JPH0647442B2 - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JPH0647442B2
JPH0647442B2 JP63137044A JP13704488A JPH0647442B2 JP H0647442 B2 JPH0647442 B2 JP H0647442B2 JP 63137044 A JP63137044 A JP 63137044A JP 13704488 A JP13704488 A JP 13704488A JP H0647442 B2 JPH0647442 B2 JP H0647442B2
Authority
JP
Japan
Prior art keywords
reaction tube
reaction
heat medium
reforming catalyst
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63137044A
Other languages
Japanese (ja)
Other versions
JPH01305802A (en
Inventor
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63137044A priority Critical patent/JPH0647442B2/en
Publication of JPH01305802A publication Critical patent/JPH01305802A/en
Publication of JPH0647442B2 publication Critical patent/JPH0647442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、改質原料ガスを水素に富むガスに改質して燃
料電池に供給する燃料改質器に関する。
Description: TECHNICAL FIELD The present invention relates to a fuel reformer that reforms a reforming raw material gas into a hydrogen-rich gas and supplies the reformed gas to a fuel cell.

〔従来の技術〕[Conventional technology]

燃料電池は化学エネルギーを直接電気エネルギーに変換
するものであり、小出力でも高い熱効率が得られること
から最近では従来のエンジン発電機やタービン発電機に
替わる移動用電源,離島用電源として開発,展開が進め
られている。ところで燃料電池に供給する燃料ガスの水
素源として天然ガスやLPG、あるいはこれらの主成分
である炭化水素に比べて反応温度が大幅に低く、かつ改
質工程も簡単に済むメタノールが用いられている。これ
らの炭化水素やメタノールは改質触媒の下に水蒸気改質
反応により水素に富むガスに改質され、燃料電池の燃料
ガスとなる。
A fuel cell directly converts chemical energy into electric energy, and since it can obtain high thermal efficiency even with a small output, it has recently been developed and deployed as a mobile power source or a remote island power source that replaces the conventional engine generator and turbine generator. Is being promoted. By the way, as a hydrogen source of the fuel gas supplied to the fuel cell, methanol is used, which has a reaction temperature significantly lower than that of natural gas, LPG, or hydrocarbons which are the main components thereof, and which can be easily reformed. . These hydrocarbons and methanol are reformed into a hydrogen-rich gas by a steam reforming reaction under a reforming catalyst and become a fuel gas for a fuel cell.

ところで天然ガスは主成分であるメタンが下記の二つの
反応により改質される。
By the way, the main component of natural gas, methane, is reformed by the following two reactions.

CH+HO → CO+3H (1) CO +HO → CO+H (2) (1)の反応はNi系の改質触媒の下で 700℃〜900 ℃で行
われる吸熱反応であり、(2)の反応はCu系の改質触媒の
下で 200℃〜400 ℃で行われる発熱反応である。なお、
(1)の反応はNi系の改質触媒が充填された反応管を有す
る燃料改質器で行われ、(2)の反応はCu系の改質触媒を
内蔵する一酸化炭素変成器で行われる。
The reaction of CH 4 + H 2 O → CO + 3H 2 (1) CO + H 2 O → CO 2 + H 2 (2) (1) is an endothermic reaction carried out at 700 ℃ ~ 900 ℃ under Ni type reforming catalyst. The reaction (2) is an exothermic reaction carried out at 200 to 400 ° C under a Cu-based reforming catalyst. In addition,
The reaction (1) is carried out in a fuel reformer having a reaction tube filled with a Ni-based reforming catalyst, and the reaction (2) is carried out in a carbon monoxide shift converter containing a Cu-based reforming catalyst. Be seen.

一方、メタノールは気化したメタノールガスが下記の2
段の反応により改質されると考えられている。
On the other hand, as for methanol, the vaporized methanol gas is
It is believed to be reformed by the reaction of the stage.

CHOH → CO+2H (3) CO+HO→ CO+H (4) (3),(4)の反応はいずれもCu系の改質触媒の下で200 ℃
〜400 ℃で行われ、(3)の反応は吸熱反応、(4)の反応は
発熱反応であるがトータルすると吸熱反応である。な
お、(3),(4)の反応は反応温度が低く、一酸化炭素の濃
度も低いため、Cu系の改質触媒が充填された反応管を有
する燃料改質器のみで行われる。
CH 3 OH → CO + 2H 2 (3) CO + H 2 O → CO 2 + H 2 (4) (3) and (4) are both performed at 200 ° C. under a Cu-based reforming catalyst.
The reaction (3) is an endothermic reaction, and the reaction (4) is an exothermic reaction, but in total, it is an endothermic reaction. The reactions (3) and (4) are performed only in the fuel reformer having a reaction tube filled with a Cu-based reforming catalyst because the reaction temperature is low and the concentration of carbon monoxide is low.

上記のメタン,メタノール等の改質原料ガスを改質する
燃料改質器の反応管における水蒸気改質反応はいずれも
大きな吸熱反応であるので外部からの熱の供給が必要で
あり、この場合外部からの伝熱が律速になっている。外
部からの熱の供給は、高温の熱媒体、例えば燃焼ガスに
よって行われ、反応管を燃料改質器のケーシング内に配
設し、燃料ガスをケーシング内に導いて反応管の管壁に
沿って通流させて反応管内の改質触媒からなる改質触媒
層を加熱し、改質原料ガスを水蒸気改質反応により水素
に富むガスに改質している。
Since the steam reforming reaction in the reaction tube of the fuel reformer for reforming the reforming raw material gas such as methane or methanol is a large endothermic reaction, it is necessary to supply heat from the outside. The heat transfer from is rate limiting. The heat supply from the outside is performed by a high-temperature heat medium, for example, combustion gas, and the reaction tube is arranged in the casing of the fuel reformer, and the fuel gas is guided into the casing so that the reaction gas flows along the tube wall of the reaction tube. The reforming catalyst layer composed of the reforming catalyst in the reaction tube is heated to reform the reforming raw material gas into a hydrogen-rich gas by a steam reforming reaction.

上記のように改質原料ガスを水蒸気改質する装置として
従来第4図に示す燃料改質器が知られている。図におい
て燃料改質器1は次に述べる構造から構成されている。
ケーシングとしての炉容器2は上部に熱媒体供給源とし
てのバーナ3を配し、さらにバーナ3を囲んで筒として
の円筒状の隔壁4が炉容器2内の端部の端板を貫通して
懸架されて構成されている。5はバーナ3に燃焼用燃料
を供給する燃料供給管である。過熱管6は螺旋状の管か
らなって隔壁4内に配され、その上部は改質原料ガス入
口管7が炉容器2の端板を貫通して設けられ、一方下部
は改質原料ガス分配管8を介して反応器10に接続してい
る。反応器10は隔壁4を囲む内管と外管との間に介質触
媒11が充填されてなる反応管12と、これを囲む同様な構
造の反応管12a とからなる同心の二重の反応管からな
り、上部には反応管12,12aからの改質ガスを集める出口
管13a を備えた改質ガスマニホールド13が設けられ、下
部には互いに連通して各反応管の下部に接続するヘッダ
14が設けられて構成され、隔壁4と炉容器2の側壁とで
画成される加熱室9内に配置されている。そして反応器
10には連通孔15が設けられ、燃焼ガスはこの連通孔15を
通って反応器10の内,外側部を自由に流れることができ
る。なお、A,B,Cは改質触媒層11が充填されてなる
改質触媒層の温度計測点であり、Aは改質触媒層の最下
部、Bは中央部、Cは最上部の計測点である。16は燃焼
ガスを外部に排出する排出管である。
As a device for steam reforming a reforming raw material gas as described above, a fuel reformer shown in FIG. 4 is conventionally known. In the figure, the fuel reformer 1 has a structure described below.
A furnace container 2 as a casing has a burner 3 as a heat medium supply source arranged on the upper part thereof, and a cylindrical partition wall 4 surrounding the burner 3 penetrates an end plate at the end of the furnace container 2. It is constructed by being suspended. Reference numeral 5 is a fuel supply pipe for supplying combustion fuel to the burner 3. The superheater tube 6 is a spiral tube and is arranged in the partition wall 4. An upper portion of the superheater tube 6 is provided with a reforming raw material gas inlet pipe 7 penetrating the end plate of the furnace vessel 2, while a lower portion thereof is provided with a portion of the reforming raw material gas. It is connected to the reactor 10 via a pipe 8. The reactor 10 is a concentric double reaction tube consisting of a reaction tube 12 in which an intermediate catalyst 11 is filled between an inner tube and an outer tube surrounding the partition wall 4, and a reaction tube 12a having a similar structure surrounding the reaction tube 12. A reformed gas manifold 13 having an outlet pipe 13a for collecting reformed gas from the reaction tubes 12 and 12a is provided in the upper part, and a header that communicates with each other and is connected to the lower part of each reaction tube is provided in the lower part.
14 is provided and configured, and is disposed in the heating chamber 9 defined by the partition wall 4 and the side wall of the furnace vessel 2. And reactor
A communication hole 15 is provided in the fuel cell 10, and the combustion gas can freely flow through the communication hole 15 inside and outside the reactor 10. A, B, and C are temperature measurement points of the reforming catalyst layer filled with the reforming catalyst layer 11, A is the lowermost portion of the reforming catalyst layer, B is the central portion, and C is the uppermost portion. It is a point. Reference numeral 16 is an exhaust pipe for exhausting combustion gas to the outside.

つぎにこのような構造の燃料改質器の運転方法について
説明する。まず、燃料供給管5を経て燃料用の燃料をバ
ーナ3に供給し、図示しない燃焼空気供給手段によりバ
ーナ3に供給される燃焼空気により燃料を燃焼する。こ
の際生じる燃焼ガスは隔壁4内を流下して過熱管6を加
熱した後、隔壁4の下端で折返して加熱室9内を上昇し
て流れ、この際反応管12,12aをその内,外側面から加熱
した後、燃焼ガスの一部が連通孔15を通って排出管16か
ら外部に排出される。そしてこの燃焼ガスの加熱により
反応管12,12a内の改質触媒層の最低温度が 100℃以上と
なったら改質が開始される。すなわち改質原料ガス入口
管7から改質原料ガスを過熱管6に送入する。そして過
熱管6にて改質原料ガスは燃焼ガスにより加熱されて過
熱ガスとなり、この過熱ガスは改質原料ガス分配管8を
経て反応管12,12aに流入し、反応管12,12a内の改質触媒
11の下に水素に富むガスに改質される。なおこの際、改
質触媒層は改質反応に適切な温度範囲に制御される。反
応管12,12aで生成された改質ガスは改質ガスマニホール
ド13を経て出口管13a から外部の燃料電池に反応ガス用
の燃料ガスとして供給される。
Next, a method of operating the fuel reformer having such a structure will be described. First, the fuel for fuel is supplied to the burner 3 through the fuel supply pipe 5, and the fuel is burned by the combustion air supplied to the burner 3 by the combustion air supply means (not shown). The combustion gas generated at this time flows down in the partition wall 4 to heat the superheat pipe 6, and then returns to the lower end of the partition wall 4 and rises in the heating chamber 9 to flow through the reaction tubes 12, 12a inside and outside thereof. After heating from the side surface, a part of the combustion gas is discharged to the outside from the discharge pipe 16 through the communication hole 15. Then, when the minimum temperature of the reforming catalyst layer in the reaction tubes 12, 12a becomes 100 ° C. or higher by the heating of the combustion gas, the reforming is started. That is, the reforming raw material gas is fed into the superheating pipe 6 from the reforming raw material gas inlet pipe 7. Then, the reforming raw material gas is heated by the combustion gas in the superheating pipe 6 to become a superheated gas, and this superheated gas flows into the reaction pipes 12 and 12a through the reforming raw material gas distribution pipe 8 and the inside of the reaction pipes 12 and 12a. Reforming catalyst
Under 11 is reformed to a hydrogen-rich gas. At this time, the reforming catalyst layer is controlled within a temperature range suitable for the reforming reaction. The reformed gas generated in the reaction tubes 12 and 12a is supplied to the external fuel cell as a fuel gas for the reaction gas from the outlet tube 13a through the reformed gas manifold 13.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記のように燃料改質器を運転する場合、熱媒体として
の高温の燃焼ガスにより反応管内の改質触媒層を加熱
し、改質触媒層の最低温度が 100℃以上になれば改質原
料を反応管内に送気し、改質を開始する。改質反応は前
述のように吸熱反応であるため、燃焼ガスによる改質触
媒層の加熱により改質反応は進められる。しかし燃焼ガ
ス量が少なすぎると改質触媒は低温になって未改質ガス
が生じたり、また燃焼ガス量が多すぎると改質触媒が劣
化したり、燃料電池の電極触媒層に対する触媒毒となる
一酸化炭素の濃度が多い改質ガスが生成されたりするの
で、改質触媒層は適正な温度範囲、例えばCu系触媒の場
合は 260℃〜300 ℃の範囲に制御する必要がある。
When operating the fuel reformer as described above, the reforming catalyst layer in the reaction tube is heated by the high-temperature combustion gas as the heat medium, and if the minimum temperature of the reforming catalyst layer is 100 ° C or higher, the reforming raw material Is fed into the reaction tube to start reforming. Since the reforming reaction is an endothermic reaction as described above, the reforming reaction proceeds by heating the reforming catalyst layer with the combustion gas. However, if the amount of combustion gas is too small, the reforming catalyst becomes low temperature and unreformed gas is generated.If the amount of combustion gas is too large, the reforming catalyst deteriorates, and the catalyst poisons the electrode catalyst layer of the fuel cell. Since a reformed gas having a high concentration of carbon monoxide is generated, it is necessary to control the reforming catalyst layer within an appropriate temperature range, for example, in the range of 260 ° C to 300 ° C for a Cu-based catalyst.

しかしながら、多重の反応管12,12a内の改質触媒層が燃
焼ガスにより加熱される場合、改質触媒層には各反応管
の燃焼ガスの流れる方向,すなわち上下方向に温度差が
生じ、また炉容器2の同一レベルにおける中心から外周
に向かう方向、すなわち径方向に温度差が生じる。
However, when the reforming catalyst layers in the multiple reaction tubes 12, 12a are heated by the combustion gas, a temperature difference occurs in the reforming catalyst layers in the flowing direction of the combustion gas in each reaction tube, that is, in the vertical direction, and At the same level of the furnace vessel 2, a temperature difference occurs in the direction from the center to the outer periphery, that is, in the radial direction.

第5図は第4図の燃料改質器1においてバーナ3からの
燃焼ガスにより反応管12,12aを加熱して改質反応を行わ
せた時の燃料改質器の昇温特性を示すグラフであり、横
軸に改質触媒層の加熱開始から改質反応の適正温度範囲
内の動作温度幅Lで行われるまでの時間経過を、縦軸に
改質触媒層の温度をとり、改質触媒層の計測点A,B,
C(第4図参照)の温度を示している。なお、実線は内
側の反応管12、一方破線は外側の反応管12a の改質触媒
層の温度を示している。図から改質触媒層の上下方向の
昇温速度は反応管12,12aとともに改質触媒層の最下部が
最高であり、中央部,最上部の順で低くなっている、す
なわち燃焼ガスの流れの上流から下流に向かうほど改質
触媒層の昇温速度は遅くなっていることが理解される。
FIG. 5 is a graph showing the temperature rise characteristics of the fuel reformer when heating the reaction tubes 12 and 12a by the combustion gas from the burner 3 to cause the reforming reaction in the fuel reformer 1 of FIG. Where the abscissa represents the time elapsed from the start of heating of the reforming catalyst layer to the operation temperature range L within the proper temperature range of the reforming reaction, and the ordinate represents the temperature of the reforming catalyst layer. Measurement points A, B of the catalyst layer,
The temperature of C (see FIG. 4) is shown. The solid line shows the temperature of the reforming catalyst layer of the inner reaction tube 12, while the broken line shows the temperature of the reforming catalyst layer of the outer reaction tube 12a. From the figure, the temperature rising rate in the vertical direction of the reforming catalyst layer is highest in the lowermost part of the reforming catalyst layer together with the reaction tubes 12, 12a, and is lower in the order of the central part and the uppermost part. It is understood that the temperature rising rate of the reforming catalyst layer becomes slower from the upstream side to the downstream side.

一方、改質触媒層の径方向の温度差は、炉容器2の外周
側の反応管12a 内の改質触媒層の昇温速度が中心側の反
応管12の昇温速度より遅くなっていることが理解され
る。
On the other hand, regarding the temperature difference in the radial direction of the reforming catalyst layer, the temperature rising rate of the reforming catalyst layer in the reaction tube 12a on the outer peripheral side of the furnace vessel 2 is slower than the temperature rising rate of the reaction tube 12 on the central side. Be understood.

ところで、反応管12,12aの改質触媒層の最低温度が 100
℃になって改質原料ガスを反応器10に送入できるまでの
起動時間Tは改質触媒層の上下方向や径方向の温度差を
小さくすることによりさらに短くできるものであり、こ
れによって改質反応時の改質触媒層の温度の適正範囲に
より早く到達し、燃料電池に改質ガスを早く供給できる
ので、起動時間をより短くすることが要求されている。
By the way, the minimum temperature of the reforming catalyst layer of the reaction tubes 12, 12a is 100
The starting time T until the reforming raw material gas can be fed into the reactor 10 at ℃ is further shortened by reducing the temperature difference in the vertical and radial directions of the reforming catalyst layer. Since the temperature of the reforming catalyst layer during the quality reaction reaches the proper range earlier and the reformed gas can be supplied to the fuel cell earlier, it is required to shorten the starting time.

本発明の目的は、改質触媒層の温度分布の温度差を小さ
くすることにより反応器の昇温速度分布を均一にして改
質原料ガスの改質時の起動時間を短縮することのできる
反応器を備えた燃料改質器を提供することである。
It is an object of the present invention to reduce the temperature difference in the temperature distribution of the reforming catalyst layer so that the temperature rising rate distribution of the reactor can be made uniform and the start-up time at the time of reforming the reforming raw material gas can be shortened. To provide a fuel reformer equipped with a reactor.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明によれば、内管とこれを囲む外管との間に改質触
媒が充填された反応管を互いに連通して同心に多重に配
設してなる多重反応器を、一方の端部の端板を貫通する
筒を内蔵するケーシング内の前記筒とケーシングとで画
成される加熱室に前記筒を囲む同心に配設し、熱媒体供
給源からの熱媒体を筒内に通流した後加熱室内の各反応
管の側面に沿って通流して各反応管を加熱し、各反応管
を通流する改質原料ガスを水素に富むガスに改質する燃
料改質器において、前記各反応管を加熱しながら流れる
熱媒体の通路の熱媒体の流れ抵抗をケーシングの中心か
ら外周に向かう程小さくするものとする。
According to the present invention, a multi-reactor in which reaction tubes filled with a reforming catalyst are connected between an inner tube and an outer tube surrounding the inner tube and are concentrically and multiply arranged, The heating chamber defined by the casing and the casing inside the casing that penetrates the end plate of the casing is concentrically arranged to surround the casing, and the heat medium from the heat medium supply source flows into the casing. In the fuel reformer for heating the respective reaction tubes by flowing along the side surfaces of the respective reaction tubes in the heating chamber and reforming the reforming raw material gas flowing through the respective reaction tubes into a gas rich in hydrogen, The flow resistance of the heat medium in the passage of the heat medium flowing while heating each reaction tube is made smaller from the center of the casing toward the outer periphery.

さらに好ましくは、前記燃料改質器において、熱媒体が
流れる上流から下流にいく程熱媒体が接触する反応管の
側面に伝熱を促進する手段を蜜に設けるものとする。
More preferably, in the fuel reformer, a means for accelerating heat transfer is provided on the side surface of the reaction tube in contact with the heat medium from the upstream side to the downstream side where the heat medium flows.

〔作用〕[Action]

多重反応器において各反応管を加熱する熱媒体が各反応
管の側面に沿って流れる通路、すなわち筒と反応管、相
隣る反応管および反応管とケーシングとの間の通路の熱
媒体の流れ抵抗をケーシングの中心から外周に向かう程
小さくしているので、熱媒体は外周にある通路程多量に
流れ、このため外周からの熱放散を補償して多重反応器
の径方向の改質触媒相の温度分布の温度差を小さくする
ことができる。さらに、熱媒体が流れる上流から下流に
いく程熱媒体が接触する反応管の側面に伝熱を促進する
手段を蜜に設ける、例えば伝熱用のフィンを上流から下
流に向かう程蜜に取り付けて伝熱が行われる面積を大き
くすることにより、熱媒体の温度は反応管に熱を与えて
下流程低下するが、下流に行く程伝熱面積を大きくして
いるので、熱媒体の反応管側面への熱伝達が均一とな
り、このため熱媒体の上流から下流に向かう方向の温度
分布の温度差を小さくすることができる。
In the multiple reactor, the heat medium that heats each reaction tube flows along the side surface of each reaction tube, that is, the flow of the heat medium in the tube and the reaction tube, the adjacent reaction tubes and the path between the reaction tube and the casing. Since the resistance is reduced from the center of the casing toward the outer periphery, the heat medium flows in a larger amount in the passages on the outer periphery, so that the heat dissipation from the outer periphery is compensated for and the reforming catalyst phase in the radial direction of the multiple reactors is compensated. The temperature difference in the temperature distribution can be reduced. Further, a means for promoting heat transfer is provided on the side surface of the reaction tube in contact with the heat medium from the upstream side to the downstream side where the heat medium flows, for example, a fin for heat transfer is attached to the side wall from the upstream side to the downstream side. By increasing the area where heat transfer is performed, the temperature of the heat transfer medium gives heat to the reaction tube and decreases toward the downstream, but since the heat transfer area increases toward the downstream, the side surface of the reaction tube of the heat transfer medium Since the heat transfer to the heat medium becomes uniform, the temperature difference in the temperature distribution in the direction from the upstream side to the downstream side of the heat medium can be reduced.

〔実施例〕〔Example〕

以下図面に基づいて本発明の最も好適な実施例について
説明する。第1図は本発明の実施例による燃料改質器の
断面図である。なお第1図において第4図の従来例と同
一部品には同じ符号を付し、その説明を省略する。図に
おいて本実施例では反応器10を多重反応器として反応管
12,12a,12b,12cによって構成している。そして従来例と
異なるもののうちその一つは各反応管12,12a,12b,12cの
内外側面に伝熱を促進する手段としてのフィン20を取付
けたことである。フィン20は第2図の反応管の側面展開
図に示すように燃焼ガスが矢印21方向に流れる上流から
下流に向かう程蜜に取付け、伝熱面積を上流から下流に
向かう程大きくしている。このため燃焼ガスの温度が下
流に向かう程低下しても熱伝達量が均一になり反応管1
2,12a,12b,12c内の改質触媒層の上下方向の温度差は小
さくなる。また従来例と異なる他の一つは燃焼ガスが反
応管12,12a,12b,12c の側面に沿って流れる通路である
隔壁4と反応管12, 反応管12と12a,反応管12a と12b,反
応管12b と反応管12c,反応管12c と炉容器2の側壁との
隙間である燃焼ガスの通路の燃焼ガスが流れる流れ抵抗
を上記の順で小さくしたことである。すなわち図におい
て隔壁4,各反応管のヘッダ15および炉容器2の側壁と
の隙間を改質器10の内側から外側に向かってΔG1,ΔG
3,ΔG4,ΔG5 とした時、この大きさをこの順で大きく
する、すなわちΔG<ΔG<ΔG<ΔG<ΔG
とし、外周側の通路程燃焼ガスが多量に流れるように
している。
The most preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a fuel reformer according to an embodiment of the present invention. In FIG. 1, the same parts as those of the conventional example of FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted. In the figure, in this embodiment, the reactor 10 is used as a multiple reactor
It is composed of 12,12a, 12b, 12c. One of the differences from the conventional example is that fins 20 are attached to the inner and outer surfaces of the reaction tubes 12, 12a, 12b, 12c as means for promoting heat transfer. As shown in the side development view of the reaction tube in FIG. 2, the fins 20 are attached in a narrower position from the upstream side to the downstream side where the combustion gas flows in the direction of arrow 21, and the heat transfer area is increased from the upstream side to the downstream side. Therefore, even if the temperature of the combustion gas decreases toward the downstream side, the amount of heat transfer becomes uniform and the reaction tube 1
The temperature difference in the vertical direction of the reforming catalyst layers in 2, 12a, 12b, 12c becomes small. The other one different from the conventional example is the partition wall 4 and the reaction tube 12, the reaction tubes 12 and 12a, the reaction tubes 12a and 12b, which are the passages through which the combustion gas flows along the side surfaces of the reaction tubes 12, 12a, 12b and 12c. The flow resistance of the combustion gas flowing in the passage of the combustion gas, which is a gap between the reaction tube 12b and the reaction tube 12c and between the reaction tube 12c and the side wall of the furnace vessel 2, is reduced in the above order. That is, in the figure, the gaps between the partition wall 4, the header 15 of each reaction tube and the side wall of the furnace vessel 2 are changed from the inside of the reformer 10 toward the outside by ΔG 1, ΔG.
When 3, ΔG 4 and ΔG 5 are set, this size is increased in this order, that is, ΔG 1 <ΔG 2 <ΔG 3 <ΔG 4 <ΔG
5 , the combustion gas flows in a larger amount toward the passage on the outer peripheral side.

このような改質器の構造により、バーナ3からの燃焼ガ
スは隔壁4内を流れた後、加熱室9内の反応管12,12a,1
2b,12cの側面に沿って下方から上方に向かって流れて燃
焼ガスは各反応管を加熱する。この際、各反応管にはフ
ィン20が燃焼ガスの流れる上流から下流に向かう程蜜に
取付けられているので、反応管の下部から上部に向かっ
て熱伝達量が均一化され、反応管内の改質触媒層の上下
方向の温度分布の温度差は小さくなる。また、燃焼ガス
の通路の流れ抵抗はケーシングの中心から外周に向かう
程小さくしているので、外周に近い反応管程燃焼ガスは
多量に流れ、多量反応器の各反応管内の改質触媒層の径
方向の温度分布の温度差が小さくなる。
With such a structure of the reformer, the combustion gas from the burner 3 flows in the partition wall 4 and then the reaction tubes 12, 12a, 1 in the heating chamber 9
The combustion gas flows from the lower side to the upper side along the side surfaces of 2b and 12c, and the combustion gas heats each reaction tube. At this time, since the fins 20 are attached to each reaction tube so that the fins 20 are more closely connected from the upstream side to the downstream side where the combustion gas flows, the heat transfer amount is made uniform from the lower part to the upper part of the reaction tube, and the inside of the reaction tube is improved. The temperature difference in the temperature distribution in the vertical direction of the high quality catalyst layer becomes small. Further, since the flow resistance of the combustion gas passage is made smaller from the center of the casing toward the outer circumference, a larger amount of the combustion gas flows in the reaction tube closer to the outer circumference, and the reforming catalyst layer in each reaction tube of the large quantity reactor is The temperature difference in the radial temperature distribution is reduced.

第3図は本実施例による燃料改質器の起動時の昇温特性
を示すグラフであり、第5図と同じ要領で横軸に反応管
内の改質触媒層の加熱開始からの時間経過を、縦軸に改
質触媒層の計測点A,B,Cの温度を横軸,縦軸の目
盛,単位とも第5図のものと同一にとって示している。
なお、実線は改質器の最内側の反応管内の改質触媒層、
破線は改質器の最外側の反応管内の改質触媒層の計測点
A,B,Cの温度を示している。図から改質器における
多重に配された反応管内の改質触媒層の上下方向や径方
向の温度分布の温度差が従来のものより小さく、かつ改
質触媒層の最低温度が 100℃になるまでの起動時間Tが
従来のものより短くなることが理解される。
FIG. 3 is a graph showing the temperature rise characteristics at the time of starting the fuel reformer according to this example. In the same manner as in FIG. 5, the horizontal axis represents the time elapsed from the start of heating of the reforming catalyst layer in the reaction tube. The ordinate indicates the temperatures at the measurement points A, B, and C of the reforming catalyst layer, while the abscissa and the ordinate scale and units are the same as those in FIG.
The solid line indicates the reforming catalyst layer in the innermost reaction tube of the reformer,
The broken line shows the temperatures at the measurement points A, B, C of the reforming catalyst layer in the outermost reaction tube of the reformer. From the figure, the temperature difference in the vertical and radial temperature distribution of the reforming catalyst layers in the reaction tubes arranged in multiple layers in the reformer is smaller than that of the conventional one, and the minimum temperature of the reforming catalyst layers is 100 ° C. It is understood that the startup time T up to is shorter than that of the conventional one.

また、改質反応時の動作温度幅Mは第5図の従来の動作
温度幅Lより小さくなり、温度制御が容易になることが
理解される。
Further, it is understood that the operating temperature range M during the reforming reaction becomes smaller than the conventional operating temperature range L shown in FIG. 5, which facilitates temperature control.

本実施例では熱媒体供給源をバーナとしているが、熱交
換器のような加熱器を用い、加熱器からの熱媒体を使用
しても同じ効果が得られる。
Although the burner is used as the heat medium supply source in this embodiment, the same effect can be obtained by using a heater such as a heat exchanger and using the heat medium from the heater.

なお、上記実施例では、反応器の上下方向と径方向の両
方の温度分布における温度差を低減する場合について説
明したが、径方向のみ低減するだけでもよい場合には、
前記伝熱促進手段の密度を反応器の上下方向に変化させ
る必要はなく同一密度でよい。
In the above example, the case where the temperature difference in the temperature distribution in both the vertical direction and the radial direction of the reactor is reduced has been described, but in the case where only the radial direction may be reduced,
It is not necessary to change the density of the heat transfer promoting means in the vertical direction of the reactor, and the same density may be used.

〔発明の効果〕〔The invention's effect〕

以上の説明で明らかなように、本発明によれば反応管を
多重に配設した多重反応器において、各反応管を加熱す
る熱媒体が流れる通路の流れ抵抗をケーシングの径方向
の中心から外周に向かう程小さくすることにより、ケー
シングの外周側にある通路程熱媒体が多量に流れるので
多重の反応管の改質触媒層の径方向の温度分布の温度差
を小さくできる。さらに、熱媒体が流れる上流から下流
にいく程熱媒体が接触する反応管の側面に伝熱を促進す
る手段を蜜に設けることにより、熱媒体の反応管側面へ
の熱伝達が均一となり、このため熱媒体の上流から下流
に向かう方向の温度分布の温度差を小さくすることがで
きる。したがって上記の熱媒体の流れ方向や径方向の温
度分布の温度差が小さくなることにより、起動時間を短
くすることができるとともに改質触媒の寿命が長くな
り、また改質触媒層の温度制御も容易になり、これに伴
って一酸化炭素濃度を所定値以下に容易に制御できると
ともに起動時の消費電力も節約することができる。
As is clear from the above description, according to the present invention, in a multiple reactor in which multiple reaction tubes are arranged, the flow resistance of the passage through which the heat medium for heating each reaction tube flows is measured from the radial center of the casing to the outer circumference. Since the heat medium flows in a larger amount in the passage on the outer peripheral side of the casing, the temperature difference in the temperature distribution in the radial direction of the reforming catalyst layers in the multiple reaction tubes can be reduced. Furthermore, by providing a means for promoting heat transfer on the side surface of the reaction tube in contact with the heat medium from the upstream side to the downstream side, the heat transfer of the heat medium to the side surface of the reaction tube becomes uniform. Therefore, it is possible to reduce the temperature difference in the temperature distribution in the direction from the upstream side to the downstream side of the heat medium. Therefore, by reducing the temperature difference in the temperature distribution in the flow direction and the radial direction of the heat medium, the startup time can be shortened, the life of the reforming catalyst can be extended, and the temperature control of the reforming catalyst layer can also be performed. As a result, the carbon monoxide concentration can be easily controlled to a predetermined value or less, and the power consumption at startup can be saved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例による燃料改質器の断面図、第
2図は第1図の反応管の側面展開図、第3図は第1図の
反応管内の改質触媒層の起動時における昇温状態を示す
グラフ、第4図は従来の燃料改質器の断面図、第5図は
第4図の反応管内の改質触媒層の起動時における昇温状
態を示すグラフである。 1:燃料改質器、2:炉容器、3:バーナ、 4:隔壁、10:反応器、11:改質触媒、12,12a,12b,12c
:反応管、20:フィン。
FIG. 1 is a sectional view of a fuel reformer according to an embodiment of the present invention, FIG. 2 is a side development view of the reaction tube of FIG. 1, and FIG. 3 is activation of a reforming catalyst layer in the reaction tube of FIG. 4 is a cross-sectional view of a conventional fuel reformer, and FIG. 5 is a graph showing a temperature rise state at the time of starting the reforming catalyst layer in the reaction tube of FIG. . 1: Fuel reformer, 2: Furnace vessel, 3: Burner, 4: Partition wall, 10: Reactor, 11: Reforming catalyst, 12,12a, 12b, 12c
: Reaction tube, 20: Fin.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内管とこれを囲む外管との間に改質触媒が
充填された反応管を互いに連通して同心に多重に配設し
てなる多重反応器を、一方の端部の端板を貫通する筒を
内蔵するケーシング内の前記筒とケーシングとで画成さ
れる加熱室に前記筒を囲む同心に配設し、熱媒体供給源
からの熱媒体を筒内に通流した後加熱室内の各反応管の
側面に沿って通流して各反応管を加熱し、各反応管を通
流する改質原料ガスを水素に富むガスに改質する燃料改
質器において、前記各反応管を加熱しながら流れる熱媒
体の通路の熱媒体の流れ抵抗をケーシングの中心から外
周に向かう程小さくしたことを特徴とする燃料改質器。
1. A multi-reactor in which a reaction tube filled with a reforming catalyst is connected between an inner tube and an outer tube surrounding the inner tube so as to be concentrically and multiply arranged, Arranged concentrically around the cylinder in a heating chamber defined by the cylinder and the casing inside a casing that penetrates the end plate, and passed the heat medium from the heat medium supply source into the cylinder. In the fuel reformer that flows along the side surface of each reaction tube in the post-heating chamber to heat each reaction tube and reform the reforming raw material gas flowing through each reaction tube into a gas rich in hydrogen, A fuel reformer characterized in that the flow resistance of the heat medium in the passage of the heat medium flowing while heating the reaction tube is made smaller from the center of the casing toward the outer periphery.
【請求項2】特許請求の範囲第1項記載の燃料改質器に
おいて、熱媒体が流れる上流から下流にいく程熱媒体が
接触する反応管の側面に伝熱を促進する手段を蜜に設け
たことを特徴とする燃料改質器。
2. The fuel reformer according to claim 1, wherein a means for promoting heat transfer is provided on the side surface of the reaction tube in contact with the heat medium as the heat medium flows from upstream to downstream. A fuel reformer characterized by the above.
JP63137044A 1988-06-03 1988-06-03 Fuel reformer Expired - Lifetime JPH0647442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63137044A JPH0647442B2 (en) 1988-06-03 1988-06-03 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63137044A JPH0647442B2 (en) 1988-06-03 1988-06-03 Fuel reformer

Publications (2)

Publication Number Publication Date
JPH01305802A JPH01305802A (en) 1989-12-11
JPH0647442B2 true JPH0647442B2 (en) 1994-06-22

Family

ID=15189556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63137044A Expired - Lifetime JPH0647442B2 (en) 1988-06-03 1988-06-03 Fuel reformer

Country Status (1)

Country Link
JP (1) JPH0647442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101880267B1 (en) * 2017-02-07 2018-07-23 (주)그린파워 current collector converter switching method for broad resonance frequency allowed of wireless power transfer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019205975A (en) * 2018-05-30 2019-12-05 大同特殊鋼株式会社 Atmospheric gas generating apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138307A (en) * 1985-12-10 1987-06-22 Yamaha Motor Co Ltd Device for reforming fuel for fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138307A (en) * 1985-12-10 1987-06-22 Yamaha Motor Co Ltd Device for reforming fuel for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101880267B1 (en) * 2017-02-07 2018-07-23 (주)그린파워 current collector converter switching method for broad resonance frequency allowed of wireless power transfer

Also Published As

Publication number Publication date
JPH01305802A (en) 1989-12-11

Similar Documents

Publication Publication Date Title
JP3625770B2 (en) Single tube cylindrical reformer and its operating method
JP4869696B2 (en) Small cylindrical reformer
JP4128804B2 (en) Fuel reformer
US6835354B2 (en) Integrated reactor
JPWO2002098790A1 (en) Cylindrical steam reformer
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JP2002187705A (en) Single tube cylindrical reformer
JP3861077B2 (en) Fuel reformer
JP2004059415A (en) Fuel reformer and fuel cell power generation system
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
JP3405839B2 (en) Converter
JPH10502213A (en) Furnace for fuel cell power plant
JP2003321206A (en) Single tubular cylinder type reforming apparatus
WO2005077820A1 (en) Fuel reformer
JPH0647442B2 (en) Fuel reformer
JP5244488B2 (en) Fuel cell reformer
JP2646101B2 (en) Fuel reformer
JP2004075435A (en) Fuel reforming device
WO2005077822A1 (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
JP2998217B2 (en) Fuel reformer
JP2009067645A (en) Hydrogen manufacturing device and fuel cell system using the same
JPH01320201A (en) Fuel reformer
JP2550716B2 (en) Fuel reformer
JP2003112904A (en) Single tube type cylindrical reformer
JPH0397601A (en) Fuel reformer