JPS63126539A - Fuel reformer - Google Patents
Fuel reformerInfo
- Publication number
- JPS63126539A JPS63126539A JP61271956A JP27195686A JPS63126539A JP S63126539 A JPS63126539 A JP S63126539A JP 61271956 A JP61271956 A JP 61271956A JP 27195686 A JP27195686 A JP 27195686A JP S63126539 A JPS63126539 A JP S63126539A
- Authority
- JP
- Japan
- Prior art keywords
- combustion gas
- fuel
- heat
- reformer
- reaction tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 72
- 239000000567 combustion gas Substances 0.000 claims abstract description 66
- 238000006243 chemical reaction Methods 0.000 claims abstract description 56
- 239000003054 catalyst Substances 0.000 claims abstract description 41
- 239000007789 gas Substances 0.000 claims abstract description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 230000002093 peripheral effect Effects 0.000 claims abstract description 4
- 239000002737 fuel gas Substances 0.000 claims description 42
- 230000002265 prevention Effects 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000002407 reforming Methods 0.000 abstract description 24
- 239000012530 fluid Substances 0.000 abstract description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 230000001939 inductive effect Effects 0.000 abstract 2
- 230000000694 effects Effects 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000006057 reforming reaction Methods 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/062—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/067—Heating or cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00026—Controlling or regulating the heat exchange system
- B01J2208/00035—Controlling or regulating the heat exchange system involving measured parameters
- B01J2208/00088—Flow rate measurement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00212—Plates; Jackets; Cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00327—Controlling the temperature by direct heat exchange
- B01J2208/00336—Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
- B01J2208/00353—Non-cryogenic fluids
- B01J2208/00371—Non-cryogenic fluids gaseous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00389—Controlling the temperature using electric heating or cooling elements
- B01J2208/00398—Controlling the temperature using electric heating or cooling elements inside the reactor bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00477—Controlling the temperature by thermal insulation means
- B01J2208/00495—Controlling the temperature by thermal insulation means using insulating materials or refractories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00504—Controlling the temperature by means of a burner
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0816—Heating by flames
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/085—Methods of heating the process for making hydrogen or synthesis gas by electric heating
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0866—Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1604—Starting up the process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は燃料改質器に係り、特にコンパクトで迅速な負
荷追従性が要求される一燃率す1池jじW置等に使用す
るに好適な燃料改質器に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel reformer, and is particularly used in a fuel reformer that is compact and requires quick load followability, such as a fuel reformer with a single combustion rate or a single tank or two. The present invention relates to a fuel reformer suitable for.
従来より化学工業で用いられている燃料改質器と異なり
、コンパクトで迅速な負荷追従性が要求される燃料電池
発電装置に使用する燃料改質器として、例えば、米国特
許第4098589号(特公昭57−7538号)にお
いては、反応管と燃焼ガス、改質ガス間の伝熱性能を向
上させることにより、反応管をコンパクト化し、その結
果、燃料改質器のコンパクト化及び負荷追従性の向上を
図っている。Unlike fuel reformers conventionally used in the chemical industry, for example, a fuel reformer used in a fuel cell power generation device that is compact and requires quick load followability is disclosed in U.S. Pat. No. 57-7538), by improving the heat transfer performance between the reaction tube, combustion gas, and reformed gas, the reaction tube is made more compact, and as a result, the fuel reformer is made more compact and load followability is improved. We are trying to
上記従来技術は、燃料改質器の中央部に反応管を設け、
その反応管の周囲に燃焼ガスを流通させ、それらを断熱
層により包囲し、放熱を防止しているが、燃焼ガスと断
熱層が隣接しているため、断熱層が厚くなり、燃料改質
器に占める断熱層の体積が大きいという問題点がある。In the above conventional technology, a reaction tube is provided in the center of the fuel reformer,
Combustion gas is circulated around the reaction tube and surrounded by a heat insulating layer to prevent heat radiation. However, since the combustion gas and the heat insulating layer are adjacent to each other, the heat insulating layer becomes thicker, and the fuel reformer There is a problem in that the volume of the heat insulating layer is large.
また、燃焼ガスが断熱層の内側の広い面積を加熱してお
り、その加熱にかかる燃焼ガスの熱量の損失の点につい
てなんら配慮されていない。Furthermore, the combustion gas heats a large area inside the heat insulating layer, and no consideration is given to the loss of heat amount of the combustion gas involved in the heating.
本発明の目的は、燃焼ガスの熱量を有効に利用すると同
時に、コンパクトな燃料改質器を提供することにある。An object of the present invention is to provide a compact fuel reformer that effectively utilizes the calorific value of combustion gas.
上記目的は、断熱層と燃焼ガス路の間に熱交換壁を介し
て燃料ガス供給路を配置して、燃焼ガス路から改質器の
外部へ放出される燃料ガスの熱を燃料ガス供給路を通過
する燃料ガスに与えるような構成とすること、さらに燃
料ガス供給路内に触媒を充填して、燃焼ガスからの熱を
利用し、吸熱を伴う改質反応を促進させるようにするこ
とにより、達成される。The above purpose is to arrange a fuel gas supply passage between the heat insulating layer and the combustion gas passage through a heat exchange wall, and transfer the heat of the fuel gas released from the combustion gas passage to the outside of the reformer to the fuel gas supply passage. By configuring the fuel gas to be applied to the fuel gas passing through the fuel gas, and by filling the fuel gas supply path with a catalyst, the heat from the combustion gas is utilized to promote a reforming reaction that involves endothermy. , achieved.
すなわち、本発明の第1発明は、触媒を用いて炭化水素
と水蒸気などを混合した燃料ガスを水素富化ガスに転化
する吸熱反応を生じさせる反応管と、前記反応管を加熱
するための燃焼ガスを発生させる燃焼器と、前記燃焼ガ
スの放熱を防止するための断熱層を有する燃料改質器に
おいて、前記反応管の周囲に前記燃焼ガスの流路である
燃焼ガス路を配置し、該燃焼ガス路の周囲に熱交換壁を
介して前記燃料ガスの流路である燃料ガス供給路を配置
し、該燃料ガス供給路の外周面には前記断熱層を配置し
てなることを特徴とする燃料改質器であり、第2発明は
、第1発明において、さらに燃料ガス供給路内に触媒を
充填する構成を付加した燃料改質器である。That is, the first aspect of the present invention provides a reaction tube that uses a catalyst to cause an endothermic reaction of converting a fuel gas containing a mixture of hydrocarbons, water vapor, etc. into hydrogen-enriched gas, and a combustion method for heating the reaction tube. In a fuel reformer having a combustor that generates gas and a heat insulating layer for preventing heat radiation of the combustion gas, a combustion gas path that is a flow path for the combustion gas is arranged around the reaction tube, A fuel gas supply path, which is a flow path for the fuel gas, is arranged around the combustion gas path via a heat exchange wall, and the heat insulating layer is arranged on the outer peripheral surface of the fuel gas supply path. A second invention is a fuel reformer according to the first invention, which further includes a configuration for filling the fuel gas supply path with a catalyst.
本発明の第1発明によれば、断熱層と燃焼ガス路の間に
配置した燃料ガス供給路(以下供給路という)において
、供給路内を流れる燃料ガスにより、燃焼ガス路内を流
れる燃焼ガスから放散される熱が吸収される。それによ
って、供給路を取り囲む断熱層へ伝わる熱量が減少し、
断熱層の厚さが低減される。また、本発明の第2発明に
よれば、供給路内に触媒を配置して燃料ガスが吸熱を伴
う改質反応を生じせしめるようにすることによって、所
望の原燃料の改質率の数十パーセントに当る改質反応を
この供給路内で行わせ、残りの改質反応を従来の反応管
で行わせれば良いので、反応管の長さが従来よりも短縮
されることになる。According to the first aspect of the present invention, in the fuel gas supply path (hereinafter referred to as the supply path) disposed between the heat insulating layer and the combustion gas path, the fuel gas flowing in the supply path causes the combustion gas to flow in the combustion gas path. The heat dissipated from the is absorbed. This reduces the amount of heat transferred to the insulation layer surrounding the supply channel,
The thickness of the insulation layer is reduced. Further, according to the second aspect of the present invention, by arranging a catalyst in the supply path to cause the fuel gas to undergo an endothermic reforming reaction, the desired raw fuel reforming rate can be increased to several tens of tens of degrees. % of the reforming reaction can be carried out in this supply path, and the remaining reforming reaction can be carried out in the conventional reaction tube, so the length of the reaction tube can be shortened compared to the conventional one.
以下、本発明の一実施例を第1図並びに第2図により説
明する。An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
第1図において、燃料改質器1の垂直方向の断面を示し
、本実施例の構成を説明する。燃料改質器1の中央部に
は、反応管外管2及び反応管内管3より成る二重管式反
応管4が設けられている。In FIG. 1, a vertical cross section of a fuel reformer 1 is shown, and the configuration of this embodiment will be explained. A double-tube reaction tube 4 consisting of an outer reaction tube 2 and an inner reaction tube 3 is provided in the center of the fuel reformer 1 .
反応管外管2の一端は流体的に閉じられている。One end of the reaction tube 2 is fluidly closed.
反応管外管2内に位置する反応管内管3の端には触媒保
持板5が取り付けられており、反応管外管2と反応管内
管3の間隙に改質触媒6が充填されている。なお、触媒
保持板5には孔7が設けられている。反応管外管2の開
口部は支持板8に接合され、支持板8はさらに熱交換壁
9に接合されている。熱交換壁9の終端はフランジ10
となっており、底板11に固定されている。熱交換壁9
のいくらか内側の所に燃焼ガス誘導壁12が設けられ、
その一端のフランジ13が熱交換壁9のフランジ10と
共に底板11に固定されている。そして反応管外管2と
燃焼ガス誘導壁12との空間及び燃焼ガス誘導壁12と
熱交換壁9との空間には燃焼ガス路Cが形成されている
。燃焼ガス誘導壁12の内面に接しているフランジ13
からいくらかの長さの所に断熱部材14が施工されてお
り、その断熱部材14に包囲される位置に燃焼器15が
設置されている。燃焼器15にはいくつかのノズル16
が反応管外管2の底部と対面する位置に設けられている
。また燃焼器15と底板11の間には断熱を兼ねた支持
部材17が設けられており、さらに底板11及び支持部
材17を貫通した形で空気配管18及び燃焼用燃料配管
19が燃焼器15に接続されている。そして以上の熱交
換壁9を周囲とした構成要素を、さらに包囲する位置に
改質器内壁20が設けられている。改質器内壁20は円
筒型をしており、その一端はフランジ21構造となって
おり、フランジ21が底板11と接合されている。A catalyst holding plate 5 is attached to the end of the reaction tube inner tube 3 located inside the reaction tube outer tube 2, and a reforming catalyst 6 is filled in the gap between the reaction tube outer tube 2 and the reaction tube inner tube 3. Note that holes 7 are provided in the catalyst holding plate 5. The opening of the reaction tube outer tube 2 is joined to a support plate 8, and the support plate 8 is further joined to a heat exchange wall 9. The end of the heat exchange wall 9 is a flange 10
and is fixed to the bottom plate 11. heat exchange wall 9
A combustion gas guide wall 12 is provided at a location somewhat inside the
A flange 13 at one end thereof is fixed to the bottom plate 11 together with a flange 10 of the heat exchange wall 9. A combustion gas path C is formed in the space between the reaction tube outer tube 2 and the combustion gas guide wall 12 and in the space between the combustion gas guide wall 12 and the heat exchange wall 9. A flange 13 in contact with the inner surface of the combustion gas guide wall 12
A heat insulating member 14 is constructed at a certain length from the center, and a combustor 15 is installed at a position surrounded by the heat insulating member 14. The combustor 15 has several nozzles 16
is provided at a position facing the bottom of the reaction tube outer tube 2. Further, a support member 17 that also serves as heat insulation is provided between the combustor 15 and the bottom plate 11, and an air pipe 18 and a combustion fuel pipe 19 are connected to the combustor 15 by penetrating the bottom plate 11 and the support member 17. It is connected. A reformer inner wall 20 is provided at a position that further surrounds the components surrounding the heat exchange wall 9. The reformer inner wall 20 has a cylindrical shape, and one end thereof has a flange 21 structure, and the flange 21 is joined to the bottom plate 11.
一方、改質器内壁20の他端は半だ円形の鏡板22と溶
接されており、鏡板22は支持板8とある間隔を持って
支持板8を覆う位置に設けられている。そして熱交換壁
9と改質器内壁20との空間には燃料ガス供給路Fが形
成されている。また、鏡板22の中央部には反応管内管
3が貫通し、互いに溶接されて固定されている。なお、
鏡板22には反応管内管3が位置する所からいくらか離
れた所に触媒充填口23ガス設けられている。底板11
には、燃料ガス供給路Fに原燃料24を供給するための
原燃料配管25が幾本か設けられ、また燃焼ガス路Cよ
り燃焼排ガス26を燃料改質器1の外部に導く排気管2
7が幾本か設けられている。さらに、底Fillには燃
料改質器1の本体を支えるための脚28が数脚設けられ
ている。そうして、底板11、改質器内壁20及び鏡板
22で構成された外面を断熱層29によって覆うことに
よって、燃料改質器1が構成されている。On the other hand, the other end of the reformer inner wall 20 is welded to a semi-elliptical head plate 22, and the head plate 22 is provided at a position covering the support plate 8 with a certain distance therebetween. A fuel gas supply path F is formed in the space between the heat exchange wall 9 and the reformer inner wall 20. Further, the reaction tube inner tube 3 passes through the center of the end plate 22 and is welded and fixed to each other. In addition,
A catalyst filling port 23 is provided in the end plate 22 at a location some distance from the location where the reaction tube inner tube 3 is located. Bottom plate 11
is provided with several raw fuel pipes 25 for supplying raw fuel 24 to the fuel gas supply path F, and an exhaust pipe 2 for guiding combustion exhaust gas 26 from the combustion gas path C to the outside of the fuel reformer 1.
There are several numbers 7. Furthermore, several legs 28 for supporting the main body of the fuel reformer 1 are provided on the bottom fill. The fuel reformer 1 is constructed by covering the outer surface of the bottom plate 11, the reformer inner wall 20, and the end plate 22 with a heat insulating layer 29.
なお、第1図に示した燃料改質器lのA、−A;断面を
第2図に示した。本構成では反応管内管3、反応管外管
2、燃焼ガス誘導壁12、熱交換壁9及び改質器内壁2
0を同心円状に配置したが、二重管式反応管4を複数設
置してもよい。また、原燃料配管25と排気管27を点
対称にそれぞれ8本、4本として設けたが、これも任意
に設けてよい。Incidentally, a cross section of the fuel reformer 1 shown in FIG. 1 taken along lines A and -A is shown in FIG. 2. In this configuration, the reaction tube inner tube 3, the reaction tube outer tube 2, the combustion gas guide wall 12, the heat exchange wall 9, and the reformer inner wall 2
0 are arranged concentrically, but a plurality of double-tube reaction tubes 4 may be arranged. In addition, although eight raw fuel pipes 25 and four exhaust pipes 27 are provided point-symmetrically, they may be provided as desired.
次に本実施例の動作を説明する。Next, the operation of this embodiment will be explained.
まず、二重管式反応管4を所定の温度に昇温させるため
に、燃焼器15に予熱された空気30及び燃焼用燃料3
1がそれぞれ空気配管18及び燃焼用燃料配管19に導
かれて燃焼器15において燃焼される。First, in order to raise the temperature of the double-tube reaction tube 4 to a predetermined temperature, preheated air 30 and combustion fuel 3 are placed in the combustor 15.
1 is guided to an air pipe 18 and a combustion fuel pipe 19, respectively, and burned in a combustor 15.
炎はノズル16より形成され高温の燃焼ガスを発生する
。燃焼ガスは燃焼ガス誘導壁12と反応管外管2との間
の燃焼ガス路Cを流れ、二重管式反応管4及び改質触媒
6を昇温しながら、さらに熱交換壁9と燃焼ガス誘導壁
12との間の燃焼ガス路Cを流れ、排気管27より燃焼
排ガス26として燃料改質器1の外部へ導かれる。この
とき、二重管式反応管4と改質触媒6の均一な昇温及び
昇温時間の短縮を図るため、所定温度に立ち上げるまで
の間、原燃料配管25より予熱された窒素などの流体を
流し、燃料ガス供給路Fを経由させ、二重管式反応管4
に保持された改質触媒6が直接加熱される。A flame is formed from the nozzle 16 and generates high temperature combustion gas. The combustion gas flows through the combustion gas path C between the combustion gas guide wall 12 and the reaction tube outer tube 2, and while raising the temperature of the double tube reaction tube 4 and the reforming catalyst 6, it is further combusted with the heat exchange wall 9. The combustion gas flows through the combustion gas path C between the gas guide wall 12 and is guided to the outside of the fuel reformer 1 through the exhaust pipe 27 as combustion exhaust gas 26 . At this time, in order to uniformly raise the temperature of the double tube reaction tube 4 and the reforming catalyst 6 and shorten the temperature rise time, preheated nitrogen etc. The fluid is passed through the fuel gas supply path F, and the double pipe reaction tube 4 is
The reforming catalyst 6 held therein is directly heated.
改質触媒6を直接加熱した流体は反応管内管3を経由し
て、燃料改質器1の外部へ出ていく。また上記の過程で
、改質触媒6を直接加熱するための流体は、燃料ガス供
給路Fを流れる際に、熱交換壁9と燃焼ガス誘導壁12
との間の燃焼ガス路Cを流れる燃焼ガスより熱交換壁9
を通して熱をもらい加熱される。The fluid that directly heated the reforming catalyst 6 exits the fuel reformer 1 via the reaction tube inner tube 3. In addition, in the above process, when the fluid for directly heating the reforming catalyst 6 flows through the fuel gas supply path F, it passes through the heat exchange wall 9 and the combustion gas guide wall 12.
Heat exchange wall 9 from the combustion gas flowing in the combustion gas path C between
It receives heat through it and is heated.
すなわち、燃焼ガス誘導壁12と熱交換壁9と改質器内
壁20の構成によって、本発明の特徴である熱交換部3
2が形成されるのである。That is, by the configuration of the combustion gas guide wall 12, the heat exchange wall 9, and the reformer inner wall 20, the heat exchange section 3, which is a feature of the present invention,
2 is formed.
二重管式反応管4と改質触媒6が所定温度に達した後、
原燃料配管25に流す流体を例えば予熱されたメタンと
水蒸気の混合した原燃料24に切り換える。原燃料24
は燃料改質器1内に入ると燃焼ガスにより加熱され、改
質触媒6の充填層において、下記の反応を起し、水素富
化ガス33となってCIt+HzO””” co+
3L ”−−”””’−川 (1)Go +H
20−COz+Hz −−−−−・・・・−−−(
2)反応管内管3を通り、燃料改質器1の外部へ供給さ
れる。以上が本実施例の動作である。After the double tube reaction tube 4 and the reforming catalyst 6 reach a predetermined temperature,
The fluid flowing through the raw fuel pipe 25 is switched to, for example, the raw fuel 24 which is a mixture of preheated methane and steam. raw fuel 24
When it enters the fuel reformer 1, it is heated by the combustion gas, and in the packed bed of the reforming catalyst 6, the following reaction occurs, and it becomes a hydrogen-enriched gas 33, which becomes CIt+HzO"""co+
3L "--"""'-river (1) Go +H
20-COz+Hz −−−−−・・・・−−−(
2) Passes through the reaction tube inner tube 3 and is supplied to the outside of the fuel reformer 1. The above is the operation of this embodiment.
本実施例によれば、燃料改質器の昇温時に二重管式反応
管の内外より温度レベルの高い加熱ができるので、昇温
時間すなわち立ち上げ時間が短縮されるという効果と、
定常運転時に燃料改質器内で原燃料と燃焼ガスの熱交換
ができるので、外部の原燃料を予熱する予熱器が少なく
とも小さくなるという効果がある。According to this embodiment, when the temperature of the fuel reformer is raised, it is possible to heat the double-pipe reaction tube to a high temperature level from the inside and outside, so that the temperature rise time, that is, the start-up time is shortened.
Since heat exchange between raw fuel and combustion gas is possible within the fuel reformer during steady operation, there is an effect that at least the size of the preheater for preheating the raw fuel outside is reduced.
本発明の他の実施例を第3並びに第4図により説明する
。Another embodiment of the present invention will be described with reference to FIGS. 3 and 4.
第3図において、第1図と異なる箇所を部分的に取り上
げて説明する0本実施例では燃料ガス供給路F内に底板
11に垂直に位置して成るよう熱交換壁9に接合した偏
流防止板34を設けたことを特徴とする。偏流防止板3
4は長手方向の一端が底板11に接し、他端が支持板8
より鏡板22側へ突出して設けられている。また、第4
図に示されるように、底板11に設けられている原燃料
配管25間の各中央の位置にそれぞれ偏流防止板34が
設けられている。なお、偏流防止板34は改質器内壁2
0との間にわずかな隙間を有しており、熱膨張による偏
流防止板34と改質器内壁20とのぶつかりを防止して
いる。上記の構成により、原燃料配管25より燃料改質
器l内へ送入された原燃料24の各々は、改質器内壁2
0と熱交換壁9と二つの偏流防止板34とで囲まれた燃
料ガス供給路Fにおいて流量が確保されながら、支持板
8と鏡板22との間の空間に挿入される。その後、原燃
料24は改質触媒6の充填層を流通し、水素富化ガス3
3となって燃料改質器1の外部へ供給される。In FIG. 3, parts that are different from those in FIG. 1 will be partially explained. A feature is that a plate 34 is provided. Unbalanced current prevention plate 3
4 has one longitudinal end in contact with the bottom plate 11 and the other end in contact with the support plate 8
It is provided so as to protrude further toward the mirror plate 22 side. Also, the fourth
As shown in the figure, drift prevention plates 34 are provided at central positions between the raw fuel pipes 25 provided on the bottom plate 11, respectively. Note that the drift prevention plate 34 is connected to the reformer inner wall 2.
0, which prevents the drift prevention plate 34 from colliding with the reformer inner wall 20 due to thermal expansion. With the above configuration, each of the raw fuel 24 sent into the fuel reformer l from the raw fuel pipe 25 is transferred to the reformer inner wall 2.
The fuel gas is inserted into the space between the support plate 8 and the mirror plate 22 while ensuring a flow rate in the fuel gas supply path F surrounded by the heat exchange wall 9 and the two drift prevention plates 34. Thereafter, the raw fuel 24 flows through the packed bed of the reforming catalyst 6, and the hydrogen-enriched gas 3
3 and is supplied to the outside of the fuel reformer 1.
本実施例によれば、偏流防止板に熱伝導性の良い部材を
用いることにより、第1図の実施例における効果に加え
て、偏流防止板が燃焼ガスから原燃料へ熱を伝えるフィ
ンの働きをし、より効果的に原燃料が加熱されるため、
燃料改質器の立ち上げ時間がさらに短縮され、原燃料を
予熱する外部の予熱器もさらに小さくなる効果がある。According to this embodiment, by using a member with good thermal conductivity for the drift prevention plate, in addition to the effect of the embodiment shown in FIG. Because the raw fuel is heated more effectively,
This has the effect of further shortening the start-up time of the fuel reformer and further reducing the size of the external preheater that preheats the raw fuel.
本発明の他の実施例を第5図並びに第6図により説明す
る。Another embodiment of the present invention will be described with reference to FIGS. 5 and 6.
第5図において、第1図と異なる箇所を部分的に取り上
げて説明する。本実施例では改質器内壁20と半だ円形
の鏡板22とを溶接せずに、それぞれフランジ35とフ
ランジ36を設け、フランジ接合とし、燃料ガス供給路
Fにおいて底板11に近い改質器内壁20に触媒保持板
37を溶接して張りめぐらせ、触媒保持板37より鏡板
22側へ改質触媒38を充填して構成したことを特徴と
する。なお、触媒保持板37には孔39が設けられてお
り、触媒保持板37と熱交換壁9との間には熱膨張時に
ぶつからないようにわずかな隙間が設けられている。上
記の構成により、原燃料配管25を通って燃料ガス供給
路F内に流入した原燃料24は、熱交換壁9を通して燃
焼ガスから改質触媒38側に伝わる熱を享受して、改質
触媒38と接触しつつ前述の!1)、 (2)の反応を
起す。In FIG. 5, parts different from those in FIG. 1 will be partially highlighted and explained. In this embodiment, the reformer inner wall 20 and the semi-elliptical end plate 22 are not welded, but a flange 35 and a flange 36 are provided, respectively, to form a flange connection, and the reformer inner wall near the bottom plate 11 in the fuel gas supply path F 20, a catalyst holding plate 37 is welded and stretched around the catalyst holding plate 37, and a reforming catalyst 38 is filled from the catalyst holding plate 37 to the end plate 22 side. Note that the catalyst holding plate 37 is provided with a hole 39, and a slight gap is provided between the catalyst holding plate 37 and the heat exchange wall 9 so as not to collide with each other during thermal expansion. With the above configuration, the raw fuel 24 that has flowed into the fuel gas supply path F through the raw fuel pipe 25 enjoys the heat transmitted from the combustion gas to the reforming catalyst 38 side through the heat exchange wall 9, and The aforementioned while in contact with 38! 1) and (2) reactions occur.
これらの反応は約800℃以上に保持することが原燃料
24の最大の改質率が得られる一つの条件となるが、改
質触媒38の充填層ではそこまで温度が高まらないので
、未改質の原燃料は二重管式反応管4内の改質触媒6の
充填層にて改質され、所望の水素富化ガス33となって
、燃料改質器1の外部へ供給される。第6図は、第5図
においてのAsAζ断面を示している。One of the conditions for obtaining the maximum reforming rate of the raw fuel 24 is to maintain these reactions at a temperature of about 800°C or higher, but since the temperature does not rise to that extent in the packed bed of the reforming catalyst 38, unmodified The quality raw fuel is reformed in a bed packed with a reforming catalyst 6 in a double-tube reaction tube 4 to become a desired hydrogen-enriched gas 33, which is then supplied to the outside of the fuel reformer 1. FIG. 6 shows the AsAζ cross section in FIG. 5.
本実施例によれば、改質触媒の充填113Bでの吸熱反
応に伴い、改質触媒の接する改質器内壁20では温度が
低くなるため、改質器内壁20の温度に対する寿命が向
上するという効果がある。According to this embodiment, due to the endothermic reaction in the filling 113B of the reforming catalyst, the temperature at the reformer inner wall 20 in contact with the reformer becomes lower, so that the life of the reformer inner wall 20 with respect to temperature is improved. effective.
本発明の他の実施例を第7図並びに第8図により説明す
る。Another embodiment of the present invention will be described with reference to FIGS. 7 and 8.
第7図に′おいて、第5図と異なる箇所を部分的に取り
上げて説明する。本実施例では改質触媒38を保持した
燃料ガス供給路F内に、底vi11に垂直に位置して成
るよう熱交換壁9に接合した偏流防止板34を設けたこ
とを特徴とする。偏流防止板34は長手方向の一端が触
媒保持板37を貫通し、かつ底板11に接し、他端が支
持板8より鏡板22側へ突出して設けられている。第7
図のA? A’l断面は第8図に示されている。なお
、偏流防止板34は改質器内壁20並びに触媒保持板3
7との間にわずかな隙間を有しており、熱膨張時の互い
のぶつかり合いを回避している。上記の構成により、各
原燃料配管25より燃料ガス供給路F内の改質触媒38
の充填層への原燃料24の流入量が均等に分配され、改
質触媒38での反応終了後、未反応の原燃料を含むガス
は改質触媒6の充填層を流通し、水素富化ガス33とな
って燃料改質器1の外部へ供給される。In FIG. 7', parts different from those in FIG. 5 will be partially highlighted and explained. This embodiment is characterized in that a drift prevention plate 34 is provided in the fuel gas supply path F holding the reforming catalyst 38 and is connected to the heat exchange wall 9 so as to be positioned perpendicularly to the bottom vi11. The drift prevention plate 34 has one longitudinal end passing through the catalyst holding plate 37 and in contact with the bottom plate 11, and the other end protruding from the support plate 8 toward the mirror plate 22 side. 7th
A in the diagram? The A'l cross section is shown in FIG. Note that the drift prevention plate 34 is connected to the reformer inner wall 20 and the catalyst holding plate 3.
7, to avoid collision with each other during thermal expansion. With the above configuration, the reforming catalyst 38 in the fuel gas supply path F from each raw fuel pipe 25
The amount of raw fuel 24 flowing into the packed bed is evenly distributed, and after the reaction at the reforming catalyst 38 is completed, the gas containing unreacted raw fuel flows through the packed bed of the reforming catalyst 6, and is enriched with hydrogen. The gas 33 is supplied to the outside of the fuel reformer 1.
本実施例によれば、第5図の実施例における効果に加え
て、改質触媒での均一な反応を促進するため、一部の改
質触媒に反応が偏ることがなくなり、全体の改質触媒の
寿命が伸びるという効果がある。According to this embodiment, in addition to the effects of the embodiment shown in FIG. This has the effect of extending the life of the catalyst.
本発明の他の実施例を第9図により説明する。Another embodiment of the present invention will be described with reference to FIG.
第9図の実施例は、第5図の実施例において、燃焼ガス
誘導壁12と熱交換壁9との間隙を無(すと同時に、燃
焼ガス誘導壁12を設けず、燃焼ガス26を支持板8を
貫通して設けたベローズ40を通して燃料改質器1の外
部へ放出させる。このとき、ベローズ40は、改質器内
壁20にフランジ接合された上蓋41とフランジ接合さ
れているので、650℃程度の温度で、熱交換壁9や上
蓋41の熱的伸縮に対して十分追従できる信頼性の高い
ものが使用される。上蓋41において、燃焼ガス26を
排出するための排気管42が上1[41をベロ〒ズ40
と挟み、燃焼ガス流路を形成するように設けられている
。また、反応管外管2と熱交換壁9との間の燃焼ガス路
Cには、熱交換壁9に粒子保持板43が溶接されて設け
られており、粒子保持板43により支持板8側へ伝熱促
進粒子(アルミナ粒子)44が保持されている。したが
って、゛ベローズ40は伝熱促進粒子44の充填口とし
ても用いられる。伝熱促進粒子の介在により燃料ガスの
流速が速められる。上記の構成により、燃焼ガスから改
質触媒6及び38への伝熱を促進するものである。The embodiment shown in FIG. 9 differs from the embodiment shown in FIG. The fuel is discharged to the outside of the fuel reformer 1 through a bellows 40 provided through the plate 8. At this time, the bellows 40 is flanged to the upper cover 41 which is flanged to the inner wall 20 of the reformer. A highly reliable material is used that can sufficiently follow the thermal expansion and contraction of the heat exchange wall 9 and the upper lid 41 at a temperature of approximately 0.3°C. 1 [41 to belize 40
and are provided to form a combustion gas flow path. In addition, a particle holding plate 43 is welded to the heat exchange wall 9 in the combustion gas path C between the reaction tube outer tube 2 and the heat exchange wall 9. Heat transfer accelerating particles (alumina particles) 44 are held therein. Therefore, the bellows 40 is also used as a filling port for the heat transfer promoting particles 44. The flow velocity of the fuel gas is increased by the presence of heat transfer promoting particles. The above configuration promotes heat transfer from the combustion gas to the reforming catalysts 6 and 38.
本実施例によれば、燃焼ガス誘導壁12及び燃焼ガス誘
導壁12と熱交換壁9間の燃焼ガス路Cを無くしたので
、燃料改質器が細くなり、設置面積が少なくて済むとい
う効果がある。According to this embodiment, since the combustion gas guide wall 12 and the combustion gas path C between the combustion gas guide wall 12 and the heat exchange wall 9 are eliminated, the fuel reformer becomes thinner and the installation area is reduced. There is.
本発明によれば、断熱層と燃焼ガス路の間に熱交換壁を
介して燃料ガス供給路を配置して、燃焼ガスと燃料ガス
との間で熱交換を行うことにより、熱の有効利用と断熱
層の厚さの低減が可能となる。According to the present invention, the fuel gas supply path is disposed between the heat insulating layer and the combustion gas path via the heat exchange wall, and heat is exchanged between the combustion gas and the fuel gas, thereby effectively utilizing heat. This makes it possible to reduce the thickness of the heat insulating layer.
さらには燃料ガス供給路内に改質触媒を保持し、改質反
応を二重管式反応管以外に負担させることにより、改質
器内壁の高温化を制限し断熱層の厚みを低減し、反応管
の長さの減少すなわち燃料改質器の高さを低くすること
ができるので、コンパクトな燃料改質器とする効果があ
る。Furthermore, by retaining the reforming catalyst in the fuel gas supply path and transferring the reforming reaction to something other than the double-pipe reaction tube, the temperature rise of the reformer inner wall is limited and the thickness of the heat insulating layer is reduced. Since the length of the reaction tube can be reduced, that is, the height of the fuel reformer can be lowered, this has the effect of making the fuel reformer more compact.
第1図、第3図、第5図、第7図及び第9図は本発明の
一実施例の縦断面図、第2図は第1図のA、−A’、横
断面図、第4図は第3図のA3−A′3横断面図、第6
図は第5図のAs−As横断面図、第8図は第7図のA
? A4横断面図である。
1・・・燃料改質器、4・・・二重管式反応管、6,3
8・・・改質触媒、9・・・熱交換壁、11・・・底板
、12・・・燃焼ガス誘導壁、15・・・燃焼器、20
・・・改質器内壁、29・・・断熱層、34・・・偏流
防止板、40・・・ベローズ、44・・・伝熱促進粒子
、C・・・燃焼ガス路、F・・・燃料ガス供給路。1, 3, 5, 7, and 9 are longitudinal sectional views of one embodiment of the present invention, and FIG. 2 is a cross sectional view of A, -A', and Figure 4 is a cross-sectional view of A3-A'3 in Figure 3, and Figure 6.
The figure is the As-As cross-sectional view of Figure 5, and Figure 8 is the A of Figure 7.
? It is an A4 cross-sectional view. 1...Fuel reformer, 4...Double tube reaction tube, 6,3
8... Reforming catalyst, 9... Heat exchange wall, 11... Bottom plate, 12... Combustion gas guide wall, 15... Combustor, 20
... Reformer inner wall, 29 ... Heat insulation layer, 34 ... Straight flow prevention plate, 40 ... Bellows, 44 ... Heat transfer promoting particles, C ... Combustion gas path, F ... Fuel gas supply line.
Claims (1)
ガスを水素富化ガスに転化する吸熱反応を生じさせる反
応管と、前記反応管を加熱するための燃焼ガスを発生さ
せる燃焼器と、前記燃焼ガスの放熱を防止するための断
熱層を有する燃料改質器において、前記反応管の周囲に
前記燃焼ガスの流路である燃焼ガス路を配置し、該燃焼
ガス路の周囲に熱交換壁を介して前記燃料ガスの流路で
ある燃料ガス供給路を配置し、該燃料ガス供給路の外周
面には前記断熱層を配置してなることを特徴とする燃料
改質器。 2、燃料ガス供給路内に偏流防止板を配置したことを特
徴とする特許請求の範囲第1項記載の燃料改質器。 3、触媒を用いて炭化水素と水蒸気などを混合した燃料
ガスを水素富化ガスに転化する吸熱反応を生じさせる反
応管と、前記反応管を加熱するための燃焼ガスを発生さ
せる燃焼器と、前記燃焼ガスの放熱を防止するための断
熱層を有する燃料改質器において、前記反応管の周囲に
前記燃焼ガスの流路である燃焼ガス路を配置し、該燃焼
ガス路の周囲に熱交換壁を介して前記燃料ガスの流路で
ある燃料ガス供給路を配置し、該燃料ガス供給路の外周
面には前記断熱層を配置し、かつ前記燃料ガス供給路内
には触媒を充填してなることを特徴とする燃料改質器。 4、燃料ガス供給路内に偏流防止板を配置したことを特
徴とする特許請求の範囲第3項記載の燃料改質器。[Scope of Claims] 1. A reaction tube that uses a catalyst to cause an endothermic reaction to convert fuel gas mixed with hydrocarbons, water vapor, etc. into hydrogen-enriched gas, and a combustion gas for heating the reaction tube. In a fuel reformer having a combustor for generating combustion gas and a heat insulating layer for preventing heat radiation of the combustion gas, a combustion gas path, which is a flow path for the combustion gas, is arranged around the reaction tube, and the combustion gas is A fuel gas supply passage, which is a flow passage for the fuel gas, is arranged around the passage through a heat exchange wall, and the heat insulation layer is arranged on the outer peripheral surface of the fuel gas supply passage. reformer. 2. The fuel reformer according to claim 1, characterized in that a drift prevention plate is disposed within the fuel gas supply path. 3. A reaction tube that uses a catalyst to generate an endothermic reaction that converts a fuel gas mixed with hydrocarbons, water vapor, etc. into hydrogen-enriched gas, and a combustor that generates combustion gas for heating the reaction tube; In the fuel reformer having a heat insulating layer for preventing heat radiation of the combustion gas, a combustion gas path, which is a flow path for the combustion gas, is arranged around the reaction tube, and heat exchange is performed around the combustion gas path. A fuel gas supply path, which is a flow path for the fuel gas, is arranged through a wall, the heat insulating layer is arranged on the outer peripheral surface of the fuel gas supply path, and a catalyst is filled in the fuel gas supply path. A fuel reformer characterized by: 4. The fuel reformer according to claim 3, characterized in that a drift prevention plate is disposed within the fuel gas supply path.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61271956A JPH0679664B2 (en) | 1986-11-17 | 1986-11-17 | Fuel reformer |
US07/105,808 US4861348A (en) | 1986-10-08 | 1987-10-08 | Fuel reforming apparatus |
US07/381,272 US4935037A (en) | 1986-10-08 | 1989-07-18 | Fuel reforming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61271956A JPH0679664B2 (en) | 1986-11-17 | 1986-11-17 | Fuel reformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63126539A true JPS63126539A (en) | 1988-05-30 |
JPH0679664B2 JPH0679664B2 (en) | 1994-10-12 |
Family
ID=17507153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61271956A Expired - Lifetime JPH0679664B2 (en) | 1986-10-08 | 1986-11-17 | Fuel reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0679664B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05719U (en) * | 1991-06-21 | 1993-01-08 | 石川島播磨重工業株式会社 | Steam reformer |
JP2014520750A (en) * | 2011-07-07 | 2014-08-25 | デイヴィッド・ジェイ・エドランド | Hydrogen generation assembly and hydrogen purification device |
US9616389B2 (en) | 2012-08-30 | 2017-04-11 | Element 1 Corp. | Hydrogen generation assemblies and hydrogen purification devices |
US9914641B2 (en) | 2012-08-30 | 2018-03-13 | Element 1 Corp. | Hydrogen generation assemblies |
US10717040B2 (en) | 2012-08-30 | 2020-07-21 | Element 1 Corp. | Hydrogen purification devices |
US11738305B2 (en) | 2012-08-30 | 2023-08-29 | Element 1 Corp | Hydrogen purification devices |
-
1986
- 1986-11-17 JP JP61271956A patent/JPH0679664B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05719U (en) * | 1991-06-21 | 1993-01-08 | 石川島播磨重工業株式会社 | Steam reformer |
JP2014520750A (en) * | 2011-07-07 | 2014-08-25 | デイヴィッド・ジェイ・エドランド | Hydrogen generation assembly and hydrogen purification device |
JP2015180602A (en) * | 2011-07-07 | 2015-10-15 | エレメント・ワン・コーポレーション | Hydrogen generating assembly and hydrogen purification device |
US11364473B2 (en) | 2011-07-07 | 2022-06-21 | Element 1 Corp | Hydrogen generation assemblies and hydrogen purification devices |
US9656215B2 (en) | 2011-07-07 | 2017-05-23 | Element 1 Corp. | Hydrogen generation assemblies and hydrogen purification devices |
US10391458B2 (en) | 2011-07-07 | 2019-08-27 | Element 1 Corp. | Hydrogen generation assemblies and hydrogen purification devices |
US10166506B2 (en) | 2012-08-30 | 2019-01-01 | Element 1 Corp. | Hydrogen generation assemblies and hydrogen purification devices |
US9914641B2 (en) | 2012-08-30 | 2018-03-13 | Element 1 Corp. | Hydrogen generation assemblies |
US10702827B2 (en) | 2012-08-30 | 2020-07-07 | Element 1 Corp. | Hydrogen generation assemblies and hydrogen purification devices |
US10710022B2 (en) | 2012-08-30 | 2020-07-14 | Element 1 Corp. | Hydrogen generation assemblies |
US10717040B2 (en) | 2012-08-30 | 2020-07-21 | Element 1 Corp. | Hydrogen purification devices |
US11141692B2 (en) | 2012-08-30 | 2021-10-12 | Element 1 Corp | Hydrogen generation assemblies and hydrogen purification devices |
US9616389B2 (en) | 2012-08-30 | 2017-04-11 | Element 1 Corp. | Hydrogen generation assemblies and hydrogen purification devices |
US11738305B2 (en) | 2012-08-30 | 2023-08-29 | Element 1 Corp | Hydrogen purification devices |
Also Published As
Publication number | Publication date |
---|---|
JPH0679664B2 (en) | 1994-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5567398A (en) | Endothermic reaction apparatus and method | |
US7803202B2 (en) | Reformer unit for generating hydrogen from a starting material comprising a hydrocarbon-water mixture | |
JP2006008480A (en) | Reformer | |
US6153152A (en) | Endothermic reaction apparatus and method | |
JPS63126539A (en) | Fuel reformer | |
CN115849302B (en) | Hydrogen production apparatus and method | |
JPH0624704A (en) | Reformer of fuel cell | |
JP4326078B2 (en) | Solid oxide fuel cell module | |
JP2601707B2 (en) | Catalytic reactor | |
KR20120022191A (en) | Steam reformer | |
JP3306430B2 (en) | Reformer | |
JP3094435B2 (en) | Insulated reformer | |
JPH07223801A (en) | Fuel-reforming device | |
KR20200070881A (en) | Steam reforming device including distributor for multiple tube reactor and method for reforming feedstock | |
JPH03122001A (en) | Endothermic reaction unit | |
JPH01157402A (en) | Methanol reformer | |
JP7242025B1 (en) | Method for designing and arranging structure catalyst for hydrocarbon cracking, method for manufacturing hydrocarbon cracking reactor, hydrocarbon cracking reactor and reactor | |
JPH10273304A (en) | Heat exchange type reformer | |
JPS6230602A (en) | Steam modifying furnace | |
JPS59102804A (en) | Device for modifying fuel | |
JPH0124534B2 (en) | ||
JPH0656401A (en) | Fuel reformer | |
JPH0397601A (en) | Fuel reformer | |
JPS5916536A (en) | Catalytic reactor | |
JPH08208203A (en) | Fuel reformer |