiently secured, and the heat removal property of the reaction heat is good. If so, an increase in production cost due to an increase in the size of the reaction apparatus is prevented, and a decrease in the heat removal rate due to a decrease in the linear velocity and / or drift of the heat medium is also prevented.
本発明においては、触媒の種類および/または量を変えることにより該反応管の内部が複数のゾーンに分割されても良い。触媒が充填された反応管に原料を供給する際、反応管入口、すなわち原料供給口の近傍では反応速度が大きく、反応管入口からの距離が長くなるにつれて、原料濃度が低くなり反応速度が小さくなる傾向がある。このため、発熱反応においては特に反応管入口近傍における発熱量が過大となって過度のホットスポットが生成する場合がある。反応管が、触媒の種類および/または量を変えた複数のゾーンに分割されている場合、たとえば反応管入口近傍においては、触媒活性の低い触媒を充填したり触媒量を少なくすることによって暴走反応を防止し、反応管入口からの距離が長くなるにしたがって、触媒活性の高い触媒が充填されるか触媒量が多くなるように触媒を充填することができる。この場合、反応管内部における反応速度のばらつきを少なくし、過度なホットスポットの生成を抑制することができるとともに、発熱反応が均一に進行することによって原料の転化率を向上させることができる。また、反応器シェル側を分割し、それぞれの領域に独立して異なる温度の熱媒を循環させて温度コントロールを行なっても良い。 In the present invention, the inside of the reaction tube may be divided into a plurality of zones by changing the type and / or amount of the catalyst. When the raw material is supplied to the reaction tube filled with the catalyst, the reaction rate is large near the reaction tube inlet, that is, in the vicinity of the raw material supply port, and as the distance from the reaction tube inlet becomes longer, the raw material concentration decreases and the reaction rate decreases. Tend to be. For this reason, in the exothermic reaction, an excessive amount of heat spots may be generated due to excessive heat generation particularly near the reaction tube inlet. When the reaction tube is divided into multiple zones with different types and / or amounts of catalyst, for example, in the vicinity of the reaction tube inlet, a runaway reaction can be achieved by filling the catalyst with low catalytic activity or reducing the amount of catalyst. As the distance from the reaction tube inlet becomes longer, the catalyst can be filled so that a catalyst having a high catalytic activity is filled or the amount of the catalyst is increased. In this case, variation in reaction rate inside the reaction tube can be reduced, generation of excessive hot spots can be suppressed, and the conversion rate of the raw material can be improved by the uniform exothermic reaction. Alternatively, the reactor shell side may be divided, and the temperature control may be performed by circulating a heat medium having a different temperature independently in each region.
本発明の多管式反応装置が塩化水素ガスと酸素ガスとを原料とする塩酸酸化反応に用いられる場合、触媒を充填した反応管に、原料として塩化水素ガスおよび酸素ガスを導入し、接触気相反応によって塩素ガスを製造することができる。塩化水素ガスは、たとえば塩素化合物の熱分解反応や燃焼反応、有機化合物のホスゲン化反応または塩素化反応、焼却炉の燃焼等において発生する塩化水素含有ガスとして供給されることができる。このとき、塩化水素含有ガス中の塩化水素ガスの濃度は、製造効率の観点から、たとえば10体積%以上、さらに50体積%以上、さらに80体積%以上とされることができる。 When the multitubular reactor of the present invention is used in a hydrochloric acid oxidation reaction using hydrogen chloride gas and oxygen gas as raw materials, hydrogen chloride gas and oxygen gas are introduced as raw materials into a reaction tube filled with a catalyst, Chlorine gas can be produced by a phase reaction. The hydrogen chloride gas can be supplied, for example, as a hydrogen chloride-containing gas generated in a pyrolysis reaction or combustion reaction of a chlorine compound, a phosgenation reaction or chlorination reaction of an organic compound, combustion in an incinerator, or the like. At this time, the concentration of the hydrogen chloride gas in the hydrogen chloride-containing gas can be set to, for example, 10% by volume or more, further 50% by volume or more, and further 80% by volume or more from the viewpoint of production efficiency.
酸素ガスは、酸素ガスのみ単独で供給されても、たとえば空気等として供給されても良く、酸素含有ガスとして供給されれば良い。酸素含有ガス中の酸素の濃度は、製造効率の点から、たとえば80体積%以上、さらに90体積%以上とされることができる。酸素濃度が80体積%以上の酸素含有ガスは、たとえば空気の圧力スイング法や深冷分離等の通常の工業的な方法によって得ることができる。 The oxygen gas may be supplied alone, or may be supplied as air, for example, and may be supplied as an oxygen-containing gas. From the viewpoint of production efficiency, the concentration of oxygen in the oxygen-containing gas can be, for example, 80% by volume or more, and further 90% by volume or more. An oxygen-containing gas having an oxygen concentration of 80% by volume or more can be obtained by a normal industrial method such as an air pressure swing method or a cryogenic separation.
触媒の種類および/または量を変えた複数のゾーンを反応管に設ける場合、たとえば反応管の入口側に酸化ルテニウム含有量の少ない触媒を充填し、出口側に酸化ルテニウム含有量の多い触媒を充填する構成が好ましく採用され得る。この場合、暴走反応が抑制され、反応管内における反応速度分布が比較的均一とされることにより、過度なホットスポットの生成が抑制されるという利点を有する。 When multiple zones with different types and / or amounts of catalyst are provided in the reaction tube, for example, a catalyst with a low ruthenium oxide content is filled on the inlet side of the reaction tube, and a catalyst with a high ruthenium oxide content is filled on the outlet side. Such a configuration can be preferably adopted. In this case, the runaway reaction is suppressed, and the reaction rate distribution in the reaction tube is made relatively uniform, so that there is an advantage that generation of excessive hot spots is suppressed.
<実施例>
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
<Example>
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.
(実施例1〜6)
[反応管の圧力損失ΔPの測定]
図1に示す多管式反応装置において、固体粒子として、酸化ルテニウムを主成分とする触媒粒子、およびアルミナボール(直径1.5mm)からなる不活性粒子を用い、表1に示す充填条件で、反応管入口部の該アルミナボールの充填量を増減させた場合の反応管ΔPのばらつきを評価した。ΔP測定時のガス流量は、実機で行なわれる反応管における差圧チェックと同じ流量に設定した。すなわち、標準オリフィスのΔPが258mmH2Oとなるようにエアー量を調整し、約4L/minとした。結果を表1に示す。
(Examples 1-6)
[Measurement of pressure loss ΔP in reaction tube]
In the multitubular reactor shown in FIG. 1, catalyst particles mainly composed of ruthenium oxide and inert particles composed of alumina balls (diameter 1.5 mm) are used as solid particles under the filling conditions shown in Table 1. The variation of the reaction tube ΔP when the filling amount of the alumina ball at the inlet of the reaction tube was increased or decreased was evaluated. The gas flow rate during the ΔP measurement was set to the same flow rate as the differential pressure check in the reaction tube performed in the actual machine. That is, the amount of air was adjusted so that ΔP of the standard orifice was 258 mmH 2 O, and was about 4 L / min. The results are shown in Table 1.
図3は、実施例1〜6における反応管入口アルミナ充填量と反応管ΔPとの関係について示す図である。表1および図3に示すように、反応管入口におけるアルミナ充填量と反応管ΔPとは良い相関を有し、反応管入口部のアルミナ充填量を増減させることによって反応管ΔPを任意に制御できることが分かる。 FIG. 3 is a diagram showing the relationship between the reaction tube inlet alumina filling amount and the reaction tube ΔP in Examples 1 to 6. As shown in Table 1 and FIG. 3, the alumina filling amount at the reaction tube inlet and the reaction tube ΔP have a good correlation, and the reaction tube ΔP can be arbitrarily controlled by increasing or decreasing the alumina filling amount at the reaction tube inlet. I understand.
[ガス流量測定]
表1に示した実施例のうち、実施例1,4,6については、N2ガスを使用し、反応管出入口の圧力をそれぞれ実施例1,4,6で一致させるためのガス流量をも測定した。反応管出入口の圧力は実機の操作条件に近い値とした。なお、反応管ΔPおよびガス流量については、反応管ΔPが実施例1〜6の平均値に最も近かった実施例4を平均とし、以下の式、
(平均からのばらつき)=((実施例1または6の値)/(実施例4の値)−1)×100(%)
に従って算出される平均からのばらつき(%)として表示した。結果を表2に示す。
[Gas flow measurement]
Among the examples shown in Table 1, for Examples 1, 4 and 6, N 2 gas was used, and the gas flow rate for matching the pressure at the inlet / outlet of the reaction tube with each of Examples 1, 4 and 6 was also set. It was measured. The pressure at the inlet and outlet of the reaction tube was set to a value close to the operating conditions of the actual machine. In addition, about reaction tube (DELTA) P and gas flow rate, let reaction tube (DELTA) P be the average of Example 4 in which the average value of Examples 1-6 was the closest,
(Variation from the average) = ((value of Example 1 or 6) / (value of Example 4) −1) × 100 (%)
It was expressed as variation (%) from the average calculated according to The results are shown in Table 2.
図4は、実施例1〜6における反応管ΔPのばらつきとガス流量のばらつきとの関係を示す図である。表2および図4に示すように、反応管ΔPの平均(すなわち実施例4におけるΔP)からのばらつきと、ガス流量の平均(すなわち実施例4におけるガス流量)からのばらつきとは良い相関を有し、空気で測定する反応管ΔPのばらつきの、−12.3%(実施例1)〜+8.1%(実施例6)は、実際の反応管のガス流量のばらつきの、−7.1%(実施例1)〜+8.2%(実施例6)程度に相当する。 FIG. 4 is a diagram illustrating the relationship between the variation in the reaction tube ΔP and the variation in the gas flow rate in Examples 1-6. As shown in Table 2 and FIG. 4, there is a good correlation between the variation from the average reaction tube ΔP (ie, ΔP in Example 4) and the variation from the average gas flow rate (ie, the gas flow rate in Example 4). In addition, -12.3% (Example 1) to + 8.1% (Example 6) of the variation in the reaction tube ΔP measured with air is −7.1% of the variation in the actual gas flow rate of the reaction tube. % (Example 1) to + 8.2% (Example 6).
[ガス流量と反応温度との関係の評価]
(実施例7)
以下の条件におけるガス流量と反応温度との関係につき評価した。
反応管:25mmφID、
鞘管:6mmφOD、
ガス流量:HCl 1.66Nm3/h、O2 0.84Nm3/h、H2O 5vol%−HClの混合ガスの総量を基準とした。
[Evaluation of relationship between gas flow rate and reaction temperature]
(Example 7)
The relationship between the gas flow rate and the reaction temperature under the following conditions was evaluated.
Reaction tube: 25 mmφID,
Sheath tube: 6mmφOD,
Gas flow rate: Based on the total amount of mixed gas of HCl 1.66 Nm 3 / h, O 2 0.84 Nm 3 / h, H 2 O 5 vol% -HCl.
なおガス流量としては、以下の式、
(ガス流量のばらつき)=((各条件のガス流量)/(基準のガス流量)−1)×100(%)
で算出されるガス流量のばらつきが、−25%,−20%,−15%,−10%,−5%,0%,+5%,+10%,+15%である計9条件を設定した。なお各条件の混合ガス中における各成分の比率は基準と同一である。
The gas flow rate is as follows:
(Gas flow rate variation) = ((gas flow rate for each condition) / (reference gas flow rate) −1) × 100 (%)
A total of nine conditions were set such that the variations in the gas flow rate calculated in (1) were -25%, -20%, -15%, -10%, -5%, 0%, + 5%, + 10%, and + 15%. The ratio of each component in the mixed gas under each condition is the same as the standard.
図5は、実施例7における反応管入口からの距離と反応管内温度との関係を示す図である。図5では、上記で設定した9条件のうち、ガス流量のばらつきが、0%、+15%、−25%である3条件についてのみ示しているが、この3条件を含め、上記で設定した9条件のいずれにおいても反応管の内温は反応管入口からの距離が20cmのところでピーク温度となった。図6は、実施例7におけるガス流量のばらつきと反応管のピーク温度およびHCl転化率との関係を示す図である。図6においては、上記で設定した9条件について示しているが、反応管の内温におけるピーク温度はガス流量が少ないほど高い傾向であり、上記のガス流量のばらつき−25%〜+15%の範囲内で、ピーク温度のばらつきは+5℃〜−3℃の範囲内であった。また反応管のピーク温度とHCl転化率、すなわち反応効率とは良い相関を示している。 FIG. 5 is a graph showing the relationship between the distance from the reaction tube inlet and the temperature in the reaction tube in Example 7. FIG. 5 shows only three conditions among the nine conditions set above, in which the gas flow variation is 0%, + 15%, and −25%. Under any of the conditions, the internal temperature of the reaction tube reached a peak temperature when the distance from the reaction tube inlet was 20 cm. FIG. 6 is a graph showing the relationship between the variation in the gas flow rate, the peak temperature of the reaction tube, and the HCl conversion rate in Example 7. FIG. 6 shows the nine conditions set above, but the peak temperature at the internal temperature of the reaction tube tends to be higher as the gas flow rate is smaller, and the variation in the gas flow rate is in the range of −25% to + 15%. Among these, the variation in peak temperature was within the range of + 5 ° C. to −3 ° C. Moreover, the peak temperature of the reaction tube and the HCl conversion rate, that is, the reaction efficiency shows a good correlation.
図7は、実施例7における反応管ΔPのばらつきと反応管のピーク温度およびHCl転化率との関係を示す図である。図7においては、図6に示すガス流量のばらつきを、空気で測定される反応管ΔPのばらつきに換算した値を横軸としてプロットしている。反応管ΔPのばらつきが−13%〜+21%の範囲内で、ピーク温度のばらつきは−3℃〜+5℃の範囲内であった。また反応管のピーク温度とHCl転化率、すなわち反応効率とは良い相関を示している。 FIG. 7 is a graph showing the relationship between the variation in the reaction tube ΔP, the peak temperature of the reaction tube, and the HCl conversion rate in Example 7. In FIG. 7, values obtained by converting the variation in the gas flow rate shown in FIG. 6 into the variation in the reaction tube ΔP measured with air are plotted on the horizontal axis. The variation of the reaction tube ΔP was within the range of −13% to + 21%, and the variation of the peak temperature was within the range of −3 ° C. to + 5 ° C. Moreover, the peak temperature of the reaction tube and the HCl conversion rate, that is, the reaction efficiency shows a good correlation.
これらの結果から、多管式反応装置が通常有する約±15%程度の反応管ΔPのばらつきを考慮しても、本発明において、ΔP(A)とΔP(B)との関係が、1.10≦ΔP(A)/ΔP(B)≦1.30を満たすように設定される場合、反応管Aと反応管Bとの内温のピーク温度の差は±数℃の範囲内であると推測でき、かつ反応管Aの内温が反応管Bよりもほぼ確実に高温となると推測できる。すなわち、本発明においては、反応管Aの温度計測装置により制御される内温よりも反応管Bの内温が高くなり過ぎることによる発熱反応の暴走や触媒寿命の低下等が防止されるとともに、反応管Aの内温に比べて反応管Bの内温が低過ぎることによる反応効率の低下が生じる危険性は少ないことが分かる。 From these results, the relationship between ΔP (A) and ΔP (B) is 1. When set so as to satisfy 10 ≦ ΔP (A) / ΔP (B) ≦ 1.30, the difference in peak temperature of the internal temperature between the reaction tube A and the reaction tube B is within a range of ± several degrees C. It can be estimated that the internal temperature of the reaction tube A is almost certainly higher than that of the reaction tube B. That is, in the present invention, the runaway reaction of the exothermic reaction and the decrease in the catalyst life due to the internal temperature of the reaction tube B becoming excessively higher than the internal temperature controlled by the temperature measuring device of the reaction tube A are prevented, It can be seen that there is less risk of a reduction in reaction efficiency due to the internal temperature of the reaction tube B being too low compared to the internal temperature of the reaction tube A.
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
発熱反応の接触気相反応における過度なホットスポットの生成を抑制することができる本発明の多管式反応装置は、特に塩酸酸化反応等に対して好適に用いられる。 The multitubular reactor of the present invention that can suppress the formation of excessive hot spots in the catalytic gas phase reaction of the exothermic reaction is particularly preferably used for hydrochloric acid oxidation reaction and the like.
1 多管式反応装置、101 上部管板、102 下部管板、103 熱媒導入部、104 熱媒排出部、105 邪魔板、106 温度計測装置、107 反応管A、108 反応管B、109 反応器シェル。
DESCRIPTION OF
Claims (4)
前記反応管は、温度計測装置が設置された少なくとも1の反応管Aと、前記温度計測装置が設置されていない複数の反応管Bとからなり、
前記反応管Aおよび前記反応管Bには固体粒子が充填され、
下記の式、
ΔP=(反応管上端部の圧力)−(反応管下端部の圧力)
で表される反応管の上端部と下端部との圧力の差として定義される圧力損失ΔPにおいて、前記反応管Aの前記圧力損失ΔPの平均値であるΔP(A)と、前記反応管Bの前記圧力損失ΔPの平均値であるΔP(B)とが、以下の式、
1.10≦ΔP(A)/ΔP(B)≦1.30
および、以下の式、
ΔP(A)≧ΔP(B)+3σ B
(ただし、σ B は前記反応管Bの圧力損失ΔPの標準偏差である)
を満たす、多管式反応装置。 A multi-tubular reactor in which a plurality of reaction tubes are installed,
The reaction tube is composed of at least one reaction tube A in which a temperature measuring device is installed, and a plurality of reaction tubes B in which the temperature measuring device is not installed,
The reaction tube A and the reaction tube B are filled with solid particles,
The following formula,
ΔP = (pressure at the upper end of the reaction tube) − (pressure at the lower end of the reaction tube)
In the pressure loss ΔP defined as the pressure difference between the upper end and the lower end of the reaction tube represented by ΔP (B), which is an average value of the pressure loss ΔP, is expressed by the following equation:
1.10 ≦ ΔP (A) / ΔP (B) ≦ 1.30
And the following formula:
ΔP (A) ≧ ΔP (B) + 3σ B
(Where σ B is a standard deviation of the pressure loss ΔP of the reaction tube B)
A multi-tube reactor that meets the requirements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005362982A JP4549290B2 (en) | 2005-12-16 | 2005-12-16 | Multi-tube reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005362982A JP4549290B2 (en) | 2005-12-16 | 2005-12-16 | Multi-tube reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006150357A JP2006150357A (en) | 2006-06-15 |
JP4549290B2 true JP4549290B2 (en) | 2010-09-22 |
Family
ID=36629257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005362982A Expired - Fee Related JP4549290B2 (en) | 2005-12-16 | 2005-12-16 | Multi-tube reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4549290B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008100195A (en) * | 2006-10-20 | 2008-05-01 | Sumitomo Chemical Co Ltd | Inspection method of multi-tubular reactor and maintenance method of multi-tubular reactor |
JP5326218B2 (en) * | 2007-03-29 | 2013-10-30 | 住友化学株式会社 | Catalyst filling method |
JP5782213B2 (en) * | 2008-02-07 | 2015-09-24 | 三菱レイヨン株式会社 | Corrosion prevention method for multi-tube reactors |
JP6156860B2 (en) | 2012-04-04 | 2017-07-05 | 住友化学株式会社 | Multi-tube reactor and design method of multi-tube reactor |
CA2904477A1 (en) * | 2015-09-14 | 2017-03-14 | Nova Chemicals Corporation | Heat dissipating diluent in fixed bed reactors |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60210504A (en) * | 1984-03-31 | 1985-10-23 | Toshiba Corp | Reforming apparatus |
JPS63141638A (en) * | 1986-12-03 | 1988-06-14 | Jgc Corp | Multitubular reactor |
JPH05279269A (en) * | 1992-03-31 | 1993-10-26 | Nippon Zeon Co Ltd | Method for hydrogenation reaction of unsaturated hydrocarbon compound |
JPH10309457A (en) * | 1997-04-23 | 1998-11-24 | Basf Ag | Reactor apparatus and treatment for fluid material |
WO2001060743A1 (en) * | 2000-01-19 | 2001-08-23 | Sumitomo Chemical Company, Limited | Method for producing chlorine |
JP2003001094A (en) * | 2001-06-26 | 2003-01-07 | Nippon Shokubai Co Ltd | Solid particle-packed reactor and gas-phase catalytic oxidation method using the same |
JP2003340267A (en) * | 2002-05-30 | 2003-12-02 | Mitsubishi Rayon Co Ltd | Method for packing catalyst and multitubular heat exchange type reactor |
-
2005
- 2005-12-16 JP JP2005362982A patent/JP4549290B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60210504A (en) * | 1984-03-31 | 1985-10-23 | Toshiba Corp | Reforming apparatus |
JPS63141638A (en) * | 1986-12-03 | 1988-06-14 | Jgc Corp | Multitubular reactor |
JPH05279269A (en) * | 1992-03-31 | 1993-10-26 | Nippon Zeon Co Ltd | Method for hydrogenation reaction of unsaturated hydrocarbon compound |
JPH10309457A (en) * | 1997-04-23 | 1998-11-24 | Basf Ag | Reactor apparatus and treatment for fluid material |
WO2001060743A1 (en) * | 2000-01-19 | 2001-08-23 | Sumitomo Chemical Company, Limited | Method for producing chlorine |
JP2003001094A (en) * | 2001-06-26 | 2003-01-07 | Nippon Shokubai Co Ltd | Solid particle-packed reactor and gas-phase catalytic oxidation method using the same |
JP2003340267A (en) * | 2002-05-30 | 2003-12-02 | Mitsubishi Rayon Co Ltd | Method for packing catalyst and multitubular heat exchange type reactor |
Also Published As
Publication number | Publication date |
---|---|
JP2006150357A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101184235B1 (en) | Multitubular reaction apparatus for contact gas-phase reaction | |
EP1251100B1 (en) | Method for producing chlorine | |
JP4549290B2 (en) | Multi-tube reactor | |
US8076510B2 (en) | Process for starting-up a heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid or of methacrolein to methacrylic acid | |
US8954196B2 (en) | Reactor temperature control using probability distribution | |
CN109476564A (en) | The oxidative dehydrogenation (ODH) of ethane | |
TW200533647A (en) | Long-term operation of a heterogeneously catalyzed gas phase partial oxidation of propene to acrylic acid | |
KR101813734B1 (en) | Method for producing chlorine using fixed bed reactor | |
JP3606147B2 (en) | Chlorine production method | |
JP2005288441A (en) | Heat exchange type reactor | |
JP3570322B2 (en) | Method for producing chlorine | |
JP2010132584A (en) | Method for operating vapor-phase oxidation reaction by using multitubular heat exchanger-type reactor | |
JP2006212629A (en) | Multi-tube type fixed bed reaction device | |
JP2005238225A (en) | Filler for vapor-phase reactor | |
JP5171031B2 (en) | Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same | |
CN115066394A (en) | Method and reactor for producing phosgene | |
KR100694950B1 (en) | Method for producing methacrylic acid | |
WO2010024461A1 (en) | Process for producing chlorine | |
WO2022250030A1 (en) | Method of producing (meth)acrolein and/or (meth)acrylic acid | |
JP2003252807A (en) | Method for vapor-phase catalytic oxidation | |
CN108884006A (en) | Method for restarting | |
JP2011183313A (en) | Method for starting up vapor phase catalytic oxidation reaction and method for manufacturing (meta)acrylic acid using the same | |
JP2008105862A (en) | Method for producing chlorine | |
JP3537162B2 (en) | Method for producing pyromellitic anhydride | |
JP2010030831A (en) | Method for producing chlorine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100622 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100706 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |