JPH01320201A - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JPH01320201A
JPH01320201A JP63155574A JP15557488A JPH01320201A JP H01320201 A JPH01320201 A JP H01320201A JP 63155574 A JP63155574 A JP 63155574A JP 15557488 A JP15557488 A JP 15557488A JP H01320201 A JPH01320201 A JP H01320201A
Authority
JP
Japan
Prior art keywords
tube
reaction tube
catalyst
reaction
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63155574A
Other languages
Japanese (ja)
Inventor
Masatsuru Umemoto
梅本 真鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63155574A priority Critical patent/JPH01320201A/en
Publication of JPH01320201A publication Critical patent/JPH01320201A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce the temp. difference in the radial direction of a catalyst bed and to increase the service life of a reaction tube by packing a reforming catalyst in a specified manner in the title reformer wherein the reaction tube packed with the catalyst is heated by a heating medium flowing along the side wall of the tube. CONSTITUTION:The granular reforming catalyst 5 is packed in a double tube consisting of the inner tube 3 and outer tube 4 arranged respectively inside and outside a partition cylinder 2 to form the reaction tube 1. The catalyst 5 is packed between the inner tube 3 and the cylinder 2 and between the cylinder 2 and the outer tube 4 to form the inner and outer catalyst beds 6 and 7, and both beds are connected to each other at the lower end. A burner 8 is set inside the inner tube 3, the outside of the reaction tube 1 is surrounded by a furnace vessel 9, and the combustion gas from the burner 8 is allowed to flow downward in the combustion chamber along the inner side face of the reaction tube 1, reversed at the lower end of the reaction tube 1, and allowed to flow upward along the outer side face of the reaction tube 1. In this reformer, the packing density of the catalyst 5 is progressively increased toward the side walls of the inner tube 3 and outer tube 4.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、改質原料ガスを改質触媒の下に水素に冨むガ
スに改質する燃料改質装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel reformer for reforming a reforming raw material gas into a hydrogen-rich gas under a reforming catalyst.

〔従来の技術〕[Conventional technology]

燃料電池は化学エネルギを直接電気エネルギに変換する
ものであり、小出力でも高い熱効率が得られることから
最近では従来のエンジン発電機やタービン発電機に替わ
る移動用電源、離島用電源として開発、展開が進められ
ている。ところで燃料電池に供給する燃料ガスの水素源
としては天然ガスやLPG、あるいはこれらの主成分で
ある炭化水素に比べて反応温度が大幅に低く、かつ改質
工程も簡単に済むメタノールなどが用いられている。こ
れらの炭化水素やメタノールは改質触媒の下に水蒸気改
質反応により水素に冨むガスに改質され、燃料電池の燃
料ガスとなる。ところで天然ガスは主成分であるメタン
が下記の二つの反応により改質される。
Fuel cells directly convert chemical energy into electrical energy, and because they can achieve high thermal efficiency even with a small output, they have recently been developed and deployed as mobile power sources and remote island power sources to replace conventional engine generators and turbine generators. is in progress. By the way, as a hydrogen source for the fuel gas supplied to the fuel cell, natural gas, LPG, or methanol, which has a significantly lower reaction temperature than the hydrocarbons that are their main components, and which can be easily reformed, is used. ing. These hydrocarbons and methanol are reformed by a steam reforming reaction under a reforming catalyst into a gas rich in hydrogen, which becomes the fuel gas for the fuel cell. By the way, the main component of natural gas, methane, is reformed through the following two reactions.

CH,+)1.0 →CO+3H,−・−−−−−−−
・−−−−〜−−f1+CO+H!O→CO,+l! 
  ・−一一−−−・・−・・−・−・(2)+11の
反応は旧糸の改質触媒の下で700℃〜900℃で行わ
れる吸熱反応であり、(2)の反応はCu系の改質触媒
の下で200℃〜400℃で行われる発熱反応である。
CH, +) 1.0 → CO + 3H, −・−−−−−−
・−−−−〜−−f1+CO+H! O → CO, +l!
・−11−−−・・−・・−・−・(2) The reaction of +11 is an endothermic reaction that takes place at 700°C to 900°C under the reforming catalyst of old yarn, and the reaction of (2) is an exothermic reaction carried out at 200°C to 400°C under a Cu-based reforming catalyst.

なお、(1)の反応はNi系の改質触媒が充填された反
応管を有する燃料改質装置で行われ、(2)の反応はC
u系の改質触媒を内蔵する一酸化炭素変成器で行われる
Note that the reaction (1) is carried out in a fuel reformer having a reaction tube filled with a Ni-based reforming catalyst, and the reaction (2) is carried out in a fuel reformer having a reaction tube filled with a Ni-based reforming catalyst.
This is carried out using a carbon monoxide shift converter containing a U-based reforming catalyst.

一方、メタノールは気化したメタノールガスが下記の2
段の反応により改質されると考えられている。
On the other hand, methanol is vaporized methanol gas as shown below.
It is thought that the property is modified by a stage reaction.

(JIsOH−hco + 2 H!   −・・・−
−−一−−−−−・−−−−−−・・−(3)CO+H
1O→CO□+H! ・−・・−−−−−−−−−(4
1+31. +41の反応はいずれもCu系の改質触媒
の下で200℃〜400℃で行われ、(3)の反応は吸
熱反応、(4)の反応は発熱反応であるがトータルする
と吸熱反応である。なお、(31,(41の反応は反応
1度が低く、−酸化炭素の4度も低いため、Cu系の改
質触媒が充填された反応管を存する燃料改!!を装置の
みで行われる。
(JIsOH-hco + 2 H! -...-
−−1−−−−−・−−−−−−・・−(3) CO+H
1O→CO□+H!・-・・--------(4
1+31. The +41 reactions are all carried out at 200°C to 400°C under a Cu-based reforming catalyst, and the reaction (3) is an endothermic reaction, and the reaction (4) is an exothermic reaction, but in total it is an endothermic reaction. . In addition, in the reactions of (31 and (41), the reaction 1 degree is low and the -carbon oxide degree is also low, so fuel reforming!! that has a reaction tube filled with a Cu-based reforming catalyst can be carried out only with a device. .

上記のメタン、メタノール等の改質原料ガスを改質する
燃料改質装置の反応管における水蒸気改質反応はいずれ
も大きな吸熱反応であるので外部からの熱の供給が必要
である。このようにして外部から熱を供給して改質原料
ガスを水蒸気改質する燃料改質装置として、例えば第4
図に示す天然ガス燃料改質装置が知られている0図にお
いて、反応管1は仕切円筒2の内外に配された内管3と
外管4とからなる二重管の中に粒状の改質触媒5が充填
されて構成されている。なお内管3と仕切円筒2との間
および仕切円筒2と外管4との間に改質触媒が充填され
て内触媒層6と外触媒層7とが形成され、これらは下端
で接続している。
The steam reforming reactions in the reaction tubes of the fuel reformer for reforming reforming raw material gases such as methane and methanol are all large endothermic reactions and therefore require heat to be supplied from the outside. In this way, as a fuel reformer that supplies heat from the outside and steam-reforms the reforming raw material gas, for example, the fourth
0, a reaction tube 1 is a double tube consisting of an inner tube 3 and an outer tube 4 disposed inside and outside a partition cylinder 2, in which a granular reformer is contained. The structure is filled with a quality catalyst 5. A reforming catalyst is filled between the inner tube 3 and the partition cylinder 2 and between the partition cylinder 2 and the outer tube 4 to form an inner catalyst layer 6 and an outer catalyst layer 7, which are connected at the lower end. ing.

バーナ8は反応管1の内管3の内側に配され、炉容器9
は反応管lの外側を囲み、バーナ8からの燃焼ガスは反
応管lの内側面に沿って燃焼室11を下方に流れた後、
反応管1の下端で折返して反此 応管1の外側面に沿って燃料ガス通路12を上方に流れ
た後、炉容器9から排出管13を経て外部に排出される
The burner 8 is arranged inside the inner tube 3 of the reaction tube 1, and the burner 8 is arranged inside the inner tube 3 of the reaction tube 1.
surrounds the outside of the reaction tube l, and after the combustion gas from the burner 8 flows downward through the combustion chamber 11 along the inner surface of the reaction tube l,
After being turned back at the lower end of the reaction tube 1 and flowing upward through the fuel gas passage 12 along the outer surface of the reaction tube 1, it is discharged from the furnace vessel 9 through the discharge pipe 13 to the outside.

庭前l内の内触媒層6を加熱した後、外触媒層7を加熱
して炉容器9から外部に排出される。そして改質原料ガ
スとしての天然ガスを反応管1の内管側の上端から流入
させると天然ガスは加熱された内触媒層6から外触媒層
7へと流れ、改質触媒の作用の下に水蒸気改質されて水
素に冨むガスに改質され、この改質ガスは反応管1の外
管側の上端から外部、例えば燃料電池に送出される。
After heating the inner catalyst layer 6 in the front garden l, the outer catalyst layer 7 is heated and discharged from the furnace container 9 to the outside. When natural gas as the reforming raw material gas is introduced from the upper end of the inner tube side of the reaction tube 1, the natural gas flows from the heated inner catalyst layer 6 to the outer catalyst layer 7, and under the action of the reforming catalyst. The gas is reformed by steam reforming into a hydrogen-rich gas, and this reformed gas is sent out from the upper end of the outer tube side of the reaction tube 1 to the outside, for example, to a fuel cell.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように反応管lはこの側壁に沿って流れる熱媒体
により加熱されるが、反応管と触媒層との熱抵抗が大き
いので、反応管の半径方向の温度分布に大きな温度差が
生じる。
As described above, the reaction tube I is heated by the heat medium flowing along the side wall, but since the thermal resistance between the reaction tube and the catalyst layer is large, a large temperature difference occurs in the temperature distribution in the radial direction of the reaction tube.

第4図は改質触媒を均一に充填した反応管の半径方向の
温度分布を示すグラフであり、縦軸に内触媒層6を有す
る反応管部の温度を、横軸に反応管の半径方向の位置を
とって示している0図から内触媒層6の半径方向の温度
は燃焼ガスが沿って流れる内管3の側壁から遠ざかる程
、低下し、内管側壁側と仕切円筒側との温度差は大きい
ことが理解される。このような大きな温度差を存する温
度分布があると、所定の水素ガス量を得るための改質反
応時の触媒層の平均温度を所定の温度にするためには反
応管の外壁温度を1000℃以上に上昇させなければな
らない、このような高温は反応管を構成する金属材料の
劣化を著しく進めるという欠点がある。
FIG. 4 is a graph showing the temperature distribution in the radial direction of a reaction tube uniformly filled with a reforming catalyst. From Figure 0, which shows the position of It is understood that the difference is large. If there is a temperature distribution with such a large temperature difference, the temperature of the outer wall of the reaction tube must be set at 1000°C in order to bring the average temperature of the catalyst layer to the specified temperature during the reforming reaction to obtain the specified amount of hydrogen gas. Such a high temperature, which must be raised above this level, has the disadvantage that it significantly accelerates the deterioration of the metal material constituting the reaction tube.

本発明の目的は、反応管内の触媒層の半径方向の温度分
布の温度差を小さくすることにより、反応管の劣化を遅
らせて寿命を長くすることのできる燃料改’11 Vz
置を提供することである。
An object of the present invention is to develop a fuel reform '11 Vz that can delay the deterioration of the reaction tube and extend its life by reducing the temperature difference in the radial temperature distribution of the catalyst layer inside the reaction tube.
The goal is to provide a

〔!i題を解決するための手段〕[! Means to solve problem i]

上記課題を解決するために、本発明によれば改質触媒が
充填された反応管をこの反応管の側壁に沿って流れる熱
媒体により加熱して反応管を通流する改質原料ガスを水
素に富むガスに改質する燃料改質装置において、反応管
内の改質触媒の充填密度を反応管の側壁に直角方向にこ
の側壁に近い位置程高くするものとする。
In order to solve the above problems, according to the present invention, a reaction tube filled with a reforming catalyst is heated by a heat medium flowing along the side wall of the reaction tube, and the reforming raw material gas flowing through the reaction tube is converted into hydrogen. In a fuel reformer for reforming gas into a gas rich in fuel, the packing density of the reforming catalyst in the reaction tube is made higher as the position nearer to the side wall of the reaction tube increases in the direction perpendicular to the side wall of the reaction tube.

〔作用〕[Effect]

改質原料ガスが通流する反応管内に充填される改質触媒
層の充填密度を反応管の側壁に直角方向、すなわち半径
方向に近い位置程密にしたことにより、反応管の側壁か
ら遠い程改質触媒の充填密度が低くなって熱抵抗が小さ
くなり、側壁から遠ざかる程伝熱性能が良くなるので、
半径方向の温度低下割合が小さくなり、これに伴って温
度分布の温度差が小さくなる。
By making the packing density of the reforming catalyst layer filled in the reaction tube through which reforming raw material gas flows more dense in the direction perpendicular to the side wall of the reaction tube, that is, closer to the radial direction, the further from the side wall of the reaction tube The packing density of the reforming catalyst becomes lower, the thermal resistance becomes smaller, and the further away from the side wall the better the heat transfer performance becomes.
The temperature decrease rate in the radial direction becomes smaller, and the temperature difference in the temperature distribution becomes smaller accordingly.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例による改質触媒が充填された反
応管を存する燃料改質装置の断面図、第2図は第1図の
A部の拡大図である。なお第1図、第2図において第2
図の従来例と同一部品には同じ符号を付し、その説明を
省略する。第1図、第2図において、従来例と異なるの
は反応管1の内触媒層6.外触媒層7における粒状の改
それぞれの側壁から直角方向、すなわち半径方向に側壁
に近い位置程高くしていることである。すなわち、第2
図に示すように内管」の側壁に近い程細粒の改質触媒を
付加すること等によりその充填密度を高くしている。
FIG. 1 is a sectional view of a fuel reformer including a reaction tube filled with a reforming catalyst according to an embodiment of the present invention, and FIG. 2 is an enlarged view of section A in FIG. 1. Note that in Figures 1 and 2,
Components that are the same as those in the conventional example shown in the drawings are given the same reference numerals, and their explanations will be omitted. 1 and 2, the difference from the conventional example is that the inner catalyst layer 6 of the reaction tube 1. The granular particles in the outer catalyst layer 7 are made higher at positions closer to the side walls in a direction perpendicular to each side wall, that is, in a radial direction. That is, the second
As shown in the figure, the packing density is increased by adding finer reforming catalyst particles closer to the side wall of the inner tube.

なお、複数の小孔15を設けたパンフル板14を仕切内
m2に複数個所取付けるのが望ましい、これは仕切円筒
側の改質触媒の充填密度が内管3の側壁例のそれより低
いため改質原料ガスが流れる流れ抵抗は小さくなるので
、パンフル板材により流れ抵抗を増加し、これにより反
応管内の半径方向の流れ抵抗を均一にして改質原料ガス
量が半径方向に均一に流れるようにするためである。
Note that it is desirable to install panful plates 14 with a plurality of small holes 15 in multiple locations in the partition m2. This is because the packing density of the reforming catalyst on the partition cylinder side is lower than that on the side wall example of the inner tube 3. Since the flow resistance of the reformed raw material gas becomes smaller, the flow resistance is increased by the panful plate material, thereby making the flow resistance in the radial direction in the reaction tube uniform and making the amount of reformed raw material gas flow uniformly in the radial direction. It's for a reason.

第3図は上記の構造によりバーナからの燃焼ガスの加熱
により改質原料ガスとしての天然ガスを水素に富むガス
に改質したときの反応管の半径方向の温度分布を示すグ
ラフであり、第5図と同じ要領で示している0図から反
応管1の内管6の半径方向の温度分布の’tAK差が従
来のものより小さく、温度が均一化されることが理解さ
れる。
FIG. 3 is a graph showing the temperature distribution in the radial direction of the reaction tube when natural gas as a reforming raw material gas is reformed into hydrogen-rich gas by heating the combustion gas from the burner with the above structure. It is understood from Figure 0, which is shown in the same way as Figure 5, that the 'tAK difference in the temperature distribution in the radial direction of the inner tube 6 of the reaction tube 1 is smaller than that of the conventional one, and the temperature is made uniform.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば反応管
内の改質触媒の充填密度を熱媒体が沿って流れる反応管
の側壁に直角方向に近い位置程高くすることにより、側
壁から遠い程充填密度が低くなり、このため側壁から遠
い程伝熱性能がよくなって半径方向の温度分布の温度差
が小さくなるので、改質ガス中の所定の水素量を得る改
質反応の平均温度を得るために、熱媒体により反応管の
側壁を過剰に高温にする必要がな(なり、側壁の温度は
従来のものより低くすることができ、これに伴って反応
管の寿命が長くなるという効果がある。
As is clear from the above description, according to the present invention, by increasing the packing density of the reforming catalyst in the reaction tube at a position closer to the direction perpendicular to the side wall of the reaction tube along which the heat transfer medium flows, The packing density becomes lower, and as a result, the further away from the side wall the better the heat transfer performance and the smaller the temperature difference in the radial temperature distribution. In order to achieve this, it is not necessary to heat the side wall of the reaction tube to an excessively high temperature by means of a heat transfer medium. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による反応管を備えた燃料改質
装置の断面図、第2図は第1図の反応管のA部の拡大図
、第3図は第1図の燃料改質装置名管を備えた燃料改質
装置の断面図、第5図は第4図の燃料改質装置により改
質原料ガスを改質し1;反応管、5:改質触媒、8;バ
ーナ。 ・−づ、 第1 図 第2図 第3図
1 is a sectional view of a fuel reformer equipped with a reaction tube according to an embodiment of the present invention, FIG. 2 is an enlarged view of section A of the reaction tube in FIG. 1, and FIG. 3 is a fuel reformer in FIG. Fig. 5 is a cross-sectional view of a fuel reformer equipped with the fuel reformer shown in Fig. 4, in which the reforming raw material gas is reformed by the fuel reformer shown in Fig. 4. 1: reaction tube, 5: reforming catalyst, 8: burner .・-zu, Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)改質触媒が充填された反応管をこの反応管の側壁に
沿って流れる熱媒体により加熱して反応管を通流する改
質原料ガスを水素に富むガスに改質する燃料改質装置に
おいて、反応管内の改質触媒の充填密度を反応管側壁に
直角な方向にこの側壁に近い位置程高くしたことを特徴
とする燃料改質装置。
1) A fuel reformer that heats a reaction tube filled with a reforming catalyst with a heat medium flowing along the side wall of the reaction tube to reform the reforming raw material gas flowing through the reaction tube into hydrogen-rich gas. A fuel reforming device characterized in that the packing density of the reforming catalyst in the reaction tube is increased at a position closer to the side wall of the reaction tube in a direction perpendicular to the side wall of the reaction tube.
JP63155574A 1988-06-23 1988-06-23 Fuel reformer Pending JPH01320201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63155574A JPH01320201A (en) 1988-06-23 1988-06-23 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63155574A JPH01320201A (en) 1988-06-23 1988-06-23 Fuel reformer

Publications (1)

Publication Number Publication Date
JPH01320201A true JPH01320201A (en) 1989-12-26

Family

ID=15609024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63155574A Pending JPH01320201A (en) 1988-06-23 1988-06-23 Fuel reformer

Country Status (1)

Country Link
JP (1) JPH01320201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040146A1 (en) * 2005-09-30 2007-04-12 Matsushita Electric Industrial Co., Ltd. Hydrogen production device and fuel cell system
JP2013055012A (en) * 2011-09-06 2013-03-21 Aisin Seiki Co Ltd Evaporator for fuel cell
WO2013073083A1 (en) * 2011-11-16 2013-05-23 パナソニック株式会社 Fuel processor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040146A1 (en) * 2005-09-30 2007-04-12 Matsushita Electric Industrial Co., Ltd. Hydrogen production device and fuel cell system
US8221512B2 (en) 2005-09-30 2012-07-17 Panasonic Corporation Hydrogen generator and fuel cell system
JP5058809B2 (en) * 2005-09-30 2012-10-24 パナソニック株式会社 Hydrogen generator and fuel cell system
JP2013055012A (en) * 2011-09-06 2013-03-21 Aisin Seiki Co Ltd Evaporator for fuel cell
WO2013073083A1 (en) * 2011-11-16 2013-05-23 パナソニック株式会社 Fuel processor
JP5269271B1 (en) * 2011-11-16 2013-08-21 パナソニック株式会社 Fuel processor
EP2671843A1 (en) * 2011-11-16 2013-12-11 Panasonic Corporation Fuel processor
EP2671843A4 (en) * 2011-11-16 2015-01-14 Panasonic Corp Fuel processor
US9266729B2 (en) 2011-11-16 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Fuel processor

Similar Documents

Publication Publication Date Title
US5876469A (en) Method of heat transfer in reformer
US6481207B2 (en) Single-pipe cylinder type reformer and method of operating the same
US7182921B2 (en) Cylindrical steam reforming unit
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JPH02102101A (en) Reformer for fuel cell
JP3405839B2 (en) Converter
JP2001342002A (en) Fuel reformer
US20070028522A1 (en) Fuel reformer
JP4617966B2 (en) Hydrogen generator
JPH01320201A (en) Fuel reformer
JPH05303972A (en) Fuel reformer
JP5244488B2 (en) Fuel cell reformer
JPH06325783A (en) Internal reforming type fused carbonate type fuel cell system
WO2005077822A1 (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
JP2998217B2 (en) Fuel reformer
JPS5823168A (en) Fuel cell power generating system
JP2550716B2 (en) Fuel reformer
JPH07223801A (en) Fuel-reforming device
JPS62246802A (en) Methanol reformer
JPH05301701A (en) Device for reforming fuel
JPH0611641B2 (en) Methanol reformer
JPH0647442B2 (en) Fuel reformer
JP2712766B2 (en) Fuel reformer
JPS6291402A (en) Methanol reformer