JPS6291402A - Methanol reformer - Google Patents

Methanol reformer

Info

Publication number
JPS6291402A
JPS6291402A JP60230602A JP23060285A JPS6291402A JP S6291402 A JPS6291402 A JP S6291402A JP 60230602 A JP60230602 A JP 60230602A JP 23060285 A JP23060285 A JP 23060285A JP S6291402 A JPS6291402 A JP S6291402A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
reforming
heat
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60230602A
Other languages
Japanese (ja)
Inventor
Masatsuru Umemoto
梅本 真鶴
Hiroshi Yoshioka
浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60230602A priority Critical patent/JPS6291402A/en
Publication of JPS6291402A publication Critical patent/JPS6291402A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prolong the life of a catalyst and to keep the reforming efficiency at a high level by packing the catalysts having different activities in the raw gas inlet part and the outlet part for the gaseous reaction product of the catalyst bed in a reformer in reforming methanol with steam. CONSTITUTION:The catalyst resistant to heat and having activity at high temp. is packed in the raw gas inlet part of the catalyst bed in the reformer and the catalyst having activity at low temp. is packed in the outlet part of the gaseous reaction product in the steam-reforming of methanol. A Cu-Cr-Zn catalyst is used as the catalyst resistant to heat and having activity at high temp. and a Cu-Zn catalyst is preferably used as the catalyst having activity at low temp. Since the catalysts are packed in such a way, the temp. distribution at the inlet part is raised as high as possible and that at the outlet part is lowered as low as possible, and the above-mentioned effect can be obtained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は燃料電池システムに組み込んで、メタノール・
水混合ガスを水素り、チガスに改質して燃料電池へ供給
する燃料改質装置に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention is incorporated into a fuel cell system to
The present invention relates to a fuel reformer that hydrogenates water mixed gas to reform it into thigas and supplies it to a fuel cell.

〔従来技術とその問題点〕[Prior art and its problems]

メタノールを燃料電池の燃料として対応させるためには
、液体原料をガス化した上で水素り、チガスに改質して
燃料電池へ送り込む必要があり、このために燃料電池シ
ステムには燃料改質装置が組み込まれている。ここで第
3図により従来におけるこの種の燃料電池システムを説
明する。図において、1は燃料電池、2はメタノールお
よび水を混合した液体原料を収容した原料タンク7は気
化器であり、該気化器7と燃料電池1との間の燃料供給
系路内にはこの発明の対象となる燃料改質装置3が介装
設置されている。かかる燃料改質装置 □3はバーナ4
を装備した炉容器5の燃焼室内に燃料ガスを触媒との接
触反応により水素り、チガスに改質する改質反応管6を
内蔵しており、燃料電  ゛池1から排出されるオフガ
スをバーナ4に供給し  。
In order to use methanol as a fuel for fuel cells, it is necessary to gasify the liquid raw material, hydrogenate it, reform it to thigas, and send it to the fuel cell.For this purpose, the fuel cell system requires a fuel reformer. is included. Here, a conventional fuel cell system of this type will be explained with reference to FIG. In the figure, 1 is a fuel cell, and 2 is a raw material tank 7 containing a liquid raw material mixed with methanol and water, which is a vaporizer. A fuel reformer 3, which is the object of the invention, is installed as an intermediary. Such a fuel reformer □3 is burner 4
A reforming reaction tube 6 is built into the combustion chamber of the furnace vessel 5 equipped with a fuel cell 1, which converts fuel gas into hydrogen through a contact reaction with a catalyst and reformes it into gas. Supply 4.

て炉内で燃焼し、この熱によりガス改質およびメタノー
ル・水混合液の気化を行う。なお符号8は液体燃料の供
給ポンプ、9は燃料電池1へ酸化剤反応ガスとしての空
気を供給するプロア、10は燃料電池冷却用の空気を送
気するブロアである。
This heat is used to reform the gas and vaporize the methanol/water mixture. Reference numeral 8 is a liquid fuel supply pump, 9 is a blower that supplies air as an oxidant reaction gas to the fuel cell 1, and 10 is a blower that sends air for cooling the fuel cell.

ところで、メタノールの水蒸気改質反応は、メタンやブ
タン等の水蒸気改質に比較して温和な条件で起こる。一
般には%200〜300℃、水蒸気。
Incidentally, the steam reforming reaction of methanol occurs under milder conditions than the steam reforming of methane, butane, and the like. Generally %200-300℃, water vapor.

メタノールのモル比1.0〜2.0の条件で行なわれて
おり、次の2段の素反応より成り立っているといわれて
いる。
It is carried out under the conditions of a methanol molar ratio of 1.0 to 2.0, and is said to consist of the following two-stage elementary reaction.

CH30H−+CO+2H2・・・・曲曲曲・曲 ■C
O+H20坤”02 +  H2・・・・・・・・・・
・・・・・・・・・・・■CH30H十H20→ CO
2+3Hz  ・・・・・・・・・・・・・−・・・・
・・・ ■■は吸熱反応、■は発熱反応であり、トータ
ルすると■は吸熱反応である。このためメタノール改質
器には、触媒を充填した反応管の外部から熱を与える外
部熱交換型の等温型反応器あるいは原料のメタノール・
水混合ガスを反応温度よりも過熱して、顕熱で反応エネ
ルギーを与える断熱型の反応器あるいは両者の中間タイ
プのものがある。等温型反応器においては、外部との触
媒層との熱エネルギー交換を行なわねばならず、充填層
の半径方向に温度分布がつきやすくおのずからある半径
以上に大きくすることはエネルギー伝達できない。
CH30H-+CO+2H2...Song/Song ■C
O+H20kon”02+H2・・・・・・・・・・
・・・・・・・・・・・・■CH30H10H20→ CO
2+3Hz ・・・・・・・・・・・・・・・・・・
... ■■ is an endothermic reaction, ■ is an exothermic reaction, and in total, ■ is an endothermic reaction. For this reason, the methanol reformer is either an external heat exchange type isothermal reactor that supplies heat from the outside of a reaction tube filled with a catalyst, or a methanol reformer that is used as a raw material.
There are adiabatic reactors that heat the water mixed gas above the reaction temperature and provide reaction energy with sensible heat, and there are reactors that are intermediate between the two. In an isothermal reactor, thermal energy must be exchanged between the catalyst layer and the outside, and temperature distribution tends to occur in the radial direction of the packed bed, and energy cannot be transferred if the radius is increased beyond a certain radius.

また断熱型反応器の欠点として、内部に充填されている
Cu−Zn系の触媒活性が300℃以上になると急速に
劣化することがあげられる。(第2図において特性aが
Cu−Zn系触媒での触媒寿命特性を示している)すな
わち、メタノール・水混合原料ガスが顕熱としてもち込
める熱エネルギーはH20/MeOH−e Al比にも
よるが、H207Me OH= 2 の時で改質に必要
なエネルギーのたかだか10%程度である。H20/M
eOHのモル比を2以上に増加することは、■の反応の
平衡を右側にずらせることはできるが、水の気化のため
のエネルギーを気化器で与えねばならず、また改質され
たガス中の82分圧が下がり、その結果電池特性も低下
してシステム全体の効率が下がってしまう欠点がある。
Further, a drawback of the adiabatic reactor is that the activity of the Cu-Zn catalyst filled inside the reactor rapidly deteriorates when the temperature exceeds 300°C. (In Figure 2, characteristic a indicates the catalyst life characteristic of the Cu-Zn catalyst.) In other words, the thermal energy that the methanol/water mixed raw material gas can bring in as sensible heat depends on the H20/MeOH-e Al ratio. However, when H207Me OH = 2, it is about 10% of the energy required for reforming. H20/M
Increasing the molar ratio of eOH to 2 or more can shift the equilibrium of the reaction (2) to the right, but energy for vaporizing water must be provided in the vaporizer, and the reformed gas There is a drawback that the internal 82 partial pressure decreases, resulting in a decrease in battery characteristics and a decrease in the efficiency of the entire system.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、触媒層入口部分をより高温に耐える触
媒とすることにより1等温型の反応器をより断熱型に近
づけ、触媒充填層部の構造を単純化し、また触媒層入口
部分の温度を高めることにより、改質反応をより有利と
して触媒の交換頻度を下げることを目的とする。
The purpose of the present invention is to make a single isothermal type reactor closer to an adiabatic type by making the inlet portion of the catalyst bed a catalyst that can withstand higher temperatures, simplify the structure of the catalyst packed bed portion, and reduce the temperature of the inlet portion of the catalyst bed. The purpose is to make the reforming reaction more advantageous and reduce the frequency of catalyst replacement by increasing the

〔発明の要点〕[Key points of the invention]

本発明は、充填層触媒反応器を用いたメタノール改質器
において触媒充填層のメタノール・水混合原料ガスの入
口部分には、高温でも使用可能な耐熱性のある触媒を充
填し、出口部分には低温で酷な触媒を充填することによ
り、改質ガス中のCO濃度を低くおさえながらメタノー
ルの改質率を低下させないようにし、しかも触媒の寿命
をのばすようにしたものである。
In a methanol reformer using a packed bed catalyst reactor, the inlet part of the catalyst packed bed for the methanol/water mixed raw material gas is filled with a heat-resistant catalyst that can be used even at high temperatures, and the outlet part is filled with a heat-resistant catalyst that can be used even at high temperatures. By charging a harsh catalyst at a low temperature, the CO concentration in the reformed gas is kept low, the methanol reforming rate is not reduced, and the life of the catalyst is extended.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の実施例による燃料改質装置の構成を
示すものであり、第3図と対応する部材には同一符合が
付しである。すなわち炉容器5の上部中央にはバーナ4
が設置され、その下方゛に中仕切壁13で仕切られた燃
焼室14が画成されている。
FIG. 1 shows the configuration of a fuel reformer according to an embodiment of the present invention, and members corresponding to those in FIG. 3 are given the same reference numerals. That is, the burner 4 is located in the upper center of the furnace vessel 5.
is installed, and a combustion chamber 14 partitioned by an intermediate partition wall 13 is defined below it.

また燃焼室14は下端側で中仕切壁14の外周側に画成
された室に通じ、さらに該室の上部が燃焼排ガスマニホ
ールド15を経て煙突へ通じる排気管16に連通してい
る。なおバーナ4には燃料電池のオフガス供給管17.
および燃焼用空気供給管18が配管接続されている。
The lower end of the combustion chamber 14 communicates with a chamber defined on the outer periphery of the partition wall 14, and the upper portion of the chamber communicates via a combustion exhaust gas manifold 15 with an exhaust pipe 16 leading to a chimney. Note that the burner 4 is equipped with a fuel cell off-gas supply pipe 17.
and a combustion air supply pipe 18 are connected.

また燃料ガスマニホールド乙の周上に接続して金属パイ
プ内に改質触媒るを充填した複数本の改質反応管6が燃
焼室14の外周に配備されており、かつ各改質反応管6
はその上端で改質ガスマニホールド冴を介して燃料電池
へ通じる改質ガス供給管乙に接続されている。
Further, a plurality of reforming reaction tubes 6 connected to the circumference of the fuel gas manifold B and filled with a reforming catalyst in a metal pipe are arranged around the outer circumference of the combustion chamber 14, and each reforming reaction tube 6
is connected at its upper end to a reformed gas supply pipe B which leads to the fuel cell via a reformed gas manifold.

上記の構成で、バーナ4で燃焼した燃焼ガスは鎖線矢印
Gのように燃焼室14内を下降して室内の下端側から中
仕切壁13の外周室に回り込み、ここから上昇する過程
で改質反応管6と熱交換し、その排ガスがマニホールド
15を経て排気管16より糸外に排気される。一方、液
体原料は気化器7で気化後矢印Fのように供給管21を
通じてマニホールドnを経由して改質反応管6に入る。
With the above configuration, the combustion gas combusted in the burner 4 descends in the combustion chamber 14 as indicated by the chain arrow G, wraps around from the lower end of the chamber to the outer peripheral chamber of the partition wall 13, and is reformed in the process of rising from there. Heat is exchanged with the reaction tube 6, and the exhaust gas is exhausted from the exhaust pipe 16 through the manifold 15 to the outside of the thread. On the other hand, after being vaporized in the vaporizer 7, the liquid raw material enters the reforming reaction tube 6 via the supply pipe 21 and the manifold n as shown by arrow F.

改質反応管6内ではガス化された燃料ガスが高温下で触
媒23aおよびZ3bとの接触による改質反応で水素り
、チな改質ガスに変わり、マニホールドムより改質ガス
供給管5を経て燃料電池本体へ送出される。
In the reforming reaction tube 6, the gasified fuel gas undergoes a reforming reaction through contact with the catalysts 23a and Z3b at high temperature, converting into hydrogen, and becoming a hot reformed gas. After that, it is sent to the fuel cell body.

このようなメタノール改質反応器において、改質反応管
6の下部3分の−の高さまで、低温での活性は劣るが耐
熱性のあるCu −Cr−Zn系の触媒23b銃填し、
残りの上部3分の二の高さには低温での活性は優れてい
るが、耐熱性に劣るCu−Zn系の触媒23aを充填し
て、改質反応を同じ運転温度で行ない、その触媒寿命特
性を第2図の特性すに示した。同図から明らかなように
bの方がaよりもメタノール改質率の劣化は小さい。
In such a methanol reforming reactor, a Cu-Cr-Zn catalyst 23b, which has poor activity at low temperatures but is heat resistant, is loaded up to the height of the lower third of the reforming reaction tube 6,
The remaining upper two-thirds of the height is filled with a Cu-Zn catalyst 23a which has excellent activity at low temperatures but poor heat resistance, and the reforming reaction is carried out at the same operating temperature. The life characteristics are shown in Figure 2. As is clear from the figure, the deterioration of the methanol reforming rate is smaller in case b than in case a.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、低温での活性は劣
るが耐熱性のあるCu−Cr−Zn系の触媒と、低温で
の活性は優れているが耐熱性に劣るCu−Zn系の触媒
を使用して、触媒層の温度分布を入口部を高く出口部を
低くすることを積極的に行なうようにしたため、改質触
媒の寿命を増加することができ、改質率を高く維持する
ことができた。
As explained above, according to the present invention, a Cu-Cr-Zn-based catalyst has poor activity at low temperatures but is heat resistant, and a Cu-Zn-based catalyst has excellent activity at low temperatures but has poor heat resistance. By using a catalyst, the temperature distribution of the catalyst layer is actively made higher at the inlet and lower at the outlet, which increases the life of the reforming catalyst and maintains a high reforming rate. I was able to do that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるメタノール改質反応器の断面図、
第2図は本発明と従来の改質反応器によるメタノール改
質率の経時変化を示すグラフ、第3図はメタノールのス
チームリフォームドガスによる燃料電池発電装置を示す
システムフロー図である。 3・・・改質装置、4・・・バーナ、5・・・炉容器、
6・・・改質反応管、Oa・・・Cu−Zn系触媒、2
3b・・・Cu−Cr−Zn系触媒。 才1 図 才2 図
FIG. 1 is a sectional view of a methanol reforming reactor according to the present invention;
FIG. 2 is a graph showing changes over time in the methanol reforming rate using the reforming reactor of the present invention and the conventional reforming reactor, and FIG. 3 is a system flow diagram showing a fuel cell power generation device using steam reformed methanol gas. 3... Reformer, 4... Burner, 5... Furnace vessel,
6... Reforming reaction tube, Oa... Cu-Zn based catalyst, 2
3b...Cu-Cr-Zn based catalyst. Sai 1 Illustration Sai 2 Illustration

Claims (1)

【特許請求の範囲】 1)メタノールおよび水蒸気より成る原料ガスを触媒充
填層を通過させて水素に富んだガスに改質させるメタノ
ール改質反応器において、メタノール改質反応器内の触
媒層の原料ガス入口部分には高温で活性な耐熱性のある
触媒を充填し、出口部分には低温で活性な触媒を充填し
たことを特徴とするメタノール改質反応器。 2)特許請求の範囲第1項記載のものにおいて、高温で
活性な耐熱性のある触媒はCu−Cr−Zn系触媒であ
り、低温で活性な触媒はCu−Zn系触媒であることを
特徴とするメタノール改質反応器。
[Claims] 1) In a methanol reforming reactor in which a raw material gas consisting of methanol and water vapor is passed through a catalyst packed bed to be reformed into a hydrogen-rich gas, the raw material for the catalyst bed in the methanol reforming reactor is A methanol reforming reactor characterized in that the gas inlet section is filled with a heat-resistant catalyst that is active at high temperatures, and the outlet section is filled with a catalyst that is active at low temperatures. 2) In the product described in claim 1, the heat-resistant catalyst that is active at high temperatures is a Cu-Cr-Zn catalyst, and the catalyst that is active at low temperatures is a Cu-Zn catalyst. methanol reforming reactor.
JP60230602A 1985-10-16 1985-10-16 Methanol reformer Pending JPS6291402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230602A JPS6291402A (en) 1985-10-16 1985-10-16 Methanol reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230602A JPS6291402A (en) 1985-10-16 1985-10-16 Methanol reformer

Publications (1)

Publication Number Publication Date
JPS6291402A true JPS6291402A (en) 1987-04-25

Family

ID=16910315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230602A Pending JPS6291402A (en) 1985-10-16 1985-10-16 Methanol reformer

Country Status (1)

Country Link
JP (1) JPS6291402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165633A (en) * 1996-03-26 2000-12-26 Toyota Jidosha Kabushiki Kaisha Method of and apparatus for reforming fuel and fuel cell system with fuel-reforming apparatus incorporated therein
JP2006213567A (en) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd Hydrogen generator
JP2006213566A (en) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd Hydrogen generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947281A (en) * 1972-04-27 1974-05-07
JPS5231995A (en) * 1975-09-08 1977-03-10 Nissan Motor Co Ltd Gas generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947281A (en) * 1972-04-27 1974-05-07
JPS5231995A (en) * 1975-09-08 1977-03-10 Nissan Motor Co Ltd Gas generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165633A (en) * 1996-03-26 2000-12-26 Toyota Jidosha Kabushiki Kaisha Method of and apparatus for reforming fuel and fuel cell system with fuel-reforming apparatus incorporated therein
JP2006213567A (en) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd Hydrogen generator
JP2006213566A (en) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd Hydrogen generator
JP4556689B2 (en) * 2005-02-04 2010-10-06 パナソニック株式会社 Hydrogen generator
JP4556688B2 (en) * 2005-02-04 2010-10-06 パナソニック株式会社 Hydrogen generator

Similar Documents

Publication Publication Date Title
JP3706611B2 (en) Hydrogen generator for fuel cell
US5458857A (en) Combined reformer and shift reactor
KR100677016B1 (en) Cylindrical steam reforming unit
JPH0613096A (en) Method and apparatus for reformation in fuel cell power generation system
CN109911849A (en) Self-heat-supply reforming reaction device and hydrogen making machine suitable for hydrogen making machine
KR20040058180A (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
JPS61285675A (en) Fuel battery integragted with steam modifier
EP1148024A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
EP1274650A1 (en) Fuel processor
WO2007077791A1 (en) Indirect internal reforming solid oxide fuel cell
JP3924407B2 (en) Fuel reformer and fuel cell system
JPS6291402A (en) Methanol reformer
JPH07183043A (en) Fuel-cell power generating facility
JP4210912B2 (en) Fuel reformer and fuel cell power generator
JPH0794322B2 (en) Methanol reformer
JPS62246802A (en) Methanol reformer
JPH0848501A (en) Reforming device
JPH02188406A (en) Carbon monoxide converter
JPH01157402A (en) Methanol reformer
JP4278393B2 (en) Hydrogen production apparatus and fuel cell system
JPH0380102A (en) Fuel reformer
WO2002075832A2 (en) Chambered reactor for fuel processing
JP5078426B2 (en) Carbon monoxide remover and hydrogen production equipment
JPS5823168A (en) Fuel cell power generating system
JP2998217B2 (en) Fuel reformer