JP2006212629A - Multi-tube type fixed bed reaction device - Google Patents

Multi-tube type fixed bed reaction device Download PDF

Info

Publication number
JP2006212629A
JP2006212629A JP2006043641A JP2006043641A JP2006212629A JP 2006212629 A JP2006212629 A JP 2006212629A JP 2006043641 A JP2006043641 A JP 2006043641A JP 2006043641 A JP2006043641 A JP 2006043641A JP 2006212629 A JP2006212629 A JP 2006212629A
Authority
JP
Japan
Prior art keywords
reaction tube
reaction
tube group
group
fixed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006043641A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mori
康彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006043641A priority Critical patent/JP2006212629A/en
Publication of JP2006212629A publication Critical patent/JP2006212629A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-tube type fixed bed reaction device that is capable of preventing reaction tubes from being corroded or broken while maintaining the service life of a catalyst, and is also excellent in manufacturing efficiency and not requiring a sophisticated specification. <P>SOLUTION: The multi-tube fixed bed reaction device is at least provided with a cylindrical reactor shell, a group of reaction tubes comprising a plurality of the reaction tubes disposed in a longitudinal direction of the reaction shell, and an partially-cut circular baffle plate that controls the channel of a heating medium to be introduced into the reaction shell, wherein the group of the reaction tubes comprise a group of the reaction tubes A disposed so as to pass through all the partially-cut circular baffle plates and a group of the reaction tubes B disposed so as to pass through cut sections of the partially-cut circular baffle plates, and an internal diameter a of the reaction shell, the maximum width b of the cut section in a direction perpendicular to an edge longitudinal direction of the partially-cut circular baffle plate, and the maximum distance c from the edge that forms the cut section where the group of the reaction tubes B are disposed to the group of the reaction tubes B meet 0.05≤b/a≤0.20, and 0.02≤c/b≤0.35. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、原料の転化率を向上させるとともに触媒寿命の維持および反応管の腐食または破損の防止が可能で、特に塩素の製造において好適に用いられる多管式固定床反応装置に関する。   The present invention relates to a multi-tubular fixed bed reactor that can improve the conversion rate of raw materials and maintain catalyst life and prevent corrosion or breakage of reaction tubes, and is particularly suitable for use in the production of chlorine.

従来、接触気相反応によって生成する塩素ガス、アクロレイン等の工業用ガスを製造する際には、発熱反応により生じた熱を効率的に除去するために多管式反応装置が一般的に用いられている。多管式反応装置は、触媒を充填した複数の反応管を反応器シェル内に備え、該反応器シェル内に熱媒を循環させることによって反応管を冷却し、反応熱を除去する。   Conventionally, when manufacturing industrial gases such as chlorine gas and acrolein produced by a catalytic gas phase reaction, a multi-tubular reactor is generally used to efficiently remove heat generated by an exothermic reaction. ing. The multi-tubular reactor includes a plurality of reaction tubes filled with a catalyst in a reactor shell, and circulates a heat medium in the reactor shell to cool the reaction tube and remove reaction heat.

多管式反応装置を用いた発熱反応においては、熱媒流れの偏流によって反応熱の除去効率が悪くなる箇所や、触媒濃度が高く反応速度が大きい箇所等に、いわゆるホットスポットが生じる場合がある。ホットスポットにおいては過度の温度上昇のために触媒の劣化や反応生成物の純度低下が起こり易い傾向がある。   In an exothermic reaction using a multi-tubular reactor, so-called hot spots may occur in places where the removal efficiency of reaction heat deteriorates due to the drift of the heat medium flow, or where the catalyst concentration is high and the reaction rate is high. . In the hot spot, the catalyst tends to deteriorate and the purity of the reaction product tends to decrease due to an excessive temperature rise.

熱媒を供給して反応器の除熱を行なう際には、水平方向(横方向)、すなわち反応管の長手方向と垂直をなす方向における流れが主に反応器の除熱効率を左右する。よって、ホットスポットの生成を抑制するためには反応器シェル内における熱媒の横方向の流れが均一になるよう制御することが有効である。   When the heat medium is supplied to remove heat from the reactor, the flow in the horizontal direction (lateral direction), that is, the direction perpendicular to the longitudinal direction of the reaction tube mainly affects the heat removal efficiency of the reactor. Therefore, in order to suppress the generation of hot spots, it is effective to control the lateral flow of the heat medium in the reactor shell to be uniform.

ホットスポットの生成を抑制する方法として、特許文献1には、熱交換媒体(熱媒)の循環装置を備える多管式反応管であって、反応器シェル内に邪魔板を配列した反応装置が開示されている。該邪魔板の存在により、該邪魔板で区切られた一区域の中における熱媒の横流れ、すなわち反応管に対して垂直方向の流れの速さがほぼ一定に保たれ、該一区域の中の熱移動が一定とされる。しかし特許文献1に記載される方法では、横流れに比べて、縦流れ、すなわち反応管に沿う方向の流れにおける除熱が悪く、一区域の中の熱移動が十分一定であるとは言えない。   As a method for suppressing the generation of hot spots, Patent Document 1 discloses a reaction apparatus that is a multi-tubular reaction tube provided with a heat exchange medium (heat medium) circulation device, in which baffle plates are arranged in a reactor shell. It is disclosed. Due to the presence of the baffle plate, the horizontal flow rate of the heat medium in the area bounded by the baffle plate, that is, the flow velocity in the direction perpendicular to the reaction tube is kept substantially constant. Heat transfer is constant. However, in the method described in Patent Document 1, heat removal in the longitudinal flow, that is, the flow in the direction along the reaction tube, is worse than in the transverse flow, and it cannot be said that the heat transfer in one area is sufficiently constant.

特許文献2には、円板型邪魔板を有する接触気相反応用多管式反応器において、反応器シェル中央部に反応管を配列しない空間部を設置することにより縦流れによる除熱性低下の影響を軽減することが開示されている。特許文献2にはまた、空間部の断面積が、反応器シェル断面積の0.5〜5%、円板型邪魔板の断面積が反応器断面積の50〜95%、かつ穴あき円板型邪魔板の穴断面積が反応器断面積の2〜25%とされる反応器が提案されている。しかし特許文献2の反応器においては、邪魔板の端部で熱媒流れが反転する部位において一部の反応管に除熱性の悪い部分が残る可能性があり、ホットスポットが生成する場合がある。   In Patent Document 2, in a multi-tube reactor for catalytic gas phase reaction having a disk-type baffle plate, the effect of reducing heat removal due to longitudinal flow is provided by installing a space portion in which the reaction tubes are not arranged at the center of the reactor shell. Is disclosed. Patent Document 2 also discloses that the cross-sectional area of the space is 0.5 to 5% of the cross-sectional area of the reactor shell, the cross-sectional area of the disk-type baffle is 50 to 95% of the cross-sectional area of the reactor, and a perforated circle. A reactor in which the hole cross-sectional area of the plate baffle plate is 2 to 25% of the reactor cross-sectional area has been proposed. However, in the reactor of Patent Document 2, there is a possibility that a portion with poor heat removal property may remain in some reaction tubes at a portion where the flow of the heat medium is reversed at the end of the baffle plate, and a hot spot may be generated. .

特許文献3には、固定床式多管熱交換型反応器による気相接触酸化方法において、反応器シェル内での熱媒流れの不均一によるホットスポット生成防止のために、反応管内部の反応状態を予測し、その予測結果に応じて、反応管の間の反応状態の不均一性が減少されるように、反応管における触媒の充填仕様を変更することが記載されている。しかしこの場合、触媒充填方法が複雑になり過ぎるという問題がある。   In Patent Document 3, in a gas-phase catalytic oxidation method using a fixed-bed multi-tube heat exchange reactor, a reaction in the reaction tube is prevented in order to prevent generation of hot spots due to non-uniform heat medium flow in the reactor shell. It is described that the state of the catalyst is predicted, and according to the prediction result, the catalyst filling specification in the reaction tube is changed so that the heterogeneity of the reaction state between the reaction tubes is reduced. However, in this case, there is a problem that the catalyst filling method becomes too complicated.

一方、欠円型邪魔板を用いる例として、特許文献4には、塩化水素の気相酸化によって塩素を得る方法において欠円型邪魔板を設けた反応管のうち熱媒の流路に反応管を設けない構成が提案されている。しかし特許文献4の方法においては反応管を設けない部分において設備上のロスがあるため、塩素の製造効率の向上という点では未だ改善の余地がある。
特公昭52−15272号公報 特開2001−137689号公報 特開2003−206244号公報 米国特許出願公開第2004/0115118号明細書
On the other hand, as an example of using a non-circular baffle plate, Patent Document 4 discloses that a reaction tube is provided in a heat medium passage among reaction tubes provided with a circular baffle plate in a method of obtaining chlorine by vapor phase oxidation of hydrogen chloride. A configuration that does not provide the above has been proposed. However, in the method of Patent Document 4, there is a room for improvement in terms of improving the production efficiency of chlorine because there is a loss in equipment in a portion where no reaction tube is provided.
Japanese Patent Publication No.52-15272 Japanese Patent Laid-Open No. 2001-137689 JP 2003-206244 A US Patent Application Publication No. 2004/0115118

本発明は上記の課題を解決し、過度なホットスポットの生成を抑制して触媒の寿命を維持しつつ高温による反応管の腐食または破損を防止することが可能で、かつ複雑な仕様が必要とされず、さらに製造効率にも優れる多管式固定床反応装置を提供することを目的とする。   The present invention solves the above problems, can prevent the generation of excessive hot spots and maintain the life of the catalyst while preventing corrosion or breakage of the reaction tube due to high temperature, and requires a complicated specification. In addition, an object of the present invention is to provide a multitubular fixed bed reactor that is also excellent in production efficiency.

本発明は、円筒型の反応器シェルと、該反応器シェルの長手方向に配置される複数の反応管からなる反応管群と、該反応器シェルに導入される熱媒の流路を制御するための欠円型邪魔板と、を少なくとも備える多管式固定床反応装置であって、該反応管群は、すべての欠円型邪魔板を貫通するように配列される反応管群Aと、欠円型邪魔板の欠円部を通るように配列される反応管群Bとからなり、反応器シェルの内径a、欠円型邪魔板のエッジ長さ方向と垂直をなす方向における欠円部最大幅b、反応管群Bが配列されている欠円部をなすエッジから該反応管群Bまでの最大距離c、が、下記の関係、
0.05≦b/a≦0.20
0.02≦c/b≦0.35
を満たす多管式固定床反応装置に関する。
The present invention controls a cylindrical reactor shell, a reaction tube group composed of a plurality of reaction tubes arranged in the longitudinal direction of the reactor shell, and a flow path of a heat medium introduced into the reactor shell. A multi-tube fixed bed reactor comprising at least a baffle plate for the reaction tube, the reaction tube group being arranged so as to penetrate all of the baffle plates, The reaction tube group B is arranged so as to pass through the notch portion of the notch-shaped baffle plate, and the notch portion in the direction perpendicular to the inner diameter a of the reactor shell and the edge length direction of the notch-shaped baffle plate The maximum width b and the maximum distance c from the edge forming the missing circle where the reaction tube group B is arranged to the reaction tube group B are expressed by the following relationship:
0.05 ≦ b / a ≦ 0.20
0.02 ≦ c / b ≦ 0.35
The present invention relates to a multi-tube fixed bed reactor that satisfies

本発明の多管式固定床反応装置において、反応管群Bは、熱媒が欠円型邪魔板の面方向に流れるように制御された領域のうちの一部に、エッジ長さ方向を配列方向として1列または2列以上で配列されることが好ましい。特に、反応管群Bが、反応器Aの両側に各々1〜15列の範囲内で配列されることが好ましい。   In the multi-tubular fixed bed reactor of the present invention, the reaction tube group B is arranged in the edge length direction in a part of the region where the heat medium is controlled to flow in the surface direction of the non-circular baffle plate. The direction is preferably arranged in one or more rows. In particular, the reaction tube group B is preferably arranged in the range of 1 to 15 rows on both sides of the reactor A.

本発明の多管式固定床反応装置は、塩化水素を酸化して塩素を得る塩酸酸化プロセスにおいて好適に用いられる。   The multitubular fixed bed reactor of the present invention is suitably used in a hydrochloric acid oxidation process in which hydrogen chloride is oxidized to obtain chlorine.

本発明の多管式固定床反応装置においては、欠円部を通るように反応管群と同一の長手方向で整流棒群がさらに設けられ、該整流棒群は、反応管群または整流棒群が配列されていない空間部と反応管群Bが配列された領域との間に配列されることが好ましい。   In the multitubular fixed bed reactor of the present invention, a rectifying rod group is further provided in the same longitudinal direction as the reaction tube group so as to pass through the oval portion, and the rectifying rod group is a reaction tube group or a rectifying rod group. Are preferably arranged between the space where no is arranged and the region where the reaction tube group B is arranged.

本発明の多管式固定床反応装置においては、熱媒の導入部および排出部が分割管として形成されることが好ましい。   In the multitubular fixed bed reactor of the present invention, it is preferable that the introduction part and the discharge part of the heat medium are formed as a dividing pipe.

本発明の多管式固定床反応装置においては、反応管群Aおよび反応管群Bに触媒が充填され、触媒の種類および/または量を変えることにより反応管群Aおよび反応管群Bの内部が複数のゾーンに分割されることが好ましい。   In the multitubular fixed bed reactor of the present invention, the reaction tube group A and the reaction tube group B are filled with a catalyst, and the inside and inside of the reaction tube group A and the reaction tube group B are changed by changing the type and / or amount of the catalyst. Is preferably divided into a plurality of zones.

本発明によれば、欠円型邪魔板における欠円部の占める領域を一定範囲内とし、かつ、該欠円部においては一定範囲内の領域にのみ反応管を配列することによって、反応管に接触する熱媒の流れは均一に維持され、反応管と熱媒との間の伝熱が正常に保たれる。これにより、過度なホットスポットの生成が抑制されるため、触媒の寿命を維持しつつ高温による反応管の腐食または破損を防止することが可能である。また、本発明によれば欠円型邪魔板と反応管の配列とを設計すれば良く装置の複雑な仕様や反応時の複雑な条件設定が不要であり、さらに欠円部の一部にも反応管を配列するため、製造効率に優れるという効果も得られる。   According to the present invention, the region occupied by the missing circle portion in the missing circle baffle plate is within a certain range, and the reaction tube is arranged only in the region within the certain range at the missing circle portion, thereby The flow of the contacting heat medium is kept uniform, and heat transfer between the reaction tube and the heat medium is maintained normally. Thereby, since generation of excessive hot spots is suppressed, it is possible to prevent corrosion or breakage of the reaction tube due to high temperature while maintaining the life of the catalyst. Further, according to the present invention, it is only necessary to design the oval baffle plate and the arrangement of the reaction tubes, so that complicated specifications of the apparatus and complicated condition setting at the time of reaction are not required, and further, a part of the omission part Since the reaction tubes are arranged, an effect of excellent production efficiency can be obtained.

本発明の多管式固定床反応装置は、円筒型の反応器シェルにおいて長手方向に配置される複数の反応管からなる反応管群と、該反応器シェルに導入される熱媒の流路を制御するための欠円型邪魔板とを少なくとも備える。図1は、本発明の多管式固定床反応装置の構成の一例を示す断面図である。多管式反応装置1は、上部管板101、下部管板102、熱媒導入部103、熱媒排出部104、欠円型邪魔板105,106、反応管群A107、反応管群B108を備える。熱媒は、たとえば軸流ポンプ、遠心ポンプ等のポンプ(図示せず)等により典型的には分割管を介して熱媒導入部103から反応器シェル109の内部に導入され、矢印の方向に移動方向を変えながら流れて、熱媒排出部104から排出される。なお図1に示すように、欠円型邪魔板105,106は反応管の長手方向に交互に配列される。欠円型邪魔板105,106のそれぞれの欠円部が熱媒の流路となることによって、反応器シェルに導入される熱媒の移動方向が変更されるように該熱媒の流路が制御されている。   The multitubular fixed bed reactor of the present invention comprises a reaction tube group consisting of a plurality of reaction tubes arranged in a longitudinal direction in a cylindrical reactor shell, and a flow path of a heat medium introduced into the reactor shell. At least a non-circular baffle for controlling. FIG. 1 is a cross-sectional view showing an example of the configuration of the multitubular fixed bed reactor of the present invention. The multitubular reaction apparatus 1 includes an upper tube plate 101, a lower tube plate 102, a heat medium introduction unit 103, a heat medium discharge unit 104, missing circular baffle plates 105 and 106, a reaction tube group A107, and a reaction tube group B108. . The heat medium is introduced into the reactor shell 109 from the heat medium introduction section 103 through a dividing pipe, typically by a pump (not shown) such as an axial flow pump or a centrifugal pump, and is directed in the direction of the arrow. It flows while changing the moving direction, and is discharged from the heat medium discharge unit 104. As shown in FIG. 1, the oval baffles 105 and 106 are alternately arranged in the longitudinal direction of the reaction tube. Since each of the missing circular baffles 105 and 106 becomes a flow path for the heat medium, the flow path of the heat medium is changed so that the moving direction of the heat medium introduced into the reactor shell is changed. It is controlled.

邪魔板105および106の間隔は特に限定されず、目的に応じて、たとえば熱媒と反応管との間で伝熱係数1000W/m2K以上で伝熱されるよう適宜設計される。 The distance between the baffle plates 105 and 106 is not particularly limited, and is appropriately designed to transfer heat between the heat medium and the reaction tube with a heat transfer coefficient of 1000 W / m 2 K or more depending on the purpose.

本発明の多管式固定床反応装置は、欠円型邪魔板105,106のいずれをも貫通するように配列される反応管群A107と、欠円型邪魔板105または欠円型邪魔板106の欠円部を通るように配列される反応管群B108とを有する。図2は、本発明の多管式固定床反応装置における欠円型邪魔板および反応管群の構成の一例について説明する断面図である。図2における欠円型邪魔板2は、図1において欠円型邪魔板105として示されるような、エッジ21を有し欠円部25を与えるもの、および、図1において欠円型邪魔板106として示されるような、エッジ22を有し欠円部26を与えるもの、として形成される。   The multitubular fixed bed reactor of the present invention includes a reaction tube group A107 arranged so as to penetrate both of the oval baffles 105 and 106, and the oval baffle 105 or the oval baffles 106. And a reaction tube group B108 arranged so as to pass through the oval portion. FIG. 2 is a cross-sectional view illustrating an example of the configuration of the oval baffle plate and the reaction tube group in the multitubular fixed bed reactor of the present invention. 2 is provided with an edge 21 to provide a cut-out portion 25 as shown as a cut-out baffle plate 105 in FIG. 1, and a cut-out baffle plate 106 in FIG. As shown, having an edge 22 and providing a missing circle 26.

一般に、邪魔板が設けられた反応器シェルにおいては熱媒の移動方向が変更される部位において熱媒流れの線速が低下したり乱流が生じたりするため、該部位の除熱効率は低下する傾向がある。またたとえば反応器シェルにヒートエクスパンションが存在する場合には、エクスパンション高さに熱媒流れが集中するため、その上下の邪魔板付近においては熱媒流れの線速が低下してしまう場合がある。なおヒートエクスパンションとは、反応管群と反応器シェルとの間の熱膨張による伸縮の差を吸収するための伸縮継手を指す。   Generally, in a reactor shell provided with a baffle plate, the linear velocity of the heat medium flow is reduced or turbulent flow is generated at a part where the moving direction of the heat medium is changed, so that the heat removal efficiency of the part is lowered. Tend. For example, when heat expansion is present in the reactor shell, the heat medium flow concentrates on the expansion height, and therefore the linear velocity of the heat medium flow may decrease near the upper and lower baffle plates. The heat expansion refers to an expansion joint for absorbing a difference in expansion and contraction due to thermal expansion between the reaction tube group and the reactor shell.

本発明の多管式固定床反応装置における欠円型邪魔板および反応管は、反応器シェルの内径a、欠円型邪魔板のエッジ長さ方向と垂直をなす方向における欠円部最大幅b、反応管群Bが配列されている欠円部をなすエッジから該反応管群Bまでの最大距離c、が、下記の関係、
0.05≦b/a≦0.20
0.02≦c/b≦0.35
を満たすように形成される。上記b/aが0.05未満である場合、熱媒流れが不均一になり易く、0.20より大きい場合、熱媒が欠円型邪魔板の面方向に流れる領域が狭く反応器シェル内に配置する反応管の本数が少ないために、本発明の多管式固定床反応装置を用いて得られる反応生成物の製造効率が所望の程度得られない。上記b/aは、0.10以上とされることがより好ましく、また0.15以下とされることがより好ましい。一方、上記c/bが0.02未満である場合、反応器シェル内に配列する反応管の本数が少なく、欠円型邪魔板の欠円部にも反応管を設けることによる製造効率の向上効果が所望の程度得られない。また0.35より大きい場合、反応管群Bに接触する熱媒流れが不均一である箇所が生じ、反応管群Bにおいてホットスポットを生成させる危険性がある。上記c/bは、0.25以下とされることがより好ましい。
In the multi-tube type fixed bed reactor of the present invention, the oval baffle plate and the reaction tube have the inner diameter a of the reactor shell and the maximum width b of the oval portion in the direction perpendicular to the edge length direction of the oval baffle plate. , The maximum distance c from the edge forming the oval where the reaction tube group B is arranged to the reaction tube group B is expressed by the following relationship:
0.05 ≦ b / a ≦ 0.20
0.02 ≦ c / b ≦ 0.35
It is formed to satisfy. When the b / a is less than 0.05, the flow of the heat medium tends to be non-uniform, and when it is greater than 0.20, the region in which the heat medium flows in the surface direction of the missing circular baffle is narrow in the reactor shell. Therefore, the production efficiency of the reaction product obtained using the multitubular fixed bed reactor of the present invention cannot be obtained to a desired degree. The b / a is more preferably 0.10 or more, and more preferably 0.15 or less. On the other hand, when the above c / b is less than 0.02, the number of reaction tubes arranged in the reactor shell is small, and the production efficiency is improved by providing reaction tubes also in the missing circular baffle plate. The desired effect cannot be obtained. On the other hand, when the ratio is larger than 0.35, there is a portion where the flow of the heat medium in contact with the reaction tube group B is not uniform, and there is a risk that a hot spot is generated in the reaction tube group B. The c / b is more preferably 0.25 or less.

本発明の多管式固定床反応装置は、欠円型邪魔板の欠円部の一部に、反応管群A107,反応管群B108のいずれもが配列されない部分である空間部を有する。図2に示される境界線23,24は、反応管群Bにおける上記の最大距離cを有する部位を通りエッジ21,22の長さ方向と平行をなす直線である。本発明において、空間部は、欠円部25のうち境界線23より左側の部分、および欠円部26のうち境界線24より右側の部分として示される。   The multi-tubular fixed bed reactor of the present invention has a space part that is a part where neither the reaction tube group A 107 nor the reaction tube group B 108 is arranged in a part of the omission part of the oval baffle. The boundary lines 23 and 24 shown in FIG. 2 are straight lines passing through the portion having the maximum distance c in the reaction tube group B and parallel to the length direction of the edges 21 and 22. In the present invention, the space portion is shown as a portion on the left side of the boundary line 23 in the missing circle portion 25 and a portion on the right side of the boundary line 24 in the missing circle portion 26.

欠円型邪魔板の欠円部のうち特にエッジからの距離が大きい領域においては、熱媒流れの乱れにより除熱性が悪くなり易いが、エッジに比較的近い一定の範囲内の領域においては熱媒流れが比較的均一であり、特にエッジ近傍には、熱媒が欠円型邪魔板の面方向に流れるように制御できる領域が存在する。本発明においては、欠円部における、エッジからの距離と熱媒流れの方向および均一性との関係に着目し、欠円部のうち熱媒流れが均一である領域、さらに好ましくは熱媒が欠円型邪魔板の面方向に流れるように制御された領域、さらに好ましくは熱媒が欠円型邪魔板の面方向に流れるように制御された領域のうち特にエッジに近い一部の領域、に限って反応管群Bを配列し、欠円部のその他の部分は反応管を配列しない空間部とすることによって、反応管の徐熱を均一に行なって過度なホットスポットの生成を良好に防止しつつ、反応管の配列本数を増加させて製造効率を向上させることが可能となる。   The heat removal performance is likely to deteriorate due to the disturbance of the flow of the heat medium, particularly in the region where the distance from the edge is large, among the circular portions of the circular plate baffle, but in the region within a certain range relatively close to the edge The medium flow is relatively uniform, and particularly in the vicinity of the edge, there is a region where the heat medium can be controlled to flow in the surface direction of the non-circular baffle plate. In the present invention, paying attention to the relationship between the distance from the edge and the direction and uniformity of the heat medium flow in the missing circle part, the area of the missing circle part where the heat medium flow is uniform, more preferably the heating medium A region controlled to flow in the surface direction of the non-circular baffle plate, more preferably a part of the region controlled to flow in the surface direction of the non-circular baffle plate, particularly near the edge, By arranging the reaction tube group B only, and making the other part of the missing circle part a space part where the reaction tubes are not arranged, the reaction tube is gradually heated so that excessive hot spots are generated satisfactorily. While preventing, it is possible to increase the number of reaction tubes arranged to improve the production efficiency.

本発明の多管式固定床反応装置においては、欠円型邪魔板、反応管群Aおよび反応管群Bのサイズおよび配置を設計することにより過度のホットスポットの生成を抑制でき反応装置に複雑な仕様を設ける必要がないため、本発明は製造効率に優れる点でも有利である。   In the multi-tubular fixed bed reactor of the present invention, the generation of excessive hot spots can be suppressed by designing the size and arrangement of the oval baffle, the reaction tube group A, and the reaction tube group B. Therefore, the present invention is advantageous in that the manufacturing efficiency is excellent.

なお図1の多管式固定床反応装置においては、熱媒流れがアップフローとなる場合について示しているが、本発明はこれに限定されず、アップフロー、ダウンフローのいずれが採用されても良い。また反応管群A107、反応管群B108に供給される原料もアップフロー、ダウンフローのいずれで供給されても良い。すなわち原料と熱媒との流路は並流とされても向流とされても良く、目的に応じて適宜選択すれば良い。   In the multi-tubular fixed bed reactor shown in FIG. 1, the case where the heating medium flow is an upflow is shown, but the present invention is not limited to this, and either an upflow or a downflow can be adopted. good. In addition, the raw materials supplied to the reaction tube group A107 and the reaction tube group B108 may be supplied either by upflow or downflow. That is, the flow path between the raw material and the heat medium may be a parallel flow or a counter flow, and may be appropriately selected according to the purpose.

本発明の多管式固定床反応装置においては、熱媒排出部104から排出された熱媒が冷却された後に再び熱媒導入部103から反応器シェル内に供給されるよう循環機構を設けることが好ましい。   In the multitubular fixed bed reactor of the present invention, a circulation mechanism is provided so that the heat medium discharged from the heat medium discharge unit 104 is cooled and then supplied again from the heat medium introduction unit 103 into the reactor shell. Is preferred.

反応管群Bは、反応器シェルの内径a、欠円型邪魔板のエッジ長さ方向と垂直をなす方向における欠円部最大幅b、反応管群Bが配列されている欠円部をなすエッジから該反応管群Bまでの最大距離c、が上述の式に示した関係を満たすように形成されれば良く、たとえば、エッジ長さ方向に沿って1列または2列以上に配列したり、配列可能な領域の中で任意の位置に配列したりする態様が例示できる。図2は、反応管群Bが反応管群Aの両側に各々2列で配列される場合について示しているが、反応管群Bの配列本数はこれに限定されない。   The reaction tube group B has an inner diameter a of the reactor shell, a maximum width b of a missing circle portion in a direction perpendicular to the edge length direction of the missing circle baffle plate, and a missing circle portion where the reaction tube group B is arranged. The maximum distance c from the edge to the reaction tube group B may be formed so as to satisfy the relationship shown in the above formula. For example, it may be arranged in one or more rows along the edge length direction. An example is an embodiment in which the regions are arranged at arbitrary positions in the region where arrangement is possible. FIG. 2 shows a case where the reaction tube group B is arranged in two rows on both sides of the reaction tube group A, but the number of the reaction tube group B is not limited to this.

反応管群Bの好ましい配列の態様としては、欠円部のうち、熱媒が欠円型邪魔板の面方向に流れるよう制御された領域のうちの一部に、欠円型邪魔板のエッジ21,22のエッジ長さ(W1)方向を配列方向として、すなわち該エッジ21,22に沿うように、1列または2列以上に配列する態様が挙げられる。エッジ長さ方向を配列方向として反応管群Bが配列される場合、エッジからの距離が比較的小さい領域に多数の反応管を効率良く配列できるため、本発明の多管式固定床反応装置を用いた場合の反応生成物の製造効率が良好になり好ましい。特に、熱媒が欠円型邪魔板の面方向に流れるよう制御された領域のうちの一部において、反応管群Aの両側に、すなわち反応管群Aを挟むように、各々1〜15列の範囲内で反応管群Bが配列される場合、反応管の本数を多くすることにより高い製造効率が得られるとともに、反応管群Bにおける過度なホットスポットの生成が良好に抑制できるため好ましい。   As a preferable arrangement mode of the reaction tube group B, an edge of the missing circular baffle plate is formed in a part of a region where the heat medium flows in the surface direction of the missing circular baffle plate. As an arrangement direction, that is, the edge length (W1) direction of 21 and 22 is arranged in one row or two or more rows along the edges 21 and 22. When the reaction tube group B is arranged with the edge length direction as the arrangement direction, a large number of reaction tubes can be efficiently arranged in a region where the distance from the edge is relatively small. When used, the production efficiency of the reaction product is improved, which is preferable. In particular, in a part of the region in which the heat medium is controlled to flow in the surface direction of the chip-shaped baffle plate, 1 to 15 rows are arranged on both sides of the reaction tube group A, that is, so as to sandwich the reaction tube group A. When the reaction tube group B is arranged within the range, it is preferable because a high production efficiency can be obtained by increasing the number of reaction tubes and generation of excessive hot spots in the reaction tube group B can be satisfactorily suppressed.

本発明は、酸化反応等の発熱反応に用いられる反応装置として好適に用いられ、たとえば塩化水素ガスと酸素ガスとを原料として塩素ガスを生成させる接触気相酸化反応や、プロピレンまたはイソブチレンと酸素とを原料として(メタ)アクロレイン、さらには(メタ)アクリル酸を生成させる接触気相酸化反応等において採用され得るが、特に塩化水素を酸化して塩素を得る塩酸酸化プロセスにおいて好ましく用いられることができる。また、本発明の多管式固定床反応装置は、反応器のサイズが大きく熱媒流れの不均一が生じやすい系に対して有効に採用され得る。   The present invention is suitably used as a reaction apparatus used for an exothermic reaction such as an oxidation reaction. For example, a catalytic gas phase oxidation reaction in which chlorine gas is generated from hydrogen chloride gas and oxygen gas as raw materials, or propylene or isobutylene and oxygen is used. Can be employed in a catalytic gas phase oxidation reaction for producing (meth) acrolein and further (meth) acrylic acid as a raw material, but can be preferably used in a hydrochloric acid oxidation process in which hydrogen chloride is oxidized to obtain chlorine. . In addition, the multitubular fixed bed reactor of the present invention can be effectively employed for a system in which the size of the reactor is large and the heat medium flow is likely to be uneven.

本発明の多管式反応装置における反応管の好ましい材質としては、たとえば金属、ガラス、セラミック等が挙げられる。金属材料としては、炭素鋼、Ni、SUS316L、SUS310、SUS304、ハステロイS、ハステロイCおよびインコネル等が挙げられるが、中でもNi、特に炭素含有量が0.02質量%以下のNiが好ましい。反応管群Aと反応管群Bとの材質は同一でも異なっていても良いが、反応条件等の設定が簡便である点で好ましくは同一とされる。   Preferable materials for the reaction tube in the multitubular reaction apparatus of the present invention include, for example, metal, glass, ceramic and the like. Examples of the metal material include carbon steel, Ni, SUS316L, SUS310, SUS304, Hastelloy S, Hastelloy C, and Inconel. Among them, Ni, particularly Ni having a carbon content of 0.02% by mass or less is preferable. The materials of the reaction tube group A and the reaction tube group B may be the same or different, but are preferably the same in that the reaction conditions and the like are easily set.

本発明の多管式反応装置において使用される好ましい熱媒としては、接触気相反応の熱媒として一般的に用いられる熱媒が使用でき、たとえば溶融塩、有機熱媒または溶融金属等を挙げることができるが、熱安定性や取り扱いの容易さの点から溶融塩が好ましい。溶融塩の組成としては、硝酸カリウム50質量%と、亜硝酸ナトリウム50質量%の混合物、硝酸カリウム53質量%と亜硝酸ナトリウム40質量%と硝酸ナトリウム7質量%の混合物等を挙げることができる。   As a preferable heat medium used in the multitubular reactor of the present invention, a heat medium generally used as a heat medium for catalytic gas phase reaction can be used, and examples thereof include a molten salt, an organic heat medium, or a molten metal. However, a molten salt is preferable from the viewpoint of thermal stability and ease of handling. Examples of the composition of the molten salt include a mixture of 50% by mass of potassium nitrate and 50% by mass of sodium nitrite, a mixture of 53% by mass of potassium nitrate, 40% by mass of sodium nitrite, and 7% by mass of sodium nitrate.

本発明の多管式固定床反応装置においては、熱媒の導入部および排出部が分割管であることが好ましい。これにより、欠円型邪魔板の欠円部に設けられた空間部が熱媒の流路とされ、空間部以外の部位に反応管を効率良くレイアウトすることができ、良好な製造効率が得られる。   In the multitubular fixed bed reactor of the present invention, it is preferable that the introduction part and the discharge part of the heat medium are divided pipes. As a result, the space provided in the notch portion of the notch type baffle plate is used as a flow path for the heat medium, and the reaction tubes can be efficiently laid out in parts other than the space portion, thereby obtaining good manufacturing efficiency. It is done.

本発明の多管式固定床反応装置の反応管のサイズは特に限定されず、たとえば気相接触反応において一般的に使用される反応管を用いることができる。たとえば、内径10〜70mm、外径13〜80mm、管長1000〜10000mm程度のサイズを有する反応管は反応効率および除熱効率の点から好ましく採用され得る。   The size of the reaction tube of the multitubular fixed bed reactor of the present invention is not particularly limited, and for example, a reaction tube generally used in a gas phase catalytic reaction can be used. For example, a reaction tube having an inner diameter of 10 to 70 mm, an outer diameter of 13 to 80 mm, and a tube length of about 1000 to 10,000 mm can be preferably employed from the viewpoint of reaction efficiency and heat removal efficiency.

本発明の多管式反応装置における反応管のレイアウトは特に限定されないが、各反応管の中心の間隔が、反応管外径の1.1〜1.6倍の範囲内となるように配列されることが好ましく、さらに1.15〜1.4倍の範囲内とされることが好ましい。各反応管の中心の間隔が反応管外径の1.1倍以上であれば、熱媒の流路が十分確保されるために反応熱の除熱性が良好であり、1.6倍以下であれば、反応装置が大型化することによる製造コストの上昇が防止されるとともに、熱媒の線速低下および/または偏流による除熱性の低下も防止される。なお反応管群Aおよび反応管群Bにおける反応管のサイズおよびレイアウト間隔は、同一でも異なっていても良いが、反応条件等の設定が簡便である点で好ましくは同一とされる。   The layout of the reaction tube in the multitubular reactor of the present invention is not particularly limited, but the reaction tube is arranged so that the interval between the centers of the reaction tubes is within a range of 1.1 to 1.6 times the outer diameter of the reaction tube. It is preferable to be within a range of 1.15 to 1.4 times. If the interval between the centers of each reaction tube is 1.1 times or more of the outer diameter of the reaction tube, the heat medium flow path is sufficiently secured, and the heat removal property of the reaction heat is good. If so, an increase in production cost due to an increase in the size of the reaction apparatus is prevented, and a decrease in the heat removal rate due to a decrease in the linear velocity and / or drift of the heat medium is also prevented. The size and layout interval of the reaction tubes in the reaction tube group A and the reaction tube group B may be the same or different, but are preferably the same in terms of simple setting of reaction conditions and the like.

なお、本発明の多管式固定床反応装置においては、反応器シェル径方向における空間部の断面積が、該方向における反応器シェルの断面積の5〜30%の範囲内、さらに5〜20%の範囲内とされることが好ましい。空間部の上記断面積が反応器シェルの上記断面積の5%以上である場合、熱媒の流路が十分確保されるために反応熱の除熱性が良好であり、30%以下である場合、反応装置が大型化することによる製造コストの上昇が防止されるとともに、熱媒の線速低下および/または偏流による除熱性の低下も防止される。   In the multi-tubular fixed bed reactor of the present invention, the cross-sectional area of the space portion in the reactor shell radial direction is within the range of 5 to 30% of the cross-sectional area of the reactor shell in the direction, and further 5 to 20 % Is preferable. When the cross-sectional area of the space portion is 5% or more of the cross-sectional area of the reactor shell, the heat removal of the reaction heat is good because the flow path of the heat medium is sufficiently secured, and is 30% or less. Further, an increase in production cost due to an increase in the size of the reaction apparatus is prevented, and a decrease in heat removal due to a decrease in the linear velocity and / or drift of the heat medium is also prevented.

本発明の多管式固定床反応装置が典型的に適用される接触気相反応においては、通常反応管に触媒が充填される。この場合、触媒の種類および/または量を変えることにより該反応管の内部が複数のゾーンに分割されることが好ましい。触媒が充填された反応管に原料を供給する際、反応管入口、すなわち原料供給口の近傍では反応速度が大きく、反応管入口からの距離が長くなるにつれて、原料濃度が低くなり反応速度が小さくなる傾向がある。このため、発熱反応においては特に反応管入口近傍における発熱量が過大となって過度のホットスポットが生成する場合がある。反応管が、触媒の種類および/または量を変えた複数のゾーンに分割されている場合、たとえば反応管入口近傍においては、触媒活性の低い触媒を充填したり触媒量を少なくすることによって暴走反応を防止し、反応管入口からの距離が長くなるにしたがって、触媒活性の高い触媒が充填されるか触媒量が多くなるように触媒を充填することができる。この場合、反応管内部における反応速度のばらつきを少なくし、過度なホットスポットの生成を抑制することができるとともに、発熱反応が均一に進行することによって原料の転化率を向上させることができる。また、反応器シェル側を分割し、それぞれの領域に独立して異なる温度の熱媒を循環させて温度コントロールを行なっても良い。   In the catalytic gas phase reaction to which the multitubular fixed bed reactor of the present invention is typically applied, the reaction tube is usually filled with a catalyst. In this case, the inside of the reaction tube is preferably divided into a plurality of zones by changing the type and / or amount of the catalyst. When the raw material is supplied to the reaction tube filled with the catalyst, the reaction rate is large near the reaction tube inlet, that is, in the vicinity of the raw material supply port, and as the distance from the reaction tube inlet becomes longer, the raw material concentration decreases and the reaction rate decreases. Tend to be. For this reason, in the exothermic reaction, an excessive amount of heat spots may be generated due to excessive heat generation particularly near the reaction tube inlet. When the reaction tube is divided into multiple zones with different types and / or amounts of catalyst, for example, in the vicinity of the reaction tube inlet, a runaway reaction can be achieved by filling the catalyst with low catalytic activity or reducing the amount of catalyst. As the distance from the reaction tube inlet becomes longer, the catalyst can be filled so that a catalyst having a high catalytic activity is filled or the amount of the catalyst is increased. In this case, variation in reaction rate inside the reaction tube can be reduced, generation of excessive hot spots can be suppressed, and the conversion rate of the raw material can be improved by the uniform exothermic reaction. Alternatively, the reactor shell side may be divided, and the temperature control may be performed by circulating a heat medium having a different temperature independently in each region.

本発明の多管式固定床反応装置においては、反応管群と同一の長手方向を有する整流棒群がさらに設けられても良く、該整流棒群は、欠円部のうち反応管群および整流棒群が配置されていない空間部と反応管群Bが配列された領域との間に配列されることが好ましい。整流棒群が設けられる場合、反応管群に接触する熱媒の流れを整流に近づける効果が得られる。該整流棒群は、たとえばエッジ長さ方向と平行の配列方向に1〜10列の範囲内で設けられることができる。整流棒群が1列以上配列される場合、反応管群に接触する熱媒の流れを整流に近づける効果が得られ、10列以内で配列される場合、反応管群の配列本数を減少させることによる製造効率の低下を防止するとともに、反応装置が大型化することによる製造コスト上昇が防止される。整流棒群の列数は、1〜5列、さらに1〜3列の範囲内とされることがより好ましい。   In the multi-tubular fixed bed reactor of the present invention, a rectifying rod group having the same longitudinal direction as the reaction tube group may be further provided, and the rectifying rod group includes the reaction tube group and the rectifying member in the missing circle portion. It is preferably arranged between the space where no rod group is arranged and the region where the reaction tube group B is arranged. When the rectifying rod group is provided, an effect of bringing the flow of the heat medium contacting the reaction tube group close to rectification can be obtained. The rectifying rod group can be provided, for example, within a range of 1 to 10 rows in the arrangement direction parallel to the edge length direction. When one or more rectifying rod groups are arranged, the effect of bringing the flow of the heat medium contacting the reaction tube group closer to rectification is obtained, and when arranged within 10 rows, the number of arrangement of the reaction tube groups is reduced. This prevents a decrease in production efficiency due to the increase in production cost due to an increase in the size of the reaction apparatus. More preferably, the number of rows of the rectifying rod group is in the range of 1 to 5 rows, and further 1 to 3 rows.

図3は、本発明の多管式固定床反応装置において整流棒群が設けられる場合の欠円型邪魔板、反応管群および整流棒群の構成の一例について説明する断面図である。図3に示す構成においては、欠円型邪魔板3を貫通するように反応管群A107が配列され、欠円部35,36に、エッジ31,32のエッジ長さ(W1)方向と平行に反応管群B108が配列されている。欠円部35のうち境界線33よりも左側の部分、および欠円部36のうち境界線34よりも右側の部分において、空間部と反応管群B108との間に整流棒群110が配列される。なお図3において、空間部は、欠円部35のうち境界線37より左側の部分、および欠円部36のうち境界線38より右側の部分として示される。ここで境界線37は、欠円部35に配列された整流棒群110においてエッジ31との距離が最大となる点を通るエッジ31と平行の直線であり、境界線38は、欠円部36に配列された整流棒群110においてエッジ32との距離が最大となる点を通るエッジ32と平行の直線である。なお図3においては反応管群B108および整流棒群110がエッジ31,32と平行の方向に1列ずつ配列される場合について例示するが、反応管群Bおよび整流棒群の配列はこれに限定されない。   FIG. 3 is a cross-sectional view for explaining an example of the configuration of the oval baffle plate, the reaction tube group, and the rectifying rod group when the rectifying rod group is provided in the multitubular fixed bed reactor of the present invention. In the configuration shown in FIG. 3, the reaction tube group A 107 is arranged so as to penetrate the oval baffle 3, and the oval portions 35 and 36 are parallel to the edge length (W 1) direction of the edges 31 and 32. Reaction tube group B108 is arranged. The rectifying rod group 110 is arranged between the space portion and the reaction tube group B108 in a portion of the missing circle portion 35 on the left side of the boundary line 33 and a portion of the missing circle portion 36 on the right side of the boundary line 34. The In FIG. 3, the space portion is shown as a portion on the left side of the boundary line 37 in the missing circle portion 35 and a portion on the right side of the boundary line 38 in the missing circle portion 36. Here, the boundary line 37 is a straight line parallel to the edge 31 passing through the point where the distance from the edge 31 is maximum in the rectifying rod group 110 arranged in the missing circle part 35, and the boundary line 38 is the missing circle part 36. In the straightening rod group 110 arranged in a straight line, the straight line is parallel to the edge 32 passing through the point where the distance to the edge 32 is maximum. 3 illustrates the case where the reaction tube group B108 and the rectifying rod group 110 are arranged one by one in the direction parallel to the edges 31 and 32, the arrangement of the reaction tube group B and the rectifying rod group is limited to this. Not.

整流棒群の形状としては円柱、四角柱、三角柱等の形状が好ましく採用されるが、該形状は特に限定されず、該整流棒群を配列しない場合と比べて反応管群に接触する熱媒の流れが均一化するような形状であれば良い。接触気相反応においては通常反応管に触媒が充填されるため、整流棒群としては、該反応管に触媒が充填されていないダミー管が配列されることが好ましい。この場合、反応管群と整流棒群とが同一の材質で形成されており、該反応管群と該整流棒群との間における熱伝導挙動等に殆ど差がないため、装置の設計や熱媒の供給条件の制御が簡略化できる。   The shape of the rectifying rod group is preferably a shape such as a cylinder, a quadrangular prism, or a triangular prism, but the shape is not particularly limited, and the heat medium that contacts the reaction tube group as compared with the case where the rectifying rod group is not arranged. Any shape can be used as long as the flow is uniform. In the catalytic gas phase reaction, the reaction tube is usually filled with a catalyst. Therefore, as the rectifying rod group, it is preferable to arrange a dummy tube not filled with the catalyst in the reaction tube. In this case, the reaction tube group and the rectifying rod group are formed of the same material, and there is almost no difference in the heat conduction behavior between the reaction tube group and the rectifying rod group. Control of the medium supply conditions can be simplified.

整流棒群の材質としては、上記の反応管群と同様、たとえば金属、ガラス、セラミック等が好ましく用いられ、金属材料としては、炭素鋼、Ni、SUS316L、SUS310、SUS304、ハステロイS、ハステロイCおよびインコネル等の材質が好ましく用いられる。たとえば、反応管群にNi、整流棒群に鉄を用いる組み合わせ、または、反応管群にNi、整流棒群にNiを用いる組み合わせ等が好ましく採用され得る。整流棒群は反応管群と同一の材質、形状とされても良く、また反応管群と整流棒群とが互いに異なる材質、形状で形成されていても良い。   As the material of the rectifying rod group, for example, metal, glass, ceramic and the like are preferably used as in the above reaction tube group. As the metal material, carbon steel, Ni, SUS316L, SUS310, SUS304, Hastelloy S, Hastelloy C and A material such as Inconel is preferably used. For example, a combination using Ni for the reaction tube group and iron for the rectifying rod group, or a combination using Ni for the reaction tube group and Ni for the rectifying rod group may be preferably employed. The rectifying rod group may be the same material and shape as the reaction tube group, and the reaction tube group and the rectifying rod group may be formed of different materials and shapes.

次に、本発明の多管式固定床反応装置が塩化水素の酸化により塩素を得る塩酸酸化プロセスにおいて用いられる場合について以下に説明する。本発明の多管式固定床反応装置を用いることにより、触媒を充填した反応管群に原料として塩化水素ガスおよび酸素ガスを導入し、接触気相反応によって塩素ガスを製造することができる。塩化水素ガスは、たとえば塩素化合物の熱分解反応や燃焼反応、有機化合物のホスゲン化反応または塩素化反応、焼却炉の燃焼等において発生する塩化水素含有ガスとして供給されることができる。このとき、塩化水素含有ガス中の塩化水素ガスの濃度は、製造効率の観点から、たとえば10体積%以上、さらに50体積%以上、さらに80体積%以上とされることができる。   Next, the case where the multitubular fixed bed reactor of the present invention is used in a hydrochloric acid oxidation process for obtaining chlorine by oxidation of hydrogen chloride will be described below. By using the multitubular fixed bed reactor of the present invention, chlorine gas can be produced by catalytic gas phase reaction by introducing hydrogen chloride gas and oxygen gas as raw materials into a group of reaction tubes filled with a catalyst. The hydrogen chloride gas can be supplied, for example, as a hydrogen chloride-containing gas generated in a pyrolysis reaction or combustion reaction of a chlorine compound, a phosgenation reaction or chlorination reaction of an organic compound, combustion in an incinerator, or the like. At this time, the concentration of the hydrogen chloride gas in the hydrogen chloride-containing gas can be set to, for example, 10% by volume or more, further 50% by volume or more, and further 80% by volume or more from the viewpoint of production efficiency.

酸素ガスは、酸素ガスのみ単独で供給されても、たとえば空気等として供給されても良く、酸素含有ガスとして供給されれば良い。酸素含有ガス中の酸素の濃度は、製造効率の点から、たとえば80体積%以上、さらに90体積%以上とされることができる。酸素濃度が80体積%以上の酸素含有ガスは、たとえば空気の圧力スイング法や深冷分離等の通常の工業的な方法によって得ることができる。   The oxygen gas may be supplied alone, or may be supplied as air, for example, and may be supplied as an oxygen-containing gas. From the viewpoint of production efficiency, the concentration of oxygen in the oxygen-containing gas can be, for example, 80% by volume or more, and further 90% by volume or more. An oxygen-containing gas having an oxygen concentration of 80% by volume or more can be obtained by a normal industrial method such as an air pressure swing method or a cryogenic separation.

触媒としては、ルテニウムおよび/またはルテニウム化合物を含む触媒が好ましく用いられる。この場合、触媒成分の揮発や飛散による配管等の閉塞トラブルを防止するとともに、揮発または飛散した触媒成分の処理工程が不要となる。さらに、化学平衡の観点でもより有利な温度で塩素を製造できるため、乾燥工程、精製工程、吸収工程等の後工程を簡略化し、設備コスト及び運転コストを低く抑制することができる。特に、酸化ルテニウムを含む触媒を用いることが好ましい。酸化ルテニウムを含む触媒を用いた場合、塩化水素の転化率が著しく向上するという利点を有する。触媒中の酸化ルテニウムの含有量は、触媒活性と触媒価格とのバランスの点から、1〜20質量%の範囲内とされることが好ましい。触媒は、たとえば、二酸化シリコン、グラファイト、ルチル型またはアナターゼ型の二酸化チタン、二酸化ジルコニウム、酸化アルミニウム等の担体に担持させて用いることができる。   As the catalyst, a catalyst containing ruthenium and / or a ruthenium compound is preferably used. In this case, the trouble of blockage of the piping or the like due to volatilization or scattering of the catalyst component is prevented, and a process for treating the volatilized or scattered catalyst component becomes unnecessary. Furthermore, since chlorine can be produced at a more advantageous temperature from the viewpoint of chemical equilibrium, subsequent processes such as a drying process, a purification process, and an absorption process can be simplified, and facility costs and operation costs can be suppressed low. In particular, it is preferable to use a catalyst containing ruthenium oxide. When a catalyst containing ruthenium oxide is used, there is an advantage that the conversion rate of hydrogen chloride is remarkably improved. The ruthenium oxide content in the catalyst is preferably in the range of 1 to 20% by mass from the viewpoint of the balance between the catalyst activity and the catalyst price. The catalyst can be used by being supported on a carrier such as silicon dioxide, graphite, rutile-type or anatase-type titanium dioxide, zirconium dioxide, and aluminum oxide.

触媒の種類および/または量を変えた複数のゾーンを反応管に設ける場合、たとえば反応管の入口側に酸化ルテニウム含有量の少ない触媒を充填し、出口側に酸化ルテニウム含有量の多い触媒を充填する構成が好ましく採用され得る。この場合、暴走反応が抑制され、反応管内における反応速度分布が比較的均一とされることにより、過度なホットスポットの生成が抑制されるという利点を有する。   When multiple zones with different types and / or amounts of catalyst are provided in the reaction tube, for example, a catalyst with a low ruthenium oxide content is filled on the inlet side of the reaction tube, and a catalyst with a high ruthenium oxide content is filled on the outlet side. Such a configuration can be preferably adopted. In this case, the runaway reaction is suppressed, and the reaction rate distribution in the reaction tube is made relatively uniform, so that there is an advantage that generation of excessive hot spots is suppressed.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の多管式反応器は、反応管と熱媒との伝熱を正常に保ち、過度のホットスポットの生成を抑制することにより、特に塩化水素を含むガスと酸素を含むガスとの反応による塩素の製造に用いられる多管式反応装置として好適である。   The multi-tubular reactor of the present invention keeps the heat transfer between the reaction tube and the heat medium normal, and suppresses the generation of excessive hot spots, so that the reaction between the gas containing hydrogen chloride and the gas containing oxygen in particular. It is suitable as a multitubular reactor used for the production of chlorine.

本発明の多管式固定床反応装置の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the multitubular fixed bed reaction apparatus of this invention. 本発明の多管式固定床反応装置における欠円型邪魔板および反応管群の構成の一例について説明する断面図である。It is sectional drawing explaining an example of a structure of the oval-shaped baffle plate and reaction tube group in the multi-tube type fixed bed reactor of this invention. 本発明の多管式固定床反応装置において整流棒群が設けられる場合の欠円型邪魔板、反応管群および整流棒群の構成の一例について説明する断面図である。It is sectional drawing explaining an example of a structure of a missing-circle baffle, a reaction tube group, and a rectification rod group in case the rectification rod group is provided in the multi-tube type fixed bed reactor of this invention.

符号の説明Explanation of symbols

1 多管式固定床反応装置、101 上部管板、102 下部管板、103 熱媒導入部、104 熱媒排出部、105,106,2,3 欠円型邪魔板、107 反応管群A、108 反応管群B、109 反応器シェル、110 整流棒群、21,22,31,32 エッジ、23,24,33,34,37,38 境界線、25,26,35,36 欠円部、a 内径、b 欠円部最大幅、c 最大距離、W1 エッジ長さ。
DESCRIPTION OF SYMBOLS 1 Multi-tube type fixed bed reactor, 101 Upper tube sheet, 102 Lower tube sheet, 103 Heat-medium introduction part, 104 Heat-medium discharge part, 105,106,2,3 Oval-shaped baffle plate, 107 Reaction tube group A, 108 reaction tube group B, 109 reactor shell, 110 rectifier rod group, 21, 22, 31, 32 edge, 23, 24, 33, 34, 37, 38 boundary line, 25, 26, 35, 36 notch, a inner diameter, b maximum width of the notch, c maximum distance, W1 edge length.

Claims (7)

円筒型の反応器シェルと、前記反応器シェルの長手方向に配置される複数の反応管からなる反応管群と、前記反応器シェルに導入される熱媒の流路を制御するための欠円型邪魔板と、を少なくとも備える多管式固定床反応装置であって、
前記反応管群は、すべての前記欠円型邪魔板を貫通するように配列される反応管群Aと、前記欠円型邪魔板の欠円部を通るように配列される反応管群Bとからなり、
前記反応器シェルの内径a、前記欠円型邪魔板のエッジ長さ方向と垂直をなす方向における欠円部最大幅b、前記反応管群Bが配列されている欠円部をなすエッジから前記反応管群Bまでの最大距離c、が、下記の関係、
0.05≦b/a≦0.20
0.02≦c/b≦0.35
を満たす、多管式固定床反応装置。
A cylindrical reactor shell, a reaction tube group consisting of a plurality of reaction tubes arranged in the longitudinal direction of the reactor shell, and a missing circle for controlling the flow path of the heat medium introduced into the reactor shell A multi-tube fixed bed reactor comprising at least a baffle plate,
The reaction tube group includes a reaction tube group A arranged so as to pass through all the oval baffle plates, and a reaction tube group B arranged so as to pass through an oval portion of the oval baffle plate. Consists of
From the inner diameter a of the reactor shell, the maximum width b of the missing circle in the direction perpendicular to the edge length direction of the missing circle baffle, and the edge forming the missing circle where the reaction tube group B is arranged The maximum distance c to the reaction tube group B is expressed by the following relationship:
0.05 ≦ b / a ≦ 0.20
0.02 ≦ c / b ≦ 0.35
A multi-tube fixed bed reactor that meets the requirements.
前記反応管群Bは、前記熱媒が前記欠円型邪魔板の面方向に流れるように制御された領域のうちの一部に、前記エッジ長さ方向を配列方向として1列または2列以上で配列される、請求項1に記載の多管式固定床反応装置。   The reaction tube group B includes one or more rows in a part of a region in which the heat medium is controlled to flow in the surface direction of the cut-out baffle plate with the edge length direction as an array direction. The multitubular fixed bed reactor according to claim 1, wherein 前記反応管群Bが、前記反応管群Aの両側に各々1〜15列の範囲内で配列される、請求項2に記載の多管式固定床反応装置。   The multi-tube fixed bed reactor according to claim 2, wherein the reaction tube group B is arranged in a range of 1 to 15 rows on both sides of the reaction tube group A, respectively. 塩化水素を酸化して塩素を得る塩酸酸化プロセスにおいて用いられる、請求項1に記載の多管式固定床反応装置。   The multitubular fixed bed reactor according to claim 1, which is used in a hydrochloric acid oxidation process in which hydrogen chloride is oxidized to obtain chlorine. 前記欠円部を通るように前記反応管群と同一の長手方向で整流棒群がさらに設けられ、前記整流棒群は、前記反応管群または前記整流棒群が配列されていない空間部と前記反応管群Bが配列された領域との間に配列される、請求項1に記載の多管式固定床反応装置。   A rectifying rod group is further provided in the same longitudinal direction as the reaction tube group so as to pass through the missing circle portion, and the rectifying rod group includes the space portion in which the reaction tube group or the rectifying rod group is not arranged and the The multi-tube fixed bed reactor according to claim 1, wherein the multi-tube fixed bed reactor is arranged between a region where the reaction tube group B is arranged. 熱媒の導入部および排出部が分割管として形成される、請求項1に記載の多管式固定床反応装置。   The multitubular fixed bed reactor according to claim 1, wherein the introduction part and the discharge part of the heat medium are formed as a divided pipe. 前記反応管群Aおよび前記反応管群Bに触媒が充填され、前記触媒の種類および/または量を変えることにより前記反応管群Aおよび前記反応管群Bの内部が複数のゾーンに分割される、請求項1に記載の多管式固定床反応装置。   The reaction tube group A and the reaction tube group B are filled with a catalyst, and the inside of the reaction tube group A and the reaction tube group B is divided into a plurality of zones by changing the type and / or amount of the catalyst. The multitubular fixed bed reactor according to claim 1.
JP2006043641A 2006-02-21 2006-02-21 Multi-tube type fixed bed reaction device Pending JP2006212629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006043641A JP2006212629A (en) 2006-02-21 2006-02-21 Multi-tube type fixed bed reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006043641A JP2006212629A (en) 2006-02-21 2006-02-21 Multi-tube type fixed bed reaction device

Publications (1)

Publication Number Publication Date
JP2006212629A true JP2006212629A (en) 2006-08-17

Family

ID=36976269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043641A Pending JP2006212629A (en) 2006-02-21 2006-02-21 Multi-tube type fixed bed reaction device

Country Status (1)

Country Link
JP (1) JP2006212629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016670A (en) * 2010-07-09 2012-01-26 Ihi Corp Multitube reactor and method for setting position where baffle is installed in the multitube reactor
WO2016018620A1 (en) * 2014-07-29 2016-02-04 Honeywell International Inc. Reactor with baffle configuration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111436A (en) * 1987-09-18 1989-04-28 Shell Internatl Res Maatschappij Bv Reactor of pulral pipes
JP2004026799A (en) * 2002-03-11 2004-01-29 Mitsubishi Chemicals Corp Method for catalytic gas phase oxidation
US20040115118A1 (en) * 2002-12-12 2004-06-17 Basf Aktiengesellschaft Preparation of chlorine by gas-phase oxidation of hydrogen chloride
JP2005296921A (en) * 2004-09-27 2005-10-27 Sumitomo Chemical Co Ltd Multi-tubular reactor for gas-phase catalytic reaction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111436A (en) * 1987-09-18 1989-04-28 Shell Internatl Res Maatschappij Bv Reactor of pulral pipes
JP2004026799A (en) * 2002-03-11 2004-01-29 Mitsubishi Chemicals Corp Method for catalytic gas phase oxidation
US20040115118A1 (en) * 2002-12-12 2004-06-17 Basf Aktiengesellschaft Preparation of chlorine by gas-phase oxidation of hydrogen chloride
JP2005296921A (en) * 2004-09-27 2005-10-27 Sumitomo Chemical Co Ltd Multi-tubular reactor for gas-phase catalytic reaction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016670A (en) * 2010-07-09 2012-01-26 Ihi Corp Multitube reactor and method for setting position where baffle is installed in the multitube reactor
WO2016018620A1 (en) * 2014-07-29 2016-02-04 Honeywell International Inc. Reactor with baffle configuration
CN106794440A (en) * 2014-07-29 2017-05-31 霍尼韦尔国际公司 Reactor with baffle arrange-ment

Similar Documents

Publication Publication Date Title
JP4205035B2 (en) Multi-tube reactor for catalytic gas phase reaction
CN1064666C (en) Catalytic gas-phase oxidation of propene to acrolein
EP0987057B1 (en) Catalytic vapor-phase oxidation method and shell-and-tube reactor
TW300885B (en)
JP4212888B2 (en) Plate type catalytic reactor
JP5149883B2 (en) Heat exchange reactor
US7695695B2 (en) Reactor or heat exchanger with improved heat transfer performance
JP2009013180A (en) Method and apparatus for plate-type catalytic reaction
JP5378539B2 (en) Reactor and process for preparing phosgene
JP4145607B2 (en) Vapor phase catalytic oxidation method using multitubular reactor
US8043583B2 (en) Baffle structure improving heat transfer efficiency of reactor or heat exchanger
RU2295383C2 (en) Vapor-phase catalytic oxidation process
JP4549290B2 (en) Multi-tube reactor
JP2006212629A (en) Multi-tube type fixed bed reaction device
JP4295462B2 (en) Gas phase catalytic oxidation method
JP2005288441A (en) Heat exchange type reactor
CN115066394A (en) Method and reactor for producing phosgene
JP2004026799A (en) Method for catalytic gas phase oxidation
JP2010042339A (en) Plate-type reactor
JP2013100294A (en) Process for production of propylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Effective date: 20110628

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A02