JPH01290502A - Fluidized bed type reforming furnace - Google Patents

Fluidized bed type reforming furnace

Info

Publication number
JPH01290502A
JPH01290502A JP11816688A JP11816688A JPH01290502A JP H01290502 A JPH01290502 A JP H01290502A JP 11816688 A JP11816688 A JP 11816688A JP 11816688 A JP11816688 A JP 11816688A JP H01290502 A JPH01290502 A JP H01290502A
Authority
JP
Japan
Prior art keywords
catalyst
gas
fluidized bed
tube
reforming furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11816688A
Other languages
Japanese (ja)
Other versions
JPH0635321B2 (en
Inventor
Sadahiko Maeda
前田 禎彦
Yasumasa Idei
安正 出井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP11816688A priority Critical patent/JPH0635321B2/en
Priority to US07/349,771 priority patent/US4966101A/en
Priority to DE68913345T priority patent/DE68913345T2/en
Priority to EP89304920A priority patent/EP0342918B1/en
Publication of JPH01290502A publication Critical patent/JPH01290502A/en
Publication of JPH0635321B2 publication Critical patent/JPH0635321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/00849Stationary elements outside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00858Moving elements
    • B01J2208/00876Moving elements outside the bed, e.g. rotary mixer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames

Abstract

PURPOSE:To improve the uniform heat transfer of catalyst pipes and the response velocity for the variation of load to be efficiently allowed to reform in the fluidized bed type reforming furnace in which hydrocarbon fuel is changed into the gas the main component of which is hydrogen by disposing catalyst pipes in the specified arrangement. CONSTITUTION:Air and hydrocarbon fuel, such as city gas, preheated by a preheater 19 are supplied to a gas burner 16, and the gas fuel is burnt in a combustion chamber and the burnt gas is introduced from nozzles 40 to a fluidizing chamber 17. By this introduction of gas, the fluidizing and medium filled in the fluidizing chamber 17 is fluidized and heated to form a fluidized bed F, which uniformly heats the catalyst pipes 18. Plural pipes 18 are provided respectively in vertical direction and horizontal direction keeping horizontal state in the fluidizing chamber 17, and consequently, the number of the catalyst pipes 18 which are buried in the fluidized bed is increased or decreased according to the height caused by the variation of the load of the reforming furnace, and the fluctuation width of temp. of the fluidized bed F is reduced. Moreover, spiral body 70 is provided in the catalyst pipe 18 so that city gas and steam are flowed in a spiral flow in the catalyst layer 60 densely filled with catalyst, and reforming is efficiently carried out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は都市ガスなどの炭化水素系燃料と水蒸気とから
水素を主成分とするガスを取出して例えば燃料電池に供
給しうるようにした流動床型改質炉に係り、詳しくは流
動床部の差圧が小さく、したがって動力損失も少なく、
かつ、負荷変動によっても流動床温度の変化が少なく、
また、触媒管内の原料を均一に加熱でき極めて効率良く
改質しうるなとした流動床型改質装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fluidized fluid that can extract gas containing hydrogen as a main component from a hydrocarbon fuel such as city gas and water vapor and supply it to, for example, a fuel cell. Regarding the bed type reforming furnace, in detail, the differential pressure in the fluidized bed section is small, so there is little power loss.
In addition, there is little change in fluidized bed temperature even with load fluctuations.
The present invention also relates to a fluidized bed reforming apparatus that can uniformly heat the raw material in the catalyst tube and reform it extremely efficiently.

[従来の技術] 従来、この種の流動床型改質炉は改質炉内部に複数の触
媒管を縦方向に向けて配置し、触媒管と触媒管の間に流
動床を形成させ、流動床下部から供給される燃料と空気
との燃焼により加熱された流動媒体を触媒管に接触させ
て触媒管を加熱し、触媒管内部に供給される炭化水素燃
料を水蒸気を添加して改質するように構成されている。
[Prior Art] Conventionally, this type of fluidized bed reformer has a plurality of catalyst tubes arranged vertically inside the reformer, a fluidized bed is formed between the catalyst tubes, and a fluidized bed is formed between the catalyst tubes. The fluidized medium heated by the combustion of fuel and air supplied from the bottom of the bed is brought into contact with the catalyst tube to heat the catalyst tube, and the hydrocarbon fuel supplied inside the catalyst tube is reformed by adding steam. It is configured as follows.

[発明が解決しようとする課B] このような従来の縦方向に触媒管を設けた改質炉におい
ては、縦方向に長い触媒管に流動媒体を接触させる必要
があるため、静若沫の高さ(流動媒体が流動していない
時の高さ)を、触媒管長さの例えば約手分位と高くする
ため、流動床部のガスの差圧が大きくなり、このために
動力損失が大きくなるという問題点がある。また、流動
媒体の飛び上り高さも静置床高さが高くなるほど、高く
なるためフリーボードを高くする必要があり、このため
に炉体が高くなる。またフリーボード高さを低く抑えよ
うとすると炉外へ飛び出す波動媒体の捕集装置が必要と
なる。
[Problem B to be solved by the invention] In such a conventional reforming furnace with catalyst tubes installed in the vertical direction, it is necessary to bring the fluidized medium into contact with the catalyst tubes that are long in the vertical direction. Because the height (the height when the fluidized medium is not flowing) is increased, for example, by about a hand of the length of the catalyst tube, the differential pressure of the gas in the fluidized bed section increases, resulting in a large power loss. There is a problem with that. Furthermore, the higher the height of the stationary bed, the higher the flying height of the fluidized medium becomes, so the free board needs to be made higher, which increases the height of the furnace body. In addition, in order to keep the freeboard height low, a device is required to collect the wave medium that flies out of the furnace.

一方、触媒管を縦方向に向けて設けた従来の流動床型改
質炉は流動床の特徴である床内を均一温度に保つことが
できるという利点を有していて触媒管の温度分布を小さ
くできて均一な熱伝達を与えることができ、また、負荷
の変化に対して応答速度も速いという利点は有している
が、一方では、流動床の高さは負荷(ガス量)に直線的
に比例せず、例えば負荷(ガス量)が増大するにしたが
って流動床高さが上方に徐々に湾曲していきながら増大
していく曲線を描くという性質を有しているため、例え
ば負荷が半分になっても流動媒体が縦方向に向いた触媒
管に接触する割合は半分までは下がらず、したがって交
換熱量が増えて流動床温度が低下し、その改質炉の負荷
に応じた所定の改質が行なえないという問題点も有して
いる。
On the other hand, conventional fluidized bed reforming furnaces with catalyst tubes oriented vertically have the advantage of being able to maintain a uniform temperature inside the bed, which is a characteristic of a fluidized bed, and the temperature distribution of the catalyst tubes is controlled. Although it has the advantage of being small, providing uniform heat transfer, and having a fast response speed to changes in load, on the other hand, the height of the fluidized bed is linear with the load (gas amount). For example, as the load (gas amount) increases, the height of the fluidized bed gradually curves upward and increases. Even if the ratio is halved, the proportion of the fluidized medium in contact with the vertically oriented catalyst tubes does not decrease to half, so the amount of heat exchanged increases and the fluidized bed temperature decreases, reducing the rate of contact between the fluidized medium and the vertically oriented catalyst tubes. Another problem is that it cannot be modified.

本発明は上記のような問題点に鑑みなされたもので、流
動床の高さを低くでき、圧損や動力損失が少なく、炉体
高さも必要以上高くならず、また改質炉の負荷変動に対
しても流動床温度の変化を少なくでき負荷に応じた所定
の改質を行ないうる等とした流動床型改質炉を提供する
ことを目的としている。
The present invention was developed in view of the above-mentioned problems.The height of the fluidized bed can be reduced, pressure loss and power loss are small, the height of the furnace body does not become unnecessarily high, and it is also effective against load fluctuations in the reforming furnace. It is an object of the present invention to provide a fluidized bed type reforming furnace which can reduce changes in fluidized bed temperature even when the fuel is heated, and can carry out predetermined reforming according to the load.

[課題を解決するための手段] 上記目的を達成するために、本発明に係る流動床型改質
炉は、流動室内部に触媒を充填した触媒管を有し、この
触媒管内に炭化水素系燃料と水蒸気を通すと共に触媒管
を流動床により外部から加熱することにより炭化水素系
燃料を水素を主成分とするガスに変換するようにした流
動床型改質炉において、前記触媒管をガス分散板上方位
置の流動室に水平状態で上下方向と水平方向にそれぞれ
複数本配設した構成とした。
[Means for Solving the Problems] In order to achieve the above object, a fluidized bed reformer according to the present invention has a catalyst tube filled with a catalyst inside a fluidized chamber, and a hydrocarbon-based reformer is provided in the catalyst tube. In a fluidized bed reformer that converts hydrocarbon fuel into a gas containing hydrogen as a main component by passing fuel and steam through the catalyst tube and heating the catalyst tube from the outside using a fluidized bed, the catalyst tube is used for gas dispersion. The configuration was such that multiple tubes were placed horizontally in the flow chamber above the plate, both vertically and horizontally.

また、前記水平な触媒管は、管の内周壁部に沿い、かつ
、管の長手方向にわたって延びる螺旋状の帯を有してお
り、この管内に触媒を最密状態で充填させた触媒管とし
た。
Further, the horizontal catalyst tube has a spiral band extending along the inner circumferential wall of the tube and in the longitudinal direction of the tube, and is a catalyst tube in which the catalyst is packed in the tube in a close-packed state. did.

さらに、前記ガス分散板は、上下方向に隙間を有して配
置された2つの仕切板と、この仕切板を上下方向に貫通
した設けた多数のガスノズルとからなり、前記隙間をガ
ス燃料供給通路として形成すると共に、このガス燃料供
給通路に位置する前記ガスノズルの壁部にガス燃料導入
用の小孔を設けたガス分散板としたものである。
Further, the gas distribution plate is composed of two partition plates arranged with a gap in the vertical direction, and a large number of gas nozzles provided vertically passing through the partition plates, and the gap is used as a gas fuel supply passage. In addition, the gas distribution plate is formed with a small hole for introducing gas fuel into the wall of the gas nozzle located in the gas fuel supply passage.

[作用] 触媒管を水平状態で上下方向と水平方向にそれぞれ複数
本配設することにより、流動室における触媒管の設定高
さあるいは高さ方向の触媒管同士の設置間隔などを、流
動媒体の充填量と相関させ、流動床高さが改質炉負荷の
変動に対応して変えられた際にこの流動床への埋没水数
が変化するように、すなわち、流動媒体が触媒管に接触
する割合が変化するように調整して設定することが可能
となり、改質炉の負荷(ガス量)の増減に応じて流動床
から触媒管に伝えられる総熱量が増減することになり、
流動床温度の変動幅が小さくできる。
[Function] By arranging a plurality of catalyst tubes horizontally in the vertical and horizontal directions, the set height of the catalyst tubes in the flow chamber or the installation interval between the catalyst tubes in the height direction can be adjusted according to the flow medium. Correlated with the filling amount, the number of water submerged in this fluidized bed changes when the fluidized bed height is changed in response to changes in the reformer load, i.e. the fluidized medium contacts the catalyst tubes. It is now possible to adjust and set the ratio so that it changes, and the total amount of heat transferred from the fluidized bed to the catalyst tubes increases or decreases in response to increases or decreases in the load (gas amount) of the reformer.
Fluidized bed temperature fluctuation range can be reduced.

これにより、改質炉負荷が低下した場合においても従来
の触媒管を縦方向に設置した場合のように多端の熱交換
が行なわれて流動床温度が低下するという71(Fff
iが回避され、低負荷時においても安定した改質炉の運
転が行なわれる。
As a result, even when the reformer load decreases, multiple-end heat exchange is performed as in the case of conventional catalyst tubes installed vertically, and the fluidized bed temperature decreases (71).
i is avoided, and the reforming furnace is operated stably even under low load.

そして、触媒管を水平に設置するので、前記の設定高さ
位置などと関連させて流動媒体の静置床の高さを極めて
低くでき、いわゆる浅床とすることが可能であり、この
ため流動化用ガスの圧損が小さくなり、この動力損失も
小さくなる。
Since the catalyst tube is installed horizontally, the height of the stationary bed of the fluidized medium can be extremely low in relation to the above-mentioned set height position, and it is possible to create a so-called shallow bed. The pressure loss of the working gas is reduced, and this power loss is also reduced.

そして、このため流動媒体の飛び出し高さも小さくなり
、フリーボードも低く抑えることが可能で改質炉大きさ
が大きくならない。
For this reason, the height of the fluidized medium that protrudes is also reduced, the free board can also be kept low, and the size of the reforming furnace does not increase.

このような状態において、本発明の流動床型改質炉は流
動床伝熱の有する本来の特徴を発揮し、触媒管への均一
熱伝達、負荷変化に対する応答速度の良好を充分に維持
しつつ炭化水素系燃料の改質を高効率で行なえるもので
ある。
Under such conditions, the fluidized bed reforming furnace of the present invention exhibits the original characteristics of fluidized bed heat transfer, while sufficiently maintaining uniform heat transfer to the catalyst tubes and good response speed to load changes. It is capable of reforming hydrocarbon fuels with high efficiency.

また、触媒管の内壁面に螺旋状の帯を設けてこの触媒管
内に最密状態で触媒を充填した触媒管とすれば、触媒管
が水平であっても、自重で触媒が管の下方へ詰って上方
が疎になることが極力防止され、また例え上方に空間部
が形成されたとしても螺旋状帯の作用により管内のガス
の流れに旋回流が与えられるので、上方の隙間のみをガ
スが流れ、下方に流れなくなって触媒管が部分的に異常
高温になる事態が回避されると共に、充填層伝熱係数が
この帯によりさらに向上させられる。
In addition, if a spiral band is provided on the inner wall of the catalyst tube and the catalyst is packed in the catalyst tube in a close-packed manner, even if the catalyst tube is horizontal, the catalyst will move downward under its own weight. This prevents as much as possible from clogging and sparsing the upper part, and even if a space is formed above, the action of the spiral band gives a swirling flow to the gas flow in the pipe, so that only the upper gap is filled with gas. This prevents the catalyst tube from becoming partially abnormally high in temperature due to the flow of the catalyst tube stopping downward, and the packed bed heat transfer coefficient is further improved by this band.

さらに、ガス分散板の多数のガスノズルに、ガス燃料を
導入して流動床内に流動化用空気と共に供給すれば、流
動床内全体に均一にガス燃料がゆき渡って燃焼され、流
動床温度が均等に保たれて、横に長く延びる複数の触媒
管を均等に加熱する。
Furthermore, by introducing gas fuel into the numerous gas nozzles of the gas distribution plate and supplying it together with fluidizing air into the fluidized bed, the gas fuel is evenly distributed throughout the fluidized bed and burned, and the temperature of the fluidized bed is lowered. A plurality of catalyst tubes extending horizontally are evenly heated.

[実施例] 以下、図面を参照して実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は本発明の実施例に係る流動床型改質炉の縦断面
図、第2図は%1図の■〜■線矢視断面図、第3図は第
2図のX部の拡大縦断面図、第4図は第3図の■〜■線
矢視図で螺旋状帯の取付要領を示す図、第5図はガス分
散板の拡大詳細図である。
Fig. 1 is a longitudinal sectional view of a fluidized bed reforming furnace according to an embodiment of the present invention, Fig. 2 is a sectional view taken along the line ■ to ■ of Fig. %1, and Fig. 3 is a section of FIG. 4 is an enlarged longitudinal cross-sectional view, and FIG. 4 is a view taken along the line ■ to ■ in FIG. 3, showing how to attach the spiral band. FIG. 5 is an enlarged detailed view of the gas distribution plate.

符号10は改質炉体であり、その内部の底部にはガス分
散板12がこの炉内部を横断するように設置され、燃焼
室14が区画形成されている。この燃焼室14の炉壁に
はガスバーナ16が設置され、このバーナ16には図示
を省略したガス燃料管と空気供給管が接続されている。
Reference numeral 10 denotes a reforming furnace body, and a gas distribution plate 12 is installed at the bottom of the reforming furnace body so as to cross the inside of the furnace, and a combustion chamber 14 is defined. A gas burner 16 is installed on the furnace wall of the combustion chamber 14, and a gas fuel pipe and an air supply pipe (not shown) are connected to the burner 16.

ガス分散板12の上方には流動室17が形成され、この
流動室17内には触媒管18が水平状態で上下方向と水
平方向にわたって多数配設されており1本実施例では上
下方向に4段になるように設置されており、かつ上下方
向に千鳥配列となるように設置されている。符号Fは砂
などの小粒径の流動媒体によって形成される流動床を示
し、符号17aは流動床F上部のフリーボード(空塔部
)である、フリーボード17aの上部には前記ガスバー
ナ16へ供給されるガス燃料や燃焼用空気、後記分散板
12のガスノズルへ導入されるガス燃料、あるいは触媒
管18内に供給する都市ガスなどの炭化水素系燃料を燃
焼排ガスによって予熱するための予熱器19が設けられ
、この予熱器19のガス流れの下流には排ガス抜出口3
0が設けられている。
A fluidization chamber 17 is formed above the gas distribution plate 12, and a large number of catalyst tubes 18 are arranged horizontally in the fluidization chamber 17 in the vertical and horizontal directions. They are installed in tiers and in a staggered arrangement in the vertical direction. Reference numeral F indicates a fluidized bed formed by a fluidized medium with a small particle size such as sand, and reference numeral 17a indicates a free board (empty column) above the fluidized bed F. The upper part of the free board 17a is connected to the gas burner 16. A preheater 19 for preheating supplied gas fuel or combustion air, gas fuel introduced into the gas nozzle of the distribution plate 12 (described later), or hydrocarbon fuel such as city gas supplied into the catalyst pipe 18 using combustion exhaust gas. is provided, and an exhaust gas outlet 3 is provided downstream of the gas flow of this preheater 19.
0 is set.

ガス分散板12はその詳細を第5図に示すように、上下
方向に間隔をおいて上部仕切板12aと下部仕切板12
bとが炉体10を横断してRnされ、前記間隔部はガス
燃料供給通路41を構成し、前記上下の仕切板12a、
12bを上下方向に貫通してガスノズル40が固着され
て形成され、このガスノズル40のガス燃料供給通路4
1に位置する部分の壁面にはガス燃料導入孔40aが設
けられている。このガスノズル40の下端は前記燃焼室
14に開口されており、その上部には燃焼室14で燃焼
した燃焼ガスや前記ガス燃料導入孔40aから流入した
ガス燃料を流動室17内へ噴出する吹出孔40bが設け
られ、その上端にはこの吹出孔40bへの流動媒体の侵
入を阻止するための蓋体40cが取付けられている。ま
た、前記ガス燃料供給通路41に通ずる炉体10壁には
ガス燃料供給口41aが設けられている。上下の仕切板
12a、12bにはそれぞれ断熱材13が施されている
。なお、この上下の仕切板12a。
As details of the gas distribution plate 12 are shown in FIG. 5, an upper partition plate 12a and a lower partition plate 12 are arranged at intervals in the vertical direction.
b are Rn across the furnace body 10, the gap constitutes a gas fuel supply passage 41, and the upper and lower partition plates 12a,
A gas nozzle 40 is fixedly formed by vertically penetrating through 12b, and the gas fuel supply passage 4 of this gas nozzle 40
A gas fuel introduction hole 40a is provided in the wall surface of the portion located at 1. The lower end of this gas nozzle 40 is opened to the combustion chamber 14, and the upper part thereof has an outlet hole through which the combustion gas combusted in the combustion chamber 14 and the gas fuel that has flowed in from the gas fuel introduction hole 40a are jetted into the fluidization chamber 17. 40b, and a lid 40c is attached to its upper end to prevent the fluid medium from entering the blow-off hole 40b. Further, a gas fuel supply port 41a is provided in the wall of the furnace body 10 communicating with the gas fuel supply passage 41. A heat insulating material 13 is applied to the upper and lower partition plates 12a and 12b, respectively. Note that this upper and lower partition plate 12a.

12bおよびその断熱材13の部分に木管を施行して水
冷パネルとすることもできる。
12b and its heat insulating material 13 may be made of wood pipe to form a water-cooled panel.

触媒管18はその取付要領を第2図に示すように一端側
を炉体10の炉壁に固定され、他端側は自由とされ、こ
の自由端側で屈曲されてU字形状に形成され、このよう
な上下1対の連続した触媒管18が水平方向に等間隔に
かつ交互にその高さを異ならせて、上下方向に4段とな
るように配置されるものである。なお、符号10aは炉
壁内面に設ける断熱材である。そして、この触媒管18
の炉壁から外部に突出した端面にはフランジ18aが固
着され、このフランジ18aには触媒管18の端部内に
挿入されて触媒を押えて最密状態に保つための内部に断
熱材18dを有する押え筒18cを突設して取付けた相
フランジ18bが図示していないポルト・ナツトによっ
てパツキンを両フランジ18a、18b間に介装させた
状態で取付けられる(第3図参照)、なお、この相フラ
ンジ18bを取外すことにより、触媒60あるいは螺旋
状の帯70の取替えを行なうことができる。そして、第
2図に示すように触媒管18の炉体10から突出した部
分の斜め上方位置と下方位置には上部大径管51と下部
大径管52がそれぞれボイラ炉体10に支持されて設け
られており、上下の触媒管18の炉体lOからの突出部
はそれぞれ上部大径管51と下部大径管52との間を熱
伸びを逃げうるように小径管51aおよび52aで連結
されている。この下部大径管52から小径管52aを介
して触媒管18内に約550℃に加熱された都市ガスな
どの炭化水素系燃料とスチームとが導入され、触媒管1
8内部でさらに流動床から外部加熱されて発生する温度
が約700℃となった水素ガスや一酸化炭素ガスを上部
の触媒管18の小径管51aを介して上部大径管51内
へ導入される。
As shown in FIG. 2, one end of the catalyst tube 18 is fixed to the furnace wall of the furnace body 10, the other end is free, and the free end is bent to form a U-shape. A pair of continuous catalyst tubes 18 (upper and lower) are arranged horizontally at equal intervals and alternately at different heights so as to form four stages in the vertical direction. Note that the reference numeral 10a is a heat insulating material provided on the inner surface of the furnace wall. And this catalyst tube 18
A flange 18a is fixed to the end surface protruding outward from the furnace wall, and the flange 18a has a heat insulating material 18d inside to be inserted into the end of the catalyst tube 18 to press down the catalyst and keep it in a close-packed state. The companion flange 18b attached with the presser cylinder 18c protruding is attached with a gasket interposed between both flanges 18a and 18b using a port nut (not shown) (see Fig. 3). By removing the flange 18b, the catalyst 60 or the spiral band 70 can be replaced. As shown in FIG. 2, an upper large-diameter tube 51 and a lower large-diameter tube 52 are supported by the boiler furnace body 10 at obliquely upper and lower positions of the portion of the catalyst tube 18 that protrudes from the furnace body 10, respectively. The protruding portions of the upper and lower catalyst tubes 18 from the furnace body lO are connected by small diameter tubes 51a and 52a between the upper large diameter tube 51 and the lower large diameter tube 52, respectively, so that thermal expansion can escape. ing. Hydrocarbon fuel such as city gas heated to about 550° C. and steam are introduced into the catalyst tube 18 from the lower large diameter tube 52 through the small diameter tube 52a, and steam is introduced into the catalyst tube 18.
8, hydrogen gas and carbon monoxide gas generated by external heating from the fluidized bed to a temperature of about 700°C are introduced into the upper large diameter pipe 51 through the small diameter pipe 51a of the upper catalyst pipe 18. Ru.

そして、触媒管18内には詳細を第3図および第4図に
示すように、管18の全長にわたって管内壁面にステン
レス鋼などからなる比較的厚みの薄い螺旋状の帯70が
設けられると共に、この触媒管18の波動室17に位置
する部分には固体寸度が20φ×20H程度のバナジウ
ムやニッケル系の触媒60が多数最密状態で充填され、
さらに流動室17から炉外に突出する部分にはステンレ
ス鋼などからなり、多数個押圧して充填しても空隙率が
保たれてガス通過抵抗の少ない状態にされうる充填物8
0が詰められ、前記触媒管18内に充填される触媒60
はこの充填物80を介して前記相フランジ18bの押え
筒18cの押付は作用によって最密状態を保って保持さ
れるように構成されている。なお、触媒管18に触媒6
0を充填するとき、螺旋状の帯70と一緒に最密状態と
なるように充填することもできる。
Inside the catalyst tube 18, as shown in detail in FIGS. 3 and 4, a relatively thin spiral band 70 made of stainless steel or the like is provided on the inner wall surface of the tube over the entire length of the tube 18. The portion of the catalyst tube 18 located in the wave chamber 17 is filled with a large number of vanadium or nickel catalysts 60 having solid dimensions of about 20φ x 20H in a close-packed state.
Furthermore, the portion protruding from the flow chamber 17 to the outside of the furnace is filled with a filling material 8 made of stainless steel or the like, which maintains the porosity even when a large number of pieces are pressed together and is filled with gas, so that the gas passage resistance can be reduced.
A catalyst 60 filled with 0 and filled in the catalyst tube 18
The presser cylinder 18c of the companion flange 18b is pressed through the filler 80 so as to maintain a close-packed state. Note that the catalyst 6 is connected to the catalyst tube 18.
When filling 0, it is also possible to fill it together with the spiral band 70 so as to be in a close-packed state.

このような構成とした流動床型改質炉において、前記予
熱器19にて予熱された都市ガスなどのガス燃料と空気
をガスバーナ16へ供給し、ガス燃料を燃焼室14で燃
焼させてガスノズル40から燃焼ガスを流動室17内へ
導くと共に前記ガス燃料の一部はガス分散板12のガス
燃料供給通路41にも燃料供給口41aを介して導きガ
スノズル40の導入孔40aから内部へ導入されて流動
室17内へ供給される。そして、この燃焼ガスの流動室
17への導入によって、流動室17内に充填された流動
媒体は流動化されて加熱されて流動床Fを形成する。同
時に流動床F内には全体にわたって前記ガス燃料がゆき
渡って燃焼され、流動床F全体が一層均等に加熱される
。このようにして触媒管18は均等に加熱される。
In the fluidized bed reforming furnace configured as described above, gas fuel such as city gas preheated in the preheater 19 and air are supplied to the gas burner 16, the gas fuel is combusted in the combustion chamber 14, and the gas nozzle 40 The combustion gas is introduced into the flow chamber 17, and a part of the gas fuel is also introduced into the gas fuel supply passage 41 of the gas distribution plate 12 through the fuel supply port 41a and introduced into the interior through the introduction hole 40a of the gas nozzle 40. The fluid is supplied into the flow chamber 17. By introducing this combustion gas into the fluidized chamber 17, the fluidized medium filled in the fluidized chamber 17 is fluidized and heated to form a fluidized bed F. At the same time, the gaseous fuel is combusted throughout the fluidized bed F, and the entire fluidized bed F is heated more evenly. In this way, the catalyst tubes 18 are heated evenly.

しかして、本発明の実施例ではこの流動床Fの高さが改
質炉負荷の変動に対応して変えられた際に該流動床Fへ
の埋没本数が変化するように触媒管18の設置高さや触
媒管18の上下方向の間隔、および流動媒体の充填硅が
設定されている0例えば、改質炉負荷が最大になった場
合にはこれに対応してガスバーナ16へのガス燃料およ
びガスノズル40へのガス燃料供給量および空気供給量
が最大とされ、流動床Fの高さは第1図のAのレベルに
まで増大し、全ての触媒管18が流動床Fに埋没する。
Therefore, in the embodiment of the present invention, the catalyst tubes 18 are installed so that when the height of the fluidized bed F is changed in response to changes in the reformer load, the number of tubes buried in the fluidized bed F changes. For example, when the reformer load reaches the maximum, the gas fuel and gas nozzles to the gas burner 16 are set. 40 is maximized, the height of the fluidized bed F increases to the level of A in FIG. 1, and all catalyst tubes 18 are submerged in the fluidized bed F.

また、中間の負荷状態にあっては、それに見合って前記
ガス燃料供給量および空気供給量が減少され、流動床F
の高さは第1図のBあるいはCのレベルにまで低下し、
触媒管18のうち最上段あるいは上段2列のものが流動
床Fから露出する。さらに、最低負荷状態になったとき
には、前記ガス燃料供給量および空気供給量が最低量ま
で減少され、流動床Fの高さは第1図のDのレベルにま
で低下する。これにより最上段および中2段の伝熱管1
8が流動床Fから露出し、最下段の触媒管18のみが流
動床Fに埋没することになる。
In addition, in an intermediate load state, the gas fuel supply amount and air supply amount are reduced accordingly, and the fluidized bed F
The height of is reduced to the level of B or C in Figure 1,
Among the catalyst tubes 18, those in the uppermost stage or in the upper two rows are exposed from the fluidized bed F. Further, when the lowest load condition is reached, the gaseous fuel supply amount and air supply amount are reduced to the minimum amount, and the height of the fluidized bed F is reduced to the level D in FIG. 1. This allows the heat exchanger tubes 1 in the top and middle 2nd tier to
8 are exposed from the fluidized bed F, and only the lowest catalyst tube 18 is buried in the fluidized bed F.

このように、改質炉の負荷変動に対応して流動床高さが
変動すると、該流動床に埋没する触媒管18の本数が増
減し、伝熱面積が増減する。したがって、流動床Fから
触媒管18に伝えられる総熱賃が負荷の増減に対応して
増減することになり、流動床Fの温度の変動幅が著しく
小さくなる。したがって、従来のように改質炉負荷が低
下した場合においても多量の熱交換がなされて流動床温
度が急激に低下するという事態が回避され、低負荷状態
においても安定した改質炉の運転を行なうことが可能で
ある。そして、負荷の変化に低負荷まで追随できると同
時に素早く変化することができる。流動床Fの温度は8
00〜900℃の範囲で一定に保持される。
In this way, when the height of the fluidized bed changes in response to changes in the load of the reforming furnace, the number of catalyst tubes 18 buried in the fluidized bed increases or decreases, and the heat transfer area increases or decreases. Therefore, the total heat transferred from the fluidized bed F to the catalyst tubes 18 increases or decreases in accordance with the increase or decrease in load, and the range of fluctuation in the temperature of the fluidized bed F becomes significantly small. Therefore, even when the load on the reformer decreases, unlike in the past, a large amount of heat is exchanged and the fluidized bed temperature suddenly drops. It is possible to do so. In addition, it is possible to follow changes in load down to low loads, and at the same time, it is possible to change quickly. The temperature of fluidized bed F is 8
The temperature is maintained constant in the range of 00 to 900°C.

一方、加熱された都市ガスあるいは天然ガス、またはナ
フサなどの炭化水素系燃料(本実施例では都市ガスとし
て説明する。)とスチームが下部大径管52から小径管
52aを介して下部の触媒管18内へ入り、まず充填物
80層を円滑に通過し、触媒60の層を通りU字状管の
屈曲部で反転して上部の触媒管18を通るが、この間に
上記のように全体を均等に加熱された流動床Fとの外部
触媒により流動床Fから均等に熱を吸収して次第に分解
していき、水素と一酸化炭素濃度の高いガスに改質され
て上部小径’l?51aを介して上部大径管51から排
出され、この内の大量の水素ガスは燃料電池へ送られる
。この改質過程において触媒管18内では螺旋状帯70
によって最密状態で充填された触媒60層中を原料とし
ての都市ガスやスチームまたは改質されたガスなどのガ
スが旋回流となって流れるため触媒60層中を均等に流
れるので極めて効率良く改質作用が行なわれると共に、
たとえ触媒管18の上部に隙間が形成されたとしてもガ
スが旋回流となっていることにより上方の隙間のみをガ
スが流れて下方の触媒60層には流れなくなるという現
象が強力回避されるので、触媒管18自体も部分的に異
常高温になって破損したりすることが防止されると共に
、触媒60自体の局部加熱による劣化現象が極力回避さ
れるので、安定した改質炉の運転が行なえる。触媒管1
8はU字形状とされているので、熱による伸びに対して
極めて融通性を有しており触媒管18が一端側の炉壁で
固定されていてもその変形を許容し、破損が防止される
On the other hand, heated city gas, natural gas, or hydrocarbon fuel such as naphtha (described as city gas in this embodiment) and steam are passed from the lower large-diameter pipe 52 through the small-diameter pipe 52a to the lower catalyst pipe. 18, first smoothly passes through 80 layers of packing material, passes through a layer of catalyst 60, turns around at the bend of the U-shaped tube, and passes through the upper catalyst tube 18. During this time, the entire structure is The evenly heated fluidized bed F and the external catalyst absorb heat evenly from the fluidized bed F and gradually decompose it, reforming it into a gas with a high concentration of hydrogen and carbon monoxide. Hydrogen gas is discharged from the upper large-diameter pipe 51 via 51a, and a large amount of hydrogen gas is sent to the fuel cell. In this reforming process, a spiral band 70 is formed inside the catalyst tube 18.
Gas such as city gas, steam, or reformed gas as a raw material flows in a swirling flow through the 60 layers of catalyst packed in the most densely packed state, so it flows evenly through the 60 layers of the catalyst, resulting in extremely efficient reformation. As quality action takes place,
Even if a gap is formed in the upper part of the catalyst tube 18, the swirling flow of gas strongly prevents the phenomenon that the gas flows only through the upper gap and does not flow to the catalyst 60 layer below. In addition, the catalyst tube 18 itself is prevented from being damaged due to abnormally high temperature in some parts, and deterioration of the catalyst 60 itself due to local heating is avoided as much as possible, so that stable operation of the reforming furnace can be performed. Ru. Catalyst tube 1
8 has a U-shape, so it is extremely flexible against elongation due to heat, and even if the catalyst tube 18 is fixed to the furnace wall at one end, it can be deformed and damage can be prevented. Ru.

そして、このように、水平状態で触媒管18を設置する
ことによって流動床Fの静置高さは極めて低くできるも
のであるので、流動化のための圧力損失は低くなり、こ
のため動力損失も小さく、また、流動媒体の飛び出し高
さも小さくなりフリーボード17aも低い高さで良い。
In this way, by installing the catalyst tube 18 in a horizontal state, the static height of the fluidized bed F can be made extremely low, so the pressure loss due to fluidization is reduced, and therefore the power loss is also reduced. The height of the free board 17a is small, and the height of the fluid medium is also small, so that the free board 17a may have a low height.

なお、流動床Fを通った燃焼ガスはフリーボード17a
を通過し、その上部に設けた予熱器19に導入され、こ
こで前記ガス燃料や燃焼用空気にWJ8を与えて熱交換
し予熱した後、抜出口3oから炉外へ排出される。
Note that the combustion gas that has passed through the fluidized bed F is transferred to the freeboard 17a.
The gaseous fuel and combustion air are introduced into the preheater 19 provided at the upper part thereof, where WJ8 is applied to the gaseous fuel and combustion air to exchange heat and preheat, and then the gas is discharged out of the furnace from the outlet 3o.

なお、触媒管18は第2図に示すように自由端側で屈曲
されて1本のU字形状のものとする場合に限ることなく
、単に1本の触媒’ff18を上下方向に複数段設ける
こともある。
Note that the catalyst tube 18 is not limited to the case where the free end side is bent to form a single U-shape as shown in FIG. Sometimes.

また、本実施例では触媒管18は上下方向に4段に配列
されているが、本発明は3段、2段もしくはそれ以上の
多段に配設しても良い。
Further, in this embodiment, the catalyst tubes 18 are arranged in four stages in the vertical direction, but in the present invention, they may be arranged in three stages, two stages, or more.

また、螺旋状の帯70にはセラミック塗料を塗ることに
よって遠赤外線による輻射伝熱効果をグーえるようにす
れば、旋回流を与える作用と相俟って充填層伝熱係数を
一層向上させることができ、これにより触媒管18の外
表面積も一層小さくすることが可能である。
Moreover, if the spiral band 70 is coated with ceramic paint to reduce the radiation heat transfer effect of far infrared rays, the packed bed heat transfer coefficient can be further improved by providing a swirling flow. This allows the outer surface area of the catalyst tube 18 to be further reduced.

[発明の効果] 本発明は以上詳述したように構成されているので、つぎ
のような優れた効果を奏する。
[Effects of the Invention] Since the present invention is configured as detailed above, it achieves the following excellent effects.

請求項1記載の改質炉においては、流動床の高さを低く
でき、圧損や動力損失を少なくすることができ、炉体高
さも低くすることができると共に、改質炉負荷変動に対
してfi動床温度の変化を少なくすることができ、低負
荷状態においても安定した運転が可能であり、負荷変化
に低負荷まで追随させることができると同時に素早く変
化させることができる。
In the reforming furnace according to claim 1, the height of the fluidized bed can be lowered, pressure loss and power loss can be reduced, the height of the furnace body can also be lowered, and the fi Changes in the moving bed temperature can be reduced, stable operation is possible even in low load conditions, and changes in load can be followed up to low loads and can be changed quickly.

請求項2記載の改質炉においては、水平な触媒管中で触
媒が下方に偏ることが極力阻止されると共に、管内をカ
スが旋回流となって波れるため、触媒層中を均等に流れ
て極めて効率良く改質作用が行なわれ、かつ、触媒管中
をガスが均等に流れるので触媒管が局部的に加熱されて
破損したり、触媒自体の局部加熱による劣化現象が防止
されるので極めて安定した効率の良い運転が行なえる。
In the reforming furnace according to claim 2, the catalyst is prevented from shifting downward in the horizontal catalyst tube as much as possible, and the scum waves in the tube as a swirling flow, so that it flows evenly in the catalyst layer. The reforming action is carried out extremely efficiently, and since the gas flows evenly through the catalyst tube, the catalyst tube is prevented from being locally heated and damaged, and the catalyst itself is prevented from deteriorating due to local heating. Enables stable and efficient operation.

請求項3記載の改質炉においては、流動床内全体にわた
ってガス燃料が行き渡って燃焼することにより流動床全
体が一層均等な温度に加熱され、触媒管を均等に加熱す
るので、極めて安定した改質作用を行なうことが可能と
なる。
In the reforming furnace according to claim 3, the entire fluidized bed is heated to a more even temperature by spreading and burning the gas fuel throughout the fluidized bed, and the catalyst tubes are heated evenly, so that extremely stable reforming can be achieved. It becomes possible to perform quality actions.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例に係るものであり、第1
図は流動床型改質炉の概略縦断面図、第2図は第1図の
II −II線矢視断面図、第3図は第2図のX部の拡
大縦断面図、第4図はt53図の■〜■線矢視断面図、
第5図はガス分散板の拡大図である。 lO・・・改質炉炉体、  12・・・ガス分散板、1
2a、12b−・・仕切板、 40・・・ガスノズル、  40a・・・ガス燃料導入
孔、41・・・ガス燃料供給通路、14・・・燃焼室、
16・・・ガス八−す、    17・・・流動室、1
8・・・触媒管、     60・・・触媒、70・・
・螺旋状の帯。 特許出願人  宇部興産株式会社 第2図 第3図
The drawings are all related to embodiments of the present invention, and the first
The figure is a schematic vertical cross-sectional view of a fluidized bed reforming furnace, Figure 2 is a cross-sectional view taken along the line II-II in Figure 1, Figure 3 is an enlarged vertical cross-sectional view of section X in Figure 2, and Figure 4 is a cross-sectional view taken along the line ■ to ■ of Figure t53,
FIG. 5 is an enlarged view of the gas distribution plate. lO...Reforming furnace furnace body, 12...Gas distribution plate, 1
2a, 12b--Partition plate, 40--Gas nozzle, 40a--Gas fuel introduction hole, 41--Gas fuel supply passage, 14--Combustion chamber,
16... Gas eighth, 17... Flow chamber, 1
8...Catalyst tube, 60...Catalyst, 70...
-Spiral band. Patent applicant: Ube Industries, Ltd. Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)流動室内部に触媒を充填した触媒管を有し、この
触媒管内に炭化水素系燃料と水蒸気を通すと共に触媒管
を流動床により外部から加熱することにより炭化水素系
燃料を水素を主成分とするガスに変換するようにした流
動床型改質炉において、前記触媒管をガス分散板上方位
置の流動室に水平状態で上下方向と水平方向にそれぞれ
複数本配設したことを特徴とする流動床型改質炉。
(1) The fluidization chamber has a catalyst tube filled with a catalyst, and by passing hydrocarbon fuel and steam through the catalyst tube and heating the catalyst tube from the outside using a fluidized bed, the hydrocarbon fuel is mainly converted to hydrogen. In a fluidized bed reforming furnace configured to convert gases into component gases, a plurality of the catalyst tubes are arranged horizontally in the fluidization chamber above the gas distribution plate in the vertical direction and in the horizontal direction. A fluidized bed reforming furnace.
(2)前記水平な触媒管は、管の内周壁部に沿い、かつ
、管の長手方向にわたって延びる螺旋状の帯を有してお
り、この管内に触媒を最密状態で充填させた触媒管とし
たことを特徴とする請求項1記載の流動床型改質炉。
(2) The horizontal catalyst tube has a spiral band extending along the inner peripheral wall of the tube and in the longitudinal direction of the tube, and the catalyst tube is filled with catalyst in a close-packed state. The fluidized bed reforming furnace according to claim 1, characterized in that:
(3)前記ガス分散板は、上下方向に隙間を有して配置
された2つの仕切板と、この仕切板を上下方向に貫通し
た設けた多数のガスノズルとからなり、前記隙間をガス
燃料供給通路として形成すると共に、このガス燃料供給
通路に位置する前記ガスノズルの壁部にガス燃料導入用
の小孔を設けたガス分散板としたことを特徴とする請求
項1または2記載の流動床型改質炉。
(3) The gas distribution plate consists of two partition plates arranged with a gap in the vertical direction, and a large number of gas nozzles provided vertically penetrating the partition plates, and supplies gas fuel to the gap. The fluidized bed type according to claim 1 or 2, characterized in that the gas distribution plate is formed as a passage and has small holes for introducing gas fuel in the wall of the gas nozzle located in the gas fuel supply passage. Reforming furnace.
JP11816688A 1988-05-17 1988-05-17 Fluidized bed type reformer Expired - Lifetime JPH0635321B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11816688A JPH0635321B2 (en) 1988-05-17 1988-05-17 Fluidized bed type reformer
US07/349,771 US4966101A (en) 1988-05-17 1989-05-10 Fluidized bed apparatus
DE68913345T DE68913345T2 (en) 1988-05-17 1989-05-16 Fluid bed device.
EP89304920A EP0342918B1 (en) 1988-05-17 1989-05-16 Fluidized bed apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11816688A JPH0635321B2 (en) 1988-05-17 1988-05-17 Fluidized bed type reformer

Publications (2)

Publication Number Publication Date
JPH01290502A true JPH01290502A (en) 1989-11-22
JPH0635321B2 JPH0635321B2 (en) 1994-05-11

Family

ID=14729745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11816688A Expired - Lifetime JPH0635321B2 (en) 1988-05-17 1988-05-17 Fluidized bed type reformer

Country Status (1)

Country Link
JP (1) JPH0635321B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116378A (en) * 1990-09-07 1992-04-16 Ube Ind Ltd Method of preheating fluidized bed device
JPH04119901A (en) * 1990-09-11 1992-04-21 Ube Ind Ltd Reforming tube and reformer
JP2008179487A (en) * 2006-12-28 2008-08-07 Toshiba Corp Gas reformer
JP2009149464A (en) * 2007-12-20 2009-07-09 Petroleum Energy Center Stationary reforming apparatus for hydrogen production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116378A (en) * 1990-09-07 1992-04-16 Ube Ind Ltd Method of preheating fluidized bed device
JPH04119901A (en) * 1990-09-11 1992-04-21 Ube Ind Ltd Reforming tube and reformer
JP2008179487A (en) * 2006-12-28 2008-08-07 Toshiba Corp Gas reformer
JP2009149464A (en) * 2007-12-20 2009-07-09 Petroleum Energy Center Stationary reforming apparatus for hydrogen production

Also Published As

Publication number Publication date
JPH0635321B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US5567398A (en) Endothermic reaction apparatus and method
US4315893A (en) Reformer employing finned heat pipes
US4098588A (en) Multi-tube catalytic reaction apparatus
US4909809A (en) Apparatus for the production of gas
US4966101A (en) Fluidized bed apparatus
CN112585086B (en) Steam reforming or dry reforming of hydrocarbons
US5375563A (en) Gas-fired, porous matrix, surface combustor-fluid heater
JPH03232703A (en) Reformer of hydrocarbon
US6153152A (en) Endothermic reaction apparatus and method
JPH01290502A (en) Fluidized bed type reforming furnace
KR101526945B1 (en) Cylindrical Steam reformer using multi-tube
JPH05303972A (en) Fuel reformer
US6395251B1 (en) Steam-hydrocarbon reformer and process
JPS63197534A (en) Reaction device
JP2773413B2 (en) Preheating method for fluidized bed equipment
JPH0679664B2 (en) Fuel reformer
US3785953A (en) Process for carrying out endothermic catalytic reactions
JPS61186201A (en) Process for forming hydrogen-containing gas
JPS59102804A (en) Device for modifying fuel
JP2730283B2 (en) Reforming tube and reformer
KR20010049386A (en) Reactor for carrying out a non-adiabatic process
JPH0647444B2 (en) Method for producing hydrogen-containing gas
JPH059362B2 (en)
JPS5930705A (en) Fuel reformer
JPS6327972B2 (en)