JPH0779959B2 - Multi-tube reactor - Google Patents

Multi-tube reactor

Info

Publication number
JPH0779959B2
JPH0779959B2 JP28675586A JP28675586A JPH0779959B2 JP H0779959 B2 JPH0779959 B2 JP H0779959B2 JP 28675586 A JP28675586 A JP 28675586A JP 28675586 A JP28675586 A JP 28675586A JP H0779959 B2 JPH0779959 B2 JP H0779959B2
Authority
JP
Japan
Prior art keywords
reaction
tube
reaction tube
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28675586A
Other languages
Japanese (ja)
Other versions
JPS63141638A (en
Inventor
一郎 北原
冨士雄 喜多
治美 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP28675586A priority Critical patent/JPH0779959B2/en
Publication of JPS63141638A publication Critical patent/JPS63141638A/en
Publication of JPH0779959B2 publication Critical patent/JPH0779959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace

Description

【発明の詳細な説明】 [発明の属する分野] 本発明は多管式反応器に関し、詳しくは、複数本ある反
応管内に原料反応ガスを通過させ、反応管の外側を加熱
ガス等で加熱して原料反応ガスを反応せしめて流出させ
る多管式反応器に関する。
Description: FIELD OF THE INVENTION The present invention relates to a multi-tubular reactor, and more specifically, a raw material reaction gas is passed through a plurality of reaction tubes and the outside of the reaction tubes is heated with a heating gas or the like. The present invention relates to a multi-tubular reactor in which a raw material reaction gas is reacted and discharged.

[従来技術] 従来、この種の多管式反応器では、各反応管への流量が
一定流量となるように配管をアレンジする程度であっ
て、流量と反応温度は成り行き任せのことが多かった。
[Prior Art] Conventionally, in this kind of multi-tube reactor, the pipes are arranged so that the flow rate to each reaction tube is a constant flow rate, and the flow rate and the reaction temperature are often left to the user. .

しかし、これでは各反応管の運転温度(反応管表面温
度、触媒層温度)が不均一となり高い反応管と低い反応
管の温度差が激しくなってしまう。例えば、燃料電池用
の多管式反応器でメタンガスと水蒸気とを水素と炭酸ガ
スに改質する場合、ガス流量と反応温度を成り行き任せ
にすると、所望の運転温度である800〜850℃に対し温度
の高い反応管と低い反応管との温度差100℃を越えてし
まった。そのため、反応温度が高い反応管では反応管の
寿命に悪い影響があり、また低い反応管では全体の反応
転化率を押し下げる影響が現われてしまった。
However, in this case, the operating temperature of each reaction tube (reaction tube surface temperature, catalyst layer temperature) becomes non-uniform, and the temperature difference between the high reaction tube and the low reaction tube becomes large. For example, in the case of reforming methane gas and steam into hydrogen and carbon dioxide in a multi-tube reactor for a fuel cell, if the gas flow rate and the reaction temperature are controlled, the desired operating temperature of 800 to 850 ° C The temperature difference between the high temperature reaction tube and the low temperature reaction tube exceeded 100 ° C. Therefore, a reaction tube having a high reaction temperature has a bad influence on the life of the reaction tube, and a reaction tube having a low reaction temperature has an effect of lowering the overall reaction conversion rate.

そこで、反応管内の温度分布を均一化したり(特開昭59
−92018号)、各反応管の反応温度が均一化するよう制
御する試み(特開昭60−210503号、特開昭60−210504
号)がなされている。
Therefore, the temperature distribution in the reaction tube can be made uniform (Japanese Patent Laid-Open No. 59
-92018), an attempt to control the reaction temperature of each reaction tube to be uniform (JP-A-60-210503, JP-A-60-210504).
No.) has been made.

[発明が解決しようとする問題点] ところが、これらの先行技術も経済性や反応器全体とし
ての反応温度制御性能からみると必ずしも完全なものと
はいい難い。
[Problems to be Solved by the Invention] However, these prior arts are not always perfect in terms of economy and reaction temperature control performance of the entire reactor.

例えば、特開昭59−92018号では各反応管をシリーズに
接続し反応管内の半径方向の温度分布を均一化する技術
が開示されている。しかし、これは各反応管の反応温度
がガスの流れに従って順次上昇していくものであり、装
置の小型化等には役立つが、複数備えられた反応管全体
に亙って反応温度を均一化するものではない。
For example, Japanese Patent Application Laid-Open No. 59-92018 discloses a technique in which each reaction tube is connected in series to make the temperature distribution in the radial direction in the reaction tube uniform. However, this is because the reaction temperature of each reaction tube gradually rises according to the flow of gas, which is useful for downsizing the equipment, etc., but the reaction temperature is made uniform over the entire reaction tubes equipped. Not something to do.

また、特開昭60−210503号では、多管式反応器としての
改質炉内を複数に仕切りそれぞれにバーナーを設置し、
仕切り毎にバーナー燃料をコントロールし反応温度を均
一化する改質装置が開示されている。しかし、これでは
改質炉の構造が複雑となり、構造的およびコスト的に不
利となる。すなわち、バーナー数が増えるため計装コス
トが急激に増え、つきつめれば反応管1本当り1つの改
質炉を用意することとなり不経済である。
Further, in JP-A-60-210503, the interior of the reforming furnace as a multi-tubular reactor is partitioned into a plurality of burners,
A reformer for controlling the burner fuel for each partition to make the reaction temperature uniform is disclosed. However, this complicates the structure of the reforming furnace and is disadvantageous in terms of structure and cost. That is, since the number of burners increases, the instrumentation cost rapidly increases, and if it is sought, one reforming furnace is prepared for each reaction tube, which is uneconomical.

さらに、特開昭60−210504号では、各反応管のガス入口
にコントロールバルブを設置し、各反応管の反応温度に
従い反応ガス流量をコントロールし、温度を均一化する
改質装置が開示されている。しかし、これはコントロー
ル手順において、コントロールを開始した時点の条件に
より安定状態が違ってしまいという欠点がある。すなわ
ち、この改質装置では、先ず予め定められた制限温度と
温度測定素子による各反応管毎の測定温度の平均温度と
を比較した結果に基づいて燃焼ガスによる加熱量を調節
し、またその平均温度と各反応管における測定温度とを
各別に比較した結果に基づいて各反応管へのガス流入量
を制御している。従って、各反応管の調節弁の開度はそ
れぞれが平均温度に近づくように調節されるので、各々
低開度で落着いてしまうこともあり、またどれか1つで
調節弁が100%全開となるとは限らない。すなわち、装
置の動作時に処理効率が装置の性能を100%生かしたと
ころまでいかずに、成り行きで定まった適当な処理効率
に落着いてしまうという問題点もあった。
Further, JP-A-60-210504 discloses a reformer in which a control valve is installed at the gas inlet of each reaction tube and the reaction gas flow rate is controlled according to the reaction temperature of each reaction tube to make the temperature uniform. There is. However, this has a drawback that the stable state varies depending on the condition at the time of starting the control in the control procedure. That is, in this reformer, first, the heating amount by the combustion gas is adjusted based on the result of comparison between the predetermined limit temperature and the average temperature of the temperature measured for each reaction tube by the temperature measuring element, and the average value is adjusted. The amount of gas flowing into each reaction tube is controlled based on the result of comparing the temperature and the measured temperature in each reaction tube separately. Therefore, the opening of the control valve of each reaction tube is adjusted so as to approach the average temperature, so it may settle down at a low opening, and with one of them, the control valve is fully opened. Not necessarily. That is, there is a problem in that the processing efficiency does not reach the point where the performance of the apparatus is fully utilized when the apparatus is operating, and the processing efficiency settles down to an appropriate processing efficiency.

本発明の目的は、上述の従来形における問題点に鑑み、
多管式反応器において、複雑な構造とせずコスト的にも
見合う簡単な改良で各反応管の反応温度を一定に保つこ
とができ、装置の処理効率も充分高めることができる多
管式反応器を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the conventional type.
In the multi-tube reactor, the reaction temperature of each reaction tube can be kept constant and the processing efficiency of the equipment can be sufficiently improved by a simple improvement that does not have a complicated structure and is cost effective. To provide.

[問題点を解決するための手段および作用] 上記の目的を達成するため、本発明は、複数ある反応管
に原料反応ガスを導入し、該反応管の外側を加熱して原
料反応ガスを反応せしめ流出させる多管式反応器におい
て、各反応管またはグループ分けした反応管群毎にその
反応ガスの入口側または出口側にガス流量を調節する調
節弁を設けるとともに、該反応管群より選択した所定の
反応管を代表的反応管とし、上記各反応管またはグルー
プ分けした反応管群における反応温度を各別に検出する
と手段と、該検出手段で検出した反応温度が上記代表的
反応管の反応温度と同一となるように、さらに上記調節
弁の少なくとも1つの弁開度が全開となるように上記調
節弁の開度および上記反応管の加熱量を制御する手段と
を備えることを特徴とする。
[Means and Actions for Solving Problems] To achieve the above object, the present invention introduces a raw material reaction gas into a plurality of reaction tubes and heats the outside of the reaction tubes to react the raw material reaction gas. In a multi-tubular reactor in which the reaction gas or the reaction tube group is divided into groups, a control valve for adjusting the gas flow rate is provided at the inlet side or the outlet side of the reaction gas and selected from the reaction tube group. A predetermined reaction tube is used as a representative reaction tube, and the reaction temperature of each reaction tube or a group of reaction tubes is detected separately, and the reaction temperature detected by the detection means is the reaction temperature of the representative reaction tube. And a means for controlling the opening of the control valve and the heating amount of the reaction tube so that at least one valve opening of the control valve is fully opened.

さらに、上記と同一の目的を達成するため、第2の発明
は、複数ある反応管に原料反応ガスを導入し、該反応管
の外側を加熱して原料反応ガスを反応せしめ流出させる
多管式反応器において、反応ガスの入口側または出口側
にガス流量を手動で調節する手動弁を設けた1つの反応
管を代表的反応管とし、該代表的反応管以外の反応管に
ついては各反応管またはフループ分けした反応管群毎に
その反応ガスの入口側または出口側にガス流量を調節す
る調節弁を設けるとともに、各反応管またはグループ分
けした反応管群における反応温度を各別に検出する手段
と、該検出手段で検出した反応温度がそれぞれ代表的反
応管の反応温度と同一となるよう上記調節弁の開度およ
び上記反応管の加熱量を制御する手段を備えることを特
徴とする。
Further, in order to achieve the same object as the above, the second invention is a multi-tube system in which a raw material reaction gas is introduced into a plurality of reaction tubes and the outside of the reaction tubes is heated to cause the raw material reaction gas to react and flow out. In the reactor, one reaction tube provided with a manual valve for manually adjusting the gas flow rate on the inlet side or the outlet side of the reaction gas is used as a typical reaction tube, and each reaction tube other than the typical reaction tube is a reaction tube. Alternatively, a control valve for adjusting the gas flow rate at the inlet side or outlet side of the reaction gas for each group of reaction tubes is provided, and a means for individually detecting the reaction temperature in each reaction tube or group of reaction tubes is provided. And a means for controlling the opening degree of the control valve and the heating amount of the reaction tube so that the reaction temperature detected by the detection means becomes the same as the reaction temperature of the representative reaction tube.

以下、図面を用いて本発明を詳細に説明する。なお、こ
こでは主として第2の発明である手動弁を1つ備えた多
管式反応器について説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, here, a multitubular reactor provided with one manual valve, which is the second invention, will be mainly described.

第1図は、第2の発明に係る多管式反応器の炉回りの計
装システム図である。
FIG. 1 is an instrumentation system diagram around a furnace of a multitubular reactor according to a second invention.

同図において、反応器1に導入された原料であるメタン
ガスとスチームは複数ある反応管2内の触媒層3を通
り、そこで改質されて、流出管4,5より調節弁6または
手動弁7を介して導出される。8は反応管2の外側を加
熱するためのバーナーである。燃焼排ガスは管9から排
出される。触媒層3の温度は温度計10により測定されそ
のデータは反応管温度制御回路11に入力する。反応管温
度制御回路11はこれらの各反応管2の温度と、手動弁7
が設けられている反応管すなわち代表的反応管の温度と
を比較し、それらが一致するようそれぞれの調節弁7を
調節する。12は代表的反応管の温度と反応温度設定値と
を比較し、燃料ガスを操作する反応温度制御調節計であ
る。すなわち、反応温度制御調節計12は、代表的反応管
の温度と予め設定されている反応温度設定値とを比較
し、これらが一致するようにバルブ13の開度を調整す
る。
In the figure, the raw material methane gas and steam introduced into the reactor 1 pass through the catalyst layers 3 in the plurality of reaction tubes 2 and are reformed there, and the control valves 6 or the manual valves 7 are supplied from the outflow pipes 4 and 5. Is derived through. Reference numeral 8 is a burner for heating the outside of the reaction tube 2. The combustion exhaust gas is discharged from the pipe 9. The temperature of the catalyst layer 3 is measured by the thermometer 10, and the data is input to the reaction tube temperature control circuit 11. The reaction tube temperature control circuit 11 controls the temperature of each reaction tube 2 and the manual valve 7
Is compared with the temperature of a reaction tube provided with a typical reaction tube, and each control valve 7 is adjusted so that they match. Reference numeral 12 is a reaction temperature control controller that operates a fuel gas by comparing the temperature of a typical reaction tube with a reaction temperature set value. That is, the reaction temperature control controller 12 compares the temperature of a typical reaction tube with a preset reaction temperature set value, and adjusts the opening degree of the valve 13 so that they match.

従って、手動弁7の開度が定まれば他の調節弁の開度も
定まり、各反応管の反応温度は代表的反応管の反応温度
と同一となって落着く。これにより、手動弁7を手動で
変えることにより、弁のどれか1つが全開となるように
することができる。
Therefore, once the opening of the manual valve 7 is determined, the openings of the other control valves are also determined, and the reaction temperature of each reaction tube becomes the same as the reaction temperature of the typical reaction tube and settles down. This allows any one of the valves to be fully opened by manually changing the manual valve 7.

なお、各調節弁7や反応温度制御調節計12の各調節計は
PID調節計とする。
In addition, each controller such as each control valve 7 and reaction temperature control controller 12
Use as a PID controller.

第2図は、第1図の装置を模式的に表わした図である。
なお、反応管の数や弁の数は便宜上第1図と変えてあ
り、ここでは反応管を19本並列としている。また、中心
の代表的反応管以外は3本づつグループ化して調節弁を
設けている。
FIG. 2 is a diagram schematically showing the apparatus shown in FIG.
The number of reaction tubes and the number of valves are different from those in FIG. 1 for convenience, and here, 19 reaction tubes are arranged in parallel. In addition, a control valve is provided by grouping three tubes except for the central representative reaction tube.

第2図において、燃焼ガスを操作量とする反応温度制御
調節計のPV値(TP)としては中心の反応管の反応温度TO
をそのまま使用しているが、他に全反応管の平均温度や
各ブロック(ここでは6ブロック)の最高温度の平均値
温度も選択できるようにするのが望ましい。
In Fig. 2, the PV value (T P ) of the reaction temperature control controller using the combustion gas as the manipulated variable is the reaction temperature T O of the central reaction tube.
However, it is desirable that the average temperature of all reaction tubes and the average temperature of the maximum temperature of each block (here, 6 blocks) can be selected.

なお、上記に示した多管式反応器においては手動弁の開
度を手動で変更することにより他の調節弁や燃焼ガスの
調節バルブの弁開度が変移して、反応温度が均一化され
るが、この手動弁をも制御調整弁とし調整弁の内のどれ
かを全開になるようにPID制御すれば便宜である(第1
の発明)。
In the above-mentioned multi-tube reactor, by manually changing the opening of the manual valve, the valve opening of the other control valve and the combustion gas control valve is changed to make the reaction temperature uniform. However, it is convenient if this manual valve is also used as a control adjustment valve and PID control is performed so that any one of the adjustment valves is fully opened.
Invention).

[実施例の説明] 次に、実施例により本発明を具体的に説明する。[Explanation of Examples] Next, the present invention will be specifically described with reference to Examples.

まず、反応管本数7本の改質炉において、各反応管の出
口に設けられた調節弁を使用し、中央の代表的反応管の
温度を温度制御の設定値として制御したところ、それぞ
れの反応管の温度は次表のごとくとなった。
First, in a reforming furnace with seven reaction tubes, a control valve provided at the outlet of each reaction tube was used to control the temperature of a representative reaction tube in the center as a set value for temperature control. The tube temperatures are as shown in the table below.

ここで、反応生成ガスのメタン濃度は0.83%(DRY)と
なり、予定の0.87%(DRY)に達した。また、燃料ガス
の消費量も約2.5%減少した。
Here, the methane concentration of the reaction product gas was 0.83% (DRY), and reached the planned 0.87% (DRY). In addition, fuel gas consumption was also reduced by about 2.5%.

比較例 比較例として、同様に反応管7本の改質炉で各反応管の
出入口の流量を制限することなく改質反応させたころ、
各反応管の温度は不均一となり次表のごとくとなった。
Comparative Example As a comparative example, when a reforming reaction was similarly performed without restricting the flow rate at the inlet and outlet of each reaction tube in a reforming furnace with seven reaction tubes,
The temperature of each reaction tube became non-uniform, as shown in the following table.

ここで、最高温度の反応管の管壁温度が設計温度に近づ
いたため、昇温を停止したところ、反応生成ガスのメタ
ン濃度は0.98%(DRY)となり、予定の0.87%(DRY)に
達しなかった。
Here, when the temperature rise was stopped because the wall temperature of the reaction tube at the maximum temperature was close to the design temperature, the methane concentration of the reaction product gas was 0.98% (DRY) and did not reach the planned 0.87% (DRY). It was

[発明の効果] 以上説明したように、本発明によれば、多管式反応器を
おいて、各反応管の入口もしくは出口側に調節弁を設け
いずれか1つが全開となるよう制御し、または1つの反
応管に手動弁を設けその代表的反応管の反応温度に他の
反応管の反応温度が一致するように制御しているので以
下のような効果がある。
[Effects of the Invention] As described above, according to the present invention, in the multi-tubular reactor, a control valve is provided at the inlet or outlet side of each reaction tube so that one of them is controlled to be fully opened, Alternatively, a manual valve is provided in one reaction tube, and the reaction temperature of the representative reaction tube is controlled so that the reaction temperature of the other reaction tube matches, so that the following effects are obtained.

複雑な構造とすることなく各反応管の反応温度を均一
化できる。
The reaction temperature of each reaction tube can be made uniform without having a complicated structure.

それにより、反応温度を反応管の許容する最高温度ま
で上げることができる。これは熱効率の向上および処理
効率の向上に寄与する。
Thereby, the reaction temperature can be raised to the maximum temperature allowed by the reaction tube. This contributes to the improvement of thermal efficiency and the processing efficiency.

代表的反応管の制御を改質系の圧損を最小にするよう
に行なうことができる。従って、燃料電池等に使用した
場合に発電システムとしての効率を上げることができ
る。
Control of a typical reaction tube can be performed to minimize the pressure loss of the reforming system. Therefore, when used in a fuel cell or the like, the efficiency of the power generation system can be improved.

各反応管の寿命が均一となり、コスト低減となる。The life of each reaction tube becomes uniform and the cost is reduced.

加熱された反応管のバーン・アウトを防ぐことがで
き、安全性の向上がなされる。
Burnout of the heated reaction tube can be prevented, and safety is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る多管式反応器の炉回りの計装シ
ステム図、 第2図は、第1図の装置を模式的に表わした図である。 1:反応器、2:反応管、3:触媒層、6:調節弁、7:手動弁、
8:バーナー、10:温度計、11:反応管温度制御回路。
FIG. 1 is a diagram of an instrumentation system around a furnace of a multitubular reactor according to the present invention, and FIG. 2 is a diagram schematically showing the apparatus of FIG. 1: Reactor, 2: Reaction tube, 3: Catalyst layer, 6: Control valve, 7: Manual valve,
8: Burner, 10: Thermometer, 11: Reaction tube temperature control circuit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】複数ある反応管に原料反応ガスを導入し、
該反応管の外側を加熱して原料反応ガスを反応せしめ流
出させる多管式反応器において、 各反応管またはグループ分けした反応管群毎にその反応
ガスの入口側または出口側にガス流量を調節する調節弁
を設けるとともに、該反応管群より選択した所定の反応
管を代表的反応管とし、上記各反応管またはグループ分
けした反応管群における反応温度を各別に検出する手段
と、該検出手段で検出した反応温度が上記代表的反応管
の反応温度と同一となるように、さらに上記調節弁の少
なくとも1つの弁開度が全開となるように上記調節弁の
開度および上記反応管の加熱量を制御する手段とを備え
ることを特徴とする多管式反応器。
1. A raw material reaction gas is introduced into a plurality of reaction tubes,
In a multi-tube reactor in which the outside of the reaction tube is heated to react the raw material reaction gas and flow out, the gas flow rate is adjusted to the inlet side or the outlet side of the reaction gas for each reaction tube or group of reaction tubes. And a means for individually detecting the reaction temperature in each of the reaction tubes or the group of reaction tubes, the predetermined reaction tube selected from the group of reaction tubes being a representative reaction tube. In order to make the reaction temperature detected in 1. the same as the reaction temperature of the representative reaction tube, and further to open at least one valve opening of the control valve fully, the opening of the control valve and the heating of the reaction tube. A multi-tubular reactor comprising means for controlling the amount.
【請求項2】前記代表的反応管の反応温度が、予め外部
から指定された設定値となるよう制御する特許請求の範
囲第1項記載の多管式反応器。
2. The multi-tube reactor according to claim 1, wherein the reaction temperature of the representative reaction tube is controlled to a preset value designated from the outside in advance.
【請求項3】複数ある反応管に原料反応ガスを導入し、
該反応管の外側を加熱して原料反応ガスを反応せしめ流
出させる多管式反応器において、 反応ガスの入口側または出口側にガス流量を手動で調節
する手動弁を設けた1つの反応管を代表的反応管とし、
該代表的反応管以外の反応管については各反応管または
グループ分けした反応管群毎にその反応ガスの入口側ま
たは出口側にガス流量を調節する調節弁を設けるととも
に、各反応管またはグループ分けした反応管群における
反応温度を各別に検出する手段と、該検出手段で検出し
た反応温度がそれぞれ代表的反応管の反応温度と同一と
なるよう上記調節弁の開度および上記反応管の加熱量を
制御する手段を備えることを特徴とする多管式反応器。
3. A raw material reaction gas is introduced into a plurality of reaction tubes,
In a multi-tube reactor for heating the outside of the reaction tube to react the raw material reaction gas and let it flow out, one reaction tube provided with a manual valve for manually adjusting the gas flow rate at the inlet side or the outlet side of the reaction gas is provided. As a typical reaction tube,
For reaction tubes other than the representative reaction tubes, a control valve for adjusting the gas flow rate is provided at the inlet side or the outlet side of the reaction gas for each reaction tube or group of divided reaction tubes, and each reaction tube or group is divided. Means for individually detecting the reaction temperature in the reaction tube group, and the opening of the control valve and the heating amount of the reaction tube so that the reaction temperature detected by the detection means is the same as the reaction temperature of the representative reaction tube. A multitubular reactor characterized by comprising means for controlling.
【請求項4】前記代表的反応管の反応温度が、予め外部
から指定された設定値となるよう制御する特許請求の範
囲第3項記載の多管式反応器。
4. The multitubular reactor according to claim 3, wherein the reaction temperature of the representative reaction tube is controlled to a preset value designated from the outside in advance.
JP28675586A 1986-12-03 1986-12-03 Multi-tube reactor Expired - Lifetime JPH0779959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28675586A JPH0779959B2 (en) 1986-12-03 1986-12-03 Multi-tube reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28675586A JPH0779959B2 (en) 1986-12-03 1986-12-03 Multi-tube reactor

Publications (2)

Publication Number Publication Date
JPS63141638A JPS63141638A (en) 1988-06-14
JPH0779959B2 true JPH0779959B2 (en) 1995-08-30

Family

ID=17708621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28675586A Expired - Lifetime JPH0779959B2 (en) 1986-12-03 1986-12-03 Multi-tube reactor

Country Status (1)

Country Link
JP (1) JPH0779959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516850A (en) * 2005-11-23 2009-04-23 エルジー・ケム・リミテッド Temperature measuring means and method for tubular fixed bed catalytic reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247807B2 (en) 2000-09-26 2009-04-02 株式会社小松製作所 Jaw crusher outlet clearance adjustment mechanism
JP4549290B2 (en) * 2005-12-16 2010-09-22 住友化学株式会社 Multi-tube reactor
JP2006142299A (en) * 2005-12-16 2006-06-08 Sumitomo Chemical Co Ltd Fixed bed multitubular reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516850A (en) * 2005-11-23 2009-04-23 エルジー・ケム・リミテッド Temperature measuring means and method for tubular fixed bed catalytic reactor

Also Published As

Publication number Publication date
JPS63141638A (en) 1988-06-14

Similar Documents

Publication Publication Date Title
NL192572C (en) Process for preparing synthesis gas and reactor for carrying out this process.
US5772707A (en) Process and apparatus for methanol reforming
EP1281668B1 (en) Fuel reforming apparatus and the method of starting it
WO2020118417A1 (en) Method and reactor for producing one or more products
US3768955A (en) Reactant ratio control process
KR20100126373A (en) Catalytic reaction module
JPH0779959B2 (en) Multi-tube reactor
CN105271118B (en) Hydrogen generating system and method
NZ242632A (en) The preparation of aromatic hydrocarbons in a chamber heated by radiant heating means with a variable heat flow
JP5150068B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
JPH08273685A (en) Temperaturee control device of fuel reformer
JPS63197534A (en) Reaction device
JPH0421536B2 (en)
US2918506A (en) Control of chemical reaction temperature
US2718457A (en) Production of hydrogen cyanide
US11697099B2 (en) Direct electrical heating of catalytic reactive system
JPS6230602A (en) Steam modifying furnace
JPS623761B2 (en)
JPH11263982A (en) Device for controlling start up/shut down operation
WO2002051965A1 (en) Method of carrying out a crack reaction in a reverse-flow reactor
US3230272A (en) Method and apparatus for catalytic reactions
SU653287A1 (en) Device for automatic control of pyrlysis process
JPS5916537A (en) Reforming device
JP2526723B2 (en) Fuel cell reformer
JPS60210504A (en) Reforming apparatus