JPH0397601A - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JPH0397601A
JPH0397601A JP1235266A JP23526689A JPH0397601A JP H0397601 A JPH0397601 A JP H0397601A JP 1235266 A JP1235266 A JP 1235266A JP 23526689 A JP23526689 A JP 23526689A JP H0397601 A JPH0397601 A JP H0397601A
Authority
JP
Japan
Prior art keywords
burner
combustion
reforming
tube
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1235266A
Other languages
Japanese (ja)
Inventor
Satoshi Kumagai
熊谷 諭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1235266A priority Critical patent/JPH0397601A/en
Publication of JPH0397601A publication Critical patent/JPH0397601A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain the fuel reformer capable of uniformly heating a reforming tube with combustion gas by providing a burner cylinder hung from the periphery of a burner and a combustion cylinder erected from the bottom of a furnace vessel, forming a heating medium passage with the lower part of the burner cylinder and enclosing the cylinder. CONSTITUTION:A flame and combustion gas are produced by the combustion in a burner 2, the flame is extended downward in a burner cylinder 21, reversed at its lower end into a combustion gas passage 23 and passed through the passage 23 to cause complete combustion, but the flame is not extended to the outside of the passage 23. Accordingly, only the combustion gas is discharged from the passage 23, reversed at the upper end of the combustion cylinder 22, passed between the cylinder 22 and a partition wall 4 and introduced into a heating chamber 10. Consequently, the combustion gas is uniformly distributed into the heating chamber 10, a catalyst bed 14 in the reforming tube 13 arranged in the chamber 10 is not overheated by the flame, the catalyst bed 14 is uniformly heated by the combustion gas uniformly introduced into the bed 14, and the temp. in the circumferential direction is uniformly distributed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃料電池発電システムに組み込んで改質原料
ガスを水素に富むガスに改質して燃料電池に供給する燃
料改質器に関する. 〔従来の技術〕 燃料電池は化学エネルギーを直接電気エネルギーに変換
するものであり、小出力でも高い熱効率が得られること
から最近では従来のエンジン発電機やタービン発電機に
替わる移動用電源,離島用電源として、開発.展開が進
められている.ところで燃料電池に供給する燃料ガスの
水素源として天然ガスやLPG、あるいはこれらの主威
分である炭化水素に比べて反応温度が大幅に低く、かつ
改質工程も簡単に済むメタノールが用いられている.こ
れらの炭化水素やメタノールは改質触媒の下に水蒸気改
質反応により水素に富むガスに改質され、燃料電池の燃
料ガスとなる. ところで天然ガスは主威分であるメタンが下記の二つの
反応により改質される. CHa +HjO→CO+3H茸  ・・・一・・・・
・・・(1)Co  +H,O→Cow +Ht   
・・一・・・・・・・・《2》(1》の反応はNl系の
改質触媒の下で700℃〜900℃で行われる吸熱反応
であり、(2)の反応はCu系の改質触媒の下で200
℃〜400℃で行われる発熱反応である.なお、(1)
の反応は旧系の改質触媒が充填された改質管を有する燃
料改質器で行われ、(2)の反露はCu系の改質触媒を
内蔵する一酸化炭素変威器で行われる. 一方、メタノールは気化したメタノールガスが下記の2
段の反応により改質されると考えられている. ? H x O H = C O + 2 H *  
  ・・・−・・・−・・・−・・(3)C O +H
 * O→CO■十H,     ・(4)+31, 
+41の反応はいずれもCu系の改質触媒の下で200
℃〜400℃で行われ、(3)の反応は吸熱反応、(4
Jの反応は発熱反応であるがトータルすると吸熱反応で
ある.なお、(3)I (4)の反応は反応温度が低く
、一酸化炭素の濃度も低いため、Cu系の改質触媒が充
填された改質管を有する燃料改質器のみで行われる. 上記のメタン,メタノール等の改質原料ガスを改質する
燃料改質器の改質管における水蒸気改質反応はいずれも
大きな吸熱反応であるので外部からの熱の供給が必要で
あり、この場合外部からの伝熱がポイントになる.外部
からの熱の供給は高温の熱媒体、例えば燃焼ガスによっ
て行われ、改質触媒が充填された改質管を燃料改質器の
容器内に配設し、燃焼ガスを容器内に導いて改質管の管
壁に沿って通流させて改質管内の改質触媒からなる触媒
層を加熱し、改質原料ガスを水蒸気改質反応により水素
に富むガスに改質している.燃焼ガスは伝熱によりその
保有する熱を改質原燃料ガスに与えることにより、温度
が著しく低下してしまう.このため触媒層の上下流にお
いて均一な伝熱量を確保することは困難であり、これを
修正する手段として例えば伝熱促進手段の伝熱フィンを
改質管外壁に取りつける提案がなされている. このような燃料改質器として従来第2図に示すものが知
られている.図において1は燃料改質器の炉容器であり
、上部中央にバーナ2を備え、バーナ2を囲んで耐火物
3が内張リされた円筒状の隔壁4が吊り下げられている
.なおバーナ2には燃焼用燃料の入口管5と図示しない
燃焼ガス人口簀が設けられ、また炉容器1の上部には燃
焼ガス出口7が設けられている.隔壁4の内部の燃焼室
8には、改質原料ガスを過熱するら旋状の過熱管9が設
けられ、また隔壁4と炉容器lとの間のアニュラス状の
加熱室10には隔壁4を囲む内筒11と外筒12とから
なる改質管13が配設されている.改質管工3には改質
触媒が充填されて触媒層l4が形成され、またその外壁
には伝熱を促進するフィン15が改質管13の中部から
上部の円周上に取付けられている.なお、過熱管9の上
端には炉容器1の上板を貫通する改質原料ガス入口管1
6が、またその下端には改質管13の下端に接続する連
結管17が取付けられ、改質管13の上端には炉容器l
の上板を貫通する改質ガス出口管18が取付けられてい
る.このような構造により燃焼用燃料を燃焼用燃料入口
管5を経て、また燃焼空気を図示しない入口管を経てバ
ーナ2に供給して燃焼用燃料を燃焼させる.この燃焼に
より生じた火炎と燃焼ガスは燃焼室8が配設された過熱
器9を昇温し、燃焼ガスはさらに下方に流れて隔壁4の
下端をUターンして加熱室10を上方に流れ、加熱室l
Oに配設された改質管l3を加熱してフィン15により
伝熱が促進されて触媒層14を加熱昇温する.そして伝
熱により低温になった燃焼ガスは燃焼ガス出口7から外
部に排出される. 一方、改質原料ガスを触媒層14の温度が所定値に達し
たら改質原料ガス入口管16を経て遇熱g9に供給する
.過熱管9に供給された改質原料ガスは前記火炎や燃焼
ガスにより加熱されて過熱ガスとなり、この過熱ガスは
連結管17を経て改質管l3に流入する.流入した過熱
ガスは改質管l3内の触媒層14を上方に流れ、この間
改質管13の外壁に沿って流れる燃焼ガスにより加熱さ
れ、フィン15により伝熱が促進されて触媒層14に熱
が与えられ、改質反応温度の触媒の下で改質原料ガスは
水蒸気改質する.この改質された改質ガスは燃料電池に
供給される. 〔発明が解決しようとするL[題) 燃料改質器で改質原料ガスを水蒸気改質するために、バ
ーナ2にて燃焼が行われて改質管13内の触媒層14が
加熱されるが、燃焼時、燃焼室8に生じる火炎が長く伸
びて隔壁4の下端部を折返して加熱室10に入り込むこ
とがある.このためこの入り込んだ火炎により触媒層l
4が過熱されて触媒が劣化し、また加熱室10を流れる
燃焼ガス流量の傾よりか生じてこの傾よりにより触媒層
14の円周方向の温度分布が不均一になるという問題が
ある.本発明の目的は、バーナからの火炎が直接改質管
を加熱せずに燃焼ガスが均等に改質管を加熱するように
することのできる燃料改質器を提供することである. (!IImを解決するための手段〕 上記課題を解決するために、本発明によれば炉容器の上
部中央に設けられるバーナと、このバーナを囲んで炉容
器上部から吊り下げられる筒状の隔壁と、隔壁と炉容器
の側壁との間に隔壁を囲んで配される改質触媒が充填さ
れた改質管とを備え、バーナからの燃焼による熱媒体に
より改質管を加熱して改質管を通流する改質原料ガスを
改質する燃料改質器において、前記隔壁内にバーナの周
囲から吊り下げられるバーナ筒と、炉容器の底部から直
立し、前記バーナ筒の下端からの一部を熱媒体通路を形
成して囲む燃焼筒とを設けるものとする. 〔作用〕 バーナで燃焼した火炎はバーナ筒内を長く伸びてバーナ
筒と燃焼筒とで形成される熱媒体通路に入り込んでも、
この熱媒体通路を通過する間で完全燃焼が行われて火炎
は熱媒体通路外には伸びず、隔壁と炉容器との間にある
改質管の方に入り込まないため、改質触媒の過熱は生じ
ない.また燃焼筒を出る燃焼ガスは火炎の傾よりに無関
係に隔壁を囲む改質管に等配され、改質管は均等に加熱
される. 〔実施例) 以下図面に基づいて本発明の実施例について説明する.
第1図は本発明の実施例による燃料改賞器の断面図であ
る.なお、第1図において第2図の従来例と同一部品に
は同じ符号を付し、その説明を省略する.第1図におい
て従来例と異なるのは陽壁4内にバーナ2の周囲から吊
り下げられるバーナf!J21と、炉容器1の底部に直
立し、バーナ筒2lの下端からの一部を囲む筒状の燃焼
flJ22を設けたことである.なおバーナ筒2lと燃
焼筒22との間は燃焼ガス通路23を形成している.ま
た過熱管9は燃焼ガス通路23に配設されている.この
ような構造によりバーナ2での燃焼により火炎や燃焼ガ
スが生じるが、火炎が長く伸びてバーナ1m21からそ
の下端を折返して燃焼ガス通路23に入り込んでも燃焼
ガス通路23を通過する間で完全燃焼が行われて火炎は
燃焼ガス通路23外に伸びない.したがって燃焼ガス通
路23からは燃焼ガスのみが排出されて燃焼筒22の上
端で折返して燃焼筒22と隔壁4との間を流れて加熱室
10に流れ込むので、燃焼ガスは加熱室10に等配され
る.したがって加熱室IOに配された改質管13内の触
媒層14は火炎により遇熱されず、また触媒層14は等
配された燃焼ガスにより均等に加熱され、円周方向の温
度分布が均一化される. 〔発明の効果〕 以上の説明から明らかなように、本発明によれば、バー
ナの周囲から吊り下げられるバーナ筒と、炉容器の底部
から直立し、バーナ筒の下端からの一部を熱媒体通路を
形成して囲む燃焼筒とを設けたことにより、バーナでの
燃焼により火炎が長く伸びても前記燃焼ガス通路外に火
炎は伸びず、燃焼ガス通路からは燃焼ガスのみが排出さ
れるので、改質管は火炎に直接加熱されず、かつ等配さ
れた燃焼ガスにより加熱され、このため触媒の劣化を防
ぐとともに触媒層の円周方向の温度分布が均一化される
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fuel reformer that is incorporated into a fuel cell power generation system to reform a reformed raw material gas into hydrogen-rich gas and supply the same to a fuel cell. [Conventional technology] Fuel cells directly convert chemical energy into electrical energy, and because they can achieve high thermal efficiency even with a small output, they have recently been used as mobile power sources to replace conventional engine generators and turbine generators, and for use on remote islands. Developed as a power source. Deployment is underway. By the way, methanol is used as a hydrogen source for the fuel gas supplied to fuel cells, as it has a much lower reaction temperature than natural gas, LPG, or the hydrocarbons that are their main ingredients, and the reforming process is simple. There is. These hydrocarbons and methanol are reformed into hydrogen-rich gas by a steam reforming reaction under a reforming catalyst, which becomes the fuel gas for the fuel cell. By the way, methane, which is the main ingredient in natural gas, is reformed through the following two reactions. CHa +HjO→CO+3H mushroom...one...
...(1) Co +H, O→Cow +Ht
・・・1・・・・・・《2》(The reaction in 1 is an endothermic reaction that is carried out at 700 to 900 °C under an Nl-based reforming catalyst, and the reaction in (2) is an endothermic reaction that is carried out under a Nl-based reforming catalyst. under the reforming catalyst of 200
It is an exothermic reaction that takes place between ℃ and 400℃. Furthermore, (1)
The reaction (2) is carried out in a fuel reformer with a reforming tube filled with an old reforming catalyst, and the reaction (2) is carried out in a carbon monoxide transformer containing a Cu-based reforming catalyst. It will happen. On the other hand, methanol is vaporized methanol gas as shown below.
It is thought that the modification occurs through stage reactions. ? H x O H = C O + 2 H *
・・・−・・・−・・・−・・・(3)C O +H
* O→CO■10H, ・(4)+31,
All +41 reactions were conducted at 200% under Cu-based reforming catalyst.
The reaction (3) is an endothermic reaction, and the reaction (4
The reaction J is an exothermic reaction, but overall it is an endothermic reaction. Note that the reactions (3) and (4) are performed only in a fuel reformer having a reforming tube filled with a Cu-based reforming catalyst because the reaction temperature is low and the concentration of carbon monoxide is low. The steam reforming reaction in the reforming tube of the fuel reformer that reformes the reforming raw material gas such as methane and methanol is a large endothermic reaction, so it is necessary to supply heat from the outside. The key point is heat transfer from the outside. Heat is supplied from the outside using a high-temperature heat medium, such as combustion gas, and a reforming tube filled with a reforming catalyst is placed inside the fuel reformer container, and the combustion gas is guided into the container. A stream is passed along the wall of the reforming tube to heat the catalyst layer consisting of the reforming catalyst inside the reforming tube, and the reforming raw material gas is reformed into hydrogen-rich gas through a steam reforming reaction. The combustion gas transfers its own heat to the reformed raw fuel gas through heat transfer, resulting in a significant drop in temperature. For this reason, it is difficult to ensure a uniform amount of heat transfer upstream and downstream of the catalyst layer, and as a means to correct this, proposals have been made, for example, to attach heat transfer fins as a heat transfer promoting means to the outer wall of the reforming tube. The one shown in Figure 2 is conventionally known as such a fuel reformer. In the figure, 1 is a furnace vessel of a fuel reformer, which is equipped with a burner 2 at the center of the upper part, and a cylindrical partition wall 4 lined with a refractory 3 is suspended surrounding the burner 2. The burner 2 is provided with an inlet pipe 5 for combustion fuel and a combustion gas reservoir (not shown), and a combustion gas outlet 7 is provided in the upper part of the furnace vessel 1. The combustion chamber 8 inside the partition wall 4 is provided with a spiral heating tube 9 for superheating the reformed raw material gas, and the annulus-shaped heating chamber 10 between the partition wall 4 and the furnace vessel l is provided with a partition wall 4. A reforming pipe 13 consisting of an inner cylinder 11 and an outer cylinder 12 surrounding the cylinder is disposed. The reforming pipework 3 is filled with a reforming catalyst to form a catalyst layer l4, and fins 15 for promoting heat transfer are attached to the outer wall of the reforming pipe 13 from the middle to the upper circumference. There is. In addition, at the upper end of the superheating tube 9, there is a reforming raw material gas inlet pipe 1 that passes through the upper plate of the furnace vessel 1.
6, and a connecting pipe 17 connected to the lower end of the reforming pipe 13 is attached to its lower end, and a connecting pipe 17 connected to the lower end of the reforming pipe 13 is attached to the upper end of the reforming pipe 13.
A reformed gas outlet pipe 18 is attached that passes through the upper plate of the pump. With this structure, combustion fuel is supplied to the burner 2 through the combustion fuel inlet pipe 5, and combustion air is supplied to the burner 2 through the inlet pipe (not shown), so that the combustion fuel is combusted. The flame and combustion gas generated by this combustion heat up the superheater 9 in which the combustion chamber 8 is disposed, and the combustion gas flows further downward, makes a U-turn around the lower end of the partition wall 4, and flows upward through the heating chamber 10. , heating chamber l
The reforming tube l3 disposed at the fin 15 is heated, heat transfer is promoted by the fins 15, and the catalyst layer 14 is heated to raise its temperature. The combustion gas, which has become low temperature due to heat transfer, is discharged to the outside from the combustion gas outlet 7. On the other hand, when the temperature of the catalyst layer 14 reaches a predetermined value, the reforming material gas is supplied to the heat exchanger g9 through the reforming material gas inlet pipe 16. The reforming raw material gas supplied to the superheating tube 9 is heated by the flame and combustion gas to become superheated gas, and this superheated gas flows into the reforming tube l3 via the connecting pipe 17. The inflowing superheated gas flows upward through the catalyst layer 14 in the reforming tube l3, during which time it is heated by the combustion gas flowing along the outer wall of the reforming tube 13, and heat transfer is promoted by the fins 15, so that heat is transferred to the catalyst layer 14. is given, and the reforming raw material gas undergoes steam reforming under a catalyst at the reforming reaction temperature. This reformed gas is supplied to the fuel cell. [L [Problem to be Solved by the Invention] In order to steam reform the reforming raw material gas in the fuel reformer, combustion is performed in the burner 2 and the catalyst layer 14 in the reforming tube 13 is heated. However, during combustion, the flame generated in the combustion chamber 8 may extend long enough to turn around the lower end of the partition wall 4 and enter the heating chamber 10. Therefore, the flame that entered the catalyst layer
4 is overheated, the catalyst deteriorates, and the temperature distribution in the circumferential direction of the catalyst layer 14 becomes uneven due to the gradient of the flow rate of the combustion gas flowing through the heating chamber 10. An object of the present invention is to provide a fuel reformer in which the flame from the burner does not directly heat the reforming tube, but the combustion gas evenly heats the reforming tube. (Means for solving ! IIm) In order to solve the above problems, the present invention includes a burner provided at the center of the upper part of the furnace vessel, and a cylindrical partition wall surrounding the burner and suspended from the upper part of the furnace vessel. and a reforming tube filled with a reforming catalyst placed between the partition wall and the side wall of the furnace vessel to surround the partition wall, and the reforming tube is heated by a heat medium generated by combustion from a burner to perform reforming. In a fuel reformer for reforming reforming raw material gas flowing through a pipe, there is a burner tube suspended from around the burner within the partition wall, and a burner tube that stands upright from the bottom of the furnace vessel and extends from the lower end of the burner tube. [Operation] The flame burned in the burner extends long inside the burner cylinder and enters the heat medium passage formed by the burner cylinder and the combustion cylinder. but,
Complete combustion occurs while passing through this heating medium passage, and the flame does not extend outside the heating medium passage and does not enter the reforming tube between the partition wall and the furnace vessel, so the reforming catalyst is overheated. does not occur. In addition, the combustion gas leaving the combustion tube is evenly distributed to the reforming tubes surrounding the partition wall, regardless of the angle of the flame, and the reforming tubes are heated evenly. [Examples] Examples of the present invention will be described below based on the drawings.
FIG. 1 is a sectional view of a fuel reformer according to an embodiment of the present invention. In Fig. 1, parts that are the same as those in the conventional example shown in Fig. 2 are given the same reference numerals, and their explanations will be omitted. In FIG. 1, the difference from the conventional example is that the burner f! is suspended from around the burner 2 in the positive wall 4! J21 and a cylindrical combustion flJ22 that stands upright at the bottom of the furnace vessel 1 and surrounds a part of the burner cylinder 2l from the lower end. Note that a combustion gas passage 23 is formed between the burner cylinder 2l and the combustion cylinder 22. Further, the superheating pipe 9 is arranged in the combustion gas passage 23. With this structure, flame and combustion gas are generated by combustion in the burner 2, but even if the flame extends long and turns its lower end from the burner 1m21 and enters the combustion gas passage 23, complete combustion will not occur while passing through the combustion gas passage 23. is carried out, and the flame does not extend outside the combustion gas passage 23. Therefore, only the combustion gas is discharged from the combustion gas passage 23, turns around at the upper end of the combustion tube 22, flows between the combustion tube 22 and the partition wall 4, and flows into the heating chamber 10, so that the combustion gas is evenly distributed in the heating chamber 10. It will be done. Therefore, the catalyst layer 14 in the reforming tube 13 arranged in the heating chamber IO is not heated by the flame, and the catalyst layer 14 is evenly heated by the evenly distributed combustion gas, so that the temperature distribution in the circumferential direction is uniform. will be converted into [Effects of the Invention] As is clear from the above description, according to the present invention, there is a burner tube suspended from the periphery of the burner, a burner tube that stands upright from the bottom of the furnace vessel, and a part of the burner tube from the lower end is used as a heat medium. By providing a combustion tube that forms and surrounds a passage, even if the flame extends long due to combustion in the burner, the flame does not extend outside the combustion gas passage, and only combustion gas is discharged from the combustion gas passage. The reforming tube is not directly heated by the flame, but is heated by the evenly distributed combustion gas, which prevents deterioration of the catalyst and equalizes the temperature distribution in the circumferential direction of the catalyst layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による燃料改質器の断面図、第
2図は従来の燃料改質器の断面図である.1;炉容器、
4:隔壁、13:改質管、14:触媒層、21:バーナ
筒、22:燃焼筒、23:燃焼ガス通−4
FIG. 1 is a sectional view of a fuel reformer according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional fuel reformer. 1; Furnace vessel,
4: Partition wall, 13: Reforming pipe, 14: Catalyst layer, 21: Burner cylinder, 22: Combustion cylinder, 23: Combustion gas passage-4

Claims (1)

【特許請求の範囲】[Claims] 1)炉容器の上部中央に設けられるバーナと、このバー
ナを囲み、炉容器上部から吊り下げられる筒状の隔壁と
、この隔壁と炉容器の側壁との間に隔壁を囲んで配され
る改質触媒が充填された改質管とを備え、バーナからの
燃焼による熱媒体により改質管を加熱して改質管を通流
する改質原料ガスを水素に富むガスに改質する燃料改質
器において、前記隔壁内にバーナの周囲から吊り下げら
れるバーナ筒と、炉容器の底部から直立し、前記バーナ
筒の下端からの一部を熱媒体通路を形成して囲む燃焼筒
とを設けることを特徴とする燃料改質器。
1) A burner provided at the center of the upper part of the furnace vessel, a cylindrical partition wall surrounding the burner and suspended from the top of the furnace vessel, and a reformer placed between the partition wall and the side wall of the furnace vessel surrounding the partition wall. This fuel reformer is equipped with a reforming tube filled with a hydrogen-rich catalyst, and heats the reforming tube with a heat medium generated by combustion from a burner to reform the reforming raw material gas flowing through the reforming tube into hydrogen-rich gas. The burner tube is provided with a burner tube suspended from around the burner within the partition wall, and a combustion tube that stands upright from the bottom of the furnace vessel and surrounds a portion from the lower end of the burner tube to form a heat medium passage. A fuel reformer characterized by:
JP1235266A 1989-09-11 1989-09-11 Fuel reformer Pending JPH0397601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235266A JPH0397601A (en) 1989-09-11 1989-09-11 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235266A JPH0397601A (en) 1989-09-11 1989-09-11 Fuel reformer

Publications (1)

Publication Number Publication Date
JPH0397601A true JPH0397601A (en) 1991-04-23

Family

ID=16983546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235266A Pending JPH0397601A (en) 1989-09-11 1989-09-11 Fuel reformer

Country Status (1)

Country Link
JP (1) JPH0397601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105695A (en) * 2015-08-28 2017-06-15 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105695A (en) * 2015-08-28 2017-06-15 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system

Similar Documents

Publication Publication Date Title
US4909809A (en) Apparatus for the production of gas
JPH0333002A (en) Hydrogen producing device
JP4504016B2 (en) Highly efficient and compact reformer unit for producing hydrogen from gaseous hydrocarbons in the low power range
JP2003002609A (en) Compact steam reforming system
JP2004059415A (en) Fuel reformer and fuel cell power generation system
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
JPH10502213A (en) Furnace for fuel cell power plant
JP3405839B2 (en) Converter
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JPH0794322B2 (en) Methanol reformer
JPH04206362A (en) High-temperature type fuel cell system power generating device
JPH0397601A (en) Fuel reformer
JPH04322739A (en) Fuel reformer for fuel cell
JPS63126539A (en) Fuel reformer
JPH01264903A (en) Apparatus for reforming hydrocarbon
JPH07106881B2 (en) Fuel cell reformer device
JPS5823168A (en) Fuel cell power generating system
JPH0647442B2 (en) Fuel reformer
JPS6230602A (en) Steam modifying furnace
JPH0611641B2 (en) Methanol reformer
JP2600950B2 (en) Endothermic reactor
JP2009067645A (en) Hydrogen manufacturing device and fuel cell system using the same
CN116986552A (en) Compact steam reformer
JPS59102804A (en) Device for modifying fuel
JPH05301701A (en) Device for reforming fuel