JPS63197534A - Reaction device - Google Patents

Reaction device

Info

Publication number
JPS63197534A
JPS63197534A JP2728787A JP2728787A JPS63197534A JP S63197534 A JPS63197534 A JP S63197534A JP 2728787 A JP2728787 A JP 2728787A JP 2728787 A JP2728787 A JP 2728787A JP S63197534 A JPS63197534 A JP S63197534A
Authority
JP
Japan
Prior art keywords
reaction
furnace
temperature gas
shaped
reaction tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2728787A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzumura
洋 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2728787A priority Critical patent/JPS63197534A/en
Publication of JPS63197534A publication Critical patent/JPS63197534A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor

Abstract

PURPOSE:To make a reaction over compact by installing vertically a number of U-shaped reaction tubes filled with catalysts on the upper section inside an oven and isolating said reaction tubes by a grid-shaped substance consisting of a good radiant material on which an oxidizing catalyst is carried. CONSTITUTION:A number of U-shaped reaction tubes 4 filled with catalysts inside in an over 5, and isolated by a grid-shaped substance 6 consisting of a good radiant material on which an oxidizing catalyst is carried. When high- temperature gas G is fed from a feed opening 9 on the bottom of the oven 5, said high-temperature gas G rises up inside the oven 5 and heats up the U-shaped reaction tubes 4 uniformly through the grid-shaped substance 6 consisting of a good radiant material on which an oxidizing catalyst is carried. The reasons why the reaction tubes 4 are isolated by a grid-shaped substance 6 consisting of a good radiant material on which an oxidizing catalyst is carried are that combustion components in high-temperature gas can be burnt by the catalyst to utilize reaction heat and that the reaction heat is large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は反応装置に関し、特に主として天然7fス、ナ
フサなどの炭化水素又はメタノール、ロタノールなどの
アルコールと水蒸気を含bガスを触媒の存在のもとに反
応させて水素含有ガスを生成させる反応装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reaction device, in particular a reaction device that mainly reacts with hydrocarbons such as natural 7fs and naphtha, or alcohols such as methanol and rotanol, and B gas containing water vapor in the presence of a catalyst. The present invention relates to a reaction device that generates hydrogen-containing gas by reacting hydrogen.

〔従来の技術〕[Conventional technology]

前記方法を夾施する反応装置としては、第51および第
6図に示されているスチームリフオーマと称されている
炉が、従来多く採用されている。第5図において、炉1
内に1列に配列されている多数の管2は、耐熱合金製の
管であって、該管2内にはスチームリフオーミング用の
4謀が充填°されておシ、かつ飽和炭化水素と水蒸気を
含むガスが上方よシ下方に向かって流通するようになっ
ている。互いに隣接する管2゜2間に設けたバーナ3に
は炬1の天井よシ下方1(向う長い炎が形成され燃焼ガ
スもまた下方に向って流れるようになっている。第6図
においては、管2が第5図に示されているものと同様に
1列に多数配列されているが、この場合両側壁に設けら
れた多数のバーナ3には放射状の短炎が形成され燃焼ガ
スは上方に向って流れるようになっている。
As a reaction apparatus for carrying out the above method, a furnace called a steam reformer shown in FIGS. 51 and 6 has conventionally been widely used. In Figure 5, furnace 1
A large number of tubes 2 arranged in a row inside the tube are made of heat-resistant alloy. Gas containing water vapor flows upward and downward. A long flame is formed in the burner 3 installed between the adjacent tubes 2. A long flame extends downward from the ceiling of the torch 1, and the combustion gas also flows downward. , a large number of tubes 2 are arranged in a row similar to the one shown in FIG. It flows upwards.

第5図および第6図に示されている炉によシスチームリ
フオーマを行う方法は、何れも管2内を流れる飽和炭化
水素と水蒸気を含むガスをバーナ3によ多管外よシ加熱
して触媒の存在のもとに反応させるものであるが、該管
2内の反応は1常に大きい吸熱反応であってその反応速
度は著しく大きく、必要な熱量さえ与えれば瞬間的に平
衡に達する程で熱の供給速度が反応速度を律する最大の
因子であって、このことから管2の耐熱限界内で可能な
限シ鎖管2の単位面積当シの伝熱量(以後ヒートフラッ
クスという)を大きくすることが反応を促進させること
となシ、また炉の能力の向上に最も必要なことである。
In both methods of performing system steam reformer using the furnace shown in FIGS. 5 and 6, gas containing saturated hydrocarbons and water vapor flowing inside the tube 2 is heated by the burner 3 outside the tube. However, the reaction inside the tube 2 is always a large endothermic reaction, and the reaction rate is extremely high, reaching equilibrium instantaneously if the necessary amount of heat is given. The heat supply rate is the biggest factor governing the reaction rate, and from this, the maximum amount of heat transfer per unit area of the chain tube 2 (hereinafter referred to as heat flux) that is possible within the heat resistance limit of the tube 2 is Increasing the size not only accelerates the reaction, but also is the most necessary thing to improve the capacity of the furnace.

従って鎖管2の耐熱限界に余裕のある管2内ガス温度の
低い入ロ部OヒーFフフツクスを最大となし、出口部に
向って徐々と小となし鎖管2の平均ヒートフラックスを
大とすることが望ましい。また、第5図および第6図に
示されているスチームリフオーマは、管2の耐熱限界近
くで運転しておシ、過熱あるいは加熱のむらを防ぐため
比較的小容量のバーナを多数設けているが、それらの運
転操作メンテナンスは相当頂雑である。
Therefore, the heat flux at the inlet part where the gas temperature inside the pipe 2 is low is set to the maximum, and gradually decreases toward the outlet part, so that the average heat flux of the chain pipe 2 is increased. It is desirable to do so. In addition, the steam reheater shown in Figs. 5 and 6 operates near the heat resistance limit of the tube 2, and is equipped with a large number of relatively small-capacity burners to prevent overheating or uneven heating. However, their operation and maintenance are quite complicated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来法では次に列記するような欠点を有し
ていた。
The conventional methods described above have the following drawbacks.

(1)従来の炉では、バーナーで反応管を加熱するため
に、反応管を一定間隔に配置する必要があυ、■炉が大
きくなる■多量の供給ガスを、処理する場合、1つの炉
に配置可能な反応管の数が限られるため、複数の炉を必
要とする■スケールアップが難しい等の欠点があった。
(1) In conventional furnaces, in order to heat the reaction tubes with a burner, it is necessary to arrange the reaction tubes at regular intervals. Because the number of reaction tubes that can be arranged is limited, there are drawbacks such as requiring multiple furnaces and making scale-up difficult.

(2)従来、バーナーで反応管を加熱するために、どの
ようにバーナー操作を行ってもヒートフラックスに分布
を生じ、局部的に反応管が加熱され、反応管の熱膨張な
いしは管の破裂(サーマルφクリープ)を生じていえ。
(2) Conventionally, in order to heat a reaction tube with a burner, no matter how the burner is operated, the heat flux will be distributed, the reaction tube will be locally heated, and thermal expansion of the reaction tube or tube rupture ( Thermal φcreep) may occur.

このような破裂をおさえるためには、供給ガスの圧力を
20〜30kg/−程度にする必要があシ、供給ガスの
圧力に限界があった。
In order to suppress such rupture, it is necessary to set the pressure of the supplied gas to about 20 to 30 kg/-, and there is a limit to the pressure of the supplied gas.

(3)バーナーで反応管を加熱する場合も、加熱温度の
限界は850℃程度であシ、この温度以上にするとヒー
トフラックスに分布を生じゃすくなシ、従って反応の不
均一性(ヒート・スポット)に起因して反応管の熱膨張
ないし ゛は管の破4(サーマル・クリープ)をこの場
合も生じることになる。
(3) Even when heating the reaction tube with a burner, the heating temperature limit is about 850°C; if the temperature exceeds this temperature, the heat flux will be unevenly distributed, resulting in non-uniformity of the reaction (heat spots, etc.). ), thermal expansion of the reaction tube or rupture (thermal creep) of the tube will occur in this case as well.

そのため、バーナーで加熱したガスの炉出口での温度は
たかだか800℃程度であシ、ガスタービン等での利用
は無しかつ九。
Therefore, the temperature of the gas heated by the burner at the furnace outlet is at most about 800°C, and it cannot be used in a gas turbine or the like.

(4)バーナーによる過熱あるいは加熱のむらを防ぐた
め、比較的小容量のバーナーを多数設けているが、それ
らの運転操作メンテナンスは相当複雑である。
(4) In order to prevent overheating or uneven heating by the burners, a large number of relatively small capacity burners are provided, but their operation and maintenance are quite complicated.

〔発明の目的〕[Purpose of the invention]

本発明は上述した従来のスチームリフオーマと称される
反応器の有する上記問題点を解消しうる反応装置を提供
しようとするものである。
The present invention aims to provide a reaction apparatus that can solve the above-mentioned problems of the conventional reactor called a steam reformer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、 (1)  原料ガスが流通され、かつ内部に触媒が充填
され、炉内上方に垂直に配設された多数のU字型反応管
、該反応管を隔離する良好な輻射性を有する材料に酸化
触媒を担持させたグリッド状の物質炉底部に燃焼成分を
含む高温ガスを供給する供給口及び炉頂部に該高温ガス
を排出する排出口を設けてなることを特徴とする反応装
置(以下、これを第1発明という) (2)原料ガスが流通され、かつ内部に触媒が充填され
、炉内上方に垂直に配設された多数のU字型反応管、該
反応管の周囲を、良好な輻射性を有する材料に酸化触媒
を担持させたベレット状の物質を充てんしてなる層、炉
底部に燃焼成分を含む高温ガスを供給する供給口及び炉
頂部に該高温ガスを排出する排出口を設けてなることを
特徴とする反応装置(以下、これを第2発明という) である。
The present invention consists of: (1) A large number of U-shaped reaction tubes arranged vertically in the upper part of the furnace, through which raw material gas flows, and the insides of which are filled with catalyst, and which have good radiation properties to isolate the reaction tubes. A reactor comprising a grid-like material in which an oxidation catalyst is supported on a material having a feed port for supplying high-temperature gas containing combustion components at the bottom of the furnace, and an outlet for discharging the high-temperature gas at the top of the furnace. (Hereinafter, this will be referred to as the first invention) (2) A large number of U-shaped reaction tubes arranged vertically above the furnace, through which the raw material gas is circulated and filled with catalyst, and around the reaction tubes. A layer made of a material with good radiation properties filled with a pellet-like substance supporting an oxidation catalyst, a supply port for supplying high-temperature gas containing combustion components to the bottom of the furnace, and a discharge port for discharging the high-temperature gas to the top of the furnace. This is a reaction device (hereinafter referred to as the second invention) characterized in that it is provided with a discharge port that allows the reaction to occur.

以下、本発明を添付図によって更に詳述する。Hereinafter, the present invention will be explained in further detail with reference to the accompanying drawings.

第1図、第2図にそれぞれ第1発明反応装置の実施態様
の横断面及び縦断面を示す。
FIG. 1 and FIG. 2 respectively show a cross section and a longitudinal section of an embodiment of the first invention reactor.

この第1の本発明反応装置の実施態様は、第1図に示す
ように、内部に触媒を充填されたU字型の反応管4が、
炉s内に多数配置され、それらは輻射性の良好な材料に
酸化触媒を担持させたグリッド状の物質6で隔離される
。そして第2図に示すように、炉5上部にU字型の反応
管4を多数配置し、炉底部の供給口9より高温ガスGを
供給するようKしである。この高温ガスGの供給の際、
必要に応じ多孔板8上に砂などの熱媒7を装填し、高温
ガスGによって該熱媒7を流動床状に流動させ、炉50
半径方向の高温ガスGの温度分布、流速分布を均一にす
るようKしてもよい。なお第2図中の10は高温ガスの
排出口、Lは熱媒7の流動床の上位水準面を示す。
In the first embodiment of the reactor of the present invention, as shown in FIG. 1, a U-shaped reaction tube 4 filled with a catalyst is
A large number of them are arranged in the furnace s, and they are isolated by a grid-like material 6 in which an oxidation catalyst is supported on a material with good radiation properties. As shown in FIG. 2, a large number of U-shaped reaction tubes 4 are arranged in the upper part of the furnace 5, and a high temperature gas G is supplied from a supply port 9 at the bottom of the furnace. When supplying this high temperature gas G,
If necessary, a heating medium 7 such as sand is loaded onto the perforated plate 8, and the heating medium 7 is made to flow like a fluidized bed by the high temperature gas G.
The temperature distribution and flow velocity distribution of the high temperature gas G in the radial direction may be made uniform. In FIG. 2, numeral 10 indicates a high-temperature gas discharge port, and L indicates an upper level surface of the fluidized bed of the heating medium 7.

〔作用〕[Effect]

この高温ガスGは、炉5内を上昇し、輻射性の良好な材
料に酸化触媒を担持させたグリッド状の物質6を通して
、U字型反応v4を均一に加熱する。
This high-temperature gas G rises in the furnace 5 and uniformly heats the U-shaped reaction v4 through a grid-shaped substance 6 in which an oxidation catalyst is supported on a material with good radiation properties.

このような上記反応装置において、反応管4を輻射性の
良好な材料に酸化触媒を担持したグリッド状の物り(6
で隔離するのは、高温ガス中の燃焼成分を触媒で燃焼し
て反応!!8(燃焼熱)を利用できるとと及゛び反応熱
が大きいこと、固体の輻射能がガスに比較して桁違いに
大きい仁と、および多孔性のグリッド中をガスが直接流
れる場合、熱伝達率、および@熱面積が平滑面よシもは
るかに大きいためである。
In such a reaction apparatus, the reaction tube 4 is a grid-like material (6
What is isolated is that the combustion components in the high-temperature gas are burned with a catalyst and reacted! ! 8 (heat of combustion), the heat of reaction is large, the radioactivity of solids is orders of magnitude higher than that of gases, and when gas flows directly through a porous grid, heat This is because the conductivity and thermal area are much larger than on a smooth surface.

第1の本発明において紘これらの現象を利用し、グリッ
ド材の側面に高温ガスを流し、固体中の反応熱及び輻射
熱で反応管を加熱するようKしたものである。
In the first aspect of the present invention, these phenomena are utilized to flow high-temperature gas to the side surface of the grid material so that the reaction tube is heated by the reaction heat and radiant heat in the solid.

次に、第5図を用いて第1の本発明反応装置を採用した
全体フローを示す。
Next, the overall flow using the first reactor of the present invention will be shown using FIG.

天然ガス、ナフサなどの突化水素と水蒸気を含む原料ガ
ス11は、炉5内で反応して以下の(1)式に従い、多
量の水素を含有するガス12として反応管4外へでる。
A raw material gas 11 containing hydrogen and water vapor, such as natural gas or naphtha, reacts in the furnace 5 and exits the reaction tube 4 as a gas 12 containing a large amount of hydrogen according to the following equation (1).

CmHn+mH10: mco + (m+−)H! 
   (1)下部より炬5内に入った高温ガスG中の燃
焼成分は、以下の12)〜(6)式に従い、反応熱を生
゛じかつ輻射熱とともに、 zco+o、42CO1+135.4Kcat121N
i CH4+−0B−→CO+2H1十a7 Kcal  
 (3)2C2E4+70g−+4CO雰+6H露+2
x57’2..8KcaL  (41CjT% + 5
02 →3 co、+4a=o+s 50KcaL<5
)2C4H1@+1502−+aco、−Ham、o−
Hx688KcaLi61多数の反応管4に熱を与えた
後排出口10よシ、炉5外に出て、さらにガスタービン
13を経由して廃熱ボイラー4でそれぞれで利用するこ
とができる。
CmHn+mH10: mco + (m+-)H!
(1) The combustion components in the high-temperature gas G that entered the kiln 5 from the bottom generate reaction heat and radiant heat according to the following equations 12) to (6), zco+o, 42CO1+135.4Kcat121N
i CH4+-0B-→CO+2H10a7 Kcal
(3) 2C2E4+70g-+4CO atmosphere+6H dew+2
x57'2. .. 8KcaL (41CjT% + 5
02 →3 co, +4a=o+s 50KcaL<5
)2C4H1@+1502-+aco, -Ham, o-
After the Hx688KcaLi61 heat is applied to a large number of reaction tubes 4, it exits the furnace 5 through the exhaust port 10, and further passes through the gas turbine 13 so that it can be used in each of the waste heat boilers 4.

次に第2発明反応装置の実施態様を第4図によって説明
する。第4図はその実施態様の縦断面図をあられし、第
4図において第1因、第2図及び第5図と同一符号は第
1図、第2図及び第3図と同一部を示し、15はU字型
反応器4間に充填された良好な輻射性材料に酸化触媒を
担持したペレット状物質、16は該ベレット状物質を支
持する支切シ板である。その他の構成は第1図、第2図
によって説明した第1発明反応器と同一であり、作用も
同一である。
Next, an embodiment of the second invention reactor will be explained with reference to FIG. FIG. 4 shows a longitudinal cross-sectional view of this embodiment, and in FIG. 4, the same reference numerals as those in FIG. 1, FIGS. , 15 is a pellet-like material in which an oxidation catalyst is supported on a good radiation material filled between the U-shaped reactors 4, and 16 is a dividing plate that supports the pellet-like material. The rest of the structure is the same as the first invention reactor explained with reference to FIGS. 1 and 2, and the operation is also the same.

〔突施例1〕(第1発明) 第1図及び第2図に示した反応装置において、U字型の
管内径106.1 am 、管肉厚16 tea 、 
U字管有効長115mの25 Cr−20N14%を用
い、次のような試験条件下での反応器出入口組成を表1
に示す。
[Example 1] (First invention) In the reaction apparatus shown in FIGS. 1 and 2, the U-shaped tube inner diameter is 106.1 am, the tube wall thickness is 16 tea,
Using 14% 25 Cr-20N with a U-tube effective length of 115 m, the reactor inlet and outlet compositions under the following test conditions are shown in Table 1.
Shown below.

反応管入口ガス温度    700℃ 反応管出ロガス温度    840℃ 炉入ロ高温ガス温度   1000℃ 炉出口高温ガス温度    950℃ 反応前反応力     30 atm (出入口とも)
高温ガス圧力      5atm(出入口とも)表1
 反応器出入口組成 なお、この実施例1の水素発生用の触媒としては、アル
ミナ−シリカ担体に5〜6%のニッケルを含浸したもの
を用いた。
Reaction tube inlet gas temperature 700°C Reaction tube outlet log gas temperature 840°C Furnace entry high temperature gas temperature 1000°C Furnace outlet high temperature gas temperature 950°C Reaction power before reaction 30 atm (both inlet and outlet)
High temperature gas pressure 5 atm (both inlet and outlet) Table 1
Reactor Inlet and Outlet Composition The catalyst for hydrogen generation in Example 1 used was an alumina-silica carrier impregnated with 5 to 6% nickel.

またグリッドとして使用する良好な輻射性の材料として
は、3−厚さの酸化チタンを用い、これに、7 vtX
の酸化鋼を含浸させたものを酸化触媒とした。
A good radiant material used as a grid is 3-thick titanium oxide, which has a 7-vtX
The oxidation catalyst was impregnated with oxidized steel.

また、高温ガス組成を表2に示す。Further, the high temperature gas composition is shown in Table 2.

表2 高温ガス組成 [実施例2](第2@明) この実施例は、実施例1のグリッドの輻射性材料の代シ
に第4図に示すような良好な輻射性材料に酸化触媒を担
持したベレット状物質を反応管間に充填した反応器を使
用したものである。
Table 2 High temperature gas composition [Example 2] (2nd @ Ming) In this example, instead of the radiant material of the grid in Example 1, an oxidation catalyst was added to a good radiant material as shown in Fig. 4. A reactor is used in which a supported pellet-like substance is packed between reaction tubes.

この場合、輻射性の良好な材料としては、直怪2−の酸
化チタンを使用し、これに7 vtXの酸化鋼を含浸さ
せ九ものを酸化触媒とした。
In this case, as a material with good radiation properties, titanium oxide of Naokai 2- was used, and this was impregnated with oxidized steel of 7 vtX to serve as an oxidation catalyst.

試験条件を実施例1と全く同様とした場合の反応器出入
口組成を表5に示す。
Table 5 shows the reactor inlet and outlet compositions when the test conditions were exactly the same as in Example 1.

表3 反応器出入口組成 なお、との実施例2の水素発生用の触媒は、アルミナ−
シリカ担体に5〜6%のニッケルヲ含浸したものを用い
た。
Table 3 Reactor inlet and outlet composition The catalyst for hydrogen generation in Example 2 with
A silica carrier impregnated with 5 to 6% nickel was used.

なお、実施例1,2とも熱媒として砂を用いた。Note that in both Examples 1 and 2, sand was used as the heat medium.

〔発明の効果〕〔Effect of the invention〕

(1)  従来法に較べて、炉内に多数のU字型反応管
を設置でき、コンパクトな反応設計が可能となった。
(1) Compared to the conventional method, a large number of U-shaped reaction tubes can be installed in the furnace, allowing for a more compact reaction design.

12)  高温ガスの反応熱と輻射を利用して、反応管
を加熱するための反応管内のビートスポットはほとんど
なく、従って反応管の破裂(サーマル・クリープ)の心
配がない。
12) Since the reaction tube is heated using the reaction heat and radiation of high-temperature gas, there are almost no beat spots inside the reaction tube, so there is no fear of the reaction tube bursting (thermal creep).

(3)輻射材に酸化触媒が担持しているため、高温ガス
中の燃焼成分の酸化反応!(よる反応熱を利用できる。
(3) Because the radiant material supports an oxidation catalyst, the combustion components in the high-temperature gas undergo an oxidation reaction! (The heat of reaction can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、第1の本発明反応装置の一実施態
様を示す図で、第1図はその横断面図、第2図はその縦
断面図を示す。vgS図は第1の本発明反応装置を採用
し全体のフローを示す図である。第4図は第2の本発明
反応装置の一実施態様の縦断面図を示す。第5図及び第
6図は従来のスチームリフオーマを説明するための図で
ある。
FIGS. 1 and 2 are views showing one embodiment of the first reactor of the present invention, with FIG. 1 showing its cross-sectional view and FIG. 2 showing its longitudinal cross-sectional view. The vgS diagram is a diagram showing the overall flow using the first reaction apparatus of the present invention. FIG. 4 shows a longitudinal sectional view of an embodiment of the second reactor of the present invention. FIG. 5 and FIG. 6 are diagrams for explaining a conventional steam refractor.

Claims (2)

【特許請求の範囲】[Claims] (1)原料ガスが流通され、かつ内部に触媒が充填され
、炉内上方に垂直に配設された多数のU字型反応管、該
反応管を隔離する良好な輻射性を有する材料に酸化触媒
を担持させたグリッド状の物質炉底部に燃焼成分を含む
高温ガスを供給する供給口及び炉頂部に該高温ガスを排
出する排出口を設けてなることを特徴とする反応装置。
(1) A large number of U-shaped reaction tubes are arranged vertically in the upper part of the furnace, through which the raw material gas is circulated, and the insides are filled with catalyst, and the reaction tubes are oxidized to a material with good radiation properties that isolates the tubes. 1. A reaction device comprising a grid-shaped material supporting a catalyst, and a feed port for supplying high-temperature gas containing combustion components to the bottom of the furnace, and an exhaust port for discharging the high-temperature gas to the top of the furnace.
(2)原料ガスが流通され、かつ内部に触媒が充填され
、炉内上方に垂直に配設された多数のU字型反応管、該
反応管の周囲を、良好な輻射性を有する材料に酸化触媒
を担持させたペレット状の物質を充てんしてなる層、炉
底部に燃焼成分を含む高温ガスを供給する供給口及び炉
頂部に該高温ガスを排出する排出口を設けてなることを
特徴とする反応装置。
(2) A large number of U-shaped reaction tubes are arranged vertically above the furnace, through which the raw material gas flows, and the insides are filled with catalyst, and the surroundings of the reaction tubes are made of material with good radiation properties. It is characterized by having a layer filled with pellet-like material supporting an oxidation catalyst, a supply port for supplying high-temperature gas containing combustion components at the bottom of the furnace, and an exhaust port for discharging the high-temperature gas at the top of the furnace. A reactor with
JP2728787A 1987-02-10 1987-02-10 Reaction device Pending JPS63197534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2728787A JPS63197534A (en) 1987-02-10 1987-02-10 Reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2728787A JPS63197534A (en) 1987-02-10 1987-02-10 Reaction device

Publications (1)

Publication Number Publication Date
JPS63197534A true JPS63197534A (en) 1988-08-16

Family

ID=12216860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2728787A Pending JPS63197534A (en) 1987-02-10 1987-02-10 Reaction device

Country Status (1)

Country Link
JP (1) JPS63197534A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676181A1 (en) * 1991-05-06 1992-11-13 Inst Francais Du Petrole Device for converting hydrocarbons in a vessel heated by radiant heating means with variable heat flux and its use
FR2676223A1 (en) * 1991-05-06 1992-11-13 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF AROMATIC HYDROCARBONS IN AN ENCLOSURE HEATED BY VARIABLE THERMAL FLOW RADIANT HEATING MEANS.
FR2676222A1 (en) * 1991-05-06 1992-11-13 Inst Francais Du Petrole Process for the dehydrogenation of aliphatic hydrocarbons to olefinic hydrocarbons
US8021624B2 (en) * 2007-01-16 2011-09-20 Basf Se Reactor, and method for the production of hydrogen sulfide
US8580208B2 (en) 2007-01-16 2013-11-12 Basf Se Reactor and method for production of hydrogen sulphide
JP2019205975A (en) * 2018-05-30 2019-12-05 大同特殊鋼株式会社 Atmospheric gas generating apparatus
EP4309779A1 (en) * 2022-07-18 2024-01-24 Doosan Enerbility Co., Ltd. Combined reformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186201A (en) * 1985-02-14 1986-08-19 Mitsubishi Heavy Ind Ltd Process for forming hydrogen-containing gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186201A (en) * 1985-02-14 1986-08-19 Mitsubishi Heavy Ind Ltd Process for forming hydrogen-containing gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676181A1 (en) * 1991-05-06 1992-11-13 Inst Francais Du Petrole Device for converting hydrocarbons in a vessel heated by radiant heating means with variable heat flux and its use
FR2676223A1 (en) * 1991-05-06 1992-11-13 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF AROMATIC HYDROCARBONS IN AN ENCLOSURE HEATED BY VARIABLE THERMAL FLOW RADIANT HEATING MEANS.
FR2676222A1 (en) * 1991-05-06 1992-11-13 Inst Francais Du Petrole Process for the dehydrogenation of aliphatic hydrocarbons to olefinic hydrocarbons
US8021624B2 (en) * 2007-01-16 2011-09-20 Basf Se Reactor, and method for the production of hydrogen sulfide
US8580208B2 (en) 2007-01-16 2013-11-12 Basf Se Reactor and method for production of hydrogen sulphide
JP2019205975A (en) * 2018-05-30 2019-12-05 大同特殊鋼株式会社 Atmospheric gas generating apparatus
EP4309779A1 (en) * 2022-07-18 2024-01-24 Doosan Enerbility Co., Ltd. Combined reformer

Similar Documents

Publication Publication Date Title
JP5216758B2 (en) Internal combustion exchange reactor for fixed bed endothermic reaction
JP3075757B2 (en) Endothermic reactor
US4315893A (en) Reformer employing finned heat pipes
CN107812499B (en) Reformer tubes with structured catalyst and improved heat balance
US4909809A (en) Apparatus for the production of gas
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JP2022506005A (en) Steam reforming or dry reforming of hydrocarbons
US3119671A (en) Upright fluid heating furnace with heat recovery system
RU2462413C2 (en) Novel furnace for steam reforming having porous burners
KR20230042654A (en) Process for producing synthesis gas with reduced steam export
JPS63197534A (en) Reaction device
KR101526945B1 (en) Cylindrical Steam reformer using multi-tube
JPH0154820B2 (en)
JPS5823168A (en) Fuel cell power generating system
US3450507A (en) Integrated reforming of hydrocarbons
JPS61186201A (en) Process for forming hydrogen-containing gas
JPS59102804A (en) Device for modifying fuel
RU2615768C1 (en) Reactor for catalytic steam and steam-carbon-dioxide hydrocarbon conversion
JPH0324401B2 (en)
JPH0647444B2 (en) Method for producing hydrogen-containing gas
GB2314853A (en) Reformer comprising finned reactant tubes
KR102398437B1 (en) Steam Hydrocarbon Reformer
JPH01290502A (en) Fluidized bed type reforming furnace
JPS6230602A (en) Steam modifying furnace
JP2004137116A (en) Reformer