JP2007254163A - Fuel treatment device - Google Patents

Fuel treatment device Download PDF

Info

Publication number
JP2007254163A
JP2007254163A JP2006076678A JP2006076678A JP2007254163A JP 2007254163 A JP2007254163 A JP 2007254163A JP 2006076678 A JP2006076678 A JP 2006076678A JP 2006076678 A JP2006076678 A JP 2006076678A JP 2007254163 A JP2007254163 A JP 2007254163A
Authority
JP
Japan
Prior art keywords
combustion gas
flow path
burner
cylinder member
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006076678A
Other languages
Japanese (ja)
Other versions
JP4904867B2 (en
Inventor
Yukitaka Hamada
行貴 濱田
Sakae Chijiiwa
榮 千々岩
Minoru Mizusawa
実 水澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2006076678A priority Critical patent/JP4904867B2/en
Publication of JP2007254163A publication Critical patent/JP2007254163A/en
Application granted granted Critical
Publication of JP4904867B2 publication Critical patent/JP4904867B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To more facilitate the maintenance and check works of a burner. <P>SOLUTION: The burner 19a is disposed in the center of a base plate 46 at the bottom of a vacuum heat insulating container 20, and a combustion gas duct 48 extending close to the ceiling of the container is disposed above the burner. A heat insulating material 51 and a cylindrical air passage forming device 52 are coaxially disposed around a lower region of the combustion gas duct 48. The air passage forming device 52 is configured to allow air 30 supplied from the outside of the container to flow inside to be supplied to the burner 19a. A reformer 5 is disposed in an upper region of the combustion gas passage 54 in the outer periphery in an upper region of the combustion gas duct 48. A low temperature shift converter 6 and a CO selective oxidization reactor 7 are disposed in a lower region of the combustion gas passage 54 in the outer periphery of the air passage forming device 52 where influences of heat from a combustion gas 41 passing through the combustion gas duct 48 are prevented by the heat insulating effect of the heat insulating material 51 and the heat exchanging effect of air 30 passing through the air passage forming device 52. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、都市ガスやLPG等を原料(原燃料)として改質処理を行い、燃料電池へ供給するための水素リッチな改質ガス(燃料ガス)を生成させる燃料処理装置に関するものである。   The present invention relates to a fuel processing apparatus that performs a reforming process using city gas, LPG, or the like as a raw material (raw fuel), and generates a hydrogen-rich reformed gas (fuel gas) to be supplied to a fuel cell.

燃料電池は、燃料を用いた他の発電方法に比して熱効率が高く、又、環境汚染が少ないため、有効な発電装置として期待されている。特に、固体高分子型燃料電池(PEFC)は、100℃以下という低温で発電が行なわれ、出力密度が高いので、他の形式の燃料電池に比して小型化でき、しかも、電池構成材料の劣化が少ないこと、起動が容易であること、等の長所があることから、近年、小規模な業務用あるいは家庭用等の発電装置として使用されるようになってきている。   A fuel cell is expected to be an effective power generation device because it has higher thermal efficiency and less environmental pollution than other power generation methods using fuel. In particular, the polymer electrolyte fuel cell (PEFC) generates power at a low temperature of 100 ° C. or lower, and has a high output density. Therefore, the polymer electrolyte fuel cell (PEFC) can be reduced in size as compared with other types of fuel cells. In recent years, it has been used as a power generator for small-scale business use or home use because it has advantages such as little deterioration and easy start-up.

上記固体高分子型燃料電池を用いた発電装置(PEFC発電装置)の一般的な構成は、以下のようにしてある。すなわち、図4に示す如く、電解質としてフッ素系のイオン交換膜が用いられている固体高分子電解質膜の両面をカソード(空気極)2とアノード(燃料極)3の両ガス拡散電極で挟持させてなるセルを、セパレータ(図示せず)を介し積層してスタックとしてなる構成として固体高分子型燃料電池1を形成する。上記固体高分子型燃料電池1におけるアノード3の入口側には、改質器5、低温シフトコンバータ6、CO選択酸化反応器(CO除去器)7を順に備えてなる燃料処理装置4と、加湿器8を設けている。これにより、燃料供給部より供給される都市ガス(天然ガス)やLPG等の原料(原燃料)9を、脱硫器10にて脱硫した後、原料予熱器(原燃料気化器)11にて予熱してから、水蒸発器12より導かれる水蒸気13と共に上記燃料処理装置4へ供給し、該燃料処理装置4の改質器5にておよそ700℃前後に加熱して水蒸気改質を行わせる。得られる改質ガス(燃料ガス)14を、低温シフトコンバータ6に導いておよそ200〜250℃前後まで温度低下させてシフト反応させ、更に、上記CO選択酸化反応器7にておよそ100〜120℃前後まで温度低下させてCO除去処理するようにする。しかる後、上記燃料処理装置4より送出される改質ガス14が、加湿器8にて加湿された後、上記固体高分子型燃料電池1のアノード3へ供給されるようにしてある。一方、上記カソード2の入口側には、酸化ガスとして空気15が、圧縮器(空気ブロワ)16で圧縮された後、上記加湿器8を経てから供給されるようにしてある。   A general configuration of a power generation device (PEFC power generation device) using the polymer electrolyte fuel cell is as follows. That is, as shown in FIG. 4, both surfaces of a solid polymer electrolyte membrane in which a fluorine ion exchange membrane is used as an electrolyte are sandwiched by both gas diffusion electrodes of a cathode (air electrode) 2 and an anode (fuel electrode) 3. The solid polymer fuel cell 1 is formed by stacking the cells formed through a separator (not shown) as a stack. On the inlet side of the anode 3 in the polymer electrolyte fuel cell 1, a fuel processor 4 comprising a reformer 5, a low temperature shift converter 6, a CO selective oxidation reactor (CO remover) 7 in this order, and a humidification A vessel 8 is provided. Thereby, after desulfurizing the raw material (raw fuel) 9 such as city gas (natural gas) and LPG supplied from the fuel supply unit by the desulfurizer 10, the raw material preheater (raw fuel vaporizer) 11 preheats it. Then, it is supplied to the fuel processor 4 together with the steam 13 guided from the water evaporator 12 and heated to about 700 ° C. in the reformer 5 of the fuel processor 4 to perform steam reforming. The resulting reformed gas (fuel gas) 14 is guided to the low-temperature shift converter 6 to be lowered to about 200 to 250 ° C. for a shift reaction, and further in the CO selective oxidation reactor 7 about 100 to 120 ° C. The CO is removed by lowering the temperature to the front and back. Thereafter, the reformed gas 14 delivered from the fuel processing device 4 is humidified by the humidifier 8 and then supplied to the anode 3 of the polymer electrolyte fuel cell 1. On the other hand, air 15 as an oxidizing gas is supplied to the inlet side of the cathode 2 after being compressed by a compressor (air blower) 16 and then passed through the humidifier 8.

かかる構成としてあることにより、上記固体高分子型燃料電池1にて、アノード3側に供給される改質ガス14中の水素と、カソード2側に供給される空気15中の酸素とを電気化学反応(燃料電池反応)させて、この際発生する起電力を取り出すようにしてある。   With this configuration, in the polymer electrolyte fuel cell 1, hydrogen in the reformed gas 14 supplied to the anode 3 side and oxygen in the air 15 supplied to the cathode 2 side are electrochemically converted. Reaction (fuel cell reaction) is performed, and the electromotive force generated at this time is taken out.

上記固体高分子型燃料電池1による燃料電池反応の後、アノード3の出口より排出されるアノードオフガス17には未反応の水素が残存している。そのために、上記アノードオフガス17は、上記燃料処理装置4の改質器5に付設された図示しないバーナへ導いて燃焼させて、上記改質器5の改質室にて吸熱反応である水蒸気改質反応を進行させるための熱源として利用するようにしてある。   After the fuel cell reaction by the polymer electrolyte fuel cell 1, unreacted hydrogen remains in the anode offgas 17 discharged from the outlet of the anode 3. For this purpose, the anode off-gas 17 is introduced into a burner (not shown) attached to the reformer 5 of the fuel processor 4 and burned, and steam reforming which is an endothermic reaction in the reforming chamber of the reformer 5. It is used as a heat source for advancing the quality reaction.

更に、上記アノードオフガス17の発熱量が小さいことに鑑みて、上記燃料処理装置4のバーナには、燃料供給部より供給される都市ガスやLPG等の原料9の一部を追焚き燃料9aとして供給して燃焼させることにより、上記燃料処理装置4を運転して改質器5にて原料9の水蒸気改質を行わせる際に上記アノードオフガス17の発熱量のみでは不足する熱量を補うようにしてある。   Further, in view of the small calorific value of the anode off-gas 17, a part of the raw material 9 such as city gas and LPG supplied from the fuel supply unit is used as the fuel 9 a for the burner of the fuel processing device 4. By supplying and burning, when the fuel processor 4 is operated and steam reforming of the raw material 9 is performed in the reformer 5, the amount of heat that is insufficient only by the calorific value of the anode offgas 17 is compensated. It is.

一方、燃料処理装置4の起動時は、改質器5へ原料9を供給する前に、該改質器5を予め所要温度まで昇温させる必要がある。又、固体高分子型燃料電池1の運転開始前であるため、燃料処理装置4のバーナへのアノードオフガス17の供給は行われない。そのために、上記燃料処理装置4の起動時には、該燃料処理装置4のバーナへ、上記都市ガスやLPG等の追焚き燃料9aのみを燃焼用燃料として供給して燃焼させるようにしてある。18は固体高分子型燃料電池1における冷却部である。   On the other hand, when the fuel processor 4 is started, before the raw material 9 is supplied to the reformer 5, it is necessary to raise the temperature of the reformer 5 to a required temperature in advance. Further, since the polymer electrolyte fuel cell 1 is not yet started, the anode off gas 17 is not supplied to the burner of the fuel processing device 4. Therefore, when the fuel processor 4 is started up, only the refueling fuel 9a such as the city gas or LPG is supplied as the combustion fuel to the burner of the fuel processor 4 and burned. Reference numeral 18 denotes a cooling unit in the polymer electrolyte fuel cell 1.

ところで、上記改質器5、シフトコンバータ6及びCO選択酸化反応器7を備えてなる燃料処理装置4としては、図5及び図6に示す如く、改質器5とシフトコンバータ6とCO選択酸化反応器7とを上下方向に直列に配置することにより軸方向の熱伸びを緩和できるようにすると共に、上記改質器5に関連するバーナ19や水蒸発器12、原料予熱器11等を1つのユニットにまとめるようにした形式のものが従来提案されている。   By the way, as shown in FIGS. 5 and 6, the fuel processor 4 including the reformer 5, the shift converter 6 and the CO selective oxidation reactor 7 includes the reformer 5, the shift converter 6 and the CO selective oxidation. By arranging the reactor 7 in series in the vertical direction, the thermal elongation in the axial direction can be alleviated, and the burner 19, the water evaporator 12, the raw material preheater 11 and the like related to the reformer 5 are 1 Conventionally, a type that is organized into one unit has been proposed.

すなわち、上記ユニット化された燃料処理装置4は、所要の高さ寸法を有し且つ上端を閉塞した容器内筒20aと容器外筒20bとの間に真空断熱層20cを備えた真空断熱容器20の下端部に、ベースプレート21の外周縁部の上側に設けたベース外筒22の上端部が気密に連結してある。上記ベースプレート21の中心部には、上記真空断熱容器20の上下方向中間部付近まで立ち上がるベース内筒23が設けてあり、該ベース内筒23の上端部内側にバーナ(燃焼装置)19が設けてある。   That is, the unitized fuel processor 4 includes a vacuum heat insulation container 20 having a vacuum heat insulation layer 20c between a container inner cylinder 20a and a container outer cylinder 20b having a required height and closed at the upper end. The upper end portion of the base outer cylinder 22 provided on the upper side of the outer peripheral edge portion of the base plate 21 is connected to the lower end portion of the base plate 21 in an airtight manner. At the center of the base plate 21, a base inner cylinder 23 is provided that rises to the vicinity of the middle portion in the vertical direction of the vacuum heat insulating container 20. A burner (combustion device) 19 is provided inside the upper end of the base inner cylinder 23. is there.

上記バーナ19は、たとえば、図6に示す如く、中空円筒状として周壁の周方向所要間隔個所に上下方向多段に空気吹出し孔25を穿設してなるバーナコーン24を上記ベース内筒23の上端部内側に同心状に配置し、上記ベース内筒23とバーナコーン24の上端部同士の間をリング状の閉塞板26により閉塞させると共に、上記バーナコーン24の下端部を底板(閉塞板)27により閉止させてあり、図5に示す空気供給管28よりダクト29を経て上記ベース内筒23の内側へ下端側から供給される空気30を、上記ベース内筒23の内部を通してバーナコーン24の外周側へ導いた後、上記各空気吹出し孔25を通してバーナコーン24の内側へ供給できるようにしてある。   For example, as shown in FIG. 6, the burner 19 is formed as a hollow cylinder having a burner cone 24 formed with a plurality of air blowing holes 25 in the vertical direction at a circumferentially required interval portion of the peripheral wall, and an upper end of the base inner cylinder 23. It is arranged concentrically on the inner side, and between the upper ends of the base inner cylinder 23 and the burner cone 24 is closed by a ring-shaped closing plate 26, and the lower end of the burner cone 24 is a bottom plate (blocking plate) 27. The air 30 supplied from the lower end side to the inside of the base inner cylinder 23 through the duct 29 from the air supply pipe 28 shown in FIG. 5 passes through the inside of the base inner cylinder 23 and the outer periphery of the burner cone 24. After being guided to the side, the air can be supplied to the inside of the burner cone 24 through the air blowing holes 25.

上記バーナコーン24の中心部には、クラウンタワー31が、底板27と所要の隙間を隔てて中子状に配設してある。更に、上記ベース内筒23の下側に設けて図示しないアノードオフガス配管を接続するようにしてある燃料ガス接続座32に下端が接続してあるアノードオフガス供給管(燃料ガス供給管)33が、上記ベース内筒23の内側に挿通させて配設されていると共に、該アノードオフガス供給管33の上端部が、上記バーナコーン24の底板27の中心部に貫通させて連通接続してある。更に、上記アノードオフガス供給管33の上部寄り位置には、該アノードオフガス供給管33の途中位置の側壁部を貫通させて該アノードオフガス供給管33内に挿入した追焚き燃料供給管34の先端部(上端部)が、同心状に収納させてある。これにより、燃料処理装置の通常運転時には、図示しない燃料電池より上記アノードオフガス配管、燃料ガス接続座32を経た後、上記アノードオフガス供給管33を通して供給されるアノードオフガス17と、上記追焚き燃料供給管34より供給される追焚き燃料9aの混合燃料を、又、燃料処理装置の起動時には、上記追焚き燃料供給管34より供給される追焚き燃料9aのみを、上記クラウンタワー31の下側を通して該クラウンタワー31の外周に形成される環状の保炎スペースへ供給して、上記バーナコーン24の空気吹出し孔25より供給される空気30を用いて燃焼させることができるようにしてある。   At the center of the burner cone 24, a crown tower 31 is disposed in a core shape with a predetermined gap from the bottom plate 27. Furthermore, an anode offgas supply pipe (fuel gas supply pipe) 33 having a lower end connected to a fuel gas connection seat 32 provided on the lower side of the base inner cylinder 23 and connected to an anode offgas pipe (not shown), The anode off-gas supply pipe 33 is inserted into and communicated with the inside of the base inner cylinder 23 and penetrates through the center of the bottom plate 27 of the burner cone 24. Further, at a position closer to the upper portion of the anode offgas supply pipe 33, a tip end portion of a refueling fuel supply pipe 34 inserted into the anode offgas supply pipe 33 through a side wall portion in the middle of the anode offgas supply pipe 33. (Upper end part) is stored concentrically. Thus, during normal operation of the fuel processing apparatus, the anode offgas 17 supplied through the anode offgas supply pipe 33 after passing through the anode offgas pipe and the fuel gas connection seat 32 from the fuel cell (not shown), and the additional fuel supply The mixed fuel of the additional fuel 9a supplied from the pipe 34 passes through only the additional fuel 9a supplied from the additional fuel supply pipe 34 through the lower side of the crown tower 31 when the fuel processor is started. The air is supplied to an annular flame holding space formed on the outer periphery of the crown tower 31 and can be burned by using the air 30 supplied from the air blowing holes 25 of the burner cone 24.

35は上記バーナ19の点火用のスパークロッドであり、該スパークロッド35は、上記バーナコーン24の底板27の一側寄り位置に設けた開口部36の下側に取り付けてある短管37の内側に、該短管37の底板37aを下方から貫通させるように取り付けてあり、上端部となる放電部35aのみを、上記底板27の開口部36を通してバーナコーン24の内側へ所要寸法突出させるようにしてある。   35 is a spark rod for igniting the burner 19, and the spark rod 35 is attached to the inside of a short tube 37 attached to the lower side of the opening 36 provided at one side of the bottom plate 27 of the burner cone 24. Further, the bottom plate 37a of the short tube 37 is attached so as to penetrate from below, and only the discharge portion 35a serving as the upper end portion protrudes to the inside of the burner cone 24 through the opening 36 of the bottom plate 27. It is.

更に、上記ベース内筒23の上側に、上記真空断熱容器20の容器内筒20aの天井部付近まで上下方向に延びる炉筒38が接続してある。該炉筒38の内側には、上記バーナ19の所要寸法上方位置から炉筒38の上端よりも所要寸法上方へ突出する位置まで上下方向に延びる下端の閉塞された案内筒39が、同心状に挿通させて配設されると共に、該案内筒39の上端部(突出端部)に、上記炉筒38よりも大径の案内板40が取り付けてある。これにより、上記バーナ19におけるアノードオフガス17や追焚き燃料9aの燃焼により発生する高温(約1000〜1200℃)の燃焼ガス41を、上記炉筒38の内周面と案内筒40の外周面との隙間を通して上昇させて炉筒38の上端まで導いた後、上記案内板40に案内させて該燃焼ガス41のガス流れ方向を下向きに反転させて、上記容器内筒20aと、上記炉筒38及びベース内筒23との間に上下方向の円筒状の空間部として形成される燃焼ガス流路42を、上記ベース外筒22の側壁に設けた排気口43へ向けて下向きに流通させることができるようにしてある。   Further, a furnace cylinder 38 extending in the vertical direction is connected to the upper side of the base inner cylinder 23 up to the vicinity of the ceiling of the container inner cylinder 20 a of the vacuum heat insulating container 20. Inside the furnace tube 38, a closed guide cylinder 39 having a lower end extending in a vertical direction from a position above the required dimension of the burner 19 to a position protruding above the upper end of the furnace cylinder 38 is concentrically formed. A guide plate 40 having a diameter larger than that of the furnace tube 38 is attached to the upper end portion (projecting end portion) of the guide tube 39 while being inserted therethrough. As a result, the combustion gas 41 at a high temperature (about 1000 to 1200 ° C.) generated by the combustion of the anode off-gas 17 and the additional fuel 9a in the burner 19 is transferred to the inner peripheral surface of the furnace tube 38 and the outer peripheral surface of the guide tube 40. And is guided by the guide plate 40 to reverse the gas flow direction of the combustion gas 41 downward, so that the container inner cylinder 20a and the furnace cylinder 38 are guided. And a combustion gas flow path 42 formed as a vertical cylindrical space between the base inner cylinder 23 and the base inner cylinder 23 is allowed to flow downward toward the exhaust port 43 provided on the side wall of the base outer cylinder 22. I can do it.

上記炉筒38の外周に位置する燃焼ガス流路42の上部領域には、縦長の円筒形状としてある改質器5が、周方向所要間隔で複数基、たとえば、6基配設されていると共に、該各改質器5の下方位置の燃焼ガス流路42内に、上記改質器5へ供給する水蒸気13(図4参照)を発生させるための水蒸発器12が設けてある。更に、上記ベース内筒23の外周に位置する燃焼ガス流路42の下部領域に、上記改質器5の下流側に直列に接続する低温シフトコンバータ6とCO選択酸化反応器7とが上方から順に配設されるようにしてある。44は上記各改質器5が配設してある燃焼ガス流路42の上部領域に設けた螺旋板であり、上記燃焼ガス流路42の上部領域を上端側から下方へ向かう燃焼ガス41を、上記螺旋板44に沿わせて流通させることにより、該燃焼ガス41を上記各改質器5に対して横切る方向へ流すことができるようにして、該各改質器5に対する燃焼ガス41からの伝熱効率を高めることができるようにしてある。45は上記低温シフトコンバータ6の外周に配設した原燃料気化器である。   In the upper region of the combustion gas flow path 42 located on the outer periphery of the furnace tube 38, a plurality of, for example, six reformers 5 having a vertically long cylindrical shape are disposed at a required interval in the circumferential direction. A water evaporator 12 for generating steam 13 (see FIG. 4) to be supplied to the reformer 5 is provided in the combustion gas flow path 42 below each reformer 5. Further, a low-temperature shift converter 6 and a CO selective oxidation reactor 7 connected in series downstream from the reformer 5 are connected to the lower region of the combustion gas passage 42 located on the outer periphery of the base inner cylinder 23 from above. They are arranged in order. 44 is a spiral plate provided in the upper region of the combustion gas flow path 42 in which each reformer 5 is disposed, and the combustion gas 41 directed downward from the upper end side of the upper region of the combustion gas flow path 42 By flowing along the spiral plate 44, the combustion gas 41 can flow in a direction transverse to the reformers 5, and from the combustion gas 41 to the reformers 5. The heat transfer efficiency can be increased. Reference numeral 45 denotes a raw fuel vaporizer disposed on the outer periphery of the low temperature shift converter 6.

以上の構成としてあることにより、上記バーナ19で発生させた高温の燃焼ガス41が上記炉筒38の内周面と案内筒40の外周面との隙間を通して上昇する際に高温に加熱される上記炉筒38からの輻射(放射伝熱)と、上記炉筒38の上端に達した後、上記燃焼ガス流路42を螺旋板44に沿って下向きに流れる燃焼ガス41からの対流伝熱により、上記各改質器5が700℃程度まで加熱されるようにしてあり、該各改質器5にて、原燃料気化器45にて予熱されてから改質器5へ供給される原料ガス(図示せず)と、上記水蒸発器12より供給される水蒸気(図示せず)とによる水蒸気改質反応を進行させて改質ガスが発生されるようにしてある。更に、上記各改質器5における水蒸気改質反応の熱源として供されて温度が低下された燃焼ガス41は、その残存する熱が、上記水蒸発器12にて上記各改質器5へ供給する水蒸気を発生させるための熱源として利用されるようになる。   With the above configuration, the high-temperature combustion gas 41 generated by the burner 19 is heated to a high temperature when it rises through the gap between the inner peripheral surface of the furnace tube 38 and the outer peripheral surface of the guide tube 40. Due to radiation from the furnace tube 38 (radiation heat transfer) and convection heat transfer from the combustion gas 41 flowing downward along the spiral plate 44 after reaching the upper end of the furnace tube 38, Each reformer 5 is heated to about 700 ° C., and the raw material gas (preheated in the raw fuel vaporizer 45 and supplied to the reformer 5 in each reformer 5 ( A reforming gas is generated by advancing a steam reforming reaction by steam (not shown) supplied from the water evaporator 12 and not shown. Further, the combustion gas 41 which has been supplied as a heat source for the steam reforming reaction in each reformer 5 and whose temperature has been lowered is supplied with the remaining heat to each reformer 5 by the water evaporator 12. It will come to be used as a heat source for generating steam.

上記各改質器5にて発生させた改質ガスは、上記低温シフトコンバータ6によるシフト反応と、上記CO選択酸化反応器7によるCO除去処理が順次行われて、燃料電池へ供給するための改質ガスが生成される。この際、上記水蒸発器12にて水蒸気を発生させるための熱源に供した後の燃焼ガス41は200〜250℃程度まで温度低下されるため、上記低温シフトコンバータ6におけるシフト反応を進行させる際に問題となることはない。更に、上記低温シフトコンバータ6の周囲を通過する際には、原燃料気化器45における原料ガスの予熱に供されて燃焼ガス41は更に温度低下されて、100〜120℃となるため、上記CO選択酸化反応器7におけるCO除去処理を進行させる際に問題となることはなく、上記CO選択酸化反応器7の周囲を通過した燃焼ガス41は、ベース外筒22の排気口43より外部へ排気されるようになる(たとえば、特許文献1参照)。   The reformed gas generated in each reformer 5 is subjected to a shift reaction by the low temperature shift converter 6 and a CO removal process by the CO selective oxidation reactor 7 in order, and is supplied to the fuel cell. A reformed gas is generated. At this time, since the temperature of the combustion gas 41 after being used as a heat source for generating water vapor in the water evaporator 12 is lowered to about 200 to 250 ° C., when the shift reaction in the low temperature shift converter 6 proceeds. There is no problem. Further, when passing around the low-temperature shift converter 6, the temperature of the combustion gas 41 is further lowered to 100 to 120 ° C. due to the preheating of the raw material gas in the raw fuel vaporizer 45, so that the CO 2 There is no problem when the CO removal process in the selective oxidation reactor 7 is advanced, and the combustion gas 41 that has passed around the CO selective oxidation reactor 7 is exhausted from the exhaust port 43 of the base outer cylinder 22 to the outside. (For example, refer to Patent Document 1).

特開2005−127634号公報JP 2005-127634 A

ところが、上記特許文献1に示されている燃料処理装置は、改質器5と低温シフトコンバータ6とCO選択酸化反応器7とを一体にまとめた形式の燃料処理装置として優れているが、本発明者等は、上記の如き燃料処理装置を更に発展させて、バーナ19の保守、点検作業をより容易に行うことができるようにするための改良を加えて本発明をなした。   However, the fuel processing apparatus shown in Patent Document 1 is excellent as a fuel processing apparatus of a type in which the reformer 5, the low temperature shift converter 6, and the CO selective oxidation reactor 7 are integrated together. The inventors have further developed the fuel processing apparatus as described above, and have made the present invention by adding improvements for facilitating maintenance and inspection work of the burner 19.

したがって、本発明の目的とするところは、改質器と低温シフトコンバータとCO選択酸化反応器とを上下方向に直列に配列して備えてなる構成を有すると共に、バーナの保守、点検作業をより容易に行うことが可能な燃料処理装置を提供しようとするものである。   Accordingly, an object of the present invention is to have a configuration in which a reformer, a low temperature shift converter, and a CO selective oxidation reactor are arranged in series in the vertical direction, and moreover, maintenance and inspection work of the burner is further performed. It is an object of the present invention to provide a fuel processing apparatus that can be easily performed.

本発明は、上記課題を解決するために、請求項1に対応して真空断熱容器の底部に設けるベースプレートの中央部にバーナを設け、該バーナの上側に、上記真空断熱容器の天井部付近まで延びるように設けた燃焼ガスダクトと、該燃焼ガスダクトの下部領域の外周に設けた断熱材と、該断熱材の外周に、上下方向に延びるように配設して、容器外部より取り入れる空気を、内部の空気流路に流通させてから上記バーナへ供給できるようにしてある円筒形状の空気流路形成装置と、上記燃焼ガスダクトの上部領域の外周側と空気流路形成装置の外周側に設けて、上記燃焼ガスダクトの上端に達した燃焼ガスを下方へ流通させる燃焼ガス流路と、該燃焼ガス流路の上部領域に設けた原料を水蒸気改質する改質器と、該改質器の下方位置に設けて改質器へ供給する水蒸気を発生させるようにしてある水蒸発器と、上記改質器の下流側に接続し且つ上記空気流路形成装置の外周となる燃焼ガス流路の下部領域に配設した低温シフトコンバータ及びCO選択酸化反応器とを備えてなる構成とする。   In order to solve the above-mentioned problem, the present invention provides a burner at the center of the base plate provided at the bottom of the vacuum heat insulation container corresponding to claim 1, and up to the vicinity of the ceiling of the vacuum heat insulation container above the burner. Combustion gas duct provided to extend, a heat insulating material provided on the outer periphery of the lower region of the combustion gas duct, and arranged to extend vertically on the outer periphery of the heat insulating material, A cylindrical air flow path forming device that can be supplied to the burner after being circulated through the air flow path, and an outer peripheral side of the upper region of the combustion gas duct and an outer peripheral side of the air flow path forming device, A combustion gas flow path for allowing the combustion gas reaching the upper end of the combustion gas duct to flow downward; a reformer for steam reforming the raw material provided in the upper region of the combustion gas flow path; and a lower position of the reformer Set up A water evaporator configured to generate water vapor to be supplied to the reactor, and a low temperature connected to a downstream side of the reformer and disposed in a lower region of the combustion gas flow path that is an outer periphery of the air flow path forming device A shift converter and a CO selective oxidation reactor are provided.

又、上記構成において、空気流路形成装置は、燃焼ガスダクトの下部領域と対応する高さ寸法を有する外筒部材と、上記外筒部材よりもやや低い高さ寸法の中間筒部材を、径方向に所要の隙間を隔ててベースプレート上に同心状に取り付け、更に、上記ベースプレートの所要寸法上方位置から上記外筒部材と対応する高さ位置まで上下方向に延びる内筒部材を、上記中間筒部材の内側に所要の隙間を隔てて同心状に配置して、該内筒部材の上端部と上記外筒部材の上端部とを、上記中間筒部材よりも上方に配したリング状の閉塞部材を介して連結し、且つベースプレートにおける上記外筒部材と中間筒部材の隙間に対応する所要位置に、容器外部より空気を供給するための空気取入口を設けてなる構成とする。   Further, in the above configuration, the air flow path forming device includes an outer cylinder member having a height corresponding to the lower region of the combustion gas duct, and an intermediate cylinder member having a height slightly lower than the outer cylinder member. Are attached concentrically on the base plate with a required gap therebetween, and further, an inner cylinder member extending in a vertical direction from a position above the required dimension of the base plate to a height position corresponding to the outer cylinder member is formed on the intermediate cylinder member. The inner cylinder member is arranged concentrically with a required gap on the inside, and the upper end portion of the inner cylinder member and the upper end portion of the outer cylinder member are disposed above the intermediate cylinder member via a ring-shaped blocking member. And an air intake port for supplying air from the outside of the container is provided at a required position corresponding to the gap between the outer cylinder member and the intermediate cylinder member in the base plate.

更に、上記各構成における燃焼ガスダクトの上部領域の内側に、外周面部に凹凸を有する伝熱促進部材を挿通させるように配設して、該伝熱促進部材の外周面部と上記燃焼ガスダクトの上部領域の内周面との間に、燃焼ガスの流れを乱しながら上昇させる隙間を形成させるようにした構成とする。具体的には、上記構成における伝熱促進部材を、下端の閉塞された案内筒の外周にワイヤを巻きつけてなる構成とする。   Further, the heat transfer promoting member having irregularities on the outer peripheral surface portion is inserted inside the upper region of the combustion gas duct in each configuration described above, and the outer peripheral surface portion of the heat transfer promoting member and the upper region of the combustion gas duct are arranged. A gap is formed between the inner circumferential surface and the inner circumferential surface so as to rise while disturbing the flow of the combustion gas. Specifically, the heat transfer promoting member in the above configuration is configured by winding a wire around the outer periphery of the guide tube closed at the lower end.

上述の各構成における水蒸発器を、径の異なる複数の螺旋状の伝熱管からなる構成とすると共に、該各螺旋状の伝熱管を、燃焼ガスダクトの外周の円筒状の燃焼ガス流路に同心状に配設してなる構成とする。   The water evaporator in each of the above-described configurations is configured by a plurality of spiral heat transfer tubes having different diameters, and each of the spiral heat transfer tubes is concentric with a cylindrical combustion gas flow path on the outer periphery of the combustion gas duct. It is set as the structure arrange | positioned in the shape.

又、上述の各構成において水蒸発器の上流側に複数の水予熱器を設け、該各水予熱器を、燃焼ガス流路の下部領域にて低温シフトコンバータの内周側と外周側にそれぞれ形成される内周側燃焼ガス流路と外周側燃焼ガス流路に、該内周側燃焼ガス流路を通る燃焼ガスの流量と、外周側燃焼ガス流路を通る燃焼ガスの流量との流量比に応じた数に分配して配設するようにした構成とする。   Further, in each of the above-described configurations, a plurality of water preheaters are provided on the upstream side of the water evaporator, and the water preheaters are respectively provided on the inner peripheral side and the outer peripheral side of the low temperature shift converter in the lower region of the combustion gas flow path. The flow rate of the flow rate of the combustion gas passing through the inner peripheral combustion gas flow channel and the flow rate of the combustion gas passing through the outer peripheral combustion gas flow channel in the inner peripheral combustion gas flow channel and the outer peripheral combustion gas flow channel formed. The number is distributed according to the ratio.

更に、上述の各構成において、真空断熱容器の外面の所要個所に、該容器外面の昇温を検出するための温度スイッチを設けるようにした構成とする。   Further, in each of the above-described configurations, a temperature switch for detecting a temperature rise on the outer surface of the container is provided at a required portion on the outer surface of the vacuum heat insulating container.

本発明の燃料処理装置によれば、以下のような優れた効果を発揮する。
(1)真空断熱容器の底部に設けるベースプレートの中央部にバーナを設け、該バーナの上側に、上記真空断熱容器の天井部付近まで延びるように設けた燃焼ガスダクトと、該燃焼ガスダクトの下部領域の外周に設けた断熱材と、該断熱材の外周に、上下方向に延びるように配設して、容器外部より取り入れる空気を、内部の空気流路に流通させてから上記バーナへ供給できるようにしてある円筒形状の空気流路形成装置と、上記燃焼ガスダクトの上部領域の外周側と空気流路形成装置の外周側に設けて、上記燃焼ガスダクトの上端に達した燃焼ガスを下方へ流通させる燃焼ガス流路と、該燃焼ガス流路の上部領域に設けた原料を水蒸気改質する改質器と、該改質器の下方位置に設けて改質器へ供給する水蒸気を発生させるようにしてある水蒸発器と、上記改質器の下流側に接続し且つ上記空気流路形成装置の外周となる燃焼ガス流路の下部領域に配設した低温シフトコンバータ及びCO選択酸化反応器とを備えてなる構成としてあるので、上記バーナへアノードオフガスや追焚き燃料を供給して燃焼させて発生させる高温の燃焼ガスを、燃焼ガスダクトを通して上方へ導いた後、上記燃焼ガス流路を上端部から下方へ向けて流通させることにより、該燃焼ガス流路の上部領域に配されている改質器を所定温度まで加熱して、該改質器にて原料の水蒸気改質を行わせて改質ガスを生成させることができる。更に、上記改質器の加熱に供された後の燃焼ガスは、該改質器の下方に配設してある水蒸発器にて上記改質器へ供給するための水蒸気発生用の熱源として供することができる。一方、上記燃焼ガスダクトの下部領域の外周には、上記断熱材及び上記空気流路形成装置が設けてあることから、上記燃焼ガスダクトの下部領域から外周方向への熱の伝達は、断熱材にて抑えることができると共に、該断熱材を経て外周側へ伝えられる熱は、上記空気流路形成装置の空気流路を流通させる空気により冷却できる。しかも、該空気流路形成装置を流通するときに熱を受け取る空気は、バーナへ燃焼用の空気として供給して消費させることができるため、上記空気流路形成装置の外周側に配されている低温シフトコンバータやCO選択酸化反応器が上記燃焼ガスダクトの下部領域を通る高温の燃焼ガスの熱の影響を受けて、それぞれシフト反応やCO除去反応の至適温度範囲以上に加熱される虞を未然に防止できる。したがって、原料を改質器にて水蒸気改質した後、低温シフトコンバータでシフト反応させ、更に、CO選択酸化反応器にてCO除去処理してなる改質ガスを生成させることができる。
(2)しかも、上記バーナは、真空断熱容器の最下部となるベースプレートの直ぐ上側に配設してあるため、該バーナの保守、点検作業をより容易に行うことが可能となる。
(3)空気流路形成装置は、燃焼ガスダクトの下部領域と対応する高さ寸法を有する外筒部材と、上記外筒部材よりもやや低い高さ寸法の中間筒部材を、所要の隙間を隔ててベースプレート上に同心状に取り付け、上記ベースプレートの所要寸法上方位置から上記外筒部材と対応する高さ位置まで上下方向に延びる内筒部材を、上記中間筒部材の内側に所要の隙間を隔てて同心状に配置して、該内筒部材の上端部と上記外筒部材の上端部とをリング状の閉塞部材を介して連結し、更に、ベースプレートにおける上記外筒部材と中間筒部材の隙間に対応する所要位置に、容器外部より空気を供給するための空気取入口を設けてなる構成とすることにより、周壁面のほぼ全面に亘る空気流路を径方向に2重に設けて、空気取入口より供給される空気を、外周側の空気流路を通して空気流路形成装置の下端部から上端部まで一旦上昇させてから、内周側の空気流路を通して内筒部材の下方となる空気流路形成装置の下端部まで再び下降させることができるようになるため、該空気流路形成装置を、全面に亘り冷却可能な構成とすることができる。
(4)燃焼ガスダクトの上部領域の内側に、外周面部に凹凸を有する伝熱促進部材を挿通させるように配設して、該伝熱促進部材の外周面部と上記燃焼ガスダクトの上部領域の内周面との間に、燃焼ガスの流れを乱しながら上昇させる隙間を形成させるようにした構成とすることにより、燃焼ガスダクトの上部領域を効率よく加熱させて、該燃焼ガスダクトの上部領域からの輻射により、燃焼ガス流路の上部領域に配した改質器をより効率よく加熱させることができる。
(5)伝熱促進部材を、下端の閉塞された案内筒の外周にワイヤを巻きつけてなる構成とすることにより、該伝熱促進部材の外周面部に容易に凹凸を形成することができる。
(6)水蒸発器を、径の異なる複数の螺旋状の伝熱管からなる構成とすると共に、該各螺旋状の伝熱管を、燃焼ガスダクトの外周の円筒状の燃焼ガス流路に同心状に配設してなる構成とすることにより、円筒状の空間部として形成されている燃焼ガス流路内を流れる燃焼ガスとの熱交換をより効率よく行わせることができる。
(7)水蒸発器の上流側に複数の水予熱器を設け、該各水予熱器を、燃焼ガス流路の下部領域にて低温シフトコンバータの内周側と外周側にそれぞれ形成される内周側燃焼ガス流路と外周側燃焼ガス流路に、該内周側燃焼ガス流路を通る燃焼ガスの流量と、外周側燃焼ガス流路を通る燃焼ガスの流量との流量比に応じた数に分配して配設するようにした構成とすることにより、各水予熱部で均等に水を予熱することができる。
(8)真空断熱容器の外面の所要個所に、該容器外面の昇温を検出するための温度スイッチを設けるようにした構成とすることにより、容器外面の温度上昇に基づいて上記真空断熱容器の真空断熱層の真空度の悪化を検出することが可能になるため、該温度スイッチにて、予め設定してある所要の温度を超える場合に、燃料処理装置全体の運転を停止できるようにすれば、上記真空断熱容器の真空断熱層における真空度が何らかの原因で悪化して断熱性能が低下しても、上記真空断熱容器の内部から漏れる熱により外部機器が影響を受ける虞を未然に防止することが可能になる。
According to the fuel processing apparatus of the present invention, the following excellent effects are exhibited.
(1) A burner is provided at the center of the base plate provided at the bottom of the vacuum heat insulating container, a combustion gas duct provided on the upper side of the burner so as to extend to the vicinity of the ceiling of the vacuum heat insulating container, and a lower region of the combustion gas duct A heat insulating material provided on the outer periphery and the outer periphery of the heat insulating material are arranged so as to extend in the vertical direction so that the air taken in from the outside of the container can be supplied to the burner after flowing through the internal air flow path. A cylindrical air flow path forming device, and a combustion that is provided on the outer peripheral side of the upper region of the combustion gas duct and the outer peripheral side of the air flow path forming device, and distributes the combustion gas that has reached the upper end of the combustion gas duct downward A gas flow path, a reformer for steam reforming the raw material provided in the upper region of the combustion gas flow path, and a steam provided at a lower position of the reformer to be supplied to the reformer. Some water A generator, and a low-temperature shift converter and a CO selective oxidation reactor that are connected to the downstream side of the reformer and disposed in the lower region of the combustion gas flow path that is the outer periphery of the air flow path forming device. Since it is configured, high temperature combustion gas generated by supplying anode off gas or additional fuel to the burner and burning it is guided upward through the combustion gas duct, and then the combustion gas flow path is directed downward from the upper end. The reformer disposed in the upper region of the combustion gas flow path is heated to a predetermined temperature and steam reforming of the raw material is performed in the reformer to generate a reformed gas. Can be made. Further, the combustion gas after being used for heating the reformer is used as a heat source for generating steam to be supplied to the reformer by a water evaporator disposed below the reformer. Can be provided. On the other hand, since the heat insulating material and the air flow path forming device are provided on the outer periphery of the lower region of the combustion gas duct, heat transfer from the lower region of the combustion gas duct to the outer peripheral direction is performed by the heat insulating material. While being able to be suppressed, the heat transmitted to the outer peripheral side through the heat insulating material can be cooled by air flowing through the air flow path of the air flow path forming device. Moreover, since the air that receives heat when it flows through the air flow path forming device can be supplied to the burner for consumption and consumed, it is disposed on the outer peripheral side of the air flow path forming device. There is a risk that the low temperature shift converter and the CO selective oxidation reactor will be heated above the optimum temperature range of the shift reaction and the CO removal reaction under the influence of the heat of the high temperature combustion gas passing through the lower region of the combustion gas duct. Can be prevented. Therefore, after the steam reforming of the raw material in the reformer, a shift reaction can be performed by the low-temperature shift converter, and further, a reformed gas formed by CO removal treatment in the CO selective oxidation reactor can be generated.
(2) Moreover, since the burner is disposed immediately above the base plate that is the lowermost part of the vacuum heat insulating container, the burner can be more easily maintained and inspected.
(3) The air flow path forming device includes an outer cylinder member having a height corresponding to the lower region of the combustion gas duct and an intermediate cylinder member having a height slightly lower than the outer cylinder member, with a required gap therebetween. The inner cylinder member is mounted concentrically on the base plate and extends vertically from a position above the required dimension of the base plate to a height position corresponding to the outer cylinder member, with a required gap inside the intermediate cylinder member. It arranges concentrically, connects the upper end part of the inner cylinder member and the upper end part of the outer cylinder member via a ring-shaped closing member, and further, in the gap between the outer cylinder member and the intermediate cylinder member in the base plate By providing an air intake for supplying air from the outside of the container at the corresponding required position, the air flow path over almost the entire surface of the peripheral wall surface is provided twice in the radial direction. Sky supplied from the entrance The lower end portion of the air flow path forming device that is once raised from the lower end portion to the upper end portion of the air flow path forming device through the outer air flow channel and then below the inner cylindrical member through the inner peripheral air flow channel Therefore, the air flow path forming device can be cooled over the entire surface.
(4) A heat transfer promoting member having irregularities on the outer peripheral surface portion is inserted inside the upper region of the combustion gas duct so that the outer peripheral surface portion of the heat transfer promoting member and the inner periphery of the upper region of the combustion gas duct are disposed. By constructing a gap between the upper surface of the combustion gas duct and the surface, the upper region of the combustion gas duct can be efficiently heated to radiate from the upper region of the combustion gas duct. Thus, the reformer disposed in the upper region of the combustion gas flow path can be heated more efficiently.
(5) By forming the heat transfer promoting member by winding a wire around the outer periphery of the guide cylinder closed at the lower end, it is possible to easily form irregularities on the outer peripheral surface portion of the heat transfer promoting member.
(6) The water evaporator is composed of a plurality of spiral heat transfer tubes having different diameters, and each of the spiral heat transfer tubes is concentrically arranged in a cylindrical combustion gas flow path on the outer periphery of the combustion gas duct. By adopting the arrangement, the heat exchange with the combustion gas flowing in the combustion gas flow path formed as a cylindrical space can be performed more efficiently.
(7) A plurality of water preheaters are provided on the upstream side of the water evaporator, and the water preheaters are respectively formed on the inner peripheral side and the outer peripheral side of the low temperature shift converter in the lower region of the combustion gas flow path. According to the flow rate ratio between the flow rate of the combustion gas passing through the inner peripheral combustion gas flow channel and the flow rate of the combustion gas passing through the outer peripheral combustion gas flow channel in the circumferential combustion gas flow channel and the peripheral combustion gas flow channel By adopting a configuration that is distributed and arranged in numbers, water can be preheated evenly in each water preheater.
(8) By adopting a configuration in which a temperature switch for detecting the temperature rise of the outer surface of the container is provided at a required portion of the outer surface of the vacuum heat insulating container, the vacuum insulating container Since it becomes possible to detect the deterioration of the degree of vacuum of the vacuum heat insulating layer, if the temperature switch exceeds a preset required temperature, the operation of the entire fuel processing device can be stopped. Even if the degree of vacuum in the vacuum heat insulation layer of the vacuum heat insulation container deteriorates for some reason and the heat insulation performance deteriorates, it is possible to prevent the possibility that external equipment may be affected by heat leaking from the inside of the vacuum heat insulation container. Is possible.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1乃至図3は本発明の燃料処理装置の実施の一形態を示すもので、図5に示したと同様の容器内筒20aと容器外筒20bと真空断熱層20cとからなる真空断熱容器20の下端部に、外周寄りの所要個所に排気口47を設けたベースプレート46の外周縁部を、取り外し可能に気密に取り付け、上記真空断熱容器20の最下部となる上記ベースプレート46の中央部上側にバーナ19aを設ける。   FIGS. 1 to 3 show an embodiment of a fuel processing apparatus of the present invention, and a vacuum heat insulating container 20 comprising a container inner cylinder 20a, a container outer cylinder 20b and a vacuum heat insulating layer 20c similar to those shown in FIG. An outer peripheral edge portion of a base plate 46 provided with an exhaust port 47 at a required portion near the outer periphery is attached to the lower end portion of the base plate 46 so as to be detachable and airtight, and above the central portion of the base plate 46 which is the lowermost portion of the vacuum heat insulating container 20. A burner 19a is provided.

上記バーナ19aの上側には、上記容器内筒20aの天井部付近まで上下方向に延びる燃焼ガスダクト48を設ける。該燃焼ガスダクト48は、上部の所要の長さ寸法の領域を、下部領域よりも所要寸法拡径させてなる拡径部48aとしてあり、該拡径部48aの内側に、下端が閉塞された所要長さの案内筒49aと、該案内筒49aの外周に螺旋状に巻きつけたワイヤ49bとからなる伝熱促進部材49を同心状に挿入配置して、上記案内筒49aの下端が上記拡径部48aの下端部に臨むようにする。これにより、上記燃焼ガスダクト48の拡径部48aの内周面と、上記案内筒49aに巻きつけられているワイヤ49bの存在により凹凸形状とされた上記伝熱促進部材49の外周面との間に隙間を形成し、上記バーナ19aの燃焼により発生して燃焼ガスダクト48を通して上方へ導かれる燃焼ガス41を、該燃焼ガス41の流れが層流とならないように乱しながら隙間を通して上向きに流通させることができるようにする。   On the upper side of the burner 19a, a combustion gas duct 48 extending in the vertical direction is provided up to the vicinity of the ceiling of the container inner cylinder 20a. The combustion gas duct 48 has a diameter-expanded portion 48a in which a region having a required length dimension at the upper part is enlarged by a required dimension compared to the lower region, and the required lower end is closed inside the diameter-expanded portion 48a. A heat transfer facilitating member 49 comprising a guide tube 49a having a length and a wire 49b spirally wound around the outer periphery of the guide tube 49a is concentrically inserted and disposed, and the lower end of the guide tube 49a has the diameter expanded. It faces the lower end of the part 48a. As a result, between the inner peripheral surface of the enlarged diameter portion 48a of the combustion gas duct 48 and the outer peripheral surface of the heat transfer promoting member 49 that is formed into an uneven shape due to the presence of the wire 49b wound around the guide tube 49a. The combustion gas 41 generated by the combustion of the burner 19a and guided upward through the combustion gas duct 48 is circulated upward through the gap while disturbing the flow of the combustion gas 41 so as not to become a laminar flow. To be able to.

上記伝熱促進部材49の上端部となる案内筒49aの上端部(突出端部)には、上記燃焼ガスダクト48の拡径部48aよりも大径の案内板50を取り付けて、上記拡径部48aを通過して燃焼ガスダクト48の上端に達した燃焼ガス41を、上記案内板50に案内させて、該燃焼ガス41のガス流れ方向を下向きに反転させることができるようにする。   A guide plate 50 having a diameter larger than that of the enlarged diameter portion 48a of the combustion gas duct 48 is attached to the upper end portion (protruding end portion) of the guide tube 49a serving as the upper end portion of the heat transfer promoting member 49, and the enlarged diameter portion. The combustion gas 41 passing through 48a and reaching the upper end of the combustion gas duct 48 is guided by the guide plate 50 so that the gas flow direction of the combustion gas 41 can be reversed downward.

上記燃焼ガスダクト48の下部領域の周りには、該燃焼ガスダクト48の下部領域と対応するように上下方向に延びる円筒形状の空気流路形成装置52を同心状に配置して上記ベースプレート46の上面側に取り付ける。該空気流路形成装置52には内部に空気流路53a,53bが形成させてあり、容器外部の空気供給管28より供給される空気30を、上記空気流路53a,53bを流通させた後、空気流路形成装置52の下端部の内側に位置する上記ベースプレート46中央部のバーナ19aへ供給できるようにする。上記燃焼ガスダクト48の下部領域と上記空気流路形成装置52との隙間には、断熱材51を介装する。これにより、上記バーナ19aの燃焼により発生する高温の燃焼ガス41が流通される上記燃焼ガスダクト48の下部領域から外周方向への熱の伝達を、上記断熱材51の断熱作用によって低減させ、更に、該断熱材51を経て外周方向へ伝えられる熱は、上記空気流路形成装置52の空気流路53a,53bを流通させる空気30と熱交換させ、この熱交換により加熱される空気30は、バーナ19aへ燃焼用の空気30として供給して消費させることにより、上記空気流路形成装置52の外周側への熱の伝達を防ぐことができるようにする。   Around the lower region of the combustion gas duct 48, a cylindrical air flow path forming device 52 extending in the vertical direction so as to correspond to the lower region of the combustion gas duct 48 is arranged concentrically, and the upper surface side of the base plate 46 Attach to. The air flow path forming device 52 has air flow paths 53a and 53b formed therein, and after the air 30 supplied from the air supply pipe 28 outside the container is circulated through the air flow paths 53a and 53b. The air flow path forming device 52 can be supplied to the burner 19a at the center portion of the base plate 46 located inside the lower end portion. A heat insulating material 51 is interposed in the gap between the lower region of the combustion gas duct 48 and the air flow path forming device 52. Thereby, the heat transfer from the lower region of the combustion gas duct 48 through which the high-temperature combustion gas 41 generated by the combustion of the burner 19a flows is reduced by the heat insulating action of the heat insulating material 51, and further, The heat transmitted to the outer peripheral direction through the heat insulating material 51 is exchanged with the air 30 flowing through the air flow paths 53a and 53b of the air flow path forming device 52, and the air 30 heated by this heat exchange is a burner. By supplying the air 19 for combustion to the air 19a and consuming it, heat transfer to the outer peripheral side of the air flow path forming device 52 can be prevented.

上記容器内筒20aの内周面と、燃焼ガスダクト48の拡径部48aの外周面、及び、上記空気流路形成装置52の外周面との間には、上下方向に連通する円筒状の空間部として燃焼ガス流路54を形成させ、上記燃焼ガスダクト48の拡径部48aの外周に位置する燃焼ガス流路54の上部領域には、図5に示したと同様に、周方向所要間隔で6基の改質器5を配設すると共に、該各改質器5の下方位置に、水蒸発器12を設ける。更に、上記断熱材51及び空気流路形成装置52によって上記燃焼ガスダクト48の下部領域からの熱の伝達が防がれている空気流路形成装置52の外周に位置する燃焼ガス流路54の下部領域に、水蒸発器12と、上記各改質器5の下流側に接続する低温シフトコンバータ6及びCO選択酸化反応器7を、上方から順に配設する構成とする。   A cylindrical space communicating vertically between the inner peripheral surface of the container inner cylinder 20a, the outer peripheral surface of the enlarged diameter portion 48a of the combustion gas duct 48, and the outer peripheral surface of the air flow path forming device 52. As shown in FIG. 5, a combustion gas flow channel 54 is formed as a part, and an upper region of the combustion gas flow channel 54 located on the outer periphery of the enlarged diameter portion 48a of the combustion gas duct 48 has a circumferential interval of 6 as shown in FIG. A basic reformer 5 is disposed, and a water evaporator 12 is provided below each reformer 5. Further, the heat insulating material 51 and the air flow path forming device 52 prevent heat from being transmitted from the lower region of the combustion gas duct 48 below the combustion gas flow channel 54 located on the outer periphery of the air flow path forming device 52. In the region, the water evaporator 12, the low-temperature shift converter 6 and the CO selective oxidation reactor 7 connected to the downstream side of each reformer 5 are arranged in order from above.

詳述すると、上記空気流路形成装置52は、図2に示す如く、ベースプレート46上における排気口47よりも中心寄りで、且つバーナ19a及び燃焼ガスダクト48の下部領域を所要の間隔を隔てて取り囲む径方向の所要位置に、上記燃焼ガスダクト48の下部領域と対応する高さ寸法を有し且つ下端部を所要寸法拡径させた外筒部材52aと、高さ寸法を上記外筒部材52aよりもやや低く設定してある中間筒部材52bを、径方向に所要の隙間を隔てて同心状に配置して、上記ベースプレート46の上面にそれぞれ気密に取り付ける。上記中間筒部材52bの内側には、上記ベースプレート46の所要寸法上方位置から上記外筒部材52aと対応する高さ位置まで上下方向に延びる内筒部材52cを、上記中間筒部材52bと所要の隙間を隔てて同心状に配置し、該内筒部材52cの上端部と、上記外筒部材52aの上端部とを、中間筒部材52bよりも所要寸法上方位置に配したリング状の閉塞部材52dを介して連結する。更に、上記ベースプレート46における上記外筒部材52aの下端部取付個所と、上記中間筒部材52bの下端部取付個所との間となる周方向の所要位置に、空気取入口55を設けて、外部の図示しない空気供給部より供給される空気30を導くための空気供給管28を接続する。これにより、上記外筒部材52aと中間筒部材52bとの間に、下端部の周方向所要個所が上記空気取入口55に連通する円筒状の外周側空気流路53aを形成すると共に、上記中間筒部材52bと内筒部材52cとの間に、上端部が上記中間筒部材52の上方を通して上記外周側空気流路53と連通し且つ下端部が上記内筒部材52cの下方を通して該内筒部材52の内側の空間、すなわち、バーナ19aを設けるベースプレート46の中心側に連通する円筒状の内周側空気流路53bを形成する。これにより、上記空気供給管28より空気取入口55を経て供給される空気30を、上記外周側空気流路53aを通して空気流路形成装置52の下端部から上端部まで一旦上昇させてから、上記内周側空気流路53bを通して空気流路形成装置52の下端部まで再び下降させるようにして、該空気流路形成装置52を全面に亘り冷却できるようにし、しかる後、上記空気流路形成装置52の冷却に供された後の空気30を、バーナ19aへ燃焼用の空気30として供給できるようにしてある。   More specifically, as shown in FIG. 2, the air flow path forming device 52 is closer to the center than the exhaust port 47 on the base plate 46 and surrounds the lower regions of the burner 19a and the combustion gas duct 48 with a predetermined interval therebetween. An outer cylinder member 52a having a height corresponding to the lower region of the combustion gas duct 48 at a required radial position, and having a lower end enlarged by a required dimension, and a height dimension higher than that of the outer cylinder member 52a. The intermediate cylindrical members 52b set to be slightly lower are arranged concentrically with a required gap in the radial direction, and are attached to the upper surface of the base plate 46 in an airtight manner. Inside the intermediate cylinder member 52b, an inner cylinder member 52c extending in a vertical direction from a position above the required dimension of the base plate 46 to a height position corresponding to the outer cylinder member 52a is disposed between the intermediate cylinder member 52b and a required gap. A ring-shaped closing member 52d in which the upper end portion of the inner cylinder member 52c and the upper end portion of the outer cylinder member 52a are arranged at a position higher than the intermediate cylinder member 52b by a required dimension. Connect through. Further, an air intake 55 is provided at a required position in the circumferential direction between the lower end attachment portion of the outer cylinder member 52a and the lower end attachment portion of the intermediate cylinder member 52b in the base plate 46, An air supply pipe 28 for guiding the air 30 supplied from an air supply unit (not shown) is connected. As a result, a cylindrical outer peripheral air flow path 53a is formed between the outer cylinder member 52a and the intermediate cylinder member 52b so that a required portion in the circumferential direction at the lower end communicates with the air intake port 55. Between the cylindrical member 52b and the inner cylindrical member 52c, the upper end communicates with the outer peripheral air flow path 53 through the upper side of the intermediate cylindrical member 52 and the lower end passes through the lower side of the inner cylindrical member 52c. A cylindrical inner peripheral air flow path 53b communicating with the space inside 52, that is, the center side of the base plate 46 where the burner 19a is provided is formed. Thus, the air 30 supplied from the air supply pipe 28 through the air intake 55 is once raised from the lower end portion to the upper end portion of the air flow path forming device 52 through the outer peripheral air flow path 53a, and then The air flow path forming device 52 is lowered again to the lower end portion of the air flow path forming device 52 through the inner peripheral air flow channel 53b so that the air flow path forming device 52 can be cooled over the entire surface. The air 30 after being used for cooling 52 can be supplied to the burner 19a as combustion air 30.

上記バーナ19aは、上記空気流路形成装置52の内筒部材52cの下端部の内側に、図6に示したと同様に、中空円筒状として周壁の周方向所要間隔個所に上下方向多段に空気吹出し孔25を穿設して下端部を底板(閉塞板)27により閉止させてなるバーナコーン24を同心状に配置して、該バーナコーン24の上端部と上記内筒部材52cの内周面との間をリング状の閉塞板26により閉塞させた構成としてある。これにより、上記空気流路形成装置52の内筒部材52cの下方を通して供給される空気30を、上記内筒部材52cの内側にて上記バーナコーン24の外周側へ導いた後、上記各空気吹出し孔25を通してバーナコーン24の内側へ供給できるようにしてある。   As shown in FIG. 6, the burner 19a is blown out in the vertical direction in multiple stages in the circumferential interval of the peripheral wall as shown in FIG. 6 inside the lower end portion of the inner cylinder member 52c of the air flow path forming device 52. A burner cone 24 having a hole 25 and a lower end closed by a bottom plate (blocking plate) 27 is disposed concentrically, and the upper end of the burner cone 24 and the inner peripheral surface of the inner cylinder member 52c are arranged. The space is closed by a ring-shaped closing plate 26. As a result, the air 30 supplied through the lower part of the inner cylinder member 52c of the air flow path forming device 52 is guided to the outer peripheral side of the burner cone 24 inside the inner cylinder member 52c, and then each air blow-out is performed. It can be supplied to the inside of the burner cone 24 through the hole 25.

上記バーナコーン24の中心部には、クラウンタワー31を、底板27と所要の隙間を隔てて中子状に配設する。又、上記バーナコーン24の底板27の中心部には、上記ベースプレート46の中心部に上下方向に貫通させて設けた短管状の燃料供給管56の上端部を連通接続する。上記燃料供給管56におけるベースプレート46よりも下方に突出する下端部の一側位置には、図示しない燃料電池のアノードより排出されるアノードオフガス17を導くアノードオフガス配管57を、ドレンチャンバ58を介して連通接続する。更に、上記燃料供給管56の内側には、該燃料供給管56の底部を貫通させて挿入した追焚き燃料供給管34の先端部を、同心状に収納させる。これにより、燃料処理装置の通常運転時には、上記アノードオフガス配管57より上記ドレンチャンバ58を経てドレンが除去された後に上記燃料供給管56へ供給されるアノードオフガス17と、上記追焚き燃料供給管34より供給される追焚き燃料9aの混合燃料を、又、燃料処理装置の起動時には、上記追焚き燃料供給管34より供給される追焚き燃料9aのみを、上記クラウンタワー31の下側を通して該クラウンタワー31の外周に形成される環状の保炎スペースへ供給して、上記バーナコーン24の空気吹出し孔25より供給される空気30を用いて燃焼させて、高温の燃焼ガス41を発生させることができるようにしてある。   At the center of the burner cone 24, a crown tower 31 is disposed in a core shape with a predetermined gap from the bottom plate 27. In addition, an upper end portion of a short tubular fuel supply pipe 56 is provided in communication with the central portion of the bottom plate 27 of the burner cone 24 so as to penetrate the central portion of the base plate 46 in the vertical direction. An anode off-gas pipe 57 that guides the anode off-gas 17 discharged from the anode of the fuel cell (not shown) is provided at one side of the lower end of the fuel supply pipe 56 that projects downward from the base plate 46 via a drain chamber 58. Connect to communication. Further, inside the fuel supply pipe 56, the tip of the refueling fuel supply pipe 34 inserted through the bottom of the fuel supply pipe 56 is stored concentrically. As a result, during normal operation of the fuel processing apparatus, the anode offgas 17 supplied to the fuel supply pipe 56 after the drain is removed from the anode offgas pipe 57 through the drain chamber 58 and the additional fuel supply pipe 34. The additional fuel supplied from the additional fuel 9a is supplied, and when the fuel processor is started, only the additional fuel 9a supplied from the additional fuel supply pipe 34 is passed through the underside of the crown tower 31. Supplying it to the annular flame-holding space formed in the outer periphery of the tower 31, and burning it using the air 30 supplied from the air blowing hole 25 of the burner cone 24, thereby generating a high-temperature combustion gas 41. I can do it.

上記バーナ19aの点火用のスパークロッド35は、上記バーナコーン24の底板27の一側寄り位置に設けた開口部36の下側にベースプレート46まで達するように取り付けてある筒状部材59の内側に、ベースプレート46を貫通させて下方から挿入するように設置すると共に、該スパークロッド35の上端部となる放電部35aのみを、上記底板27の開口部36を通してバーナコーン24の内側へ所要寸法突出するよう配置して、上記クラウンタワー31又はバーナコーン24の底板27との間にスパークを発生させることができるようにしてある。   The spark rod 35 for igniting the burner 19a is disposed inside a cylindrical member 59 attached so as to reach the base plate 46 below the opening 36 provided on one side of the bottom plate 27 of the burner cone 24. The base plate 46 is inserted so as to be inserted from below, and only the discharge part 35a which is the upper end part of the spark rod 35 protrudes to the inside of the burner cone 24 through the opening part 36 of the bottom plate 27. Thus, a spark can be generated between the crown tower 31 or the bottom plate 27 of the burner cone 24.

上記燃焼ガスダクト48の下端部は、上記バーナコーン24の上端部に連結するようにしてある。これにより、上記燃焼ガスダクト48の外周面と、上記空気流路形成装置52の内筒部材52cの内周面との間に、上記バーナ19aの上端部のリング状の閉塞板26によって下端が閉塞される円筒状の空間を形成して、この円筒状の空間に、上記燃焼ガスダクト48の外周に設ける断熱材51を収納させるようにしてある。   The lower end portion of the combustion gas duct 48 is connected to the upper end portion of the burner cone 24. As a result, the lower end is blocked by the ring-shaped blocking plate 26 at the upper end of the burner 19a between the outer peripheral surface of the combustion gas duct 48 and the inner peripheral surface of the inner cylinder member 52c of the air flow path forming device 52. A cylindrical space is formed, and the heat insulating material 51 provided on the outer periphery of the combustion gas duct 48 is accommodated in the cylindrical space.

上記水蒸発器12は、上記円筒状の空間部として形成されている燃焼ガス流路54内に設けてある。該燃焼ガス流路54を上方から下方へ向けて流れる燃焼ガス41との熱交換を効率よく行わせることができるようにするという観点からは、図3(イ)(ロ)に示す如く、蒸発器伝熱管を、並列接続された螺旋径が互いに相違する複数の螺旋状伝熱管、たとえば、螺旋径を大径、中間径、小径とした3本の螺旋状伝熱管60a,60b,60cとして、上記円筒状の燃焼ガス流路54内に、上記各伝熱管60a,60b,60cを、同心状に配置してなる構成とすることが好ましい。   The water evaporator 12 is provided in a combustion gas passage 54 formed as the cylindrical space. From the viewpoint of enabling efficient heat exchange with the combustion gas 41 flowing from the upper side to the lower side of the combustion gas channel 54, as shown in FIGS. The heat transfer tubes are connected in parallel as a plurality of helical heat transfer tubes having different helical diameters, for example, three helical heat transfer tubes 60a, 60b, 60c having a large, medium, and small helical diameter, It is preferable that the heat transfer tubes 60a, 60b, 60c are arranged concentrically in the cylindrical combustion gas flow channel 54.

更に、燃焼ガス流路54における水蒸発器12の設置個所を燃焼ガス51が流通する際の流通抵抗を抑えるという観点からは、上記各螺旋状伝熱管60a,60b,60cの螺旋ピッチをほぼ同等とすると共に、径方向に隣接する各螺旋状伝熱管60a,60b,60c同士の高さ位置を、上下方向にずらした配置とさせることが好ましい。   Furthermore, from the viewpoint of suppressing the flow resistance when the combustion gas 51 flows through the installation location of the water evaporator 12 in the combustion gas flow channel 54, the spiral pitches of the spiral heat transfer tubes 60a, 60b, 60c are substantially equal. In addition, it is preferable that the height positions of the spiral heat transfer tubes 60a, 60b, 60c adjacent in the radial direction are shifted in the vertical direction.

上記のように、水蒸発器12に複数系列の蒸発器伝熱管を設ける場合には、該各蒸発器伝熱管の上流側位置に個別に水予熱部を設けると共に、該複数の水予熱部を、燃焼ガス流路54の下部領域にて低温シフトコンバータ6の内周側と外周側にそれぞれ分割されて形成される内周側燃焼ガス流路54aと外周側燃焼ガス流路54bに、該内周側燃焼ガス流路54aと外周側燃焼ガス流路54bに分配されて流通させられる燃焼ガス41の流量比に応じた分配数でそれぞれ配設するようにする。   As described above, when a plurality of series of evaporator heat transfer tubes are provided in the water evaporator 12, a water preheating portion is individually provided at an upstream position of each evaporator heat transfer tube, and the plurality of water preheating portions are provided. In the lower region of the combustion gas flow channel 54, the inner peripheral combustion gas flow channel 54a and the outer peripheral combustion gas flow channel 54b formed by being divided into the inner peripheral side and the outer peripheral side of the low temperature shift converter 6, respectively, The number of distributions corresponding to the flow rate ratio of the combustion gas 41 distributed and distributed to the peripheral combustion gas flow channel 54a and the peripheral combustion gas flow channel 54b is arranged.

すなわち、たとえば、上述したように水蒸発器12に3系列の螺旋状伝熱管60a,60b,60cを設ける場合には、低温シフトコンバータ6の内周面と上記空気流路形成装置52の外周面との間に形成される内周側燃焼ガス流路54aと、低温シフトコンバータ6の外周面と容器内筒20aの内周面との間に形成される外周側燃焼ガス流路54bの流路面積比が1:2となるように、該低温シフトコンバータ6の内径及び外径を予め設定するようにし、上記水蒸発器12の各螺旋状伝熱管60a,60b,60cの上流側にそれぞれ設ける3系統の水予熱部61のうち、1系統の水予熱部61を上記内周側燃焼ガス流路54aに配設し、残る2系統の水予熱部61を上記外周側燃焼ガス流路54bに配設するようにする。このようにして、燃焼ガス流路54を上方から流れてきて低温シフトコンバータ6の配設位置に達した燃焼ガス41を、上記内周側と外周側の各燃焼ガス流路54aと54bへ、流量比がほぼ1:2となるように分配されて流通させるようにする。これにより、上記内周側燃焼ガス流路54aを流通する燃焼ガス41の有する熱量の総和と、外周側燃焼ガス流路54bを流通する燃焼ガス41の有する熱量の総和との比が、ほぼ1:2となって、内周側燃焼ガス流路54a内に配設してある1系統の水予熱部61で予熱すべき水の量と、外周側燃焼ガス流路54b内に配設してある2系統の水予熱部61で予熱すべき水の量との比に対応するようにし、該各水予熱部61にてほぼ均等に水の予熱を行うことができるようにする。   That is, for example, as described above, when three series of helical heat transfer tubes 60a, 60b, 60c are provided in the water evaporator 12, the inner peripheral surface of the low temperature shift converter 6 and the outer peripheral surface of the air flow path forming device 52 are provided. The inner peripheral combustion gas flow channel 54a formed between the outer peripheral surface of the low temperature shift converter 6 and the outer peripheral combustion gas flow channel 54b formed between the outer peripheral surface of the container inner cylinder 20a. The inner diameter and outer diameter of the low-temperature shift converter 6 are set in advance so that the area ratio is 1: 2, and are provided on the upstream side of the spiral heat transfer tubes 60a, 60b, 60c of the water evaporator 12, respectively. Of the three water preheating sections 61, one system water preheating section 61 is disposed in the inner circumferential combustion gas flow path 54a, and the remaining two water preheating sections 61 are disposed in the outer circumferential combustion gas flow path 54b. Try to arrange. In this way, the combustion gas 41 that has flowed from above through the combustion gas passage 54 and reached the position where the low-temperature shift converter 6 is disposed is transferred to the combustion gas passages 54a and 54b on the inner and outer peripheral sides. The flow ratio is distributed so as to be approximately 1: 2. Thereby, the ratio of the total amount of heat of the combustion gas 41 flowing through the inner peripheral combustion gas flow channel 54a and the total amount of heat of the combustion gas 41 flowing through the outer peripheral combustion gas flow channel 54b is approximately 1. : 2 so that the amount of water to be preheated by the one water preheating unit 61 disposed in the inner peripheral combustion gas flow channel 54a and the outer combustion gas flow channel 54b are disposed. The two water preheating sections 61 correspond to the ratio of the amount of water to be preheated so that the water preheating sections 61 can preheat water almost evenly.

上記CO選択酸化反応器7の出口部となる下端部に接続して改質ガス14を回収するための改質ガス配管62は、ベースプレート46の排気口47を挿通させて該ベースプレート46の下方位置へ引き出すように配置すると共に、上記ベースプレート46の排気口47の下側に、上記排気口47を挿通させてベースプレート46の下方位置へ導いた改質ガス配管62と、上記ベースプレート46の下方位置にて先端部をドレンチャンバ58に接続してあるアノードオフガス配管57とを覆う箱型の排気ダクト63を設ける。更に、該排気ダクト63に接続する最終排気ガス管64の内側に、上記改質ガス配管62とアノードオフガス配管57とを所要の長さ範囲に亘り挿通させるように配設してなる構成とすることにより、上記真空断熱容器20内より排気口47を通して排出される最終排気ガス41aを、上記排気ダクト63、最終排気ガス管64を通して排出させる際に、該最終排気ガス41aに残存する熱により、上記改質ガス配管64を流通する改質ガス14、及び、アノードオフガス配管57を流通するアノードオフガス17を共に保温することができるようにしてある。   A reformed gas pipe 62 for recovering the reformed gas 14 connected to the lower end serving as the outlet of the CO selective oxidation reactor 7 is inserted through the exhaust port 47 of the base plate 46 and positioned below the base plate 46. The reformed gas pipe 62 is inserted under the exhaust port 47 of the base plate 46 and led to the lower position of the base plate 46, and the lower position of the base plate 46. A box-shaped exhaust duct 63 is provided to cover the anode off-gas pipe 57 whose tip is connected to the drain chamber 58. Further, the reformed gas pipe 62 and the anode off-gas pipe 57 are disposed inside the final exhaust gas pipe 64 connected to the exhaust duct 63 so as to be inserted over a required length range. Thus, when the final exhaust gas 41a exhausted from the vacuum heat insulating container 20 through the exhaust port 47 is exhausted through the exhaust duct 63 and the final exhaust gas pipe 64, the heat remaining in the final exhaust gas 41a Both the reformed gas 14 flowing through the reformed gas pipe 64 and the anode off gas 17 flowing through the anode off gas pipe 57 can be kept warm.

更に、上記CO選択酸化反応器7と低温シフトコンバータ6は共に発熱反応の反応器であるため、CO選択酸化反応器7に冷却水配管65を装備すると共に、低温シフトコンバータ6に冷却水配管66を装備して、該各冷却水配管65と66を冷却水供給ライン67に直列に接続して、該冷却水供給ライン67より供給される冷却水により上記CO選択酸化反応器7と低温シフトコンバータ6を順に冷却できるようにし、更に、上記各冷却水配管65と66の間にチェック弁68を設けて、該チェック弁68にてCO選択酸化反応器7側の冷却水配管65に流通させる冷却水を加圧することにより、沸点を上昇させて上記CO選択酸化反応器7を至適温度である100〜120℃前後の温度範囲に保持できるようにしてある。   Furthermore, since the CO selective oxidation reactor 7 and the low temperature shift converter 6 are both exothermic reaction reactors, the CO selective oxidation reactor 7 is provided with a cooling water pipe 65 and the low temperature shift converter 6 is provided with a cooling water pipe 66. The cooling water pipes 65 and 66 are connected in series to a cooling water supply line 67, and the CO selective oxidation reactor 7 and the low temperature shift converter are supplied by the cooling water supplied from the cooling water supply line 67. 6 can be cooled in order, and a check valve 68 is provided between each of the cooling water pipes 65 and 66, and the check valve 68 passes through the cooling water pipe 65 on the CO selective oxidation reactor 7 side. By pressurizing water, the boiling point is raised so that the CO selective oxidation reactor 7 can be maintained in a temperature range of about 100 to 120 ° C. which is the optimum temperature.

上記CO選択酸化反応器7の冷却に供された後の冷却水は、至適温度範囲がおよそ200〜250℃前後とされている低温シフトコンバータ6の冷却に供されて更に加熱されると、水蒸気が発生されるようになる。このために、原料供給ライン70より低温シフトコンバータ6の上側に設けた原料予熱器71を経て供給される原料9と、上記水蒸発器12にて発生させる水蒸気13とを混合してから各改質器5へ分配して供給するための混合ヘッダ69に、上記低温シフトコンバータ6の冷却水配管66の下流側を接続するようにして、上記CO選択酸化反応器7と低温シフトコンバータ6の冷却に供した後に発生する水蒸気を、上記各改質器5における原料9の水蒸気改質に利用できるようにしてある。   When the cooling water after being used for cooling the CO selective oxidation reactor 7 is further heated by being used for cooling the low temperature shift converter 6 whose optimum temperature range is about 200 to 250 ° C., Water vapor is generated. For this purpose, the raw material 9 supplied via the raw material preheater 71 provided on the upper side of the low temperature shift converter 6 from the raw material supply line 70 and the water vapor 13 generated by the water evaporator 12 are mixed and then modified. Cooling of the CO selective oxidation reactor 7 and the low temperature shift converter 6 is performed by connecting the downstream side of the cooling water pipe 66 of the low temperature shift converter 6 to the mixing header 69 to be distributed and supplied to the mass device 5. The steam generated after having been used for the above-mentioned process can be used for steam reforming of the raw material 9 in each reformer 5.

更に又、真空断熱容器20の容器外筒20bの外面における所要個所に温度スイッチ72を設けて、上記容器外筒20bの表面温度が所要の設定温度、たとえば、60〜100℃程度の温度範囲となるように予め設定してある温度よりも上昇する場合に、燃料処理装置全体の運転を停止できるようにしてもよい。このようにすれば、上記真空断熱容器20の真空断熱層20cにおける真空度が何らかの原因で悪化(低下)した場合に、この真空度の悪化を、真空断熱容器20の断熱性能の低下に伴って生じる上記容器外筒20bの温度上昇として上記温度スイッチ72により検出できるようになるため、上記真空断熱容器20の内部の熱が外部へ漏れて外部機器に影響を及ぼすようになる虞を未然に防止できるようになる。   Furthermore, a temperature switch 72 is provided at a required location on the outer surface of the container outer cylinder 20b of the vacuum heat insulating container 20, and the surface temperature of the container outer cylinder 20b is a required set temperature, for example, a temperature range of about 60 to 100 ° C. When the temperature rises above a preset temperature, the operation of the entire fuel processor may be stopped. In this way, when the degree of vacuum in the vacuum heat insulating layer 20c of the vacuum heat insulating container 20 is deteriorated (decreased) for some reason, the deterioration of the vacuum degree is accompanied by a decrease in the heat insulating performance of the vacuum heat insulating container 20. Since the temperature switch 72 can detect the temperature rise of the container outer cylinder 20b that occurs, it is possible to prevent the heat inside the vacuum heat insulating container 20 from leaking to the outside and affecting external devices. become able to.

73はアノードオフガス配管57の下流側端部に接続した窒素ガス供給ラインであり、該窒素ガス供給ライン73より上記アノードオフガス配管57内へごく微量の窒素ガス74を常時供給することにより、該アノードオフガス配管57よりバーナ19aへ向かう一定の気流を常に発生させることができるようにして、燃料処理装置の運転開始初期の暖機中、すなわち、燃料電池にてアノードオフガス17が発生せずに、追焚き燃料9aのみでバーナ19aを運転させる際に、上記追焚き燃料9aの拡散によるアノードオフガス配管57側への流入を未然に防止できるようにしてある。   73 is a nitrogen gas supply line connected to the downstream end of the anode offgas pipe 57. By supplying a very small amount of nitrogen gas 74 from the nitrogen gas supply line 73 into the anode offgas pipe 57 at all times, A constant air flow from the off-gas pipe 57 toward the burner 19a can always be generated, and during the warm-up at the beginning of the operation of the fuel processing apparatus, that is, the anode off-gas 17 is not generated in the fuel cell. When the burner 19a is operated only with the burning fuel 9a, the inflow to the anode off-gas pipe 57 side due to diffusion of the burning fuel 9a can be prevented in advance.

燃焼ガス流路54における各改質器5を配設してある上部領域には、図5に示した螺旋板44と同様に、該燃焼ガス流路54を上方から下方へ向かう燃焼ガス41の流れを各改質器5を径方向に横切るように流通させるための螺旋板44を、1条又は多重螺旋を描くように複数条、たとえば、二重螺旋を描くように2条配設するようにして、上記各改質器5に対して燃焼ガス41より対流伝熱が行われるときに、各改質器5ごとに付与される熱量をより均等化させることができるようにしてある。   In the upper region of the combustion gas flow channel 54 where the reformers 5 are disposed, the combustion gas 41 flowing from the upper side to the lower side of the combustion gas flow channel 54 in the same manner as the spiral plate 44 shown in FIG. A plurality of spiral plates 44 for flowing the flow so as to traverse each reformer 5 in the radial direction are arranged so as to draw one or multiple spirals, for example, two strips so as to draw a double spiral. Thus, when convective heat transfer is performed from the combustion gas 41 to each reformer 5, the amount of heat applied to each reformer 5 can be made more equal.

75は上記各水予熱器61の上流側に接続した蒸発器給水ライン、76は上記CO選択酸化反応器7へ空気77を供給する空気ラインである。その他、図4、図5び図6に示したものと同一のものには同一符号が付してある。   75 is an evaporator water supply line connected to the upstream side of each water preheater 61, and 76 is an air line for supplying air 77 to the CO selective oxidation reactor 7. In addition, the same components as those shown in FIGS. 4, 5 and 6 are denoted by the same reference numerals.

以上の構成としてある燃料処理装置を運転するためにバーナ19aへアノードオフガス17や追焚き燃料9aを供給して燃焼させると、高温の燃焼ガス41が燃焼ガスダクト48を通して上方へ導かれ、該燃焼ガスダクト48の拡径部48aと伝熱促進部材49との隙間を、ワイヤ49bによって形成されている凹凸によって流れを乱されながら通過すると、上記燃焼ガスダクト48の拡径部48aが加熱されて、該拡径部48aからの輻射によりその周りに配置されている各改質器5が加熱される。更に、上記燃焼ガスダクト48の上端まで導かれた後、燃焼ガス流路54の上部領域を下方に向かう燃焼ガス41が、螺旋板44に沿って各改質器5横切るようにして流通されるときに、該燃焼ガス41からの対流伝熱により上記各改質器5の加熱が行われ、これにより、該各加熱器5にて、混合ヘッダ69より供給される原料9と水蒸気13による水蒸気改質反応が行われて改質ガス14が生成される。   When the anode off-gas 17 and the additional fuel 9a are supplied to the burner 19a and burned to operate the fuel processing apparatus having the above-described configuration, the high-temperature combustion gas 41 is guided upward through the combustion gas duct 48, and the combustion gas duct If the flow is disturbed by the unevenness formed by the wire 49b while passing through the gap between the enlarged diameter portion 48a of the 48 and the heat transfer promoting member 49, the enlarged diameter portion 48a of the combustion gas duct 48 is heated and the expanded Each reformer 5 disposed around the diameter portion 48a is heated by radiation from the diameter portion 48a. Furthermore, when the combustion gas 41 that has been led to the upper end of the combustion gas duct 48 and then travels downward in the upper region of the combustion gas flow path 54 is circulated across the reformer 5 along the spiral plate 44. Further, each reformer 5 is heated by convective heat transfer from the combustion gas 41, and thereby, the steam reforming by the raw material 9 and the steam 13 supplied from the mixing header 69 is performed in each heater 5. A quality reaction is performed to generate the reformed gas 14.

上記各改質器5の加熱に供された後の燃焼ガス41は、上記各改質器5の下方に配設してある水蒸発器12へ導かれて、水蒸気13発生用の熱源として供される。この際、上記水蒸発器12は、螺旋状伝熱管60a,60b,60cを同心状に配置してなる構成としてあるため、水蒸気13を効率よく発生させることができる。   The combustion gas 41 that has been used for heating the reformers 5 is guided to the water evaporator 12 disposed below the reformers 5 and used as a heat source for generating the steam 13. Is done. At this time, since the water evaporator 12 has a configuration in which the spiral heat transfer tubes 60a, 60b, and 60c are arranged concentrically, the water vapor 13 can be generated efficiently.

上記水蒸発器12における水蒸気13発生用の熱源として供されることにより200〜250℃程度まで温度低下された燃焼ガス41は、低温シフトコンバータ6の上側に設けてある原料予熱器71にて原料9の予熱に供されると共に、上記低温シフトコンバータ6の内周側と外周側に形成される内周側燃焼ガス流路54a及び外周側燃焼ガス流路54bを通過するときに水予熱部61における上記水蒸発器12へ供給する水の予熱用熱源として利用され、しかる後、CO選択酸化反応器7の周囲を通過してベースプレート46に設けてある排気口47より排気ダクト63、最終排気ガス管64を通して排気される。   Combustion gas 41 whose temperature has been lowered to about 200 to 250 ° C. by being used as a heat source for generating water vapor 13 in the water evaporator 12 is fed into a raw material preheater 71 provided on the upper side of the low temperature shift converter 6. 9, and when passing through the inner peripheral combustion gas flow channel 54 a and the outer peripheral combustion gas flow channel 54 b formed on the inner peripheral side and the outer peripheral side of the low temperature shift converter 6, the water preheating unit 61. Is used as a heat source for preheating water supplied to the water evaporator 12, and then passes through the periphery of the CO selective oxidation reactor 7 through an exhaust port 47 provided in the base plate 46, the exhaust duct 63 and the final exhaust gas. Exhaust through tube 64.

この際、上記バーナ19aにて発生される高温の燃焼ガス41を流通させる燃焼ガスダクト48の下部領域の外周には、上記断熱材51及び上記空気流路形成装置52を設けているため、上記燃焼ガスダクト48の下部領域から外周方向への熱の伝達は、断熱材51にて断熱されると共に、空気流路形成装置52の空気流路53a,53bを流通させる空気30により冷却できる。そのため、上記空気流路形成装置52の外周側位置となる燃焼ガス流路54の下部領域に配設してある上記低温シフトコンバータ6やCO選択酸化反応器7が上記燃焼ガスダクト54の下部領域を通る高温の燃焼ガス41の熱の影響を受けて、それぞれシフト反応やCO除去反応の至適温度範囲以上に加熱される虞は未然に防止される。   At this time, since the heat insulating material 51 and the air flow path forming device 52 are provided on the outer periphery of the lower region of the combustion gas duct 48 through which the high-temperature combustion gas 41 generated in the burner 19a is circulated, the combustion The heat transfer from the lower region of the gas duct 48 to the outer peripheral direction is insulated by the heat insulating material 51 and can be cooled by the air 30 flowing through the air flow paths 53a and 53b of the air flow path forming device 52. Therefore, the low-temperature shift converter 6 and the CO selective oxidation reactor 7 disposed in the lower region of the combustion gas flow channel 54 that is the outer peripheral side position of the air flow channel forming device 52 are disposed in the lower region of the combustion gas duct 54. Under the influence of the heat of the high-temperature combustion gas 41 that passes through, it is possible to prevent the possibility of being heated above the optimum temperature range for the shift reaction and the CO removal reaction.

したがって、本発明の燃料処理装置によれば、原料9を改質器5にて水蒸気改質した後、低温シフトコンバータ6でシフト反応させ、更に、CO選択酸化反応器にてCO除去処理してなる改質ガス14を生成させることができる。   Therefore, according to the fuel processing apparatus of the present invention, after the raw material 9 is steam reformed by the reformer 5, the shift reaction is performed by the low temperature shift converter 6, and the CO selective oxidation reactor is further subjected to CO removal treatment. The reformed gas 14 can be generated.

しかも、上記改質器5における水蒸気改質を行わせるための熱源となる燃焼ガス41を発生させるバーナ19aを真空断熱容器20の最下部となるベースプレート46の直ぐ上側に設けるようにしてあるため、該バーナ19aの保守、点検作業をより容易に行うことが可能となる。   Moreover, since the burner 19a that generates the combustion gas 41 that is a heat source for performing steam reforming in the reformer 5 is provided immediately above the base plate 46 that is the lowest part of the vacuum heat insulating container 20, Maintenance and inspection work of the burner 19a can be performed more easily.

なお、本発明は、上記実施の形態にのみ限定されるものではなく、燃焼ガス流路54の上部領域に設ける改質器5の数は、該燃焼ガス流路54の断面形状や、上記改質器5の断面積に応じて適宜変更してよい。燃焼ガスダクト48は上部領域に拡径部48aを設けるものとして示したが、燃焼ガスダクト48の上部領域からの輻射により改質器5を加熱できるようにすれば単なる直管状の形状としてもよい。又、該燃焼ガスダクト48の上部領域の内側に挿入して設ける伝熱促進部材49は、該伝熱促進部材49の外周面部に沿って上方へ流れる燃焼ガス41の流れを乱してガス流れが層流となることを防止できるような凹凸を外周面部に有していれば、案内筒49aの外周にワイヤ49bを巻き付けてなる構成以外の構成のものを採用するようにしてもよい。   The present invention is not limited to the above embodiment, and the number of the reformers 5 provided in the upper region of the combustion gas channel 54 is not limited to the cross-sectional shape of the combustion gas channel 54 or the above modification. You may change suitably according to the cross-sectional area of the quality device 5. Although the combustion gas duct 48 is shown as having an enlarged diameter portion 48a in the upper region, the combustion gas duct 48 may have a simple straight tube shape as long as the reformer 5 can be heated by radiation from the upper region of the combustion gas duct 48. Further, the heat transfer promotion member 49 provided by being inserted inside the upper region of the combustion gas duct 48 disturbs the flow of the combustion gas 41 flowing upward along the outer peripheral surface portion of the heat transfer promotion member 49 so that the gas flow is generated. A configuration other than the configuration in which the wire 49b is wound around the outer periphery of the guide tube 49a may be adopted as long as the outer peripheral surface portion has irregularities that can prevent laminar flow.

又、水蒸発器12は、図3に示したように、複数の螺旋状伝熱管60a,60b,60cを同心状に配置してなる形式のものとすることが好ましいが、燃焼ガス流路54b内に設けて燃焼ガス41の保有する熱を利用して水蒸気13を発生させることができれば、いかなる形式のものを採用してもよい。又、図1においては、上記水蒸発器12を、燃焼ガス流路54における燃焼ガス41の流通方向と平行流となる方向へ水を流すものとして示してあるが、対向流となる方向へ水を流通させる形式のものとしてもよい。   Further, as shown in FIG. 3, the water evaporator 12 is preferably of a type in which a plurality of helical heat transfer tubes 60a, 60b, 60c are arranged concentrically, but the combustion gas flow path 54b. As long as the water vapor 13 can be generated by using the heat of the combustion gas 41 provided inside, any type of water vapor may be adopted. In FIG. 1, the water evaporator 12 is shown as flowing water in a direction parallel to the flow direction of the combustion gas 41 in the combustion gas flow path 54. It is good also as a thing of the form which distributes.

更に、CO選択酸化反応器7としては、水蒸気改質反応と逆反応であるメタネーションを行わせるメタネータを用いるようにしてもよい。   Further, as the CO selective oxidation reactor 7, a methanator that performs methanation that is a reverse reaction to the steam reforming reaction may be used.

原料9として灯油等の留点が高い液体原料を使用する場合には、原料予熱器71を、低温シフトコンバータ6の上側に代えて、低温シフトコンバータ6の内周側の内周側燃焼ガス流路54aに設けた水予熱部61の位置に設けるようにしてもよい。   In the case where a liquid raw material having a high boiling point such as kerosene is used as the raw material 9, the raw material preheater 71 is replaced with the upper side of the low temperature shift converter 6, and the inner peripheral combustion gas flow on the inner peripheral side of the low temperature shift converter 6 is used. You may make it provide in the position of the water preheating part 61 provided in the path 54a.

その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。 Of course, various modifications can be made without departing from the scope of the present invention.

本発明の燃料処理装置の実施の一形態を示す概要図である。It is a schematic diagram showing one embodiment of a fuel processor of the present invention. 図1の装置のバーナ部分を拡大して示す切断側面図である。FIG. 2 is an enlarged cutaway side view showing a burner portion of the apparatus of FIG. 1. 図1の装置の水蒸発器における伝熱管の配置を示すもので、(イ)は概略平面図、(ロ)は概略切断側面図である。The arrangement | positioning of the heat exchanger tube in the water evaporator of the apparatus of FIG. 1 is shown, (A) is a schematic plan view, (B) is a schematic cut | disconnected side view. 一般的な固体高分子型燃料電池発電装置の概要を示す図である。It is a figure which shows the outline | summary of a general polymer electrolyte fuel cell power generator. 従来提案されている燃料処理装置の概要を示す切断側面図である。It is a cutaway side view showing an outline of a conventionally proposed fuel processor. 図5の燃料処理装置のバーナ部分を拡大して示す切断側面図である。FIG. 6 is an enlarged cutaway side view showing a burner portion of the fuel processor of FIG. 5.

符号の説明Explanation of symbols

5 改質器
6 低温シフトコンバータ
7 CO選択酸化反応器
9 原料
12 水蒸発器
13 水蒸気
19a バーナ
20 真空断熱容器
30 空気
46 ベースプレート
47 排気口
48 燃焼ガスダクト
48a 拡径部(上部領域)
49 伝熱促進部材
49a 案内筒
49b ワイヤ
51 断熱材
52 空気流路形成装置
52a 外筒部材
52b 中間筒部材
52c 内筒部材
52d 閉塞部材
53a,53b 空気流路
54 燃焼ガス流路
54a 内周側燃焼ガス流路
54b 外周側燃焼ガス流路
55 空気取入口
57 アノードオフガス配管
60a,60b,60c 螺旋状伝熱管
61 水予熱器
72 温度スイッチ
5 Reformer 6 Low Temperature Shift Converter 7 CO Selective Oxidation Reactor 9 Raw Material 12 Water Evaporator 13 Water Vapor 19a Burner 20 Vacuum Insulated Container 30 Air 46 Base Plate 47 Exhaust Port 48 Combustion Gas Duct 48a Expanding Part (Upper Region)
49 Heat Transfer Promoting Member 49a Guide Tube 49b Wire 51 Heat Insulating Material 52 Air Flow Forming Device 52a Outer Tube Member 52b Intermediate Tube Member 52c Inner Tube Member 52d Closure Member 53a, 53b Air Flow Channel 54 Combustion Gas Flow Channel 54a Inner Side Combustion Gas channel 54b Outer peripheral combustion gas channel 55 Air intake port 57 Anode off-gas piping 60a, 60b, 60c Spiral heat transfer tube 61 Water preheater 72 Temperature switch

Claims (7)

真空断熱容器の底部に設けるベースプレートの中央部にバーナを設け、該バーナの上側に、上記真空断熱容器の天井部付近まで延びるように設けた燃焼ガスダクトと、該燃焼ガスダクトの下部領域の外周に設けた断熱材と、該断熱材の外周に、上下方向に延びるように配設して、容器外部より取り入れる空気を、内部の空気流路に流通させてから上記バーナへ供給できるようにしてある円筒形状の空気流路形成装置と、上記燃焼ガスダクトの上部領域の外周側と空気流路形成装置の外周側に設けて、上記燃焼ガスダクトの上端に達した燃焼ガスを下方へ流通させる燃焼ガス流路と、該燃焼ガス流路の上部領域に設けた原料を水蒸気改質する改質器と、該改質器の下方位置に設けて改質器へ供給する水蒸気を発生させるようにしてある水蒸発器と、上記改質器の下流側に接続し且つ上記空気流路形成装置の外周となる燃焼ガス流路の下部領域に配設した低温シフトコンバータ及びCO選択酸化反応器とを備えてなる構成を有することを特徴とする燃料処理装置。   A burner is provided at the center of the base plate provided at the bottom of the vacuum heat insulation container, and a combustion gas duct provided above the burner so as to extend to the vicinity of the ceiling of the vacuum heat insulation container, and provided at the outer periphery of the lower region of the combustion gas duct. A heat insulating material, and a cylinder that is arranged on the outer periphery of the heat insulating material so as to extend in the vertical direction so that air taken in from the outside of the container can be supplied to the burner after flowing through the internal air flow path. Shaped air flow path forming device, and a combustion gas flow path that is provided on the outer peripheral side of the upper region of the combustion gas duct and on the outer peripheral side of the air flow path forming device, and distributes the combustion gas reaching the upper end of the combustion gas duct downward A water vapor reformer configured to steam reform the raw material provided in the upper region of the combustion gas flow path, and to generate steam supplied to the reformer at a position below the reformer vessel And a low-temperature shift converter and a CO selective oxidation reactor that are connected to the downstream side of the reformer and disposed in the lower region of the combustion gas flow path that is the outer periphery of the air flow path forming device. The fuel processing apparatus characterized by the above-mentioned. 空気流路形成装置は、燃焼ガスダクトの下部領域と対応する高さ寸法を有する外筒部材と、上記外筒部材よりもやや低い高さ寸法の中間筒部材を、径方向に所要の隙間を隔ててベースプレート上に同心状に取り付け、更に、上記ベースプレートの所要寸法上方位置から上記外筒部材と対応する高さ位置まで上下方向に延びる内筒部材を、上記中間筒部材の内側に所要の隙間を隔てて同心状に配置して、該内筒部材の上端部と上記外筒部材の上端部とを、上記中間筒部材よりも上方に配したリング状の閉塞部材を介して連結し、且つベースプレートにおける上記外筒部材と中間筒部材の隙間に対応する所要位置に、容器外部より空気を供給するための空気取入口を設けてなる構成とした請求項1記載の燃料処理装置。   The air flow path forming device includes an outer cylinder member having a height corresponding to the lower region of the combustion gas duct, and an intermediate cylinder member having a height slightly lower than the outer cylinder member, with a required gap in the radial direction. The inner cylinder member extending concentrically on the base plate and extending vertically from the position above the required dimension of the base plate to the height position corresponding to the outer cylinder member, and the required gap inside the intermediate cylinder member. The base plate is disposed concentrically, and is connected to the upper end portion of the inner cylinder member and the upper end portion of the outer cylinder member via a ring-shaped blocking member disposed above the intermediate cylinder member. The fuel processing apparatus according to claim 1, wherein an air intake for supplying air from outside the container is provided at a required position corresponding to a gap between the outer cylinder member and the intermediate cylinder member. 燃焼ガスダクトの上部領域の内側に、外周面部に凹凸を有する伝熱促進部材を挿通させるように配設して、該伝熱促進部材の外周面部と上記燃焼ガスダクトの上部領域の内周面との間に、燃焼ガスの流れを乱しながら上昇させる隙間を形成させるようにした請求項1又は2記載の燃料処理装置。   An inner surface of the upper area of the combustion gas duct is disposed so as to pass through a heat transfer promotion member having irregularities on the outer peripheral surface portion, and the outer peripheral surface portion of the heat transfer acceleration member and the inner peripheral surface of the upper region of the combustion gas duct The fuel processing apparatus according to claim 1 or 2, wherein a gap is formed between the gas flow and the combustion gas flow to rise while disturbing the flow. 伝熱促進部材を、下端の閉塞された案内筒の外周にワイヤを巻きつけてなる構成とした請求項3記載の燃料処理装置。   4. The fuel processing apparatus according to claim 3, wherein the heat transfer promoting member is configured by winding a wire around the outer periphery of the guide cylinder closed at the lower end. 水蒸発器を、径の異なる複数の螺旋状の伝熱管からなる構成とすると共に、該各螺旋状の伝熱管を、燃焼ガスダクトの外周の円筒状の燃焼ガス流路に同心状に配設してなる構成とした請求項1、2、3又は4記載の燃料改質装置。   The water evaporator is composed of a plurality of spiral heat transfer tubes having different diameters, and each of the spiral heat transfer tubes is concentrically disposed in a cylindrical combustion gas flow path on the outer periphery of the combustion gas duct. The fuel reformer according to claim 1, 2, 3 or 4, wherein the fuel reformer is configured as described above. 水蒸発器の上流側に複数の水予熱器を設け、該各水予熱器を、燃焼ガス流路の下部領域にて低温シフトコンバータの内周側と外周側にそれぞれ形成される内周側燃焼ガス流路と外周側燃焼ガス流路に、該内周側燃焼ガス流路を通る燃焼ガスの流量と、外周側燃焼ガス流路を通る燃焼ガスの流量との流量比に応じた数に分配して配設するようにした請求項1、2、3、4又は5記載の燃料処理装置。   A plurality of water preheaters are provided on the upstream side of the water evaporator, and each water preheater is formed on the inner peripheral side and the outer peripheral side of the low temperature shift converter in the lower region of the combustion gas flow path. Distributing the gas flow path and the outer combustion gas flow path in a number corresponding to the flow rate ratio between the flow rate of the combustion gas passing through the inner combustion gas flow path and the flow rate of the combustion gas passing through the outer combustion gas flow path 6. The fuel processing apparatus according to claim 1, wherein the fuel processing apparatus is arranged as described above. 真空断熱容器の外面の所要個所に、該容器外面の昇温を検出するための温度スイッチを設けるようにした請求項1、2、3、4、5又は6記載の燃料処理装置。   The fuel processing apparatus according to claim 1, 2, 3, 4, 5 or 6, wherein a temperature switch for detecting a temperature rise of the outer surface of the container is provided at a required portion of the outer surface of the vacuum heat insulating container.
JP2006076678A 2006-03-20 2006-03-20 Fuel processor Expired - Fee Related JP4904867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076678A JP4904867B2 (en) 2006-03-20 2006-03-20 Fuel processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076678A JP4904867B2 (en) 2006-03-20 2006-03-20 Fuel processor

Publications (2)

Publication Number Publication Date
JP2007254163A true JP2007254163A (en) 2007-10-04
JP4904867B2 JP4904867B2 (en) 2012-03-28

Family

ID=38628789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076678A Expired - Fee Related JP4904867B2 (en) 2006-03-20 2006-03-20 Fuel processor

Country Status (1)

Country Link
JP (1) JP4904867B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084698A (en) * 2006-09-27 2008-04-10 Toshiba Corp Fuel reformer and fuel cell system
JP6090419B1 (en) * 2015-12-22 2017-03-08 富士電機株式会社 Fuel cell device
JP2018181835A (en) * 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 High-temperature operating fuel cell system
EP3838394A1 (en) * 2019-12-19 2021-06-23 Green Vision Holding B.V. Catalytic conversion device and method for catalytic conversion of a feed gas into a product gas in an endothermic reaction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217402A (en) * 1995-02-13 1996-08-27 Mitsubishi Electric Corp Reformer
JP2002257332A (en) * 2001-02-28 2002-09-11 Tokyo Gas Co Ltd Regenerative burner
JP2004028521A (en) * 2002-06-28 2004-01-29 Noritz Corp Combustion device
JP2005093117A (en) * 2003-09-12 2005-04-07 Denso Corp Fuel cell system
JP2005127634A (en) * 2003-10-24 2005-05-19 Ishikawajima Harima Heavy Ind Co Ltd Combustion device for fuel reforming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217402A (en) * 1995-02-13 1996-08-27 Mitsubishi Electric Corp Reformer
JP2002257332A (en) * 2001-02-28 2002-09-11 Tokyo Gas Co Ltd Regenerative burner
JP2004028521A (en) * 2002-06-28 2004-01-29 Noritz Corp Combustion device
JP2005093117A (en) * 2003-09-12 2005-04-07 Denso Corp Fuel cell system
JP2005127634A (en) * 2003-10-24 2005-05-19 Ishikawajima Harima Heavy Ind Co Ltd Combustion device for fuel reforming device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084698A (en) * 2006-09-27 2008-04-10 Toshiba Corp Fuel reformer and fuel cell system
JP6090419B1 (en) * 2015-12-22 2017-03-08 富士電機株式会社 Fuel cell device
JP2017117564A (en) * 2015-12-22 2017-06-29 富士電機株式会社 Fuel cell device
JP2018181835A (en) * 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 High-temperature operating fuel cell system
JP7002054B2 (en) 2017-04-07 2022-02-04 パナソニックIpマネジメント株式会社 High temperature operation type fuel cell system
EP3838394A1 (en) * 2019-12-19 2021-06-23 Green Vision Holding B.V. Catalytic conversion device and method for catalytic conversion of a feed gas into a product gas in an endothermic reaction
NL2024505B1 (en) * 2019-12-19 2021-09-02 Green Vision Holding Bv Catalytic conversion device and method for catalytic conversion of a feed gas into a product gas in an endothermic reaction

Also Published As

Publication number Publication date
JP4904867B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
US10381665B2 (en) Device and method for heating fuel cell stack and fuel cell system having the device
JP5154272B2 (en) Fuel cell reformer
JP2002124289A (en) Solid electrolyte fuel cell system
JP2003327405A (en) Fuel reforming apparatus and method of starting same
JP6280431B2 (en) Fuel cell module
JP4830591B2 (en) Circular mixing / distribution header
JP2001155756A (en) Vapor-reforming reactor for fuel cell
CN110114923B (en) Fuel processing device
JP4904867B2 (en) Fuel processor
JP4210912B2 (en) Fuel reformer and fuel cell power generator
US20070028522A1 (en) Fuel reformer
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP2003187849A (en) Solid polymer fuel cell power generator
KR100837679B1 (en) Fuel processor of fuel cell system
KR101250418B1 (en) fuel processor of fuel cell
US7887606B2 (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
JP2004075435A (en) Fuel reforming device
JP3941159B2 (en) Fuel cell power generation system
JP2018104232A (en) Hydrogen production apparatus
KR101422630B1 (en) Heat exchange type prereformer
KR101316042B1 (en) Integrated Reformer System for a Fuel Cell
JP4872760B2 (en) Operation control method and apparatus for fuel processor
JP2006059549A (en) Fuel cell power generator
KR102563958B1 (en) High efficiency fuel processing device
KR100741651B1 (en) Fuel reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4904867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees