JPS63141638A - Multitubular reactor - Google Patents

Multitubular reactor

Info

Publication number
JPS63141638A
JPS63141638A JP28675586A JP28675586A JPS63141638A JP S63141638 A JPS63141638 A JP S63141638A JP 28675586 A JP28675586 A JP 28675586A JP 28675586 A JP28675586 A JP 28675586A JP S63141638 A JPS63141638 A JP S63141638A
Authority
JP
Japan
Prior art keywords
reaction
reaction tube
temperature
tubes
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28675586A
Other languages
Japanese (ja)
Other versions
JPH0779959B2 (en
Inventor
Ichiro Kitahara
北原 一郎
Fujio Kita
喜多 冨士雄
Harumi Yuki
幸 治美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP28675586A priority Critical patent/JPH0779959B2/en
Publication of JPS63141638A publication Critical patent/JPS63141638A/en
Publication of JPH0779959B2 publication Critical patent/JPH0779959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To uniformize the reaction temp. of each reaction pipe by selecting a specific reaction pipe as a representative reaction pipe selected from a group of reaction pipes and providing a means, etc., which separately detects the temp. of each reaction pipe or of a group of reaction pipes. CONSTITUTION:The temp. of catalyst layer 3 is measured with a thermometer 10 and the data is inputted to a reaction pipe temp. control circuit 11, which compares the temp. of each reaction pipe 2 with the temp. of the reaction pipe provided with a manual valve 7, that is, the representative reaction pipe, and controls the control valve 6 of each reaction pipe. A reaction temp. control valve 12 compares the temp. of the representative reaction pipe with the set value of reaction temp. and controls the opening rate of a valve 13 so that both valves coincide. Consequently, by fixing the opening valve is fixed, and the reaction temp. of each reaction pipe is converged to the reaction temp. of the representative reaction pipe.

Description

【発明の詳細な説明】 [発鳴の属する分野] 本発明は多管式反応器に関し、詳しくは、複数本ある反
応管内に原料反応ガスを通過させ、反応管の外側を加熱
ガス等で加熱して原料反応ガスを反応せしめて流出させ
る多管式反応器に関する。
[Detailed Description of the Invention] [Field to which the noise pertains] The present invention relates to a multi-tubular reactor, and more specifically, a raw material reaction gas is passed through a plurality of reaction tubes, and the outside of the reaction tube is heated with a heating gas or the like. The present invention relates to a multi-tubular reactor in which a raw material reaction gas is reacted and discharged.

[従来技術] 従来、この種の多管式反応器では、各反応管への流量が
一定流量となるように配管をアレンジする程度であって
、流量と反応温度は成り行き任せのことか多かった。
[Prior art] Conventionally, in this type of multitubular reactor, the piping was arranged so that the flow rate to each reaction tube was constant, and the flow rate and reaction temperature were often left to chance. .

しかし、これでは各反応管の運転温度(反応管表面温度
、触媒層温度)が不均一となり高い反応管と低い反応管
の温度差が激しくなってしまう。
However, in this case, the operating temperature (reaction tube surface temperature, catalyst layer temperature) of each reaction tube becomes non-uniform, and the temperature difference between the high reaction tube and the low temperature reaction tube becomes large.

例えば、燃料電池用の多管式反応器でメタンガスと水蒸
気とを水素と炭酸ガスに改質する場合、ガス流量と反応
温度を成り行き任せにすると、所望の運転温度である8
00〜850℃に対し温度の高い反応管と低い反応管と
の温度差は100 t:を超えてしまった。そのため、
反応温度が高い反応管では反応管の寿命に悪い影響があ
り、また低い反応管では全体の反応転化率を押し下げる
影響が現われてしまった。
For example, when reforming methane gas and water vapor into hydrogen and carbon dioxide in a multitubular reactor for fuel cells, if the gas flow rate and reaction temperature are left as they are, the desired operating temperature will be 8.
The temperature difference between the high-temperature reaction tube and the low-temperature reaction tube exceeded 100 t:00 to 850°C. Therefore,
A reaction tube with a high reaction temperature has a negative effect on the life of the reaction tube, and a reaction tube with a low reaction temperature has the effect of lowering the overall reaction conversion rate.

そこで、反応管内の温度分布を均一化したり(特開昭5
9−92018号)、各反応管の反応温度が均一化する
よう制御する試み(特開昭60−210503号、特開
昭60−210504号)がなされている。
Therefore, we tried to make the temperature distribution inside the reaction tube uniform (Japanese Unexamined Patent Publication No. 5
9-92018), attempts have been made to control the reaction temperature of each reaction tube to be uniform (Japanese Patent Application Laid-open Nos. 60-210503 and 60-210504).

[発明が解決しようとする問題点] ところが、これらの先行技術も経済性や反応器全体とし
ての反応温度制御性能からみると必ずしも完全なものと
はいい難い。
[Problems to be Solved by the Invention] However, these prior art techniques cannot necessarily be said to be perfect in terms of economy and reaction temperature control performance of the reactor as a whole.

例えば、特開昭59−92018号では各反応管をシリ
ーズに接続し反応管内の半径方向の温度分布を均、−化
する技術が開示されている。しかし、これは各反応管の
反応温度がガスの流れに従って順次上昇していくもので
あり、装置の小型化等には役立つが、複数備えられた反
応管全体に亙って反応温度を均一化するものではない。
For example, Japanese Patent Laid-Open No. 59-92018 discloses a technique for connecting reaction tubes in series to equalize the temperature distribution in the radial direction within the reaction tubes. However, this method causes the reaction temperature of each reaction tube to rise sequentially according to the gas flow, and although this is useful for downsizing the device, it is difficult to make the reaction temperature uniform across multiple reaction tubes. It's not something you do.

また、特開昭60−210503号では、多管式反応器
としての改質炉内を複数に仕切りそれぞれにバーナーを
設置し、仕切り毎にバーナー燃料をコントロールし反応
温度を均一化する改質装置が開示されている。しかし、
これでは改質炉の構造が複雑となり、構造的およびコス
ト的に不利となる。すなわち、バーナー数が増えるため
計装コストが急激に増え、つきつめれば反応管1本当り
1つの改質炉を用意することとなり不経済である。
Furthermore, in JP-A No. 60-210503, a reforming device is disclosed in which the interior of a reforming furnace as a multi-tubular reactor is divided into multiple partitions, a burner is installed in each partition, and the burner fuel is controlled for each partition to equalize the reaction temperature. is disclosed. but,
This complicates the structure of the reforming furnace, resulting in disadvantages in terms of structure and cost. That is, since the number of burners increases, the instrumentation cost increases rapidly, and in the end, one reforming furnace is required for each reaction tube, which is uneconomical.

さらに、特開昭60−210504号では、各反応管の
ガス入口にコントロールバルブを設置し、各反応管の反
応温度に従い反応ガス流量をコントロールし、温度を均
一化する改質装置が開示されている。しかし、これはコ
ントロール手順において、コントロールを開始した時点
の条件により安定状態が違ってしまうという欠点がある
。すなわち、この改質装置では、先ず予め定められた制
限温度と温度測定素子による各反応管毎の測定温度の平
均温度とを比較した結果に基づいて燃焼ガスによる加熱
量を調節し、またその平均温度と各反応管における測定
温度とを各別に比較した結果に基づいて各反応管へのガ
ス流入量を制御している。従って、各反応管の調節弁の
開度はそれぞれが平均温度に近づくように調節されるの
で、各々低開度で落着いてしまうこともあり、またどれ
か1つでも調節弁が100%全開となるとは限らない。
Furthermore, JP-A No. 60-210504 discloses a reformer in which a control valve is installed at the gas inlet of each reaction tube to control the reaction gas flow rate according to the reaction temperature of each reaction tube and to equalize the temperature. There is. However, this has the disadvantage that the stable state in the control procedure varies depending on the conditions at the time the control is started. That is, in this reformer, first, the amount of heating by the combustion gas is adjusted based on the result of comparing the predetermined limit temperature with the average temperature measured for each reaction tube by the temperature measuring element, and then The amount of gas flowing into each reaction tube is controlled based on the results of comparing the temperature with the temperature measured in each reaction tube. Therefore, the opening degree of the control valve of each reaction tube is adjusted so that it approaches the average temperature, so each may settle at a low opening degree, and even if one of the control valves is fully open 100%. Not necessarily.

すなわち、装置の動作時に処理効率が装置の性能を10
0%生かしたところまでいかずに、成り行きで定まった
適当な処理効率に落着いてしまうという問題点があった
In other words, when the device is operating, the processing efficiency increases the device performance by 10%.
There was a problem in that the processing efficiency did not reach the point where 0% utilization was achieved, but instead settled on an appropriate processing efficiency determined by the course of events.

本発明の目的は、上述の従来形における問題点に鑑み、
多管式反応器において、複雑な構造とせずコスト的にも
見合う簡単な改良で各反応管の反応温度を一定に保つこ
とができ、装置のIA埋効率も充分高めることができる
多管式反応器を提供す、ることにある。
The purpose of the present invention is to solve the above-mentioned problems in the conventional type.
A multi-tubular reactor that can maintain a constant reaction temperature in each reaction tube with a simple modification that is cost-effective without a complicated structure, and can sufficiently increase the IA filling efficiency of the device. It's about providing the equipment.

[問題点を解決するための手段および作用]上記の目的
を達成するため、本発明は、複数ある反応管に原料反応
ガスを導入し、該反応管の外側を加熱して原料反応ガス
を反応せしめ流出させる多管式反応器において、各反応
管またはグループ分けした反応管群毎にその反応ガスの
入口側または出口側にガス流量を調節する調節弁を設け
るとともに、該反応管群より選択した所定の反応管を代
表的反応管とし、上記各反応管またはグループ分けした
反応管群における反応温度を各別に検出する手段と、該
検出手段で検出した反応温度が上記代表的反応管の反応
温度と同一となるように、さらに上記調節弁の少なくと
も1つの弁開度が全開となるように上記調節弁の開度お
よび上記反応管の加熱量を制御する手段とを備えること
を特徴とする。
[Means and effects for solving the problems] In order to achieve the above object, the present invention introduces a raw material reaction gas into a plurality of reaction tubes, and heats the outside of the reaction tube to react the raw material reaction gas. In a multi-tubular reactor in which the reaction gas is forced out, each reaction tube or group of reaction tubes is provided with a control valve for adjusting the gas flow rate on the inlet side or outlet side of the reaction gas. a means for individually detecting the reaction temperature in each of the reaction tubes or grouped reaction tubes, with a predetermined reaction tube as a representative reaction tube; The method further includes means for controlling the opening degree of the regulating valve and the amount of heating of the reaction tube so that the opening degree of at least one of the regulating valves becomes fully open.

さらに、上記と同一の目的を達成するため、第2の発明
は、複数ある反応管に原料反応ガスを導入し、該反応管
の外側を加熱して原料反応ガスを反応せしめ流出させる
多管式反応器において、反応ガスの入口側または出口側
にガス流量を手動で調節する手動弁を設けた1つの反応
管を代表的反応管とし、該代表的反応管以外の反応管に
ついては各反応管またはグループ分けした反応管群毎に
その反応ガスの入口側または出口側にガス流量を調節す
る調節弁を設けるとともに、各反応器またはグループ分
けした反応管群における反応温度を各別に検出する手段
と、該検出手段で検出した反応温度がそれぞれ代表的反
応管の反応温度と同一となるよう上記調節弁の開度およ
び上記反応管の加熱量を制御する手段を備えることを特
徴とする。
Furthermore, in order to achieve the same object as the above, the second invention is a multi-tube type in which a raw material reaction gas is introduced into a plurality of reaction tubes, and the outside of the reaction tube is heated to cause the raw material reaction gas to react and flow out. In the reactor, one reaction tube equipped with a manual valve to manually adjust the gas flow rate on the inlet or outlet side of the reaction gas is considered a representative reaction tube, and each reaction tube other than the representative reaction tube is Alternatively, a control valve for adjusting the gas flow rate is provided on the inlet side or outlet side of the reaction gas for each group of reaction tubes, and means for individually detecting the reaction temperature in each reactor or group of reaction tubes. , characterized by comprising means for controlling the opening degree of the control valve and the amount of heating of the reaction tube so that the reaction temperature detected by the detection means is the same as the reaction temperature of a typical reaction tube.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

なお、ここでは主として第2の発明である手動弁を1つ
備えた多管式反応器について説明する。
In addition, here, mainly the second invention, which is a multi-tubular reactor equipped with one manual valve, will be explained.

第1図は、第2の発明に係る多管式反応器の炉回りの計
装システム図である。
FIG. 1 is a diagram of the instrumentation system around the furnace of the multi-tubular reactor according to the second invention.

同図において、反応器1に導入された原料であるメタ、
ンガスとスチームは複数ある反応管2内の、触媒層3を
通り、そこで改質されて、流出管4゜5より調節弁6ま
たは手動弁7を介して導出される。8は反応管2の外側
を加熱するためのバーナーである。燃焼排ガスは管9か
ら排出される。触媒層3の温度は温度計10により測定
されそのデータは反応管温度制御回路11に入力する。
In the figure, meth, which is a raw material introduced into reactor 1,
The gas and steam pass through catalyst beds 3 in a plurality of reaction tubes 2, are reformed there, and are led out through outlet tubes 4.5 via control valves 6 or manual valves 7. 8 is a burner for heating the outside of the reaction tube 2. Combustion exhaust gas is discharged through pipe 9. The temperature of the catalyst layer 3 is measured by a thermometer 10, and the data is input to a reaction tube temperature control circuit 11.

反応管温度制御回路11はこれらの各反応管2の温度と
、手動弁7が設けられている反応管すなわち代表的反応
管の温度とを比較し、それらが一致するようそれぞれの
調節弁7を調節する。12は代表的反応管の温度と反応
温度設定値とを比較し、燃料ガスを操作する反応温度制
御調節計である。すなわち、反応温度制御調節計12は
、代表的反応管の温度と予め設定されている反応温度設
定値とを比較し、これらが一致するようにバルブ13の
開度を調整する。
The reaction tube temperature control circuit 11 compares the temperature of each of these reaction tubes 2 with the temperature of a reaction tube in which a manual valve 7 is installed, that is, a typical reaction tube, and adjusts each control valve 7 so that they match. Adjust. 12 is a reaction temperature control regulator that compares the temperature of a typical reaction tube with a reaction temperature set value and controls the fuel gas. That is, the reaction temperature control regulator 12 compares the temperature of a typical reaction tube with a preset reaction temperature value, and adjusts the opening degree of the valve 13 so that they match.

従って、手動弁7の開度が定まれば他の調節弁の開度も
定まり、各反応管の反応温度は代表的反応管の反応温度
と同一となって落着く。これにより、手動弁7を手動で
変えることにより、弁のどれか1つが全開となるように
することができる。
Therefore, once the opening degree of the manual valve 7 is determined, the opening degrees of the other control valves are also determined, and the reaction temperature of each reaction tube settles down to be the same as the reaction temperature of a typical reaction tube. Thereby, by manually changing the manual valve 7, any one of the valves can be fully opened.

なお、各調節弁7や反応温度制御調節計12の各調節計
はPID調節計とする。
Note that each of the control valves 7 and each of the reaction temperature control regulators 12 is a PID controller.

第2図は、第1図の装置を模式的に表わした図である。FIG. 2 is a diagram schematically representing the apparatus of FIG. 1.

なお、反応管の数や弁の数は便宜上第1図と変えてあり
、ここでは反応管を19本並列としている。また、中心
の代表的反応管以外は3木、づつグループ化して調節弁
を設けている。
Note that the number of reaction tubes and the number of valves are different from those in FIG. 1 for convenience, and here 19 reaction tubes are arranged in parallel. In addition, the tubes other than the central representative reaction tube are grouped into three groups and equipped with control valves.

第2図において、燃焼ガスを操作量とする反応温度制御
調節計のpv値(TP)としては中心の反応管の反応温
度T0をそのまま使用しているが、他に全反応管の平均
温度や各ブロック(ここでは6ブロツク)の最高温度の
平均値温度も選択できるようにするのが望ましい。
In Fig. 2, the reaction temperature T0 of the center reaction tube is used as is as the pv value (TP) of the reaction temperature control regulator that uses combustion gas as the manipulated variable, but the average temperature of all reaction tubes and the It is desirable to also be able to select the average temperature of the highest temperatures of each block (in this case, 6 blocks).

なお、上記に示した多管式反応器においては手動弁の開
度を手動で変更することにより他の調節弁や燃焼ガスの
調節バルブの弁開度が変移して、反応温度が均一化され
るが、この手動弁をも制御調整弁とし調整弁の内のどれ
かを全開になるようにPID制御すれば便宜である(第
1の発明)。
In addition, in the multi-tubular reactor shown above, by manually changing the opening degree of the manual valve, the valve opening degrees of other control valves and combustion gas control valves will change, and the reaction temperature will be made uniform. However, it is convenient to use this manual valve as a control adjustment valve and perform PID control so that one of the adjustment valves is fully open (first invention).

[実施例の説明] 次に、実施例により本発明を具体的に説明する。[Explanation of Examples] Next, the present invention will be specifically explained with reference to Examples.

まず、反応管本数7木の改質炉において、各反応管の出
口に設けられた調節弁を使用し、中央の代表的反応管の
温度を温度制御の設定値として制御したところ、それぞ
れの反応管の温度は次表のごとくとなった。
First, in a reforming furnace with seven reaction tubes, the temperature of a representative reaction tube in the center was controlled as the temperature control set value using a control valve installed at the outlet of each reaction tube. The temperature of the tube was as shown in the table below.

ここで、反応生成ガスのメタン濃度は0.83%(DR
Y)となり、予定の0.87%(DRY)に達した。ま
た、燃料ガスの消費量も約2.5%減少した。
Here, the methane concentration of the reaction product gas is 0.83% (DR
Y), reaching 0.87% (DRY) of the planned rate. Fuel gas consumption also decreased by approximately 2.5%.

比較例 比較例として、同様に反応管7本の改質炉で各反応管の
出入口の流量を制限することなく改質反応をさせたころ
、各反応管の温度は不均一となり次表のごとくとなった
Comparative Example As a comparative example, when a reforming reaction was similarly carried out in a reforming furnace with seven reaction tubes without restricting the flow rate at the inlet and outlet of each reaction tube, the temperature of each reaction tube became uneven, as shown in the following table. It became.

ここで、最高温度の反応管の管壁温度が設計温、度に近
づいたため、昇温を停止したところ、反応生成ガスのメ
タン濃度は0.98%(DRY)となり、予定の0.8
7%(DRY)に達しなかった。
At this point, the temperature of the wall of the reaction tube at the highest temperature approached the design temperature, so the temperature increase was stopped, and the methane concentration of the reaction product gas was 0.98% (DRY), which was 0.8% as planned.
It did not reach 7% (DRY).

[発明の効果] 以上説明したように、本発明によれば、多管式反応器に
おいて、各反応管の人口もしくは出口側に調節弁を設け
いずれか1つが全開となるよう制御し、または1つの反
応管に手動弁を設けその代表的反応管の反応温度に他の
反応管の反応温度が一致するように制御しているので以
下のような効果がある。
[Effects of the Invention] As explained above, according to the present invention, in a multi-tubular reactor, a control valve is provided on the inlet or outlet side of each reaction tube and controlled so that one of the reaction tubes is fully open; One reaction tube is equipped with a manual valve and the reaction temperature of the other reaction tubes is controlled to match the reaction temperature of that representative reaction tube, resulting in the following effects.

■複雑な構造とすることなく各反応管の反応温度を均一
化できる。
■The reaction temperature of each reaction tube can be made uniform without creating a complicated structure.

■それにより、反応温度を反応管の許容する最高温度ま
で上げることができる。これは熱効率の向上および処理
効率の向上に寄与する。
(2) Thereby, the reaction temperature can be raised to the maximum temperature allowed by the reaction tube. This contributes to improved thermal efficiency and improved processing efficiency.

■代表的反応管の制御を改質系の圧損を最小にするよう
に行なうことができる。従って、燃料電池等に使用した
場合に発電システムとしての効率を上げることができる
(2) Typical reaction tubes can be controlled to minimize pressure drop in the reforming system. Therefore, when used in a fuel cell or the like, the efficiency of the power generation system can be increased.

■各反応管の寿命が均一となり、コスト低減となる。■The lifespan of each reaction tube is uniform, reducing costs.

■加熱された反応管のバーン・アウトを防ぐことができ
、安全性の向上がなされる。
■ Burnout of heated reaction tubes can be prevented, improving safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る多管式反応器の炉回りの計装シ
ステム図、 第2図は、第1図の装置を模式的に表わした図である。 1:反応器、2:反応管、3:触媒層、6:調節弁、7
:手動弁、8:バーナー、10:温度計、11:反応管
温度制御回路。
FIG. 1 is a diagram of the instrumentation system around the furnace of a multi-tubular reactor according to the present invention, and FIG. 2 is a diagram schematically showing the apparatus of FIG. 1. 1: Reactor, 2: Reaction tube, 3: Catalyst layer, 6: Control valve, 7
: manual valve, 8: burner, 10: thermometer, 11: reaction tube temperature control circuit.

Claims (1)

【特許請求の範囲】 1、複数ある反応管に原料反応ガスを導入し、該反応管
の外側を加熱して原料反応ガスを反応せしめ流出させる
多管式反応器において、 各反応管またはグループ分けした反応管群毎にその反応
ガスの入口側または出口側にガス流量を調節する調節弁
を設けるとともに、該反応管群より選択した所定の反応
管を代表的反応管とし、上記各反応管またはグループ分
けした反応管群における反応温度を各別に検出する手段
と、該検出手段で検出した反応温度が上記代表的反応管
の反応温度と同一となるように、さらに上記調節弁の少
なくとも1つの弁開度が全開となるように上記調節弁の
開度および上記反応管の加熱量を制御する手段とを備え
ることを特徴とする多管式反応器。 2、前記代表的反応管の反応温度が、予め外部から指定
された設定値となるよう制御する特許請求の範囲第1項
記載の多管式反応器。 3、複数ある反応管に原料反応ガスを導入し、該反応管
の外側を加熱して原料反応ガスを反応せしめ流出させる
多管式反応器において、 反応ガスの入口側または出口側にガス流量を手動で調節
する手動弁を設けた1つの反応管を代表的反応管とし、
該代表的反応管以外の反応管については各反応管または
グループ分けした反応管群毎にその反応ガスの入口側ま
たは出口側にガス流量を調節する調節弁を設けるととも
に、各反応管またはグループ分けした反応管群における
反応温度を各別に検出する手段と、該検出手段で検出し
た反応温度がそれぞれ代表的反応管の反応温度と同一と
なるよう上記調節弁の開度および上記反応管の加熱量を
制御する手段を備えることを特徴とする多管式反応器。 4、前記代表的反応管の反応温度が、予め外部から指定
された設定値となるよう制御する特許請求の範囲第3項
記載の多管式反応器。
[Scope of Claims] 1. In a multitubular reactor in which a raw material reaction gas is introduced into a plurality of reaction tubes, the outside of the reaction tube is heated to cause the raw material reaction gas to react, and then flows out, each reaction tube or group is divided. A control valve for adjusting the gas flow rate is provided on the inlet side or outlet side of the reaction gas for each group of reaction tubes, and a predetermined reaction tube selected from the group of reaction tubes is used as a representative reaction tube, and each of the reaction tubes or means for individually detecting reaction temperatures in the grouped reaction tubes, and at least one valve of the control valves so that the reaction temperature detected by the detection means is the same as the reaction temperature of the representative reaction tubes A multi-tubular reactor comprising means for controlling the opening degree of the control valve and the heating amount of the reaction tube so that the opening degree is fully opened. 2. The multitubular reactor according to claim 1, wherein the reaction temperature of the representative reaction tube is controlled to a preset value specified from the outside. 3. In a multi-tubular reactor where a raw material reaction gas is introduced into a plurality of reaction tubes and the outside of the reaction tube is heated to cause the raw material reaction gas to react and flow out, the gas flow rate is controlled at the inlet or outlet side of the reaction gas. A typical reaction tube is one equipped with a manually adjusted manual valve;
For reaction tubes other than the representative reaction tubes, a control valve for adjusting the gas flow rate is provided on the inlet side or outlet side of the reaction gas for each reaction tube or group of reaction tubes, and for each reaction tube or grouped group. a means for individually detecting the reaction temperature in each group of reaction tubes; and an opening degree of the control valve and an amount of heating of the reaction tube so that the reaction temperature detected by the detection means is the same as the reaction temperature of the representative reaction tube. A multi-tubular reactor characterized by comprising means for controlling. 4. The multitubular reactor according to claim 3, wherein the reaction temperature of the representative reaction tube is controlled to a preset value specified from the outside.
JP28675586A 1986-12-03 1986-12-03 Multi-tube reactor Expired - Lifetime JPH0779959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28675586A JPH0779959B2 (en) 1986-12-03 1986-12-03 Multi-tube reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28675586A JPH0779959B2 (en) 1986-12-03 1986-12-03 Multi-tube reactor

Publications (2)

Publication Number Publication Date
JPS63141638A true JPS63141638A (en) 1988-06-14
JPH0779959B2 JPH0779959B2 (en) 1995-08-30

Family

ID=17708621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28675586A Expired - Lifetime JPH0779959B2 (en) 1986-12-03 1986-12-03 Multi-tube reactor

Country Status (1)

Country Link
JP (1) JPH0779959B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619576B2 (en) 2000-09-26 2003-09-16 Komatsu Ltd. Outlet clearance adjustment mechanism of jaw crusher and self-propelled crushing machine loaded with jaw crusher having outlet clearance adjustment mechanism of jaw crusher
JP2006142299A (en) * 2005-12-16 2006-06-08 Sumitomo Chemical Co Ltd Fixed bed multitubular reactor
JP2006150357A (en) * 2005-12-16 2006-06-15 Sumitomo Chemical Co Ltd Multitubular reaction apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833057B1 (en) * 2005-11-23 2008-05-27 주식회사 엘지화학 Device and method for measuring temperature in a tubular fixed-bed reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619576B2 (en) 2000-09-26 2003-09-16 Komatsu Ltd. Outlet clearance adjustment mechanism of jaw crusher and self-propelled crushing machine loaded with jaw crusher having outlet clearance adjustment mechanism of jaw crusher
JP2006142299A (en) * 2005-12-16 2006-06-08 Sumitomo Chemical Co Ltd Fixed bed multitubular reactor
JP2006150357A (en) * 2005-12-16 2006-06-15 Sumitomo Chemical Co Ltd Multitubular reaction apparatus
JP4549290B2 (en) * 2005-12-16 2010-09-22 住友化学株式会社 Multi-tube reactor

Also Published As

Publication number Publication date
JPH0779959B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
US6890673B2 (en) Hydrogen producing apparatus and power generating system using it
NL192572C (en) Process for preparing synthesis gas and reactor for carrying out this process.
JP7052401B2 (en) Methane production equipment and methane production method
US20220203326A2 (en) Method and reactor for producing one or more products
US5772707A (en) Process and apparatus for methanol reforming
US7232553B2 (en) Plate type steam reformer
KR20040058180A (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JPS63141638A (en) Multitubular reactor
JP2023526396A (en) Pressure control method in a loop for the production of ammonia or methanol
JP5150068B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
JPH08273685A (en) Temperaturee control device of fuel reformer
JPH0421536B2 (en)
KR20190042397A (en) Fuel oil supply system of underwater moving body and fuel oil supply method of the same
JPS63197534A (en) Reaction device
JPH03167759A (en) Catalyst temperature controller of fuel reformer for use in fuel cell
JPH07106881B2 (en) Fuel cell reformer device
US20240294380A1 (en) Water gas shift unit steam superheater
JP2007063102A (en) Temperature control system and temperature control method for co converter unit
CN109404960B (en) Gradient symmetry control method for vertical multi-bed RTO bell-shaped temperature zone
JPS6342733A (en) Endothermic reacting device
JP2006001816A (en) Apparatus and method for manufacturing hydrogen
JPS60210504A (en) Reforming apparatus
JPS62264568A (en) Temperature control of reformer for fuel cell plant
WO2024064560A1 (en) Method for carbon formation free operation of reformers
JPH0377122B2 (en)