JPS60210504A - Reforming apparatus - Google Patents
Reforming apparatusInfo
- Publication number
- JPS60210504A JPS60210504A JP59063730A JP6373084A JPS60210504A JP S60210504 A JPS60210504 A JP S60210504A JP 59063730 A JP59063730 A JP 59063730A JP 6373084 A JP6373084 A JP 6373084A JP S60210504 A JPS60210504 A JP S60210504A
- Authority
- JP
- Japan
- Prior art keywords
- reforming
- temperature
- combustion gas
- reformed gas
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は複数本の改質管内を改質ガスが通過し、管の外
側を加熱ガスが流れて同時に加熱する加熱式ガス改質装
置の改良に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is an improvement of a heated gas reformer in which reformed gas passes through a plurality of reforming tubes, and heating gas flows outside the tubes to heat them simultaneously. It is related to.
一般に使用されているこの種のガス改質装置の構成につ
いて、第1図に示す断面図を用いて説明する。図におい
て、改質装置1はバーナ2へ燃焼ガスと燃焼空気とを送
シ込み、これを燃焼室3において燃焼させ、この燃焼に
よル生じた加熱流体を加熱流路を通して排ガス出口5よ
シ外部へ排出する。この燃焼熱によシ、改質装置1の内
部に設けた断面が環状の複数本の改質管6を加熱する。The configuration of this type of gas reformer that is commonly used will be explained using the cross-sectional view shown in FIG. In the figure, a reformer 1 sends combustion gas and combustion air to a burner 2, combusts it in a combustion chamber 3, and directs the heated fluid generated by this combustion to an exhaust gas outlet 5 through a heating channel. Discharge outside. This combustion heat heats a plurality of reforming tubes 6 each having an annular cross section provided inside the reforming device 1.
改質管6の内部には、上記燃焼ガスの加熱流路4とは完
全に隔離して改質ガスの流路が設けられている。改質ガ
ス人ロアよシ流入した改質ガスは、改質管6の内壁に設
けられ下部目皿により支えられた触媒層8の内部を流れ
て上昇し、上端部で逆向きに方向転換して触媒層8とセ
ンタゾラグ9との間に形成されるリターンパス10を流
れて改質ガス出口11から流出する。そしてこの間に改
質ガス飼えばメタンと水蒸気とが水素と炭酸ガスに改質
されることになる。なお、改質管6は改質装置1の内部
に1本のみ設ける場合もあるが、一般には改質装置1の
内部には第1図に示す如く複数本設けられている。Inside the reforming tube 6, a reformed gas flow path is provided completely separated from the combustion gas heating flow path 4. The reformed gas flowing in from the lower part of the reformed gas flows up inside the catalyst layer 8 provided on the inner wall of the reforming tube 6 and supported by a lower perforated plate, and changes direction in the opposite direction at the upper end. The reformed gas flows through a return path 10 formed between the catalyst layer 8 and the center lag 9, and exits from the reformed gas outlet 11. If reformed gas is fed during this time, methane and water vapor will be reformed into hydrogen and carbon dioxide gas. In some cases, only one reforming pipe 6 is provided inside the reforming device 1, but in general, a plurality of reforming pipes 6 are provided inside the reforming device 1, as shown in FIG.
ところで上述した改質装置においては、複数本の改質管
6が一つの改質装置1に設けられる場合に改質管6の管
壁温度が不均一となる問題がある。以下、この点につい
て第2図を用いて述べる。第2図は、改質管6上部の断
面構成を示すものである。図において、改質管6は鏡板
12と溶接線13によシ溶接して作られている。By the way, in the above-mentioned reformer, when a plurality of reformer tubes 6 are provided in one reformer 1, there is a problem that the tube wall temperature of the reformer tubes 6 becomes non-uniform. This point will be described below using FIG. 2. FIG. 2 shows the cross-sectional structure of the upper part of the reforming tube 6. In the figure, the reforming tube 6 is made by welding an end plate 12 and a weld line 13.
この改質管6は、第1図で既述したようにその上部の燃
焼室3に近い部分は高温になるので、断熱材で形成され
たキャップ14が鏡板12の上にかぶせられる。また、
溶接線13には欠陥が生じやすいので、この部分に温度
測定素子15を設けて温度を測定する。改質ガスは触媒
層8の中を上昇し、触媒上端16を通って目皿17の上
部で逆転し、プラグガイド19によシ形成されるリター
ンパス10を通って下降し流出する。なお、20は触媒
層内側管を示すものである。Since the upper portion of the reforming tube 6 near the combustion chamber 3 reaches a high temperature as already described in FIG. 1, a cap 14 made of a heat insulating material is placed over the end plate 12. Also,
Since defects are likely to occur in the weld line 13, a temperature measuring element 15 is provided at this portion to measure the temperature. The reformed gas rises in the catalyst layer 8, passes through the catalyst upper end 16, reverses itself above the perforated plate 17, and descends through the return path 10 formed by the plug guide 19 to flow out. Note that 20 indicates a catalyst layer inner tube.
さて、一つの改質装置において複数本の改質管6を設け
たものを実際に製作し、その各改質管6の管壁に温度測
定素子15を設けて実験を行なった結果、改質管6毎に
管壁温度が不均一となシ大きな温度差が生じることが明
らかとなった。すなわち、この改質管6の運転温度が改
質管6の破損寿命に及ぼす影響は大きく、運転温度が1
0℃高いことによシ10年間の寿命が約3年間短縮する
ことになる。従って、改質管6毎に温度の不均一がある
と、その不均一な温度のうちの最高温度のものをみて、
この最高温度が制限温度になるような状態にバーナ2へ
供給する燃焼ガス量を調節しながら、改質装置の運転を
行なわなければならない。しかしこの場合、最低温度の
改質管6では改質効率が悪くなる。Now, as a result of actually manufacturing a single reformer with a plurality of reforming tubes 6, and conducting an experiment by installing a temperature measuring element 15 on the wall of each reforming tube 6, we found that It has become clear that the tube wall temperature is not uniform for each tube 6 and that a large temperature difference occurs. In other words, the operating temperature of the reforming tube 6 has a large effect on the failure life of the reforming tube 6, and the operating temperature is 1.
The 10-year lifespan will be shortened by about 3 years due to the 0°C increase in temperature. Therefore, if there is non-uniformity in temperature among the reforming tubes 6, looking at the highest temperature among the non-uniform temperatures,
The reformer must be operated while adjusting the amount of combustion gas supplied to the burner 2 so that this maximum temperature becomes the limit temperature. However, in this case, the reforming efficiency deteriorates in the reforming tube 6 having the lowest temperature.
上述したように、従来の改質装置においては次のような
問題がおる。As mentioned above, the conventional reformer has the following problems.
管壁温度が不均一な場合、高温の改質管6は寿命が短か
くなシ、また温度の低い改質管6は改質ガスの改質効率
が悪く、例えばメタンと水蒸気を水素と炭酸ガスに改質
する場合に、メタンの残留量が温度不均一幅が大きけれ
ば大きい程多くなる。すなわち、複数本の改質管6の平
均管壁温度を制限温度に合わせた状態で運転を行なうと
、高温の改質管6は管の寿命が短かく早く破損すること
になシ、また温度の低い改質管は改質効率が悪く、低い
温度の改質管6が多い程またそれらの温度が平均温度に
比べて低い程、゛改質されないメタンの量が多くなシ、
改質装置としての全体の改質効率が低下してしまう。If the tube wall temperature is uneven, the life of the high-temperature reforming tube 6 will be short, and the low-temperature reforming tube 6 will have poor reforming efficiency of the reformed gas, for example, converting methane and steam into hydrogen and carbonic acid. When reforming into gas, the amount of residual methane increases as the width of temperature non-uniformity increases. In other words, if the operation is performed with the average tube wall temperature of a plurality of reforming tubes 6 adjusted to the limit temperature, the high-temperature reforming tubes 6 will have a short lifespan and will be damaged quickly. Reforming tubes with a low temperature have poor reforming efficiency, and the more there are reforming tubes 6 with low temperatures, and the lower their temperatures are compared to the average temperature, the greater the amount of methane that is not reformed.
The overall reforming efficiency of the reformer will decrease.
本発明は上記のような問題を解決するために成されたも
ので、その目的は複数本の改質管が設けられた構成のも
のにおいて各改質管の管壁温度を均一とし長寿命でかつ
高い効率で改質を行なうことが可能な改質装置を提供す
ることにある。The present invention was made in order to solve the above-mentioned problems, and its purpose is to uniformize the tube wall temperature of each reforming tube in a structure with a plurality of reforming tubes, thereby increasing the lifespan. Another object of the present invention is to provide a reforming device that can carry out reforming with high efficiency.
上記目的を達成するために本発明では、一端部が密閉さ
れると共に内側管路と外側管路との間に改質触媒層が設
けられた断面環状の複数本の改質管を有し、燃焼ガスお
よび燃焼ガスを燃焼室で燃焼させて得られる加熱流体を
上記改質管の一端部よシその外側を通して他端部より外
部へ排出させ、且つ改質ガスを上記改質管の他端部よシ
改質触媒層を通して流入させさらにその一端部よシ上記
内側管路を通して他端部より流出させる如く構成された
改質装置において、上記燃焼ガスを供給する燃焼ガスラ
イン上に設けられた燃焼ガス調節弁と、上記改質ガスを
上記各改質管内へ各別に流入させる複数の改質ガスライ
ン上に夫々設けられた改質ガス調節弁と、上記各改質管
の管壁温度を夫々測定する温度測定素子と、これら各温
度測定素子による測定温度の平均温度と予め定められた
制限温度とを比較し、その比較結果に基づいて零を愈方
↓孝孟上記燃焼ガスの供給量を調整すべく上記燃焼ガス
調節弁の開度を制御する第1の弁制御器、および上記平
均温度と上記各温度測定素子による測定温度とを各別に
比較し、この比較結果に基づき上記改質ガスの流入量を
調整すべく対応する上記改質ガス調節弁の開度を各別に
制御する第2の弁制御器よシなる管壁温度制御回路とを
備えて成ることを特徴とする。In order to achieve the above object, the present invention includes a plurality of reforming tubes each having an annular cross section, one end of which is sealed, and a reforming catalyst layer is provided between an inner pipe line and an outer pipe line. The combustion gas and the heated fluid obtained by burning the combustion gas in the combustion chamber are discharged from one end of the reforming tube through the outside thereof, and the reformed gas is discharged from the other end of the reforming tube. In a reformer configured to allow the fuel to flow in through the reforming catalyst layer from one end to the other end, and to flow out from the other end through the inner pipe line, the combustion gas is provided on a combustion gas line that supplies the combustion gas. A combustion gas control valve, a reformed gas control valve provided on each of a plurality of reformed gas lines for individually flowing the reformed gas into each of the reforming tubes, and a pipe wall temperature of each of the reforming tubes. Compare the average temperature of the temperature measured by each temperature measuring element and a predetermined limit temperature, and set the temperature to zero based on the comparison result. a first valve controller that controls the opening degree of the combustion gas regulating valve to adjust the temperature; and a first valve controller that separately compares the average temperature with the temperature measured by each temperature measuring element, and adjusts the reforming temperature based on the comparison result. The present invention is characterized in that it comprises a tube wall temperature control circuit including a second valve controller that separately controls the opening degree of the corresponding reformed gas control valve in order to adjust the inflow amount of gas.
まず本発明は、改質管の管壁温度が不均一になるのは、
燃焼加熱流体が改質管の周囲で不均一になることが一つ
の原因として考えられるが、これ以外に改質管内部を流
れる改質がスが吸熱反応を行なうことによるこのガスの
流入量の不均一も原因の一つとして考えられ、特に後者
の原因に対処しようとするものである。First, in the present invention, the reason why the tube wall temperature of the reforming tube becomes uneven is that
One possible cause is that the combustion heating fluid becomes non-uniform around the reforming tube, but another reason is that the reforming gas flowing inside the reforming tube undergoes an endothermic reaction, resulting in an increase in the amount of inflow of this gas. Heterogeneity is also considered to be one of the causes, and we are particularly trying to deal with the latter cause.
以下、本発明を図面に示す一実施例について説明する。An embodiment of the present invention shown in the drawings will be described below.
第3図は、本発明による改質装置の概要構成列を断面図
にて示したもので、第1図および第2図と同一部分には
同一符号を付してその説明を省略し、ここでは異なる部
分についてのみ述べる。なお、本例では改質管6の本数
を3本としている。FIG. 3 is a cross-sectional view showing a schematic configuration of the reformer according to the present invention, and the same parts as in FIGS. Now, I will only discuss the different parts. In this example, the number of reforming tubes 6 is three.
図において、21および22は前記バーナ2に燃焼ガス
および燃焼空気を夫々供給するための燃焼ガスラインお
よび燃焼空気ライン、23および24はこの燃焼ガスラ
イン2ノおよび燃焼空気ライン22上に夫々設けられた
燃焼ガス調節弁および燃焼空気調節弁である。一方、2
5は改質ガス人ロアよシ流入する改質ガスを、前記改質
管6内にその改質管下部室26よシ夫夫各別に供給する
ように設けられた3本の改質ガス2イン、27はこの各
改質ガスライン26上に設けられた改質ガス調節弁でお
る。また、28は前記改質ガス出口11部に設けられた
改質ガス排出量調節弁で、その弁開度は例えば燃料電池
等の負荷容量に応じて自動的に調節されるようになって
いる。さらに、29は上記各改質管6の外周側にこれと
同心的に配設されたスリーブ管、15は上記各改質管6
の上端部管壁に設けられその管壁温度を測定する温度測
定素子で、Lの測定温度を夫々T1 + T2 + T
sとして出力するものである。In the figure, 21 and 22 are a combustion gas line and a combustion air line for supplying combustion gas and combustion air to the burner 2, respectively, and 23 and 24 are provided on the combustion gas line 2 and the combustion air line 22, respectively. These are a combustion gas control valve and a combustion air control valve. On the other hand, 2
Reference numeral 5 denotes three reformed gas pipes 2 provided to supply the reformed gas flowing from the reformed gas lower part into the reforming pipe 6 and to each of the lower chambers 26 and the lower part of the reformed gas pipe. Reference numeral 27 indicates a reformed gas control valve provided on each reformed gas line 26. Further, 28 is a reformed gas discharge control valve provided at the reformed gas outlet 11, the opening degree of which is automatically adjusted according to the load capacity of, for example, a fuel cell. . Furthermore, 29 is a sleeve pipe arranged concentrically on the outer circumferential side of each of the reforming pipes 6, and 15 is a sleeve pipe disposed concentrically with each of the reforming pipes 6.
A temperature measuring element is installed on the upper end of the tube wall to measure the tube wall temperature, and the measured temperature of L is T1 + T2 + T, respectively.
It is output as s.
第4図は、本発明に適用する管壁温度制御回路の一例を
ブロック的に示すものである。図において、30は上記
各温度測定素子15による測定温度’r1t T29
T’sの平均温度TAをめる平均温度算出器、31は前
述した改質管の制限温度Tsと、上記平均温度算出器3
0からの平均温度TAとを入力とする第1の弁制御器で
、この各温度TaとTAの偏差が零となるように前記燃
焼ガスの流通量を調整すべく弁開度制御信号を、上記燃
焼ガス調節弁23へ与えるものである。FIG. 4 is a block diagram showing an example of a tube wall temperature control circuit applied to the present invention. In the figure, 30 indicates the temperature 'r1t T29 measured by each temperature measuring element 15.
an average temperature calculator 31 which calculates the average temperature TA of T's;
A first valve controller inputs the average temperature TA from 0, and sends a valve opening control signal to adjust the flow rate of the combustion gas so that the deviation between each temperature Ta and TA becomes zero. This is provided to the combustion gas control valve 23 mentioned above.
また、32は上記各改質管6に夫々対応して設けられた
第2の弁制御器で、上記平均温度算出器30からの平均
温度TAと、上記各温度測定素子15による測定温度T
I 、Tffi tT8とを各別に比較し、この偏差が
零となるように前記改質ガスの流入量を調整すべく弁開
度制御信号を、夫夫対応する前記改質ガス調節弁27へ
与えるものである。Reference numeral 32 denotes a second valve controller provided corresponding to each of the reforming pipes 6, which receives the average temperature TA from the average temperature calculator 30 and the temperature T measured by each temperature measuring element 15.
I and TffitT8 are compared individually, and a valve opening control signal is given to the reformed gas control valve 27 corresponding to the husband and husband in order to adjust the inflow amount of the reformed gas so that the deviation becomes zero. It is something.
次に、かかる構成の改質装置の作用について説明する。Next, the operation of the reformer having such a configuration will be explained.
図において、燃焼ガス2イン21および燃焼空気2イン
22を通して燃焼ガスおよび燃焼空気をバーナ2へ送シ
込むことによシ、前述したように燃焼室3においてこれ
を燃焼させ、これによシ生じた加熱流体は加熱流路4を
通して排ガス出口5よシ外部へ排出される。一方、改質
ガス人ロアよシ流入した改質ガスは夫夫各別に設けられ
た改質ガスライン25を通して各改質管6の下部室26
よシ流入し、改質管6の触媒層8の内部を流れて上昇し
、上端部で逆向きに方向転換して触媒層8とセンタプラ
グ9との間に形成されるリターンi4ス10を流れて改
質ガス出口11よシ流出する。そして、この間に改質ガ
ス例えばメタンと水蒸気とが水素と炭酸ガスに、各改質
管6において改質されることになる。In the figure, the combustion gas and combustion air are fed into the burner 2 through the combustion gas 2-in 21 and the combustion air 2-in 22, and are combusted in the combustion chamber 3 as described above, thereby causing The heated fluid passes through the heating flow path 4 and is discharged to the outside through the exhaust gas outlet 5. On the other hand, the reformed gas flowing from the lower part of the reformed gas passes through the reformed gas line 25 provided for each husband and wife into the lower chamber 26 of each reforming pipe 6.
It then flows inside the catalyst layer 8 of the reforming tube 6, rises, changes direction in the opposite direction at the upper end, and flows into the return i4 space 10 formed between the catalyst layer 8 and the center plug 9. The reformed gas flows out through the reformed gas outlet 11. During this time, reformed gas such as methane and steam is reformed into hydrogen and carbon dioxide in each reforming tube 6.
一方、上記改質反応は前述したように吸熱反応であるこ
とから、各改質管6には反応による熱が発生して改質管
6の管壁温度が上昇する。On the other hand, since the reforming reaction is an endothermic reaction as described above, heat is generated in each reforming tube 6 due to the reaction, and the temperature of the wall of the reforming tube 6 increases.
そして、この各改質管6の管壁温度Tl l’r21’
r3が、夫々に設けられた温度測定素子16によシ測定
される。また、平均温度算出器30においてはこれら各
測定温度’rl、’r2t’r、の平均温度TAがめら
れる。つぎに、6第2の弁制御器32においては上記各
測定温度Tl #’r、 +TBを上記平均温度TAと
夫々比較し、この各温度T。Then, the tube wall temperature Tl l'r21' of each reforming tube 6
r3 is measured by the temperature measuring elements 16 provided respectively. Furthermore, the average temperature calculator 30 calculates the average temperature TA of these measured temperatures 'rl, 'r2t'r. Next, the second valve controller 32 compares each of the measured temperatures Tl#'r, +TB with the average temperature TA, and determines the respective temperatures T.
とTA% T2とTA s ’rsとTAとの偏差が零
となるように、上記各改質ガスライン25に設けられた
各改質ガス調節弁27の弁開度を各別に制御することに
よシ、改質管6への改質ガスの流入量が調節されて各改
質管6の管壁温度が平均温度TAに保たれる。さらに、
第1の弁制御器31においては上記各改質管6の平均温
度T、を予め設定された制限温度T、と比較し、この各
温度TsとTAとの偏差が零となるように、上記燃焼ガ
スライン21に設けられた燃焼ガス調節弁23の弁開度
を制御することによシ、改質管6への燃焼ガスの流入量
が調節されて各改質管6の管壁温度が制限温度T8に保
たれることになる。The valve opening degree of each reformed gas control valve 27 provided in each reformed gas line 25 is individually controlled so that the deviation between T2, TA s'rs, and TA becomes zero. In this case, the amount of reformed gas flowing into the reforming tubes 6 is adjusted to maintain the tube wall temperature of each reforming tube 6 at the average temperature TA. moreover,
The first valve controller 31 compares the average temperature T of each of the reforming pipes 6 with a preset limit temperature T, and adjusts the average temperature T of each of the reforming pipes 6 so that the deviation between each temperature Ts and TA becomes zero. By controlling the opening degree of the combustion gas control valve 23 provided in the combustion gas line 21, the amount of combustion gas flowing into the reforming tube 6 is adjusted, and the tube wall temperature of each reforming tube 6 is adjusted. The temperature limit will be maintained at T8.
さて上記において、各改質管6への改質ガスおよび燃焼
ガスの流入が一様であれば、前述した改質反応によって
何んら問題なくガス改質が行なわれることになる。しか
しながら、改質反応が進行するに伴なっである特定の改
質管6内の触媒層8に入れである触媒粒子が反応による
急激な熱変化によってつぶれたシ或いは割れたシすると
、その改質管6内の触媒層8の内部圧力損失が変化して
改質ガスが管内へ流れにくくなシその流入量が減少する
。これによp1改質管6は内部の改質ガスで冷却されて
いることから、この改質ガス量の減少によって当該改質
管6の管壁温度が上昇する。そして、装置の運転時間の
経過と共に当該改質管6と他の改質管6との間に管壁温
度の差が現われる。この場合、本改質装置では上述の如
く、各改質管6の平均温度TAと自己の管壁温度とを比
較し、この偏差に基づいて管内への改質ガスの流入量を
各別に調節するようにしているので、各改質管6の管壁
温度は常に均一に保たれることになる。さらに、これら
各改質管6の平均温度TAは上記の如く制限温度Tsと
比較し、この偏差に基づいて燃焼ガスの流入量を調節す
るようにしているので、各改質管6の管壁温度つまシ改
質温度は常に制限温度T8相当に保たれることになる。Now, in the above, if the inflow of the reformed gas and combustion gas into each reforming tube 6 is uniform, gas reforming will be carried out by the above-mentioned reforming reaction without any problem. However, as the reforming reaction progresses, if the catalyst particles contained in the catalyst layer 8 in a particular reforming tube 6 are crushed or cracked due to rapid thermal changes caused by the reaction, the reforming The internal pressure loss of the catalyst layer 8 in the pipe 6 changes, making it difficult for the reformed gas to flow into the pipe, and the amount of reformed gas flowing into the pipe decreases. As a result, since the p1 reforming tube 6 is cooled by the reformed gas inside, the wall temperature of the reforming tube 6 increases due to the decrease in the amount of reformed gas. Then, as the operating time of the apparatus passes, a difference in tube wall temperature appears between the reforming tube 6 and other reforming tubes 6. In this case, as described above, in this reformer, the average temperature TA of each reforming tube 6 is compared with its own tube wall temperature, and the amount of reformed gas flowing into each tube is adjusted individually based on this deviation. Therefore, the tube wall temperature of each reforming tube 6 is always kept uniform. Furthermore, the average temperature TA of each of the reforming tubes 6 is compared with the limit temperature Ts as described above, and the inflow amount of combustion gas is adjusted based on this deviation. The temperature control reforming temperature is always maintained at the limit temperature T8.
従って本構成の改質装置とすることによシ、各改質管6
の管壁温度を常に均一にしかも制限温度T8相当に保つ
ことが可能となることから、従来のような改質管6の熱
による破損を防止しつつ、各改質管6でのガスの改質効
率を高めて装置全体としての改質効率を向上させること
ができるものである。また、本改質装置では改質管6と
同心的に改質管壁からどの円周方向でも同一半径方向幅
のスリーブ管29を設けているので、夫々の改質管60
円周方向の温度差を小さくして上記効果を一層助長する
ことができる。Therefore, by using the reformer with this configuration, each reforming pipe 6
Since it is possible to always keep the tube wall temperature uniform and at the same level as the limit temperature T8, it is possible to prevent the reforming tubes 6 from being damaged by heat as in the conventional case, and to improve the rate of gas reformation in each reforming tube 6. It is possible to improve the quality efficiency and improve the reforming efficiency of the entire apparatus. In addition, in this reformer, since the sleeve pipe 29 is provided concentrically with the reforming pipe 6 and has the same radial width in any circumferential direction from the reforming pipe wall, each reforming pipe 60
The above effect can be further promoted by reducing the temperature difference in the circumferential direction.
尚、上記実施例では改質管6が3本の場合を述べたが、
2本或いは4本以上の複数本の場合にも同様に本発明を
適用できるものである。Incidentally, in the above embodiment, the case where there are three reforming tubes 6 was described, but
The present invention is similarly applicable to the case where there are two or more than four wires.
以上説明したように本発明によれば、複数本の改質管が
設けられた構成のものに、おいても各改質管の管壁温度
を均一とし長寿命化を図シっつ高い効率で改質を行なう
ことが可能な信頼性の高い改質装置が提供できる。As explained above, according to the present invention, even in a configuration in which a plurality of reforming tubes are provided, the tube wall temperature of each reforming tube is made uniform to achieve long life and high efficiency. A highly reliable reforming device capable of carrying out reforming can be provided.
第1図は従来の改質装置の構成を示す断面図、第2図は
第1図における改質管の上端部の構成を示す断面図、第
3図は本発明の一実施例を示す断面図、第4図は本発明
に適用する管壁温度制御回路の一例を示すブロック図で
ある。
1・・・改質装置、2・・・バーナ、3・・・燃焼室、
4・・・加熱流路、5・・・排ガス出口、6・・・改質
管、7・・・改質ガス入口、8・・・触媒層、9・・・
センタプラグ、10・・・リターンパス、11・・・改
質ガス出口、15・・・温度測定素子、21・・・燃焼
ガスライン、22・・・燃焼空気ライン、23・・・燃
焼ガス調節弁、24・・・燃焼空気調節弁、25・・・
改質ガスライン、26・・・改質管下部室、27・・・
改質ガス調節弁、28・・・改質ガス排出量調節弁、2
9・・・スリーブ管、30・・・平均温度算出器、31
.32・・・弁制御器。
出願人代理人 弁理士 鈴 江 武 彦第1図
第9図
第3図FIG. 1 is a sectional view showing the configuration of a conventional reforming device, FIG. 2 is a sectional view showing the configuration of the upper end of the reforming tube in FIG. 1, and FIG. 3 is a sectional view showing an embodiment of the present invention. 4 are block diagrams showing an example of a tube wall temperature control circuit applied to the present invention. 1... Reformer, 2... Burner, 3... Combustion chamber,
4... Heating channel, 5... Exhaust gas outlet, 6... Reforming pipe, 7... Reformed gas inlet, 8... Catalyst layer, 9...
Center plug, 10...Return path, 11...Reformed gas outlet, 15...Temperature measurement element, 21...Combustion gas line, 22...Combustion air line, 23...Combustion gas adjustment Valve, 24... Combustion air control valve, 25...
Reformed gas line, 26... Reformer tube lower chamber, 27...
Reformed gas control valve, 28... Reformed gas discharge control valve, 2
9...Sleeve pipe, 30...Average temperature calculator, 31
.. 32... Valve controller. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 9 Figure 3
Claims (1)
改質触媒層が設けられた断面環状の複数本の改質管を有
し、燃焼ガスおよび燃焼ガスを燃焼室で燃焼させて得ら
れる加熱流体を前記改質管の一端部よシその外側を通し
て他端部よシ外部へ排出させ、且つ改質ガスを前記改質
管の他端部よシ改質触媒層を通して流入させさらにその
一端部よシ前記内側管路を通して他端部よシ流出させる
如く構成された改質装置において、前記燃焼ガスを供給
する燃焼ガスライン上に設けられた燃焼ガス調節弁と、
前記改質ガスを前記各改質管内へ各別に流入させる複数
の改質ガスライン上に夫々設けられた改質ガス調節弁と
、前記各改質管の管壁温度を夫々測定すを調整すべく前
記燃焼ガス調節弁の開度を制御する第1の弁制御器、お
よび前記平均温度と前記各温度測定素子による測定温度
とを各別に比較し、この比較結果に基づき前記改質ガス
の流入量を調整すべく対応する前記改質ガス調節弁の開
度を各別に制御する第2の弁制御器よシなる管壁温度制
御回路とを備えて成ることを特徴とする改質装置。It has a plurality of reforming tubes each having an annular cross section, one end of which is sealed, and a reforming catalyst layer is provided between an inner pipe line and an outer pipe line, and the combustion gas is combusted in a combustion chamber. The heated fluid obtained by the heating is discharged from one end of the reforming tube through the outside thereof to the outside from the other end, and the reformed gas is introduced from the other end of the reforming tube through the reforming catalyst layer. Furthermore, in the reformer configured to allow the combustion gas to flow from one end through the inner pipe line and from the other end, a combustion gas regulating valve provided on a combustion gas line that supplies the combustion gas;
A reformed gas control valve provided on each of a plurality of reformed gas lines for causing the reformed gas to flow into each of the reforming tubes separately, and a tube wall temperature measurement valve of each of the reforming tubes are adjusted. a first valve controller that controls the opening degree of the combustion gas control valve; and a first valve controller that separately compares the average temperature and the temperature measured by each of the temperature measurement elements, and controls the inflow of the reformed gas based on the comparison results. A reformer comprising a tube wall temperature control circuit including a second valve controller that separately controls the opening degree of the corresponding reformed gas control valve in order to adjust the amount of reformed gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59063730A JPS60210504A (en) | 1984-03-31 | 1984-03-31 | Reforming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59063730A JPS60210504A (en) | 1984-03-31 | 1984-03-31 | Reforming apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60210504A true JPS60210504A (en) | 1985-10-23 |
Family
ID=13237809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59063730A Pending JPS60210504A (en) | 1984-03-31 | 1984-03-31 | Reforming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60210504A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248703A (en) * | 1987-04-02 | 1988-10-17 | Toshiba Corp | Reformer |
JPH05504230A (en) * | 1990-01-18 | 1993-07-01 | 株式会社東芝 | Catalytic reaction equipment used for gas phase reactions |
JP2006150357A (en) * | 2005-12-16 | 2006-06-15 | Sumitomo Chemical Co Ltd | Multitubular reaction apparatus |
-
1984
- 1984-03-31 JP JP59063730A patent/JPS60210504A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248703A (en) * | 1987-04-02 | 1988-10-17 | Toshiba Corp | Reformer |
JPH05504230A (en) * | 1990-01-18 | 1993-07-01 | 株式会社東芝 | Catalytic reaction equipment used for gas phase reactions |
JP2006150357A (en) * | 2005-12-16 | 2006-06-15 | Sumitomo Chemical Co Ltd | Multitubular reaction apparatus |
JP4549290B2 (en) * | 2005-12-16 | 2010-09-22 | 住友化学株式会社 | Multi-tube reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8658323B2 (en) | Solid oxide fuel cell generation system | |
CZ331995A3 (en) | Apparatus for carrying out endothermic reaction and process for carrying out such endothermic reaction | |
JPH03232703A (en) | Reformer of hydrocarbon | |
KR100623572B1 (en) | Fuel reforming system and warmup method thereof | |
JP3921477B2 (en) | Single tube cylindrical reformer and its operating method | |
JPS60210504A (en) | Reforming apparatus | |
JP3437684B2 (en) | Fuel reformer for fuel cell power plant and operation method thereof | |
JP2000026101A (en) | Apparatus for reforming fuel | |
JPS60210503A (en) | Reforming apparatus | |
KR101880553B1 (en) | Fuel Reformer With Enhanced Partial Load Efficiency | |
JP4904867B2 (en) | Fuel processor | |
JP2635584B2 (en) | Reformer | |
KR101843556B1 (en) | The reformer of SOFC | |
JP3126487B2 (en) | Oxidation treatment equipment | |
JPH01277110A (en) | Reformer | |
JPH0421536B2 (en) | ||
JPH06349510A (en) | Temperature control device for fuel reformer for fuel cell | |
JP2006335623A (en) | Reforming system | |
JP2874923B2 (en) | Control device for fuel cell device and fuel cell device | |
JPS63248702A (en) | Fuel reformer | |
JP7118330B1 (en) | fuel processor | |
JP2002201003A (en) | Hydrogen generation apparatus | |
JPS63141638A (en) | Multitubular reactor | |
JP5534866B2 (en) | HYDROGEN GENERATOR AND ITS START-UP METHOD, FUEL CELL SYSTEM AND ITS START-UP METHOD | |
JPH02129002A (en) | Fuel reformer for fuel cell power generation system |