JPS59102804A - Device for modifying fuel - Google Patents

Device for modifying fuel

Info

Publication number
JPS59102804A
JPS59102804A JP20931082A JP20931082A JPS59102804A JP S59102804 A JPS59102804 A JP S59102804A JP 20931082 A JP20931082 A JP 20931082A JP 20931082 A JP20931082 A JP 20931082A JP S59102804 A JPS59102804 A JP S59102804A
Authority
JP
Japan
Prior art keywords
pipe
gas
layer
catalyst
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20931082A
Other languages
Japanese (ja)
Other versions
JPS624322B2 (en
Inventor
Shozo Kaneko
祥三 金子
Kenichi Hisamatsu
健一 久松
Akira Hashimoto
彰 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20931082A priority Critical patent/JPS59102804A/en
Priority to MX198347A priority patent/MX168335B/en
Priority to NLAANVRAGE8302824,A priority patent/NL189123C/en
Priority to CH442783A priority patent/CH655495B/de
Priority to GB08321739A priority patent/GB2126118B/en
Priority to DE19833329435 priority patent/DE3329435A1/en
Priority to FR8313260A priority patent/FR2531944A1/en
Publication of JPS59102804A publication Critical patent/JPS59102804A/en
Publication of JPS624322B2 publication Critical patent/JPS624322B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain A compact device having good thermal efficiency, and the minimum starting and stopping time, by providing a modifying reactor with a catalytic layer of a double pipe and a fluidized hot layer for heating it in a steam reformer. CONSTITUTION:The air A for combustion fed to the air box 6 burns a fuel jetted from the burner 12, is made into a rising air flow, floats a fluid material to form the fluidized bed 1, makes temperature constant throughout the layer, and provides the catalytic pipe 2 with improved heat transfer. The pipe 2 is a double pipe, a ring-shaped part between the outer pipe 2 and the inner pipe 8 is packed with the catalyst 13, the raw material gas G1 to be modified is sent through a channel, flows as a rising flow, heat is transferred from the outer pipe 2 to the layer 1 during the gas flow, and the gas is kept at a high temperature required for modification reaction. The length of the pipe necessary for the heat transfer can be minimized extremely. The modified reaction gas G2 flows as a falling flow in the inner tube 8.

Description

【発明の詳細な説明】 本発明は炭化水素系燃料改質装置の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in hydrocarbon fuel reformers.

燃料改質システムとは炭化水素系燃料を水素を主成分と
するガスに変換する装置で、従来より化学プラントに於
て数多(用いられている。
A fuel reforming system is a device that converts hydrocarbon fuel into gas whose main component is hydrogen, and has been used in large numbers in chemical plants.

最も代表的なものは、いわゆるスチームリフオーマと称
するもので、第1図に示すように炭化水素系燃料H,C
0l/(水蒸気を添加し、これを高温下で触媒層Cに通
し、水素リッチガスとし、更にCOコンバータで残存す
るCOをCO,とし、その後CO,を除去して高純度の
水素含有ガスとするものである。図中、1は触媒管、2
は装置周壁、3はバーナである。この従来のものには次
のような欠点があった。
The most typical type is the so-called steam refrigerating machine, which uses hydrocarbon fuels H and C as shown in Figure 1.
0l/(Steam is added and passed through the catalyst layer C under high temperature to produce a hydrogen-rich gas, and the remaining CO is converted to CO in a CO converter, and then CO is removed to produce a high-purity hydrogen-containing gas. In the figure, 1 is the catalyst tube, 2
3 is a device peripheral wall, and 3 is a burner. This conventional method had the following drawbacks.

(1)スチームリフオーマの触媒管は750℃以上とい
うような高温で使用されるため、耐高温材料を使用して
も使用限界に近く、少しでも局部的な熱負荷の増加や温
度のアンバランスがあると触媒管が過熱噴破し、中のガ
スが噴出することがあった。このため炉の設計は熱負荷
を非常に低く抑え、かつ均一に分布させるため、炉の寸
法が非常に太き(なり所要スペースも大きく、非常に不
経済な設計となっていた。
(1) Since the catalyst tubes of steam reformers are used at high temperatures of 750°C or higher, even if high-temperature resistant materials are used, they are close to their usable limits, and even the slightest local increase in heat load or temperature imbalance may occur. If this occurs, the catalyst tube may overheat and explode, causing the gas inside to blow out. For this reason, the furnace was designed to keep the heat load very low and distribute it uniformly, making the furnace very large (and requiring a large amount of space), making it a very uneconomical design.

(2)  触媒管を加熱した燃焼排ガスは通常熱交換器
で水(蒸気)と熱交換されるが、必ずしも充分な熱交換
が行われず従って熱効率も低(、不経済であった。
(2) The combustion exhaust gas that heated the catalyst tube is usually heat exchanged with water (steam) in a heat exchanger, but sufficient heat exchange is not always performed, and therefore the thermal efficiency is low (and uneconomical).

(3)  装置の周壁が耐火材で構成されて?す、触媒
管の加熱にはこの耐火材からのふく射が主として用いら
れており、このため部分負荷での温度のコントロールが
困難で、最低負荷も50%程度であり、また負荷変化速
度も小さく制限される他、起動にも多大の時間を要して
いた。
(3) Is the surrounding wall of the device made of fireproof material? Radiation from this refractory material is mainly used to heat the catalyst tubes, so it is difficult to control the temperature at partial loads, the minimum load is around 50%, and the rate of load change is small and limited. In addition to this, it also took a considerable amount of time to start up.

本発明は従来のものの欠点を解消し、より高性能かつ低
コストの燃料改質システムを開発することを目的とし、
即ち、 (1)  全体寸法が小さく、かつ占有面積も小さく経
済的であること、 (2)  排ガスから有効に熱回収を行い、高い熱効率
を有すること、 (3)起動・停止時間の最短化、 (4)  最低負荷を充分低くすることを目的とするも
のである。
The purpose of the present invention is to eliminate the drawbacks of conventional ones and develop a higher performance and lower cost fuel reforming system.
In other words, (1) the overall dimensions are small and the area occupied is small, making it economical; (2) it effectively recovers heat from exhaust gas and has high thermal efficiency; (3) the start-up and stop times are minimized; (4) The purpose is to lower the minimum load sufficiently.

本発明は触媒加熱を流動層により行い、加熱源の最高温
度を一定値以下に抑えると同時に均一化し、かつ触媒管
を2重管として効果的に熱回収を行い、外部熱交換器を
最小にすると共にシステムの熱効率を上げるもので、炭
化水素系燃料のスチームリフオーミング用燃料改質装置
に2いて、二重管触媒層および該触媒層を加熱するため
の流動加熱層を設けてなるスチームリフオーミング反応
器からなる燃料改質装置に関する。
The present invention heats the catalyst using a fluidized bed, suppresses the maximum temperature of the heating source to below a certain value and makes it uniform, and uses double catalyst tubes to effectively recover heat, minimizing the need for external heat exchangers. At the same time, the thermal efficiency of the system is increased.The fuel reformer for steam reforming of hydrocarbon fuel is equipped with a double pipe catalyst layer and a fluidized heating layer for heating the catalyst layer. The present invention relates to a fuel reforming device comprising a reforming reactor.

本発明の燃料改質装置について、その−例を示す第2図
を用いて詳細に説明する。第2図(IL)は第2図(1
1)のB−B断面図、第2図tb+は第2図(川のA−
A断面図である。
The fuel reformer of the present invention will be explained in detail using FIG. 2 showing an example thereof. Figure 2 (IL) is shown in Figure 2 (1
1) B-B sectional view, Fig. 2 tb+ is Fig. 2 (A- of the river)
It is an A sectional view.

1は砂、アルミナ系(40〜200μが一般的)等の流
動材が流動化されることによって形成される流動層を示
す。2は二重触媒管外管、3は改質炉容器を示す。4は
流動層上部空間、5は燃焼排ガス出口ダクトを示す。6
は流動層へ送る燃焼用空気A風箱であり、7は触媒管式
ロガス馬風箱、8は二重触媒管内管、9は改質カスG!
出口管台、10は改質ガス出ロマニフォールドである。
1 indicates a fluidized bed formed by fluidizing a fluid material such as sand or alumina (generally 40 to 200 microns). 2 is a double catalyst tube outer tube, and 3 is a reforming furnace vessel. Reference numeral 4 indicates an upper space of the fluidized bed, and 5 indicates a combustion exhaust gas outlet duct. 6
is a combustion air A-wind box that sends combustion air to the fluidized bed, 7 is a catalyst tube type logass horse-wind box, 8 is a double catalyst tube inner tube, and 9 is a reformed scum G!
The outlet nozzle 10 is a reformed gas output Roman manifold.

11は改質ガス出口ダクトである。12は流動層内部に
配置されたバーナ(パイプノズル)である。第3図は二
重触媒管の構造の詳細を示したものであり、第3図(a
)は縦断面図、第3図(bJは(alのc−c断面図、
第3図(C)は(alのD−D断面図である。2は外管
、8は内管であり、これらの間の円環状の部分に触媒1
3が充填しである。触媒としてはバナジウム、ニッケル
系等が用いられ、その形状としては内径5〜6 fl 
、外径16m、高さ19朔程度のパイプ状のものが例と
して挙げられる。14は内管の外表面に装着された触媒
保持多孔板又は網目状板であり、15は二重管頂部に設
置されたガイドベーン、16は内管の内MnC設置され
た伝熱促進用リボンである。17は外管保持プレート、
18は内管保持プレートである。
11 is a reformed gas outlet duct. 12 is a burner (pipe nozzle) arranged inside the fluidized bed. Figure 3 shows the details of the structure of the double catalyst tube, and Figure 3 (a)
) is a vertical sectional view, Figure 3 (bJ is a cc sectional view of (al),
FIG. 3(C) is a DD cross-sectional view of (al). 2 is an outer tube, 8 is an inner tube, and a catalyst 1 is placed in the annular part between them.
3 is filled. The catalyst used is vanadium, nickel, etc., and its shape is 5 to 6 fl.
An example is a pipe-shaped one with an outer diameter of 16 m and a height of about 19 mm. 14 is a catalyst holding porous plate or mesh plate attached to the outer surface of the inner tube, 15 is a guide vane installed at the top of the double tube, and 16 is a ribbon for promoting heat transfer installed with MnC inside the inner tube. It is. 17 is an outer tube holding plate;
18 is an inner tube holding plate.

次に本発明の作用及び効果について説明する。Next, the functions and effects of the present invention will be explained.

第2図に示す燃焼用空気風箱6に供給された空気Aはバ
ーナ12より噴射される燃料を燃焼すると共に、上昇気
流となり流動材を浮遊化させ流動層1を形成し、層全体
にわたり均一な温度となると共に触媒管2に対し良好な
熱伝達を与える。流動層はちょうど触媒管の上面布形成
されてにす、その上の流動層上部空間4に於て断面積が
急増し空塔速度が急激するため、流動材が上昇気流によ
り持去られるいわゆるキャリオーバ現象を最小とするこ
とができ、従って流動材の補給は最小で良い。なおバー
ナ12は流動層下部に多数配置することにより、急速起
動を可能圧すると共に層内の温度分布を最小とすること
ができる。G、は燃焼排ガスである。
The air A supplied to the combustion air box 6 shown in FIG. 2 burns the fuel injected from the burner 12, and becomes an updraft to float the fluidized material and form a fluidized bed 1, which is uniform throughout the layer. temperature and good heat transfer to the catalyst tubes 2. The fluidized bed is just formed on the upper surface of the catalyst tube, and in the upper space 4 of the fluidized bed above the fluidized bed, the cross-sectional area increases rapidly and the superficial velocity rapidly increases, so that a so-called carryover occurs in which the fluidized material is carried away by the rising air. The phenomenon can be minimized and therefore the replenishment of fluid material can be minimized. By arranging a large number of burners 12 at the bottom of the fluidized bed, it is possible to achieve a pressure that enables rapid startup and to minimize the temperature distribution within the bed. G is combustion exhaust gas.

第3図は前記のように二重触媒管の内部構造を示すもの
であるが、外管2、内管8の間の円環部に触媒が充填さ
れて2つ、改質されるべき原料ガスG1は反応ガス入口
通路を通って下方から上方へと上昇流で流れる。この際
外管からは流動層により熱が伝えられ、改質反応に必要
な高温に維持される。流動層による熱伝達率は200〜
250“−7m”hcが期待され、伝熱に必要な管長を
極めて小さくすることができる。
FIG. 3 shows the internal structure of the double catalyst tube as described above, in which the annular part between the outer tube 2 and the inner tube 8 is filled with catalyst, and the raw material to be reformed is Gas G1 flows upward through the reactant gas inlet passage from below to above. At this time, heat is transferred from the outer tube by the fluidized bed to maintain the high temperature necessary for the reforming reaction. The heat transfer coefficient by fluidized bed is 200~
250"-7m" hc is expected, and the tube length required for heat transfer can be made extremely small.

触媒層を通過した炭化水素系燃料ガスはだんだん水素と
一酸化炭素を主成分とするガスに改質され、二重管類部
に至る。二重管類部には第3図tc+に示すようにガイ
ドペー715が外管内部に内管先端部との間をつなぐよ
うに放射状に付着されて?す、円環を上昇して来た水素
リッチガスが円滑に方向変換して内管へ移動できるよう
になっている。同時に衝突一方向変換による対流伝達の
効果を最大に生かすため外管の内壁および/又は内管の
外壁に設けたヒレ(図示せず)により伝熱面積の増大も
はかることができる。水素リッチに改質された反応ガス
G、は内管8の内部を下降流で流れるが、水素リッチガ
スは炭化水素系ガスに比べ熱伝達にすぐれるため、この
効果を最大に生かすべ(5US304等の耐高温材料で
つ(られた穎熱促進リボン16を設置し、単位伝熱量の
増加と伝熱面積の増加を併せ計っている。14は触媒保
持多孔板で多数の孔を有するバー7オレートプレート又
は網状板により構成され、多年の使用により劣化した触
媒が破砕したり粉化したりして、二重管底部に沈殿し流
路疎害、閉塞等のトラブルを起すのを防止する。またこ
の触媒の点検、取替を行う際は内管保持グレート18を
取外し、内管8を下方へ引抜くことによって容易に行う
ことができる。
The hydrocarbon fuel gas that has passed through the catalyst layer is gradually reformed into a gas whose main components are hydrogen and carbon monoxide, and then reaches the double pipe section. As shown in FIG. 3 tc+, in the double tubing section, guide plates 715 are radially attached to the inside of the outer tube so as to connect with the tip of the inner tube. The hydrogen-rich gas that has ascended through the ring can smoothly change direction and move to the inner tube. At the same time, in order to make the most of the effect of convective transmission due to one-way collision conversion, the heat transfer area can be increased by means of fins (not shown) provided on the inner wall of the outer tube and/or the outer wall of the inner tube. The reactant gas G, which has been reformed to be rich in hydrogen, flows in a downward flow inside the inner tube 8. Hydrogen-rich gas has better heat transfer than hydrocarbon gas, so this effect should be maximized (5US304 etc.). A heat accelerating ribbon 16 made of a high temperature resistant material is installed to increase the unit heat transfer amount and the heat transfer area. 14 is a catalyst holding perforated plate having a large number of holes. Composed of plates or mesh plates, this prevents catalysts that have deteriorated over many years of use from being crushed or powdered and settling at the bottom of the double tube, causing problems such as channel pollution and blockage. Inspection and replacement of the catalyst can be easily carried out by removing the inner tube holding grate 18 and pulling out the inner tube 8 downward.

第4図は二重触媒管の温度分布であり、触媒管位置の函
数としての流動層温度A、往き流体温度B、戻り流体温
度Cを示す。この図からも頂部で850℃であった反応
ガスが出口で700℃迄下ってにす、入口流体の予熱を
同時に行う有効な伝熱器としても作用していることがわ
かる。
FIG. 4 shows the temperature distribution of the dual catalyst tube, showing the fluidized bed temperature A, the outflow fluid temperature B, and the return fluid temperature C as a function of the catalyst tube position. This figure also shows that the reactant gas, which was at 850°C at the top, drops to 700°C at the outlet, thereby acting as an effective heat transfer device that simultaneously preheats the inlet fluid.

なお以上の説明では二重触媒管を下端支持、上端フリー
としているが、この構造を180°方向を変え上部より
吊下げ、下端をフリーにすることも勿論可能である。
In the above description, the lower end of the double catalyst tube is supported and the upper end is free, but it is of course possible to change the direction of this structure by 180° and suspend it from the upper part, leaving the lower end free.

また流動層は常圧流動層、加圧流動層いずれも可能であ
る。
Further, the fluidized bed can be either a normal pressure fluidized bed or a pressurized fluidized bed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃料改質装置における反応部の構造を示
す縦断面図であり、第2図(aJは本発明の燃焼改質装
置の縦断面図、第2図(1))は第2図ta)のA−A
断面図である。第3図(a)は本発明に?ける二重管触
媒層の構造を示す縦断面図であり、第3図1b)は第3
図(a)のc−c断面図、第3図(C)は第3図(al
のD−D断面図である。第4図は本発明の二重管触媒層
における温度分布を示すグラフである。 復代理人  内 1)  明 復代理人  萩 原 亮 − 第1図 丑 第3図(C) ’tcr2 第4図 □ 温度0C
FIG. 1 is a longitudinal sectional view showing the structure of a reaction section in a conventional fuel reformer, and FIG. 2 (aJ is a longitudinal sectional view of the combustion reformer of the present invention, FIG. 2 (1)) A-A in Figure 2 ta)
FIG. Does Fig. 3(a) correspond to the present invention? FIG. 3 is a vertical cross-sectional view showing the structure of a double-tube catalyst layer in
Fig. 3(C) is a cross-sectional view taken along line c-c in Fig. 3(a).
It is a DD sectional view of. FIG. 4 is a graph showing the temperature distribution in the double tube catalyst layer of the present invention. Sub-agents 1) Meikoku agent Ryo Hagihara - Figure 1 Ox Figure 3 (C) 'tcr2 Figure 4 □ Temperature 0C

Claims (2)

【特許請求の範囲】[Claims] (1)炭化水素系燃料のスチームリフオーミング用燃料
改質装置Kj6いて、二重管触媒層および該触媒層を加
熱するための流動加熱層を設けてなるスチームリ7オー
ミング反応器からなる燃料改質装置。
(1) A fuel reformer for steam reforming of hydrocarbon fuel Kj6, which is a fuel reformer consisting of a steam reforming reactor provided with a double pipe catalyst layer and a fluidized heating bed for heating the catalyst layer. quality equipment.
(2)  二重管触媒層の二重管内管外壁に触媒層支持
用保持多孔板が設けられ、頂部に整流および伝熱促進用
ガイドベーンが設けられ、内管の内部に伝熱促進用リボ
ンが設けられたものである、特許請求の範囲第1項記載
の燃料改質装置。
(2) A holding porous plate for supporting the catalyst layer is provided on the outer wall of the double-pipe inner tube of the double-pipe catalyst layer, a guide vane for rectifying flow and promoting heat transfer is provided at the top, and a ribbon for promoting heat transfer is provided inside the inner tube. The fuel reformer according to claim 1, wherein the fuel reformer is provided with:
JP20931082A 1982-08-12 1982-12-01 Device for modifying fuel Granted JPS59102804A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP20931082A JPS59102804A (en) 1982-12-01 1982-12-01 Device for modifying fuel
MX198347A MX168335B (en) 1982-08-12 1983-08-10 IMPROVED APPARATUS FOR REFORMING FUEL
NLAANVRAGE8302824,A NL189123C (en) 1982-08-12 1983-08-11 FUEL REFORMER.
CH442783A CH655495B (en) 1982-08-12 1983-08-12
GB08321739A GB2126118B (en) 1982-08-12 1983-08-12 Fuel-reforming apparatus
DE19833329435 DE3329435A1 (en) 1982-08-12 1983-08-12 DEVICE FOR REFORMING FUEL
FR8313260A FR2531944A1 (en) 1982-08-12 1983-08-12 HYDROCARBON FUEL REFORMING APPARATUS IN A HYDROGEN-RICH GAS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20931082A JPS59102804A (en) 1982-12-01 1982-12-01 Device for modifying fuel

Publications (2)

Publication Number Publication Date
JPS59102804A true JPS59102804A (en) 1984-06-14
JPS624322B2 JPS624322B2 (en) 1987-01-29

Family

ID=16570833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20931082A Granted JPS59102804A (en) 1982-08-12 1982-12-01 Device for modifying fuel

Country Status (1)

Country Link
JP (1) JPS59102804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227304A (en) * 1985-07-26 1987-02-05 Chiyoda Chem Eng & Constr Co Ltd Internal heat exchange type steam reformer
JPS6320044A (en) * 1986-07-15 1988-01-27 三菱化学株式会社 Method of softly crushing flexible container content
JP2007261829A (en) * 2006-03-27 2007-10-11 Ihi Corp Reformer for fuel cell
KR100838970B1 (en) 2005-04-29 2008-06-16 주식회사 엘지화학 Annular-type distributor with improved flow uniformity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057987A (en) * 1973-09-26 1975-05-20
JPS5059273A (en) * 1973-09-28 1975-05-22
JPS52101726A (en) * 1975-12-24 1977-08-26 Commw Scient Ind Res Org Tubular reaction device in fluid bed combustor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057987A (en) * 1973-09-26 1975-05-20
JPS5059273A (en) * 1973-09-28 1975-05-22
JPS52101726A (en) * 1975-12-24 1977-08-26 Commw Scient Ind Res Org Tubular reaction device in fluid bed combustor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227304A (en) * 1985-07-26 1987-02-05 Chiyoda Chem Eng & Constr Co Ltd Internal heat exchange type steam reformer
JPS6320044A (en) * 1986-07-15 1988-01-27 三菱化学株式会社 Method of softly crushing flexible container content
KR100838970B1 (en) 2005-04-29 2008-06-16 주식회사 엘지화학 Annular-type distributor with improved flow uniformity
US7566427B2 (en) 2005-04-29 2009-07-28 Lg Chem, Ltd. Annular-type distributor with improved flow uniformity
JP2007261829A (en) * 2006-03-27 2007-10-11 Ihi Corp Reformer for fuel cell

Also Published As

Publication number Publication date
JPS624322B2 (en) 1987-01-29

Similar Documents

Publication Publication Date Title
JP3075757B2 (en) Endothermic reactor
KR101127688B1 (en) Small-sized reformer of cylinder type
JP5185493B2 (en) Fuel conversion reactor
JP5216758B2 (en) Internal combustion exchange reactor for fixed bed endothermic reaction
US4315893A (en) Reformer employing finned heat pipes
US5567398A (en) Endothermic reaction apparatus and method
US4909809A (en) Apparatus for the production of gas
JP4073960B2 (en) Hydrocarbon steam reforming method
US6096106A (en) Endothermic reaction apparatus
JPS59102804A (en) Device for modifying fuel
US3595628A (en) Apparatus for reforming hydrocarbons
JPH0794322B2 (en) Methanol reformer
JPS63197534A (en) Reaction device
JPH0271834A (en) Steam reforming device
JPS5823168A (en) Fuel cell power generating system
JPH06263401A (en) Fuel reformer
JPS63126539A (en) Fuel reformer
JPS647119B2 (en)
JP2005263618A (en) Fuel reformer
JP2712766B2 (en) Fuel reformer
JP2567048B2 (en) Fuel reformer
JPS61232203A (en) Generation of hydrogen containing gas
JP2752242B2 (en) Fuel reformer
JPS5916536A (en) Catalytic reactor
JPH0329723B2 (en)