JP2600950B2 - Endothermic reactor - Google Patents

Endothermic reactor

Info

Publication number
JP2600950B2
JP2600950B2 JP2040038A JP4003890A JP2600950B2 JP 2600950 B2 JP2600950 B2 JP 2600950B2 JP 2040038 A JP2040038 A JP 2040038A JP 4003890 A JP4003890 A JP 4003890A JP 2600950 B2 JP2600950 B2 JP 2600950B2
Authority
JP
Japan
Prior art keywords
reaction
annular space
reaction tube
burner
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2040038A
Other languages
Japanese (ja)
Other versions
JPH0397602A (en
Inventor
浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2040038A priority Critical patent/JP2600950B2/en
Publication of JPH0397602A publication Critical patent/JPH0397602A/en
Application granted granted Critical
Publication of JP2600950B2 publication Critical patent/JP2600950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸熱反応によって原料ガスから反応生成ガ
スを得るための吸熱反応装置、特に吸熱反応である改質
反応により水素に富むガスを生成する燃料電池発電装置
の燃料改質装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an endothermic reaction apparatus for obtaining a reaction product gas from a raw material gas by an endothermic reaction, and particularly to the production of a hydrogen-rich gas by a reforming reaction which is an endothermic reaction. The present invention relates to a fuel reformer for a fuel cell power generator.

〔従来の技術〕[Conventional technology]

実用化段階を迎えている燃料電池発電装置は、その特
徴を生かして小型(発電出力が数十kWから数百kW)のオ
ンサイト用としての利用が考えられている。このような
燃料電池発電装置の主要構成部である燃料改質装置に用
いられる吸熱反応装置では、小型,軽量,低価格,高効
率といった性能が要求される。これらに応えるために、
本出願人は先に第2図に示すような二重円筒状反応管を
用いた吸熱反応装置を提案している。図において炉ケー
シング23の内部に反応管2が収納され、反応管2の内側
にバーナ3が配設されている。反応管2は直立した仕切
円筒4と、これを挟んでこの内外に同心に配設され、下
端部を仕切円筒4の下端から離して半トーラス状の部材
7で接続された内管6と外管5とで形成されている。こ
のような構造により反応管2には下端部で通じる外側環
状空間8及び内側環状空間9の二重環状空間が形成され
ている。
The fuel cell power generation device, which has reached the stage of practical use, is expected to be used as a small-sized (power generation output of several tens to several hundreds of kW) on-site device by utilizing its features. An endothermic reactor used in a fuel reformer, which is a main component of such a fuel cell power generator, requires performance such as small size, light weight, low cost, and high efficiency. To respond to these,
The present applicant has previously proposed an endothermic reaction apparatus using a double cylindrical reaction tube as shown in FIG. In the figure, a reaction tube 2 is housed inside a furnace casing 23, and a burner 3 is provided inside the reaction tube 2. The reaction tube 2 is externally connected to an upright partitioning cylinder 4 and an inner tube 6 disposed concentrically inside and outside of the partitioning cylinder 4 with its lower end separated from the lower end of the partitioning cylinder 4 and connected by a semi-torus-shaped member 7. The tube 5 is formed. With such a structure, a double annular space of the outer annular space 8 and the inner annular space 9 communicating with the lower end portion is formed in the reaction tube 2.

外側環状空間8の上部には原料ガスマニホルド10を介
して原料ガス入口11が形成され、また内側環状空間9の
上部には反応ガスマニホルド12を介して反応ガス出口13
が形成されている。
A source gas inlet 11 is formed above the outer annular space 8 via a source gas manifold 10, and a reaction gas outlet 13 is formed above the inner annular space 9 via a reaction gas manifold 12.
Are formed.

反応管2の下方及び周囲には間隔を置いて耐火断熱材
層14,15が配置され、反応管2との間にバーナ3の燃料
ガスを導く燃焼ガス通路16が形成されている。この燃焼
ガス通路16の上部には燃焼ガス出口17が形成されてい
る。
Refractory insulation layers 14 and 15 are arranged below and around the reaction tube 2 at intervals, and a combustion gas passage 16 for guiding the fuel gas of the burner 3 is formed between the reaction tube 2 and the refractory heat insulating material layers 14 and 15. A combustion gas outlet 17 is formed in an upper portion of the combustion gas passage 16.

バーナ3は、反応管2の上下の中央よりやや下がった
所に位置している。そして、反応管2には、原料ガスマ
ニホルド10部分を除く外側環状空間8の全部と、内側環
状空間9の内、バーナ3の熱を受ける部分(a)に改質
触媒としての反応触媒18が充填されている。また、内側
環状空間9におけるバーナ3の熱を受けなくなる部分か
ら上の部分(b)に伝熱粒子19が充填されている。さら
に、燃焼ガス通路16の上方部には、燃焼ガスから反応触
媒への対流伝熱を促進するための伝熱粒子20が充填され
ている。
The burner 3 is located at a position slightly lower than the upper and lower center of the reaction tube 2. In the reaction tube 2, a reaction catalyst 18 as a reforming catalyst is provided in all of the outer annular space 8 except for the raw material gas manifold 10 portion and a portion (a) of the inner annular space 9 which receives the heat of the burner 3. Is filled. Heat transfer particles 19 are filled in a portion (b) above a portion of the inner annular space 9 from which the burner 3 does not receive heat. Further, the upper portion of the combustion gas passage 16 is filled with heat transfer particles 20 for promoting convective heat transfer from the combustion gas to the reaction catalyst.

以上のような吸熱反応装置において、バーナ3には燃
料入口21から燃料(燃料電池の運転時には燃料電池本体
からの排ガス)が送入され、空気入口22からの燃焼空気
により燃焼する。バーナ3からの燃焼ガスは、反応管2
の内側から外側に、反応触媒充填部に沿って燃焼ガス通
路16を流れ、燃焼ガス出口17から排出される。
In the above-described endothermic reaction apparatus, fuel (exhaust gas from the fuel cell main body during operation of the fuel cell) is supplied to the burner 3 from the fuel inlet 21, and is burned by the combustion air from the air inlet 22. The combustion gas from the burner 3 is supplied to the reaction tube 2
Flows through the combustion gas passage 16 from the inside to the outside along the reaction catalyst filling portion, and is discharged from the combustion gas outlet 17.

一方、原料ガスは原料ガス入口11から入り、外側環状
空間8の触媒層を下方へと流れる。そして仕切円筒4の
下方で反転して、内側環状空間9を上方へと流れる。
On the other hand, the raw material gas enters through the raw material gas inlet 11 and flows downward through the catalyst layer in the outer annular space 8. Then, it is inverted below the partition cylinder 4 and flows upward in the inner annular space 9.

バーナ3の燃焼ガスは、高温の間はふく射熱で、また
温度が下がってくると対流伝熱で反応管2の触媒充填部
を加熱し、触媒層内の原料ガスに熱を与えて、原料ガス
を水素に富むガスに改質して改質ガスを生成する。なお
バーナ3からの熱を受けなくなる伝熱粒子19の充填部で
は、反応生成ガスである改質ガスはその熱を伝熱粒子19
を介して外側環状空間8を流れる原料ガスに与えながら
温度を下げ、反応ガス出口13から出ていく。
The combustion gas of the burner 3 radiates heat during a high temperature, and heats the catalyst-filled portion of the reaction tube 2 by convection heat transfer when the temperature decreases, thereby applying heat to the raw material gas in the catalyst layer, Is reformed into a hydrogen-rich gas to generate a reformed gas. In the filling portion of the heat transfer particles 19 which no longer receives the heat from the burner 3, the reformed gas which is a reaction product gas transfers the heat to the heat transfer particles 19.
The temperature is lowered while supplying the raw material gas flowing through the outer annular space 8 through the outer ring space 8, and the gas leaves the reaction gas outlet 13.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記の吸熱反応装置では、二重円筒反応管の内外両環
状空間に反応触媒を充填しており、熱効率を上げる目的
で、二重円筒反応外側の燃焼ガス通路に、アルミナホー
ル等の伝熱粒子を充填し対流電流を促進させていた。こ
のため改質反応に必要な熱の供給は、対流伝熱が主とな
り、熱流束を高くとることが困難なため、伝熱面積を大
きくする、すなわち反応管径を大きくする、或いは反応
管長さを長くする必要があった。このため反応触媒量も
増え、ひいては装置全体が大きくなるという問題があ
る。
In the above-mentioned endothermic reaction apparatus, the inner and outer annular spaces of the double cylindrical reaction tube are filled with the reaction catalyst, and heat transfer particles such as alumina holes are provided in the combustion gas passage outside the double cylindrical reaction for the purpose of increasing thermal efficiency. To promote the convection current. For this reason, the supply of heat required for the reforming reaction is mainly convection heat transfer, and it is difficult to obtain a high heat flux. Therefore, the heat transfer area is increased, that is, the reaction tube diameter is increased, or the reaction tube length is increased. Needed to be longer. For this reason, there is a problem that the amount of the reaction catalyst also increases, and as a result, the entire apparatus becomes large.

本発明の目的は、改質反応に必要な熱の供給を輻射伝
熱を主として熱流束を高くすることにより、小型で軽
量,低価格,高効率の吸熱反応装置を提供することにあ
る。
An object of the present invention is to provide a small-sized, lightweight, low-cost, high-efficiency endothermic reaction apparatus by supplying heat required for the reforming reaction mainly by radiant heat transfer and increasing the heat flux.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するために、本発明によれば、バーナ
と仕切り円筒を介して同心円的な内外二重の環空間を有
する反応管と、前記反応管との間に空間を設けて囲む炉
容器とから成る吸熱反応装置において、前記内外の環状
空間は前記仕切り円筒の下端部で相通じ、外側の前記環
状空間の上端部に原料ガス入口を備え、内側の前記環状
空間にのみ反応触媒が充填されるとともにその上端部に
反応性ガス出口を備えてなり、バーナは反応管の内側の
上端部に配置され、燃焼ガスは反応管下端と炉容器底部
との間の空間を経由して外側環状空間の外壁沿いに炉容
器上部の燃焼ガス出口へとに導かれるものとすることに
より達成される。
According to the present invention, there is provided a reaction vessel having a concentric inner and outer double annular space via a burner and a partition cylinder, and a furnace vessel provided with a space between the reaction tube and the reaction vessel. Wherein the inner and outer annular spaces communicate with each other at the lower end of the partitioning cylinder, the upper end of the outer annular space has a raw material gas inlet, and only the inner annular space is filled with a reaction catalyst. The burner is located at the upper end inside the reaction tube, and the combustion gas passes through the space between the lower end of the reaction tube and the bottom of the furnace vessel. This is achieved by being guided along the outer wall of the space to the combustion gas outlet at the top of the furnace vessel.

〔作用〕[Action]

反応管の内外二重の環状空間のうち内側環状空間にの
み反応触媒が充填され、この反応触媒には反応管内側の
上端部に配設されたバーナでの燃焼による輻射熱が主に
供給されるので、熱流束を大きくとれ、吸熱反応を促進
することができる。なお、外側環状空間は原料ガスの通
路となり、炉容器と反応器外側との間の燃焼ガス通路を
流れる燃焼ガスにより外側環状空間を通流して反応触媒
が充填された内側環状空間に流入する原料ガスを昇温す
る。
Only the inner annular space of the inner and outer double annular spaces of the reaction tube is filled with the reaction catalyst, and the reaction catalyst is mainly supplied with radiant heat from combustion by a burner disposed at the upper end inside the reaction tube. Therefore, a large heat flux can be obtained, and an endothermic reaction can be promoted. The outer annular space serves as a raw material gas passage, and the raw material flowing through the outer annular space by the combustion gas flowing through the combustion gas passage between the furnace vessel and the outside of the reactor and flowing into the inner annular space filled with the reaction catalyst. Raise the temperature of the gas.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明す
る。第1図は本発明の実施例に係る吸熱反応装置の要部
断面図である。なお、第1図において第2図に示す装置
と同一部品には同じ符号を付し、その説明を省略する。
第1図において第2図と異なるのは反応管2の内側環状
空間9のみに反応触媒18を充填し、外側環状空間8は原
料ガスの通路とし、反応管2の内側の上端部にバーナ3
を配設したことである。このような構成においてバーナ
3での燃焼による燃焼ガスの流れは第1図のものと同じ
である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a main part of an endothermic reaction apparatus according to an embodiment of the present invention. In FIG. 1, the same parts as those of the apparatus shown in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted.
The difference between FIG. 1 and FIG. 2 is that only the inner annular space 9 of the reaction tube 2 is filled with the reaction catalyst 18, the outer annular space 8 serves as a raw material gas passage, and the burner 3 is provided at the upper end inside the reaction tube 2.
It is that was arranged. In such a configuration, the flow of the combustion gas by the combustion in the burner 3 is the same as that in FIG.

一方、原料ガスは原料ガス入口11から入り、外側環状
空間8を下方へと流れ、仕切円筒4の下で反転し、内側
環状空間9の反応触媒18内を上方へと流れる。このよう
な原料ガスの流れにより、反応触媒18内側環状空間9に
のみ充填されるため、改質反応に必要な熱の供給は、バ
ーナ3で燃焼した燃焼ガスからの輻射伝熱が主体とな
る。これにより熱流束を高くとることが可能となり伝熱
面積を小さくして、小型,軽量化できる。
On the other hand, the raw material gas enters through the raw material gas inlet 11, flows downward in the outer annular space 8, reverses below the partition cylinder 4, and flows upward in the reaction catalyst 18 in the inner annular space 9. Since only the inner space 9 inside the reaction catalyst 18 is filled by such a flow of the raw material gas, the supply of heat necessary for the reforming reaction is mainly performed by radiant heat transfer from the combustion gas burned by the burner 3. . As a result, the heat flux can be increased, the heat transfer area can be reduced, and the size and weight can be reduced.

つぎに本発明による吸熱反応装置である燃料改質装置
と第2図に示す燃料改質装置とにおける体積,触媒量,
熱流束等について比較した結果を第3図に示す。第3図
に示すように本発明による熱流束が第2図に示すものの
約3倍となっているため、触媒量で1/4、体積で1/2の小
型化を可能にしている。
Next, the volume, catalyst amount,
FIG. 3 shows the results of comparison of the heat flux and the like. As shown in FIG. 3, the heat flux according to the present invention is about three times as large as that shown in FIG. 2, so that the catalyst amount can be reduced to 1/4 and the volume can be reduced to 1/2.

なお、燃焼ガス通路16の間隙を狭くして燃焼ガスの流
速を上げることにより、外側環状空間8を流れる原料ガ
スへの熱伝達を良好にし、これに伴って燃焼排ガスの温
度を下げることができるので、熱効率の低下を起こさな
い。
By increasing the flow rate of the combustion gas by narrowing the gap of the combustion gas passage 16, heat transfer to the raw material gas flowing through the outer annular space 8 can be improved, and the temperature of the combustion exhaust gas can be reduced accordingly. Therefore, the heat efficiency does not decrease.

ところで、前述の実施例の説明においては、文字通
り、上部のバーナが配設された第1図の構成について説
明したが、第1図の装置全体を天地逆さまにして、バー
ナーを下部に配設された構成としても同様の効果が得ら
れる。
By the way, in the description of the above-described embodiment, the configuration of FIG. 1 in which the upper burner is disposed has been literally described. However, the entire apparatus of FIG. 1 is turned upside down, and the burner is disposed at the lower side. The same effect can be obtained even with the above configuration.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように内外二重の環状空間か
らなる反応管の内側環状空間にのみ反応触媒を充填し、
バーナを反応管の内側の上端部に設けることにより、内
側環状空間内の反応触媒層にはバーナでの燃焼による燃
焼ガスからの輻射伝熱が主体となって熱が与えられるの
で、外側環状空間を上方から下方に向かって流れて燃焼
ガスにより昇温された原料ガスの内側環状空間の反応触
媒層における吸熱反応に必要な熱流束を燃焼ガスの輻射
伝熱により高くとれ、このため反応触媒量を少なく、伝
熱面積も小さくすることができ、したがって小型で軽
量、低価格で効率の高い吸熱反応装置を得ることができ
る。
As is clear from the above description, the reaction catalyst is filled only in the inner annular space of the reaction tube composed of the inner and outer double annular spaces,
By providing the burner at the upper end inside the reaction tube, heat is given to the reaction catalyst layer in the inner annular space mainly by radiant heat transfer from the combustion gas by combustion in the burner. The heat flux required for the endothermic reaction in the reaction catalyst layer in the inner annular space of the raw material gas heated from the combustion gas by the combustion gas from the upper part to the lower part can be increased by the radiant heat transfer of the combustion gas. And a heat transfer area can be reduced, so that a small, lightweight, low-cost and highly efficient endothermic reactor can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例による吸熱反応装置の要部破断
図、第2図は先に出願した吸熱反応装置の要部破断図、
第3図は従来装置と本発明装置の諸元を比較した図であ
る。 1:炉容器、2:反応管、3:バーナ、4:仕切円筒、5:外管、
6:内管、8:外側環状空間、9:内側環状空間、11:原料ガ
ス入口、13:反応ガス出口、16:燃焼ガス通路、17:燃焼
ガス出口、18:反応触媒。
FIG. 1 is a cutaway view of a main part of an endothermic reactor according to an embodiment of the present invention, FIG.
FIG. 3 is a diagram comparing the specifications of the conventional device and the device of the present invention. 1: furnace vessel, 2: reaction tube, 3: burner, 4: partition cylinder, 5: outer tube,
6: inner pipe, 8: outer annular space, 9: inner annular space, 11: raw material gas inlet, 13: reaction gas outlet, 16: combustion gas passage, 17: combustion gas outlet, 18: reaction catalyst.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】バーナと、仕切り円筒を介して同心円的な
内外二重の環状空間を有する反応管と、前記反応管との
間に空間を設けて囲む炉容器とから成る吸熱反応装置に
おいて、前記内外の環状空間は前記仕切り円筒の下端部
で相通じ、外側の前記環状空間の上端部に原料ガス入口
を備え、内側の前記環状空間にのみ反応触媒が充填され
るとともにその上端部に反応性ガス出口を備えてなり、
バーナは反応管の内側の上端部に配置され、燃焼ガスは
反応管下端と炉容器底部との間の空間を経由して外側環
状空間の外壁沿いに炉容器上部の燃焼ガス出口へとに導
かれるものであることを特徴とする吸熱反応装置。
An endothermic reactor comprising a burner, a reaction tube having a concentric inner and outer double annular space via a partition cylinder, and a furnace vessel provided with a space between the reaction tube and the reactor tube. The inner and outer annular spaces communicate with each other at a lower end of the partition cylinder, and a raw material gas inlet is provided at an upper end of the outer annular space. Only the inner annular space is filled with a reaction catalyst and reacts at the upper end thereof. With a neutral gas outlet,
The burner is located at the upper end inside the reaction tube, and the combustion gas passes through the space between the lower end of the reaction tube and the bottom of the furnace vessel, and runs along the outer wall of the outer annular space to the combustion gas outlet at the top of the furnace vessel. An endothermic reactor characterized by the fact that:
JP2040038A 1989-06-16 1990-02-21 Endothermic reactor Expired - Fee Related JP2600950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040038A JP2600950B2 (en) 1989-06-16 1990-02-21 Endothermic reactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-153687 1989-06-16
JP15368789 1989-06-16
JP2040038A JP2600950B2 (en) 1989-06-16 1990-02-21 Endothermic reactor

Publications (2)

Publication Number Publication Date
JPH0397602A JPH0397602A (en) 1991-04-23
JP2600950B2 true JP2600950B2 (en) 1997-04-16

Family

ID=26379463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040038A Expired - Fee Related JP2600950B2 (en) 1989-06-16 1990-02-21 Endothermic reactor

Country Status (1)

Country Link
JP (1) JP2600950B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314381B2 (en) * 2008-10-24 2013-10-16 株式会社ルネッサンス・エナジー・リサーチ Hydrogen production equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688761B2 (en) * 1988-09-19 1994-11-09 株式会社神戸製鋼所 Hydrocarbon reformer
JPH02129001A (en) * 1988-11-08 1990-05-17 Tokyo Gas Co Ltd Reformer for fuel cell

Also Published As

Publication number Publication date
JPH0397602A (en) 1991-04-23

Similar Documents

Publication Publication Date Title
US4909809A (en) Apparatus for the production of gas
US3119671A (en) Upright fluid heating furnace with heat recovery system
US20060188434A1 (en) Compact reformer unit in the low performance range, for production hydrogen from gaseous hydrocarbons
JPH10502213A (en) Furnace for fuel cell power plant
JP2600950B2 (en) Endothermic reactor
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JPH03127A (en) Indirect heating in reaction room for endothermic reaction and apparatus for performing it
JP2646101B2 (en) Fuel reformer
JPH01264903A (en) Apparatus for reforming hydrocarbon
JP2601707B2 (en) Catalytic reactor
JPS62106834A (en) Reaction tube of reformer
JPS63126539A (en) Fuel reformer
JP2517658B2 (en) Hydrocarbon reformer
JPH04322739A (en) Fuel reformer for fuel cell
JPH0240602B2 (en)
JPS6230602A (en) Steam modifying furnace
JPH02129001A (en) Reformer for fuel cell
JPH0124534B2 (en)
JPH0124533B2 (en)
JP2004137116A (en) Reformer
JPH0638907B2 (en) Endothermic reaction device
JPH0397601A (en) Fuel reformer
JPH08208203A (en) Fuel reformer
JPH0753706Y2 (en) 2-stage catalytic combustion reformer
JPH01155940A (en) Device for endothermic reaction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees