JPS60210503A - Reforming apparatus - Google Patents

Reforming apparatus

Info

Publication number
JPS60210503A
JPS60210503A JP59063726A JP6372684A JPS60210503A JP S60210503 A JPS60210503 A JP S60210503A JP 59063726 A JP59063726 A JP 59063726A JP 6372684 A JP6372684 A JP 6372684A JP S60210503 A JPS60210503 A JP S60210503A
Authority
JP
Japan
Prior art keywords
reforming
reformed gas
combustion gas
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59063726A
Other languages
Japanese (ja)
Inventor
Isao Fujii
勲 藤井
Osao Okamura
岡村 長生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON NENRYO GIJUTSU KAIHATSU KK
Toshiba Corp
Original Assignee
NIPPON NENRYO GIJUTSU KAIHATSU KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON NENRYO GIJUTSU KAIHATSU KK, Toshiba Corp filed Critical NIPPON NENRYO GIJUTSU KAIHATSU KK
Priority to JP59063726A priority Critical patent/JPS60210503A/en
Publication of JPS60210503A publication Critical patent/JPS60210503A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a reformed gas with high efficiency by measuring the temp. of each reformer tube to control the amt. of combustion gas, and measuring the pressure of each reformer tube to regulate the amt. of reformed gas. CONSTITUTION:Combustion gas and air are supplied from each combustion gas line 22 and combustion air line 23 into a combustion chamber 3, and burned to heat each reformer tube 6. The tube temp. of each reformer tube 6 is measured by a temp. measuring element 15, and the mean temp. is determined. The opening degree of each combustion gas regulating valve 24 is respectively controlled to nullify the deviation between the measured temp. and the mean temp. The opening degree of a gas supply regulating valve 31 of a common line 32 is also controlled. Meanwhile, the pressure of each reformed gas line 26 is measured with a pressure measuring element 29, and the measured pressure difference and the allowable pressure difference are respectively compared to respectively regulate the opening degree of each reformed gas regulating valve 28 provided to the reformed gas line 26. The damage of the reformer tube 6 due to heat is prevented in this way, and the reforming efficiency at each reformer tube 6 is increased.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は複数本の改質管内を改質ガスが通過し、管の外
側を加熱ガスが流れて同時に加熱する加熱式ガス改質装
置の改良に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is an improvement of a heated gas reformer in which reformed gas passes through a plurality of reforming tubes, and heating gas flows outside the tubes to heat them simultaneously. It is related to.

〔発明の技術的背景〕[Technical background of the invention]

一般に使用されているこの種のガス改質装置の構成につ
いて、第1図に示す断面図を用いて説明する。図におい
て、改質装置1はバーナ2へ燃焼ガスと燃焼空気とを送
シ込み、これを燃焼室3において燃焼させ、この燃焼に
よシ生じた加熱流体を加熱流路を通して排ガス出口5よ
シ外部へ排出する。この燃焼熱により、改質装置1の内
部に設けた断面が環状の複数本の改質管6を加熱する。
The configuration of this type of gas reformer that is commonly used will be explained using the cross-sectional view shown in FIG. In the figure, a reformer 1 sends combustion gas and combustion air to a burner 2, combusts it in a combustion chamber 3, and directs the heated fluid generated by this combustion through a heating channel to an exhaust gas outlet 5. Discharge outside. This combustion heat heats a plurality of reforming tubes 6 having an annular cross section provided inside the reforming device 1.

改質管6の内部には、上記燃焼ガスの加熱流路4とは完
全に隔離して改質ガスの流路が設けられている。改質ガ
ス人ロアよシ流入した改質ガスは、改質管6の内壁に設
けられ下部目皿によシ支見られた触媒層8の内部を流れ
て上昇し、上端部で逆向きに方向転換して触媒層8とセ
ンタプラグ9との間に形成されるリターンパス10を流
れて改質ガス出口11から流出する。
Inside the reforming tube 6, a reformed gas flow path is provided completely separated from the combustion gas heating flow path 4. The reformed gas flowing in from the lower part of the reformed gas flows inside the catalyst layer 8 provided on the inner wall of the reforming tube 6 and supported by the lower perforated plate, rises, and reverses direction at the upper end. The reformed gas changes direction, flows through a return path 10 formed between the catalyst layer 8 and the center plug 9, and flows out from the reformed gas outlet 11.

そしてこの間に、改質ガス例えばメタンと水蒸気とが水
素と炭酸ガスに改質されることになる。
During this time, reformed gas such as methane and water vapor is reformed into hydrogen and carbon dioxide gas.

なお、改質管6は改質装置1の内部に1本のみ設ける場
合もあるが、一般には改質装#i1の内部には第1図に
示す如く複数本設けられている。
In some cases, only one reforming pipe 6 is provided inside the reformer 1, but in general, a plurality of reforming pipes 6 are provided inside the reformer #i1 as shown in FIG.

〔背景技術の問題点〕[Problems with background technology]

ところで上述した改質装置においては、複数本の改質管
6が一つの改質装置1に設けられる場合に、改質管6の
管壁温度が不均一となる問題がある。以下、この点につ
いて第2図を用いて述べる。第2図は、改質官6上部の
断面槽底を示すものである。図において、改質管6は鏡
板12と溶接線13によシ溶接して作られている。
By the way, in the above-mentioned reformer, when a plurality of reformer tubes 6 are provided in one reformer 1, there is a problem that the tube wall temperature of the reformer tubes 6 becomes non-uniform. This point will be described below using FIG. 2. FIG. 2 shows a cross-sectional tank bottom of the upper part of the reformer 6. In the figure, the reforming tube 6 is made by welding an end plate 12 and a weld line 13.

この改質管6は、第1図で既述したようにその上部の燃
焼室3に近い部分は高温になるので、断熱材で形成され
たキャップ14が鏡板12の上にかぶせられる。また、
溶接線13には欠陥が生じやすいので、この部分に温度
測定素子15を設けて温度を測定する。改質ガスは触媒
JQ8の中を上昇し、触媒上端16を通って目皿17の
上部で逆転し、プラグガイド19にょシ形成されるリタ
ーンパス10を通りて下降し流出する。なお、20は触
媒層内側管を示すものである。
Since the upper portion of the reforming tube 6 near the combustion chamber 3 reaches a high temperature as already described in FIG. 1, a cap 14 made of a heat insulating material is placed over the end plate 12. Also,
Since defects are likely to occur in the weld line 13, a temperature measuring element 15 is provided at this portion to measure the temperature. The reformed gas rises in the catalyst JQ8, passes through the upper end 16 of the catalyst, reverses itself above the perforated plate 17, and descends through the return path 10 formed in the plug guide 19 to flow out. Note that 20 indicates a catalyst layer inner tube.

さて、一つの改質装置において複数本の改質管6を設け
たものを実際に製作し、その各改質管6の管壁に温度測
定素子15を設けて実験を行なった結果、改質管6毎に
管壁温度が不均一となシ大きな温度差が生じることが明
らかとなった。すなわち、この改質管6の運転温度が改
質管6の破損寿命に及ばず影響は大きく、運転温度が1
0℃高いことによシlO年間の寿命が約3年間短縮する
ことになる。従って、改質管6毎に温度の不均一がある
と、その不均一な温度のうちの最高温度のものをみて、
この最高温度が制限温度になるような状態にバーナ2へ
倶給する燃焼ガス量を調節しながら、改質装置の運転を
行なわなければならない。しかしこの場合、最低温度の
改質管6では改質効率が悪くなる。
Now, as a result of actually manufacturing a single reformer with a plurality of reforming tubes 6, and conducting an experiment by installing a temperature measuring element 15 on the wall of each reforming tube 6, we found that It has become clear that the tube wall temperature is not uniform for each tube 6 and that a large temperature difference occurs. In other words, the operating temperature of the reforming tube 6 does not reach the failure life of the reforming tube 6, and the influence is large;
The 0°C increase in temperature will shorten the annual lifespan of SilO by about 3 years. Therefore, if there is non-uniformity in temperature among the reforming tubes 6, looking at the highest temperature among the non-uniform temperatures,
The reformer must be operated while adjusting the amount of combustion gas supplied to the burner 2 so that this maximum temperature becomes the limit temperature. However, in this case, the reforming efficiency deteriorates in the reforming tube 6 having the lowest temperature.

上述したように、従来の改質装置においては次のような
問題がある。
As mentioned above, the conventional reformer has the following problems.

管壁温度が不均一な場合、高温の改質管6は寿命が短か
くなシ、また温度の低い改質管6は改質ガスの改質効率
が悪く、例えばメタンと水蒸気を水素と炭酸ガスに改質
する場合に、メタンの残留量が温度不均一幅が大きけれ
ば大きい程多くなる。すなわち、複数本の改質管6の平
均管壁温度を制限温度に合わせた状態で運転を行なうと
、高温の改質管6は管の寿命が短かく、早く破損するこ
とになシ、また温度の低い改質管は改質効率が悪く、低
い温度の改質管6が多い程またそれらの温度が平均温度
に比べて低い程、改質されないメタンの量が多くなシ、
改質装置としての全体の改質効率が低下してしまう。
If the tube wall temperature is uneven, the life of the high-temperature reforming tube 6 will be short, and the low-temperature reforming tube 6 will have poor reforming efficiency of the reformed gas, for example, converting methane and steam into hydrogen and carbonic acid. When reforming into gas, the amount of residual methane increases as the width of temperature non-uniformity increases. In other words, if operation is performed with the average tube wall temperature of a plurality of reforming tubes 6 adjusted to the limit temperature, the high temperature reforming tubes 6 will have a short lifespan and will not break quickly. Reforming tubes with low temperatures have poor reforming efficiency, and the more there are reforming tubes 6 with low temperatures, or the lower their temperatures are compared to the average temperature, the greater the amount of methane that is not reformed.
The overall reforming efficiency of the reformer will decrease.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題を解決するために成されたも
ので、その目的は複数本の改質管が設けられた構成のも
のにおいて各改質管の管壁温度を均一とし長寿命でかつ
高い効率で改質を行なうことが可能な改質装置を提供す
ることにある。
The present invention was made in order to solve the above-mentioned problems, and its purpose is to uniformize the tube wall temperature of each reforming tube in a structure with a plurality of reforming tubes, thereby increasing the lifespan. Another object of the present invention is to provide a reforming device that can carry out reforming with high efficiency.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、一端部が密閉さ
れると共に内側管路と外側管路との間に改質触媒層が設
けられた断面環状の複数本の改質管を有し、燃焼ガスお
よび燃焼ガスを燃焼室で燃焼させて得られる加熱流体を
上記改質管の一端部よシその外側を通して他端部よJ外
部へ排出させ、且つ改質ガスを上記改質管の他端部よシ
改質触媒層を通して流入させさらにその一端部よシ上記
内側管路を通して他端部よル流出させる如く構成された
改質装置において、上記燃焼室を各改質管毎に夫々独立
して構成し、これら各燃焼室へ燃焼ガスを各別に流入さ
せる複数の燃焼ガスライン上に夫々設けられた燃焼ガス
調節弁と、上記改質ガスを上記各改質管内へ各別に流入
させる複数の改質ガスライン上に夫々設けられた改質ガ
ス調節弁と上記各燃焼ガスラインの共通ライン上に設け
られた燃焼ガス供給廿調節弁と、上記各改質管の管壁温
度を夫々測定する温度測定素子と、上記各改質管の改質
ガスの入口と出口の圧力差を測定する圧力測定素子と、
上記各温度測定素子による測定温度の平均温度と予め定
められた制限温度とを比較し、その比較結果に基づいて
零となるように上記燃焼ガスの供給量を調整すべく上記
燃焼ガス供給量調節弁の開度を制御する第1の弁制御器
、および上記平均温度と上記各温度測定素子による測定
温度とを各別に比較し、この比較結果に基づき上記燃焼
ガスの流入量を調整すべく子による測定圧力差と許容圧
力差とを各別に比較し、この比較結果に基づいて上記改
質ガスの流入量を調整すべく対応する上記改質ガス調節
弁の開度を各別に制御する第3の弁制御器よ構成る管壁
温度制御回路とを備えて成ることを特徴とする。
In order to achieve the above object, the present invention includes a plurality of reforming tubes each having an annular cross section, one end of which is sealed, and a reforming catalyst layer is provided between an inner pipe line and an outer pipe line. The combustion gas and the heated fluid obtained by burning the combustion gas in the combustion chamber are discharged from one end of the reforming tube through the outside thereof to the outside from the other end, and the reformed gas is discharged from the other end of the reforming tube to the outside. In a reformer configured to allow inflow from one end through the reforming catalyst layer and outflow from the other end through the inner pipe from one end, the combustion chamber is provided independently for each reforming tube. a plurality of combustion gas control valves each provided on a plurality of combustion gas lines that allow the combustion gas to flow into each of the combustion chambers separately; and a plurality of combustion gas control valves that individually flow the reformed gas into each of the reforming pipes. Measure the reformed gas control valves installed on each of the reformed gas lines, the combustion gas supply control valve installed on the common line of each of the combustion gas lines, and the wall temperature of each of the reforming tubes. a pressure measuring element that measures the pressure difference between the inlet and outlet of the reformed gas of each of the reforming tubes;
The average temperature measured by each of the temperature measuring elements is compared with a predetermined limit temperature, and the combustion gas supply amount is adjusted to be zero based on the comparison result. a first valve controller for controlling the opening degree of the valve; and a second valve controller for separately comparing the average temperature with the temperature measured by each of the temperature measuring elements, and adjusting the inflow amount of the combustion gas based on the comparison result. 3. Comparing the measured pressure difference and the allowable pressure difference separately, and controlling the opening degree of the corresponding reformed gas control valve individually in order to adjust the inflow amount of the reformed gas based on the comparison result. and a pipe wall temperature control circuit comprising a valve controller.

〔発明の実施例〕[Embodiments of the invention]

まず本発明は、改質管の管壁温度が不均一になるのは、
燃焼加熱流体が改質管の周囲で不均一になることが一つ
の原因として考えられるが、これ以外に改質管内部を流
れる改質ガスが吸熱反応を行なうことによるこのガスの
流入量の不均一も要因の一つとして考えられ、特に後者
の原因に対処しようとするものである。
First, in the present invention, the reason why the tube wall temperature of the reforming tube becomes uneven is that
One possible cause is that the combustion heating fluid becomes non-uniform around the reforming tube, but another reason is that the reformed gas flowing inside the reforming tube undergoes an endothermic reaction, resulting in an uneven flow of this gas. Uniformity is also considered as one of the factors, and we are particularly trying to deal with the latter cause.

以下、本発明を図面に示す一実施例について説明する。An embodiment of the present invention shown in the drawings will be described below.

第3図は、本発明による改質装置の概要構成例を断面図
にて示したもので、第1図および第2図と同一部分には
同一符号を付してその説明を省略し、ζζでは異なる部
分についてのみ述べる。なお、本例では改質管60本数
を3本としている。
FIG. 3 is a cross-sectional view showing an example of the general configuration of the reformer according to the present invention, and the same parts as in FIGS. Now, I will only discuss the different parts. In this example, the number of 60 reforming tubes is three.

つまシ、第3図は3本の各改質管6の夫々について加熱
用のバーナ2を各別に設け、またとれら各改質管6の外
周側にこれと同心的に管下端部から上記バーナ2部にか
けてスリーブ管21を配設している。また図において、
22は上記各バーナ2に燃焼ガスを夫々各別に供給する
だめの3本の燃焼ガスライン、23は上記各バーナ2に
燃焼空気を供給するための燃焼空気ライン、24は上記
各燃焼ガスライン22上に各別に設けられた燃焼ガス調
節弁、25は上記燃焼空気ライン23上に設けられた燃
焼空気調節弁である。一方、26は改質ガス人ロアよシ
流入する改質ガスを、上記改質管6内にその改質管下部
室27よ〕夫々各別に供給するように設けられた3本の
改質ガスライン、28はこの各改質ガスライン26上に
設けられた改質ガス調節弁、29は上記各改質管6に夫
々対応して設けられ、当該管の入口と出口の改質ガスの
圧力差を測定する圧力差測定素子で、その測定圧力差を
夫々P□ #P!#Plとして出力するものである。ま
た、15は上記各改質管6の上端部管壁に設けられその
管壁温度を測定する温度測定素子で、その測定温度を夫
々T1 、T、。
In Fig. 3, a heating burner 2 is provided for each of the three reforming tubes 6, and a heating burner 2 is provided for each of the three reforming tubes 6. A sleeve pipe 21 is disposed over the 2 parts of the burner. Also, in the figure,
Reference numeral 22 indicates three combustion gas lines for separately supplying combustion gas to each burner 2, 23 indicates a combustion air line for supplying combustion air to each burner 2, and 24 indicates each combustion gas line 22. Combustion gas control valves 25 are provided on the combustion air line 23, respectively. On the other hand, reference numeral 26 denotes three reformed gas pipes installed to separately supply the reformed gas flowing from the reformed gas lower into the reforming pipe 6 and into the reforming pipe lower chamber 27. The line 28 is a reformed gas control valve provided on each reformed gas line 26, 29 is provided corresponding to each reforming pipe 6, and the reformed gas pressure at the inlet and outlet of the pipe is With the pressure difference measuring element that measures the difference, the measured pressure difference is P□ #P! It is output as #Pl. Reference numeral 15 denotes a temperature measuring element which is provided on the upper end wall of each of the reforming tubes 6 and measures the temperature of the tube wall, and the measured temperatures are T1, T, respectively.

T3として出力するものである。さらに、30は前記改
質ガス出口部11に設けられた改質ガス排出量調節弁、
31は上記各燃焼ガスライン22の共通ライン32上に
設けられた燃焼ガス供給量調節弁であシ、上記改質ガス
排出it調節弁30はその弁開度が、例えば燃料電池等
の負荷容量に応じて自動的に調整されるようになってい
る。
This is output as T3. Furthermore, 30 is a reformed gas discharge control valve provided at the reformed gas outlet section 11;
31 is a combustion gas supply amount control valve provided on the common line 32 of each combustion gas line 22; It is automatically adjusted accordingly.

第4図は、本発明に適用する管壁温度制御回路の一例を
ブロック的に示すものである。図において、33は上記
各温度測定素子15による測定温度Tエ #’l”2t
T8の平均温度TAをめる平均温度算出器、34は前述
した改質管の制限温度Tsと、上記平均温度算出器33
からの平均温度TAとを入力とする第1の弁制御器で、
この各温度T8とTAの偏差が零となるように前記燃悦
ガスの供給量を調整すべく弁開度制御信号を、上記燃焼
ガス供給量調節弁31へ与えるものである。また、35
は上記各改質管6に夫々対応して設けられた第2の弁制
御器で、上記平均温度算出器33からの平均温度TAと
、上記各温度測定素子15による測定温度T1 、T、
FIG. 4 is a block diagram showing an example of a tube wall temperature control circuit applied to the present invention. In the figure, 33 indicates the temperature Te measured by each temperature measuring element 15. #'l"2t
An average temperature calculator 34 calculates the average temperature TA of T8, and 34 is the above-mentioned limit temperature Ts of the reforming tube, and the average temperature calculator 33
A first valve controller that receives as input the average temperature TA from
A valve opening control signal is given to the combustion gas supply amount regulating valve 31 in order to adjust the supply amount of the combustion gas so that the deviation between each temperature T8 and TA becomes zero. Also, 35
is a second valve controller provided corresponding to each of the reforming pipes 6, which controls the average temperature TA from the average temperature calculator 33 and the temperatures T1, T, measured by the temperature measuring elements 15, respectively.
.

T3とを各別に比較し、この偏差が零となるように上記
燃焼ガスの流入量を調整すべく弁開度制御信号を、夫々
対応する上記燃焼ガス調節弁24へ与えるものである。
T3 is individually compared, and a valve opening control signal is given to each corresponding combustion gas control valve 24 in order to adjust the inflow amount of the combustion gas so that the deviation becomes zero.

さらに、36は上記各改質管6に夫々対応して設けられ
た第3の弁制御器で、改質管における改質ガスの入口と
出口との許容圧力差Psと、上記各圧力測定素子29に
よる測定圧力差P1 、P、、P、とを各別に比較し、
この偏差が零となるように上記改質ガスの流入量を調整
すべく弁開度制御信号を、夫々対応する上記改質ガス調
節弁28へ与えるものである。
Furthermore, 36 is a third valve controller provided corresponding to each of the reforming pipes 6, which measures the allowable pressure difference Ps between the inlet and outlet of the reformed gas in the reforming pipe, and the pressure measuring elements of each of the above-mentioned pressure measuring elements. Compare the measured pressure differences P1, P, , P, respectively according to No. 29,
In order to adjust the inflow amount of the reformed gas so that this deviation becomes zero, a valve opening control signal is given to the corresponding reformed gas control valve 28, respectively.

次に、かかる構成の改質装置の作用について説明する。Next, the operation of the reformer having such a configuration will be explained.

図において、共通ライン32よシ各燃焼ガスライン22
および燃焼9気ライン23を通して、燃焼ガスおよび燃
焼空気を各改質管6の夫々のバーナ2へ送シ込むことに
より、前述したように各燃焼室3においてこれを燃焼さ
せ、これによシ生じた加熱流体は加熱流路4を通して排
ガス出口5よシ外部へ排出される。一方、改質ガス人口
2よシ流入した改質ガスは、夫々各別に設けられた改質
ガスライン26を通して各改質管6の下部室27よシ流
入し、改質管6の触媒層8の内部を流れて上昇し、上端
部で逆向きに方向転換して触媒層8とセンタノラグ9と
の間に形成されるリターンパス10を流れて改質ガス出
口11より流出する。そして、この間に改質ガス例えば
メタンと水蒸気とが水素と炭酸ガスに、各改質管6にお
いて改質されることになる。
In the figure, the common line 32 and each combustion gas line 22
By sending the combustion gas and combustion air to the respective burners 2 of each reforming pipe 6 through the combustion air line 23, the combustion gas and combustion air are combusted in each combustion chamber 3 as described above. The heated fluid passes through the heating flow path 4 and is discharged to the outside through the exhaust gas outlet 5. On the other hand, the reformed gas flowing from the reformed gas population 2 flows into the lower chamber 27 of each reforming tube 6 through the reformed gas line 26 provided separately, and flows into the catalyst layer 8 of each reforming tube 6. The reformed gas flows through the interior of the reformed gas and rises, changes direction in the opposite direction at the upper end, flows through the return path 10 formed between the catalyst layer 8 and the centanolag 9, and flows out from the reformed gas outlet 11. During this time, reformed gas such as methane and steam is reformed into hydrogen and carbon dioxide in each reforming tube 6.

一方、上記改質反応は前述したように吸熱反応であるこ
とから、各改質管6には反応による熱が発生して改質管
6の管壁温度が上昇する。
On the other hand, since the reforming reaction is an endothermic reaction as described above, heat is generated in each reforming tube 6 due to the reaction, and the temperature of the wall of the reforming tube 6 increases.

そして、この各改質管6の管壁温度Tl#TfilT3
が、夫々に設けられた温度測定素子15によシ測定され
る。まだ、平均温度算出器33においてはこれら各測定
温KTz + T! t T*の平均温度TAがめられ
る。つぎに、6第2の弁制御部35においては上記各測
定温度T14*rT3を上記平均温度TAと夫々比較し
、この各温度TユとTA、T、とTAtT、とTAとの
偏差が零となるように、上記各燃焼ガスライン22に設
けられた各燃焼ガス調節弁24の弁開度を各別に制御す
ることによシ、改質管6への燃焼ガスの流入量が調節さ
れて各改質管6の管壁温度が平均温度TAに保たれる。
Then, the tube wall temperature Tl#TfilT3 of each reforming tube 6
is measured by the temperature measuring element 15 provided in each. Still, in the average temperature calculator 33, each of these measured temperatures KTz + T! The average temperature TA of t T* is determined. Next, the second valve control unit 35 compares each of the measured temperatures T14*rT3 with the average temperature TA, and determines whether the deviations between the respective temperatures T and TA, T, TAtT, and TA are zero. By individually controlling the valve opening degree of each combustion gas regulating valve 24 provided in each combustion gas line 22, the amount of combustion gas flowing into the reforming pipe 6 is adjusted so that The tube wall temperature of each reforming tube 6 is maintained at an average temperature TA.

さらに、第1の弁制御器34においては上記各改質管6
の平均温度TAを予め設定された制限温度T8と比較し
、この各温度T8とTAとの偏差が零となるように1上
記燃焼ガスの共通ライン32に設けられた燃焼ガス供給
量調節弁31の弁開度を制御することによシ、改質管6
への燃焼ガスの供給量が調節されて各改質管6の管壁温
度が制限温度Tsに保たれることになる。また、第3の
弁制御器36においては上記各測定圧力差PH# P2
 * PBを上記許容圧力差P8と夫々比較し、この各
圧力差P□ とPB、P、とP8.P、とpHとの偏差
が零となるように、上記各改質ガスライン26に設けら
れた各改質ガス調節弁28の弁開度を各別に制御するこ
とによシ、改質管6への改質ガスの流入量が調節されて
、各改質管6における改質ガスの入口と出口との圧力差
が許容圧力差P。
Furthermore, in the first valve controller 34, each of the reforming pipes 6
The average temperature TA of 1 is compared with a preset limit temperature T8, and the combustion gas supply amount regulating valve 31 provided in the common combustion gas line 32 is adjusted so that the deviation between each temperature T8 and TA becomes zero. By controlling the valve opening of the reforming pipe 6,
The amount of combustion gas supplied to the reforming tubes 6 is adjusted to maintain the tube wall temperature of each reforming tube 6 at the limit temperature Ts. Further, in the third valve controller 36, each of the above-mentioned measured pressure differences PH#P2
* PB is compared with each of the above allowable pressure differences P8, and each pressure difference P□ and PB, P, and P8. By individually controlling the valve opening degree of each reformed gas control valve 28 provided in each reformed gas line 26, the reforming pipe 6 The inflow amount of the reformed gas into the reforming tubes 6 is adjusted so that the pressure difference between the inlet and the outlet of the reformed gas in each reforming tube 6 is an allowable pressure difference P.

に保たれる。is maintained.

さて上記において、各改質管6への改質ガスおよび燃焼
ガスの流入が一様であれば、前述した改質反応によって
何んら問題なくガス改質が行なわれることになる。しか
しながら、改質反応が進行するに伴なっである特定の改
質管6内の触媒層8に入れである触媒粒子が反応による
急機な熱変化によってつぶれたシ或いは割れたシすると
、その改質管6内の触媒層8の内部圧力損失か変化して
改質ガスが管内へ流れにくくなり、改質ガスの管入口の
圧力が低下してその流入量が減少する。これによシ、改
質管6は内部の改質ガスで冷却されていることから、こ
の圧力低下に伴なう改質ガス量の減少によって当該改質
管6の管壁温度が上昇する。そして、装置の運転時間の
経過と共に当該改質管6と他の改質管6との間に、改質
ガスの圧力低下に伴なう管壁温度の差が現われる。この
場合、本改質装置では上述の如く、各改質管6の平均温
度TAと自己の管壁温度とを比較すると共に、改質ガス
の入口と出口との許容圧力差Psと自己の測定圧力差と
を比較し、この偏差に基づいて管内への燃焼ガスおよび
改質ガスの流入量を各別に調節するようにしているので
、各改質管6の管壁温度および改質ガスの入口と出口の
圧力差は常に均一に保たれることになる。さらに、これ
ら各改質管6の平均温度TAは上記の如く制限温度T8
と比較し、この偏差に基づいて燃焼ガスの供給量を調節
するようにしているので、各改質管6の管壁温度つまシ
改質温度および改質ガスの入口と出口の圧力差は常に制
限温度T8および許容圧力差P8相当に夫々保たれるこ
とになる。
Now, in the above, if the inflow of the reformed gas and combustion gas into each reforming tube 6 is uniform, gas reforming will be carried out by the above-mentioned reforming reaction without any problem. However, as the reforming reaction progresses, if the catalyst particles contained in the catalyst layer 8 in a particular reforming tube 6 are crushed or cracked due to sudden thermal changes caused by the reaction, the reforming The internal pressure loss of the catalyst layer 8 in the quality tube 6 changes, making it difficult for the reformed gas to flow into the tube, reducing the pressure at the tube inlet of the reformed gas and reducing its inflow amount. As a result, since the reforming tube 6 is cooled by the reformed gas inside, the wall temperature of the reforming tube 6 increases due to the decrease in the amount of reformed gas accompanying this pressure drop. Then, as the operating time of the apparatus passes, a difference in tube wall temperature appears between the reforming tube 6 and other reforming tubes 6 due to a decrease in the pressure of the reformed gas. In this case, as described above, in this reformer, the average temperature TA of each reformer tube 6 and its own tube wall temperature are compared, and the allowable pressure difference Ps between the inlet and outlet of the reformed gas and the own measurement Since the pressure difference is compared and the inflow amount of combustion gas and reformed gas into the tubes is adjusted separately based on this deviation, the tube wall temperature of each reforming tube 6 and the inlet of reformed gas are adjusted. The pressure difference between the outlet and the outlet will always be kept uniform. Furthermore, the average temperature TA of each of these reforming tubes 6 is the limit temperature T8 as described above.
Since the supply amount of combustion gas is adjusted based on this deviation, the tube wall temperature of each reforming tube 6, the reforming temperature, and the pressure difference between the inlet and outlet of the reformed gas are always kept constant. The limit temperature T8 and the allowable pressure difference P8 are maintained respectively.

従って本構成の改質装置とすることによシ、各改質管6
の管壁温度および改質ガスの入口と出口の圧力差を常に
均一にしかも制限温度Tsおよび許容圧力差Psa当に
保つことが可能となることから、従来のような改質管6
の熱による破損を防止しつつ、各改質管6でのガスの改
質効革を局めて装置全体としての改質効率を向上させる
ことができるものである。また、本改質装置では改質%
N 6と同心的に改質管壁からどの同局方向でも同一半
径方向幅のスリーブ管2ノを設けているので、夫々の改
質管60円周方向の温度差を小さくして上記効果を一層
助長することができる。
Therefore, by using the reformer with this configuration, each reforming pipe 6
Since it is possible to always keep the tube wall temperature and the pressure difference between the inlet and outlet of the reformed gas uniform and within the limit temperature Ts and allowable pressure difference Psa, it is possible to
This makes it possible to improve the reforming efficiency of the entire apparatus by improving the reforming efficiency of the gas in each reforming tube 6 while preventing damage caused by heat. In addition, in this reformer, the reformed percentage
Since two sleeve tubes are provided concentrically with N 6 and have the same radial width in any direction from the reforming tube wall, the temperature difference in the circumferential direction of each reforming tube 60 is reduced and the above effects are further enhanced. can be encouraged.

尚、上記実施例では改質管6か3本の場合を述べたが、
2本或いは4本以上の複数本の場合にも同様に本発明を
適用できるものである。
In addition, in the above embodiment, the case of 6 or 3 reforming tubes was described, but
The present invention is similarly applicable to the case where there are two or more than four wires.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、複数本の改質管が
設けられた構成のものにおいても各改質管の管壁温度を
均一とし長寿命化を図シつつ^い効率で改質を行なうこ
とが可能な信頼性の高い改質装置が提供できる。
As explained above, according to the present invention, even in a configuration in which a plurality of reforming tubes are provided, the tube wall temperature of each reforming tube is made uniform, and reforming can be carried out with high efficiency while extending the service life. It is possible to provide a highly reliable reforming device that can perform the following steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の改質装置の構成を示す断面図、第2図は
第1図における改質管の上端部の植成を示す断面図、第
3図は本発明の一実施例を示す断面図、第4図は本発明
に適用する管壁温度制御回路の一例を示すブロック図で
ある。 1・・・改質装置、2・・・バーナ、3・・・燃焼呈、
4・・・加熱流路、5・・・排ガス出口、6・・・改質
管、7・・・改質ガス入口、8・・・触媒層、9・・・
センタグ2グ、10・・・リターンパス、11・・・改
質ガス出口、15・・・温度測定素子、21・・・スリ
ーブ管、22・・・燃焼ガスライン、23・・・燃焼空
気ライン、24・・・燃焼ガス調節弁、26・・・燃焼
空気ライン、26・・・改質ガスライン、27・・・改
質管下部属、28・・・改質ガス調節弁、29・・・圧
力測定計、30・・・改質ガス排出量調節弁、3ノ・・
・燃焼ガ゛ス供給量調節弁、32−・・共通ライン、3
3・・・平均温度算出器、34,35.36・・・弁制
御器。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 第3図
FIG. 1 is a cross-sectional view showing the configuration of a conventional reforming device, FIG. 2 is a cross-sectional view showing the implantation of the upper end of the reforming tube in FIG. 1, and FIG. 3 is a cross-sectional view showing an embodiment of the present invention. The sectional view and FIG. 4 are block diagrams showing an example of a tube wall temperature control circuit applied to the present invention. 1... Reformer, 2... Burner, 3... Combustion device,
4... Heating channel, 5... Exhaust gas outlet, 6... Reforming pipe, 7... Reformed gas inlet, 8... Catalyst layer, 9...
Center tag 2, 10...Return path, 11...Reformed gas outlet, 15...Temperature measuring element, 21...Sleeve pipe, 22...Combustion gas line, 23...Combustion air line , 24... Combustion gas control valve, 26... Combustion air line, 26... Reformed gas line, 27... Reforming pipe lower section, 28... Reformed gas regulating valve, 29...・Pressure measuring gauge, 30...Reformed gas discharge control valve, 3...
・Combustion gas supply amount control valve, 32-...Common line, 3
3... Average temperature calculator, 34, 35.36... Valve controller. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 一端部が密閉されると共に内側管路と外側管路との間に
改質触媒層が設けられた断面環状の複数本の改質管を有
し、燃焼ガスおよび燃焼ガスを燃焼室で燃焼させて得ら
れる加熱流体を前記改質管の一端部よシその外側を通し
て他端部よシ外部へ排出させ、且つ改質ガスを前記改質
管の他端部よシ改質触媒層を通して流入させさらにその
一端部よシ前記内側管路を通して他端部より流出させる
如く構成された改質装置において、前記燃焼室を各改質
管毎に夫々独立して構成し、これら各燃焼室へ燃焼ガス
を各別に流入させる複数の燃焼ガスライン上に夫々設け
られた燃焼ガス調節弁と、前記改質ガスを前記各改質管
内へ各別に流入させる複数の改質ガスライン上に夫々設
けられた改質ガス調節弁と、前た燃焼ガス供給量調節弁
と、前記各改質管の管壁温度を夫々測定する温度測定素
子と、前記各改質管の改質ガスの入口と出口の圧力差を
測定する圧力測定素子と、前記各温度測定素子による測
定温度の平均温度と予め定められた制限温度とを比較し
、その比較結果に基づいて零となるように前記燃焼ガス
の供給量を調整すべく前記燃焼ガス供給量調節弁の開度
を制御する第1の弁制御器、および前記平均温度と前記
各温度測定素子による測定温度とを各別に比較し、この
比較結果に基づき前記燃焼ガスの流入量を調整すべく対
応する前記燃現ガス調節弁の一度を各別に制御する第2
の弁制御器、および前記各圧力l測定素子による測定圧
力差と許容圧力差とを各別に比較し、この比較結果に基
づいて前記改質ガスの流入量を調整すべく対応する前記
改質ガス調節弁の開度を各別に制御する第3の弁制御器
よ構成る管壁温度制御回路とを備えて成ることを特徴と
する改質装置。
It has a plurality of reforming tubes each having an annular cross section, one end of which is sealed, and a reforming catalyst layer is provided between an inner pipe line and an outer pipe line, and the combustion gas is combusted in a combustion chamber. The heated fluid obtained by the heating is discharged from one end of the reforming tube through the outside thereof to the outside from the other end, and the reformed gas is introduced from the other end of the reforming tube through the reforming catalyst layer. Further, in the reformer configured to flow from one end of the reformer through the inner pipe line and from the other end, the combustion chamber is configured independently for each reforming tube, and the combustion gas is supplied to each of the combustion chambers. A combustion gas control valve is provided on each of the plurality of combustion gas lines to cause the reformed gas to flow into each of the reforming pipes, and a combustion gas control valve is provided on each of the plurality of reformed gas lines to cause the reformed gas to flow into each of the reforming pipes. a quality gas control valve, a combustion gas supply amount control valve, a temperature measuring element for measuring the tube wall temperature of each of the reforming tubes, and a pressure difference between the reformed gas inlet and outlet of each of the reforming tubes. Compare the average temperature measured by the pressure measuring element that measures the temperature with a predetermined limit temperature, and adjust the supply amount of the combustion gas so that the temperature becomes zero based on the comparison result. a first valve controller for controlling the opening degree of the combustion gas supply amount regulating valve; a second control valve that controls each of the corresponding combustion gas control valves once to adjust the inflow amount of the combustion gas;
The valve controller and the pressure difference measured by each pressure l measuring element are compared with the allowable pressure difference, and the corresponding reformed gas is adjusted to adjust the inflow amount of the reformed gas based on the comparison result. 1. A reforming device comprising: a pipe wall temperature control circuit comprising a third valve controller that separately controls the opening degree of each control valve.
JP59063726A 1984-03-31 1984-03-31 Reforming apparatus Pending JPS60210503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59063726A JPS60210503A (en) 1984-03-31 1984-03-31 Reforming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063726A JPS60210503A (en) 1984-03-31 1984-03-31 Reforming apparatus

Publications (1)

Publication Number Publication Date
JPS60210503A true JPS60210503A (en) 1985-10-23

Family

ID=13237691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063726A Pending JPS60210503A (en) 1984-03-31 1984-03-31 Reforming apparatus

Country Status (1)

Country Link
JP (1) JPS60210503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317101A (en) * 1988-06-14 1989-12-21 Mitsubishi Electric Corp Reforming apparatus
WO2020204064A1 (en) * 2019-04-03 2020-10-08 Jxtgエネルギー株式会社 Hydrogen producing device and hydrogen producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317101A (en) * 1988-06-14 1989-12-21 Mitsubishi Electric Corp Reforming apparatus
WO2020204064A1 (en) * 2019-04-03 2020-10-08 Jxtgエネルギー株式会社 Hydrogen producing device and hydrogen producing method

Similar Documents

Publication Publication Date Title
US8658323B2 (en) Solid oxide fuel cell generation system
US20100062294A1 (en) Hygrogen generator and fuel cell system
JPH03232703A (en) Reformer of hydrocarbon
KR20050000396A (en) Fuel reforming system and warmup method thereof
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
US10833339B2 (en) Fuel cell system and method of running fuel cell system
JPS60210503A (en) Reforming apparatus
JP3437684B2 (en) Fuel reformer for fuel cell power plant and operation method thereof
JPS60210504A (en) Reforming apparatus
JP2000026101A (en) Apparatus for reforming fuel
KR101880553B1 (en) Fuel Reformer With Enhanced Partial Load Efficiency
JP2635584B2 (en) Reformer
JP2007254163A (en) Fuel treatment device
JP3126487B2 (en) Oxidation treatment equipment
JPH06349510A (en) Temperature control device for fuel reformer for fuel cell
KR101843556B1 (en) The reformer of SOFC
JP5838599B2 (en) Fuel cell system
JPH01277110A (en) Reformer
JP2006335623A (en) Reforming system
JP3408521B2 (en) Hydrogen generator
JP2874923B2 (en) Control device for fuel cell device and fuel cell device
JP5534866B2 (en) HYDROGEN GENERATOR AND ITS START-UP METHOD, FUEL CELL SYSTEM AND ITS START-UP METHOD
JPH02129002A (en) Fuel reformer for fuel cell power generation system
JP3436809B2 (en) Raw material gas reformer
JP2022151100A (en) Flow rate controller and reformer