JP2004026799A - Method for catalytic gas phase oxidation - Google Patents

Method for catalytic gas phase oxidation Download PDF

Info

Publication number
JP2004026799A
JP2004026799A JP2003060793A JP2003060793A JP2004026799A JP 2004026799 A JP2004026799 A JP 2004026799A JP 2003060793 A JP2003060793 A JP 2003060793A JP 2003060793 A JP2003060793 A JP 2003060793A JP 2004026799 A JP2004026799 A JP 2004026799A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
temperature
shell
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060793A
Other languages
Japanese (ja)
Other versions
JP4024699B2 (en
Inventor
Yasuyuki Sakakura
坂倉 康之
Shuhei Yada
矢田 修平
Kimikatsu Jinno
神野 公克
Hirochika Hosaka
保坂 浩親
Yoshiro Suzuki
鈴木 芳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003060793A priority Critical patent/JP4024699B2/en
Priority to BRPI0308336A priority patent/BRPI0308336B1/en
Publication of JP2004026799A publication Critical patent/JP2004026799A/en
Application granted granted Critical
Publication of JP4024699B2 publication Critical patent/JP4024699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00053Temperature measurement of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00088Flow rate measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00018Construction aspects
    • B01J2219/0002Plants assembled from modules joined together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00259Preventing runaway of the chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for a catalytic gas phase oxidation preventing a violent reaction or early deterioration of a catalyst and enabling the production stably in a high yield for a long period in producing (meth)acrylic acid, or the like, from propylene or isobutylene by the method for a catalytic gas phase oxidation using a multi-tubular reactor. <P>SOLUTION: This method for oxidation by introducing a raw material gas into reaction tubes of the multi-tubular reactor equipped with a plurality of reaction tubes (1a, 1b, 1c) filled with the catalyst in a shell (2) of the multi-tubular reactor and a plurality of baffles (6a, 6b) in the inside of the reactor comprises measuring a temperature of the catalyst filled in the reaction tube not connected with at least one baffle. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、多管式反応器を用いて接触気相酸酸化法によりプロピレンまたはイソブチレンから(メタ)アクリル酸等を製造する際、暴走反応または触媒の早期劣化を防止して、長期間にわたって安定的に高収率に製造することを可能にした接触気相酸酸化法に関するものである。
【0002】
【従来の技術及びその問題点】
通常の多管式反応器は、反応器のシェル内に、触媒が充填された複数の反応管と当該シェル内に導入された熱媒をシェル内全体へ行き渡らす為に開口を有する複数の邪魔板とが内装された構造を有している。
そして、シェル内を流れる熱媒の温度を検出して、この検出結果に基づいて当該セル内の熱媒温度を均一に管理しながら多管式反応器の運転制御を行うのが一般的であった。
【0003】
このシェル内に内装された大部分の反応管は邪魔板に接続されているが、しかし邪魔板に設けた開口を貫通する一部の反応管は邪魔板に接続されていないものも存在する。
当該邪魔板に接続されていない反応管内部の触媒層は、触媒の反応熱による局所的熱蓄積箇所(ホットスポット)が発生しやすい。
ホットスポットが発生すると、過度の発熱によって触媒の一部が劣化し寿命が短くなってしまったりしていた。
また、ホットスポットの発生を防止して触媒の寿命性能を適正にする為に、反応管に導入される原料ガスの濃度を下げたり、或いは供給量を制限しなければならず、長期間にわたって安定的に高収率に(メタ)アクリル酸等を製造することができない場合があった。
【0004】
【課題を解決する手段】
本発明は、上記問題を解決した多管式反応器を用いて接触気相酸酸化法を提供するものであって、その要旨は以下の通りである。
(1)多管式反応器のシェル内に、触媒が充填された複数の反応管と、当該シェル内に導入された熱媒の流れ方向を転換させる複数の邪魔板とを内装した多管式反応器の反応管内に原料ガスを導入して酸化させる接触気相酸化方法において、少なくとも一枚の邪魔板に接続していない反応管に充填されている触媒の温度を、計測することを特徴とする接触気相酸化方法である。
(2)多管式反応器のシェル内に、触媒が充填された複数の反応管と、当該シェル内に導入された熱媒の流れ方向を転換させる複数の邪魔板とを内装した多管式反応器の反応管内に原料ガスを導入して酸化させる接触気相酸化方法において、少なくとも一枚の邪魔板に接続していない反応管に充填されている触媒の温度と全ての邪魔板に接続されている反応管に充填されている触媒の温度とを、計測することを特徴とする接触気相酸化方法である。
(3)測定された触媒の温度に基づいて、シェル内に導入する熱媒の温度または流速を制御することを特徴とする上記(1)〜(2)何れかの接触気相酸化方法である。
(4)触媒の温度を、反応管軸方向に2〜20点計測することを特徴とする上記(1)〜(3)何れかの接触気相酸化方法である。
(5)多点式熱電対を用いて、触媒温度を計測することを特徴とする上記(1)〜(4)何れかの接触気相酸化方法である。
(6)反応管内を流れる原料ガスの流れ方向と、シェル内を流れる熱媒の巨視的流れ方向とが、同方向である上記(1)〜(5)何れかの接触気相酸化方法である。
(7)反応管に、活性の異なる複数の触媒層が充填されていることを特徴とする上記(1)〜(6)何れかの接触気相酸化方法である。
(8)原料ガスが、被酸化物質として、プロピレン、イソブチレン、または(メタ)アクロレインを含有することを特徴とする上記(1)〜(7)何れかの接触気相酸化方法である。
【0005】
【発明の実施の形態】
本発明の、接触気相酸化方法を添付図面に基づいて説明する。
図1は接触気相酸化方法に使用する多管式反応器の一実施例の断面図である。
図2は多管式反応器に内装される邪魔板の一実施例の斜視図である。
図3は多管式反応器に内装される邪魔板の他の実施例の斜視図である。
図4は図1の多管式反応器を上方より見た図である。
図5は接触気相酸化方法に使用する多管式反応器の他の実施例の断面図である。
図6は図5の多管式反応器に内装された中間管板と熱遮蔽板の部分断面図である。
【0006】
図1に基づいて本発明の接触気相酸化方法及び当該接触気相酸化方法に使用する多管式反応器の概要について説明する。
2は多管式反応器のシェルであって、当該シェル2内には触媒が充填された反応管1a、1b、1cが下部管板5bと上部管板5aの両者によって固定されて内装されている。
シェル2の上下端には反応の原料ガスRgの出入り口4a及び4bが設けられており、当該原料ガスRgは反応管1a、1b、1c内を上昇或いは下降の流れ方向で流通する。この流れ方向は特に限定されないが、上昇流がより好ましい。
【0007】
また、シェル2の外周には熱媒Hmを導入する環状導管3aが設けられており、循環ポンプ7によって昇圧された熱媒Hmは当該環状導管3aよりシェル2内に導入される。
シェル2内に導入された熱媒Hmは、シェル2内に内装されている邪魔板6a、6b、6aによって矢印の如く流れ方向を転換しながら上昇し、この間に熱媒Hmは反応管1a、1b、1cの外面と接触して反応熱を奪った後、シェル2の外周に設けられた環状導管3bより循環ポンプ7に戻る。
反応熱を吸収した熱媒Hmの一部は循環ポンプ7の上部に設けられた排出管8bより熱交換器(図示せず)によって冷却された後、再び熱媒供給管8aより循環ポンプ7に吸入されてシェル2内に導入される。
シェル2内に導入される熱媒Hmの温度調節は、熱媒供給管8aより流入される熱媒の温度又は流量を調節することにより行なう。また熱媒Hmの温度は環状導管3aの入口側に挿入されている温度計14により測定する。
【0008】
環状導管3a及び3bの内側の胴板部には熱媒流速の円周方向分布を極小化する為に整流板(図示せず)が配備されている。この整流板は多孔板やスリットを持った板などが用いられ、多孔板の開口面積やスリット間隔を変えて全円周より同流速で同一流量の熱媒Hmをシェル2内に導入するように整流されている。
また、環状導管(3a、好ましくは3bも)内の温度は図4に示す如く円周に等間隔に温度計15を複数個配置して監視することが出来る。
【0009】
シェル2内には一般的に邪魔板が通常少なくとも3枚(6a、6b、6a)内装される。この邪魔板の存在により熱媒Hmのシェル2内における流れは、先ずシェル2の外周部より中心部へ集まる。そして邪魔板6aの開口部を上昇しながら方向変換して外周部へ向かいシェル2の内壁に到達する。
次いで熱媒Hmはシェル2の内壁と邪魔板6bの外周との間隙を上昇しながら再度方向変換して中心部へ集まる。そして最後に邪魔板6aの開口部を上昇してシェル2の上部管板5aの下面に沿って外周へ向かい環状導管3bに導入された後、循環ポンプ7に吸引され再度シェル2内に循環される。
【0010】
本発明で用いられる邪魔板の具体的構造は、図2に示すセグメントタイプの欠円邪魔板や、図3に示す円板形邪魔板のどちらでも構わない。
両タイプの邪魔板とも熱媒の流れ方向と反応管の管軸との関係は変わらない。
邪魔板6aは外周がシェル2の内壁と一致していると共にその中央付近に開口部を有している。また邪魔板6bは外周がシェル2の内壁よりも小径寸法であるので、当該邪魔板6bの外周とシェル2の内壁とに間隙が形成される。
それぞれの開口部及び間隙で、熱媒は上昇しながら流れを方向変換し流速が変えられる。
【0011】
シェル2内に内装された反応管1a、1b、1cには温度計11が内挿され、シェル2の外部まで信号が伝えられて、当該反応管内に充填された触媒層の反応管の管軸方向の温度分布が測定される。
反応管1a、1b、1cには多点式の温度計又はシース内を移動して複数点測定できる温度計11が挿入されて管軸方向に2〜20点の温度が測定される。
【0012】
シェル2内に内装された反応管1a、1b、1cは3枚の邪魔板6a、6b、6aによって分割されて配置されており、熱媒Hmの流れ方向との関係では3種類に分けられる。
即ち、反応管1aは邪魔板6bに接続しているので、熱媒Hmの流れ方向は当該邪魔板6bにのみ拘束され、他の2枚の邪魔板6aの開口部を貫通しているので当該邪魔板6aには拘束されない。
環状導管3aよりシェル2内に導入された熱媒Hmは、図1に示す矢印の如くシェル2の中心部で方向変換される。そして当該方向変換される位置に反応管1aが位置しているので、反応管1aの外周を流れる熱媒Hmは主として反応管1aの管軸と平行に流れる。
【0013】
反応管1bは3枚の邪魔板6a、6b、6aに接続しているので、当該各邪魔板によって熱媒Hmの流れ方向が拘束される。そして、反応管1bの外周を流れる熱媒Hmの流れはほぼ反応管1bの全位置で反応管1bの管軸に対し直角に流れる。なおシェル2内に内装された大部分の反応管はこの反応管1bの位置に配置されている。
また、反応管1cは邪魔板6bに接続されずに邪魔板6bの外周とシェル2の内壁との間隙を貫通しているので、この位置における熱媒Hmの流れは当該邪魔板6bに拘束されず反応管1cの管軸に対し平行に流れる。
【0014】
図4に、反応管1a、1b、1cと邪魔板6a、6b、6aとの位置関係及び熱媒Hmの流れの相互関係を示す。
邪魔板6aの開口部(最も内側の点線の円)が熱媒Hmの集合位置、即ちシェル2の中心では熱媒Hmの流れが反応管1aと平行になるのみでなく、特に邪魔板6aの開口部の中点部分では熱媒Hmは殆ど流れず流速が零に近いため伝熱効率は非常に悪いので、この位置には反応管1aを配置しないこともある。
【0015】
図5は反応器のシェル2内を中間管板9で分割した場合の本発明の他の実施例である。
分割されたシェル2内の空間には別々の熱媒Hm及びHmが循環され、また別々に温度制御される。
反応管1a、1b、1c内の上段部分と下段部分は反応に関与しない不活性物質層を介在させて仕切られ、各々に異なった触媒が充填され、当該触媒に最適な温度に各々制御されて反応が行われる。なおこの不活性物質を介在させる位置は反応管1a、1b、1cの外周が中間管板9と接続されている位置に対応する部分である。
原料ガスRgは原料ガス入口4aよりシェル2内に導入され反応管1a、1b、1c内を通過するにつれて逐次反応して製品となる。
例えば、プロピレン又はイソブチレンが分子状酸素含有ガスとの混合ガスとして導入され、下段部分で(メタ)アクロレインとなり、次いで上段部分で酸化されて(メタ)アクリル酸となる。
【0016】
図6において、9は中間管板であって、当該中間管板9の下面には3枚の熱遮蔽板10がスペーサロッド13により固定されている。
本図に示すように中間管板9の下或いは上の100mmより近い位置に2〜3枚の熱遮蔽板10を取り付けることにより、熱媒Hm或いはHmが充満しているが、流れのない淀み空間12を形成しこれにより断熱効果を持たせるのが好ましい。
当該中間管板9に熱遮蔽板10を取り付ける理由は次の通りである。即ち、図5において、シェル2内の下段部分に導入された熱媒Hmと上段部分に導入されたHmとの制御温度差が100℃を超える場合には、高温媒体から低温媒体への熱移動が無視できなくなり、低温側の触媒の反応温度制御の精度が悪化する。このような場合には中間管板9の上及び/又は下で熱移動を妨げる断熱が必要となる。
【0017】
接触気相酸化に用いられる多管式反応器には、反応の原料ガスRgとしてプロピレンあるいはイソブチレン及び/又は(メタ)アクロレインが分子状酸素含有ガスや水蒸気と混合されたガスが導入される。
プロピレンやイソブチレンの濃度は3〜10容量%であり、酸素はプロピレンあるいはイソブチレンに対して1.5〜2.5(モル比)、水蒸気は0.8〜2(モル比)である。
導入された原料ガスRgは、各反応管1a、1b、1cなどに分割されて反応管内を通過し内包する酸化触媒にて反応されるが、各反応管への原料ガスRgの分配は反応管への触媒の充填量、充填密度などによって影響をうける。触媒の充填量、重連密度などは反応管への触媒充填操作時に決定されるので、触媒を各反応管に均一に充填することは非常に重要である。
この均一な充填のためには、各反応管に充填する触媒の重量を均一にすることや、触媒充填時間を合わせることにより、充填密度を一定とする方法が用いられる。
【0018】
各反応管1a、1b、1c内を通過する原料ガスRgは初めは入口部分に充填された不活性剤層を通過する間に加熱され反応開始温度に達する。
反応管に次の層として内包する触媒によって原料(プロピレンあるいはイソブチレン)が酸化され、反応熱でさらに温度上昇する。
反応量は触媒層の入口部分が最も多く、熱媒Hmによる除熱量より大きくなると、発生する反応熱は原料ガスRgの温度上昇として働き、ホットスポツトが形成されることがある。ホットスポットは反応管1a、1b、1cの入口の300〜1,000mmの位置に形成されることが多い。
【0019】
従って、熱媒Hmの流動による除熱効果は、反応管1a、1b、1cの入口の1,000mm以内が最も重要である。ここで発生する反応熱の発生量が熱媒Hmによる当該反応管の外周よりの除熱能力を超えたときには、原料ガスRgの温度は益々上昇しさらに反応熱の発生量も増加して遂には暴走反応に至り、触媒の許容最高温度を超えて触媒が質的な変化を受け劣化や破壊の要因となる可能性がある。
プロピレンの分子状酸素含有ガスによる酸化反応でアクロレインを製造する前段反応器を例に説明すれば、熱媒Hmの温度は250〜350℃であり、該ホットスポツトの許容最高温度は400〜500℃である。
またアクロレインを分子状酸素含有ガスにて酸化し、アクリル酸を得る後段反応器の熱媒Hmの温度は200〜300℃であり、ホットスポツトの許容最高温度は300〜400℃である。
【0020】
反応管1a、1b、1cの外周であるシェル2内を流動する熱媒Hmは硝酸塩類の混合物であるナイターが多く用いられるが、有機液体系のフェニルエーテル系熱媒も用いられることもある。
該熱媒Hmの流動によって反応管1a、1b、1cの外周から除熱されるが、熱媒導入の環状導管3aよりシェル2内に導入された熱媒Hmは、シェル2の外周部より中心部へ流れる位置と、中心部で流れ方向を反転する位置が存在し、それぞれの位置で除熱効果が極端に異なることが見いだされた。
熱媒Hmの流れ方向が反応管の管軸と直角の時の伝熱係数は1,000〜2,000W/m℃であるが、直角でない流れの時は、流速や上方流か、又は下降流かによって異なるが熱媒としてナイターを用いた場合で100〜300W/m℃にしかならないことが多い。
【0021】
一方、反応管1a、1b、1c内における触媒層の伝熱係数は勿論原料ガスRgの流速に依存するが、100W/m℃程度であるから、当然ながら伝熱の律速は管内のガス相であることは従来の認識と変わらない。
具体的に熱媒Hmの流れが反応管1a、1b、1cの管軸に直角の時の管外周の伝熱抵抗は、管内ガスRg側の1/10〜1/20であり、熱媒Hm側の流速が変化しても総括伝熱抵抗への影響は小さい。
しかし、ナイターが管軸と平行の流れの時には反応管1a、1b、1cの内外で伝熱係数が同程度である為、除熱効率は管外周の流動状態の影響は大きい。即ち、管外周の伝熱抵抗が100W/m℃のとき、総括伝熱係数はその半分になり更に管外周の伝熱抵抗の変化の半分が総括伝熱係数に影響する。
【0022】
実際に反応を行うときには、該伝熱係数差を充分に監視する必要がある。
総括伝熱係数が大きくて反応管内の触媒層の管軸方向の温度分布で最高温度が低く、シェル2内全体として平均的と考えられていた反応管1bは全ての邪魔板(通常は3枚)に拘束されている反応管である。
また、熱媒Hmが方向転換する位置に配置される反応管は1枚の邪魔板に拘束されない反応管1c及び2枚の邪魔板に拘束されない反応管1aである。
【0023】
反応管1a、1b、1cへの原料ガスRgの供給量が増加したり、反応温度を高く保ち高転化率を得たいときには反応管の最高温度が上昇しホットスポットを形成して、触媒の劣化や暴走反応の可能性が増加する。
そのような時には熱媒Hmの温度を厳密に制御する必要がある。複数の反応管1aあるいは1cに複数の温度計11を挿入し各反応管のホットスポット温度を監視しながら熱媒Hmの温度を制御し、熱媒Hmの温度を厳密に適正な温度に制御することにより、目的の反応成績を得るとともに、触媒の劣化などを防ぐことができ長期連続運転が可能となる。
【0024】
反応管1aの最高温度がその制限温度に近い時には熱媒Hmの温度を下げるが、反応管1cは最高温度を示す位置の下流部分の温度が上昇する場合もあるので監視を怠ることは出来ない。
反応転化率が適正な値より低いときには熱媒Hmの温度を上げる必要があるが、この際にも反応管の最高温度を監視し制限温度を越えないようにする。また、プロピレン又はイソブチレンと分子状酸素含有ガス等の混合ガスである原料ガスのシェル2内への供給量の増減の際にも反応管の最高温度或いは反応管の最高温度を示す位置が変化することがある。
【0025】
更に複数の反応管1bにも温度計11を挿入し該反応管の触媒層温度を監視しながら熱媒Hmの温度を調節することがより好ましい。
大多数を占める反応管1bの最高温度を測定し他領域の反応管1a或いは1cの最高温度と比較することにより反応成績をより適正化することが可能となる。それぞれの領域に存在する反応管の最高平均温度(反応管毎の温度極大値の平均値)の差は30℃以内、特に20℃、更には15℃以内であることが好ましい。この差が大きすぎるときは、反応収率が低下する傾向があり好ましくない。
【0026】
温度計11を挿入するそれぞれの領域の反応管1a、1b、1cの数は1本以上、好ましくは3〜5本である。この挿入本数が少ないときには、シェル2の環状導管3aへ導入される熱媒Hmの温度むらがあった場合でも、反応管の最高温度の異常が検知出来ないことがある。
なお、上記の領域とは、同じ邪魔板の開口部或いは間隙を経由し、かつ、同じ邪魔板に接続支持されている反応管の集合体を指す。
【0027】
シェル2内を流れる熱媒Hmの流れ方向を転換或いは熱媒Hmのバイパス流を防ぐ目的をもつ邪魔板の種類は制限は無いが、図2〜3に示すセグメント邪魔板や円盤形邪魔板が用いられ、特に円盤形邪魔板が多く用いられるようである。
邪魔板6aの中心部開口部の面積はシェル2の内断面積の5〜50%であり、好ましくは10〜30%である。
邪魔板6bの外周とシェル2の内壁とによって形成される間隙面積はシェル2の内断面積の5〜50%であり、好ましくは10〜30%である。
この邪魔板6a及び6bの開口比及び間隙比が小さすぎると熱媒Hmの流路が長くなり、環状導管3a及び3b問の圧力損失が増大し循環ポンプ7の動力が大きくなる。また、大きすぎると反応管1a及び1cの本数が増加してしまう。
【0028】
各邪魔板の設置間隙(邪魔板6aと6bの間隔及び邪魔板6aと上部管板5a、下部5bとの間隔)は等間隔とすることが多いが、反応管内で発生する酸化反応熱によって決まる熱媒Hmの必要流量を確保し、当該熱媒の圧力損失が低くなる様に設定されれば、必ずしも等間隔とする必要はない。
反応管1a、1b、1c内の温度分布の最高温度位置と邪魔板6a,6b、6aの位置が同じになることは避けなければならない。各邪魔板表面近傍の熱媒流速が低下するので伝熱係数が低く、反応管の最高温度の位置が重なった時にはホットスポツトを形成する可能性が高くなる。
【0029】
シェル2内で酸化触媒を包含する反応管1a、1b、1cの管内はガス相であり、また原料ガスの線速度の最高は触媒によって制限されるため、各反応管の管内の伝熱係数は小さく、伝熱律速過程となる。従って当該反応管の内径は非常に重要である。
反応管1a、1b、1cの内径は当該管内の反応熱量と触媒粒径によって影響されるが通常10〜50mmφが選ばれる。好ましくは20〜30mmφであり、各反応管の内径が小さすぎると充填される触媒の重量が減少し、必要な触媒量に対して反応管の本数が多くなりシェル2が大きくなってしまう。
一方、当該反応管の内径が大きすぎると必要な除熱量に対して触媒と反応管表面積との接触が小さくなり、反応熱の除熱のための伝熱効率が低下する。
【0030】
反応管内に挿入される温度計11は、通常、複数の熱電対や測温抵抗体などが外部壁である外管(サーモウエル)で覆われた円柱状をしているものか、又は1つの熱電対がシース内を移動できるものを使用する。
該温度計11は反応管中心の管軸位置に設置されることが必要で外管表面に突起物などを設けることにより、反応管内璧との距離を制限して管軸位置に重なるようにされる。
反応管の管軸と温度計11の中心軸が一致することが好ましく、また、温度計11に設けた該突起物は触媒層の最高温度となる位置の前後に設置されるのが好ましい。
温度計11の外管(サーモウエル)の直径は15mmφ以下のものが用いられる。反応管の内径との関連もあり、反応管内壁との距離が触媒粒子粒径の2倍以上必要である。触媒粒子径が5mmで、反応管の内径が30mmφであれば、温度計11の外管直径は10mmφ以下である必要がある。
温度計11を挿入した反応管と他の反応管とで触媒の充填密度が異なると正確な温度が測定できないため、温度計11の外径は好ましくは6mmφ以下、更に好ましくは2〜4mmφである。
【0031】
シェル2の断面の各部分に於いて、熱媒Hmの流速と伝熱係数について解析し伝熱係数が低い部分が存在することに着目し、その対策を採ることが本発明の基本であるが、伝熱係数の低い部分に配置された反応管、特に反応管1aとその近傍については、シェル2の断面の中心付近の邪魔板開口箇所(円板形邪魔板では中心円形部)は極端に伝熱係数の低い部分が存在する。
この部分は邪魔板6a開口部の中心付近であり、この部分の0.5〜5%のシェル断面積比の箇所には反応管を設置しないことが推奨される。この部分が0.5%より小さいと伝熱係数を必要値の最低限界以上にするために、熱媒Hmの流量を2倍以上に設定することが要求され、循環ポンプ7の動力増加をもたらす。
しかし、該反応管を設置しない部分が5%を越えると、必要な反応管本数を設置するためにシェル2の胴径が大きくなる。
邪魔板6aに支持されない反応管1aは邪魔板6aの開口部幅(図2のセグメント邪魔板の場合)、或いは開口部直径(図3の円板形邪魔板の場合)の30〜80%は設置しないことが好ましい。
【0032】
図1〜図5は、シェル2内の熱媒Hmの流れ方向が上昇流として矢印で記入されているが、本発明は逆方向の流れの場合にも適用可能である。
熱媒Hmの循環流の方向の決定に際しては、シェル2及び循環ポンプ7の上端に存在する可能性があるガス、特に窒素などの不活性ガスが熱媒流に巻き込まれる現象を避けなければならない。
熱媒Hmが図1に示す如くの上昇流の場合には、循環ポンプ7内の上部でガスが巻き込まれると循環ポンプ内でキャビテーション現象がみられポンプが破損する最悪の場合もある。
【0033】
逆の場合は、シェル2の上部でもガスの巻き込み現象がおこり、シェル2の上部に気相の滞留部ができ、該ガス滞留部に相当する反応管の上部は熱媒Hmによって冷却されない。
ガス溜まりの防止策はガス抜きラインを設置しガス層のガスを熱媒Hmで置換することが必須であり、そのためには熱媒供給管8aの熱媒圧力を高くし、熱媒の排出管8bを出来る限り上方に設置することによってシェル2内の圧力上昇を計る。熱媒の排出管8bは少なくとも上部管板5aより上方に設置される。
【0034】
原料ガスRgの流れ方向は、反応管1a、1b、1c内で上昇流、下降流とも実施可能であるが、熱媒流との相対的な関係で言えば、並流が好ましい。
反応管1a、1b、1c内の発熱量は入口部が最も大きく、ホットスポットの発生位置は入口から300〜1,000mmの反応管の管軸上位置に存在することが多い。
邪魔板との関連でホットスポットの位置は、上部管板5a或いは下部5b管板と邪魔板6aに挟まれた範囲となることが多く、制御された温度の熱媒Hmを直接に反応管の最高温度に相当する反応管1a,1b,1cの管軸位置に供給することにより、ホットスポットの発生を制御することが容易となる。従って、熱媒Hmの巨視的方向と原料ガスRgの流れ方向は同じ方向、即ち並流とするのが好ましい。
【0035】
伝熱量、即ち反応熱量は、伝熱係数×伝熱面積×(触媒層温度−熱媒温度)で計算されるので、反応管の最高温度を下げるには、反応管の表面積(伝熱面積)当たりの反応熱量を低下させる方法は有効である。
反応熱の発熱量を平準化する為に、同じ反応管内に2種類以上の活性の異なる触媒層を充填する。より活性の低い触媒層を入口側に、その温度分布のピークの後流でより活性の高い触媒層に切り替わるように複数の触媒層を反応管内に充填するのが好ましい。
【0036】
触媒層の活性を調節するための方法としては、例えば、触媒の組成を調節して活性の異なるの触媒を用いる方法や、触媒粒子を不活性粒子と混合し触媒を希釈することにより活性の調節をする方法が挙げられる。
反応管1a,1b,1cの入口部に不活性粒子の割合(混合粒子中の触媒粒子の割合:希釈率)の高い触媒層を、当該反応管の後流には希釈率の低い或いは希釈しない触媒層を充填する。希釈率は触媒によって異なるが、前段の希釈率で0.3〜0.7が多く用いられる。
後段の希釈率は0.5〜1.0が好適に用いられる。触媒の活性変化或いは希釈は2〜3段が通常採用される。
【0037】
反応管1a,1b,1cに充填される触媒の希釈率は全てについて同じである必要はない。例えば、反応管1aは反応管の最高温度が高いので触媒劣化の可能性が高く、これを避けるために前段の希釈率を低下し、逆に後段の希釈率を高くすることも可能である。
各反応管の反応転化率が異なると反応器全体での平均転化率や収率に影響があるので、希釈率を変更しても各反応管では同じ転化率を得るように設定することが好ましい。
本発明は、プロピレン或いはイソブチレンを分子状酸素含有ガスで酸化する多管式反応器や(メタ)アクロレインを分子状酸素含有ガスで酸化し(メタ)アクリル酸を得る多管式反応器に好適に適用される。プロピレンの酸化に用いられる触媒は、Mo−Bi系を主体とするに多成分複合金属酸化物が、アクロレインを酸化してアクリル酸を製造する触媒はMo−V系の複合酸化物が好ましく用いられる。
プロピレン又はイソブチレンは2段で酸化されるため、2基の多管式反応器を用い、それぞれに別の触媒を充填して反応することも出来るが、図5のように1基の反応器のシェル側を中問管板で2以上の室に分割しそれぞれ別の触媒を充填し、一つの反応器で(メタ)アクリル酸を得る際にも本発明は適用できる。
【0038】
【実施例】
実施例1
プロピレンの酸化反応を実施するに当たり、触媒(A)として、Mo=12、Bi=5、Ni=3、Co=2、Fe=0.4、Na=0.2、B=0.4、K=0.1、Si=24、O=x、の組成(原子比)の触媒(酸素の組成xは各金属の酸化状態によって定まる値である、以下同じ)を、また触媒(B)として、Mo=35、V=7、Sb=100、Ni=43、Nb=3、Cu=9、Si=20、O=xの組成(原子比)の触媒をそれぞれ常法に従って製造し触媒粉を得た。
該触媒粉をそれぞれ成型し外径=5mmφ、内径=2mmφ、高さ=4mmのリング状触媒を製造して用いた。
図1に示す反応管の長さ=3,500mm、内径=24mmφ及び外径=28mmφのステンレス製反応管を9,000本を有する反応器のシェル内径=3,500mmφの多管式反応器を用いた。反応管はシェルの中心部直径=500mmの円形の部分には配置されていない。
【0039】
邪魔板は図3に示す円板形邪魔板を6a−6b−6aの順に等問隔に設置されていて、邪魔板の開口比は各々18%である。なお邪魔板6aの開口部の直径=1,480mmφで、邪魔板6bの外径=3,170mmφである。
また図1においてシェル内に反応管1aが1,534本、反応管1cが1,740本で残りは反応管1bを内装した。
【0040】
熱媒Hmとして硝酸塩類混合物の溶融塩ナイターを用い、シェル2の下部側面より供給した。
反応温度としては、図1の温度計14で計測されたシェル2へ供給するナイターの温度を用いることとする。 またナイターの流量はシェル2の出口と入口の温度差が4℃になるように調節した。
各反応管には前記の触媒(A)を1.5L充填し、反応器下部よりゲージ圧75kPaでプロピレン濃度9容量%の原料ガスRgを供給した。
反応管1a、1b、1cには管軸方向に10点の測定点を有する温度計11を挿入して温度分布を測定した。温度計は反応管1aの領域、1bの領域及び1cの領域にそれぞれ2本の、計6本を挿入した。
各反応管の極大温度を精度よく検出するため、温度計11の測定点は、反応管入口部から1,500mm迄の位置に各々250mm問隔で、それ以降は各々400mm間隔に配置した。この温度計11を用いて反応管の極大温度を記録した。
【0041】
熱媒Hmの温度を331℃に設定したところ、各反応管の極大温度の平均値は各々、反応管1aでは410℃、反応管1bでは390℃及び反応管1cでは390℃であった。そしてこの場合、プロピレン転化率は97%で、収率は92%であった。
【0042】
実施例2
実施例1と同じ反応器を用い、実施例1の反応器の出口ガスに分子状酸素含有ガス(酸素濃度15容量%)を35容量%の割合で供給して反応させてアクリル酸を製造した。
各反応管には前記の触媒(B)を1.2L充填した。また、熱媒Hmの温度を275℃に調節した以外は実施例1と同じ条件で反応を実施した。
各反応管の極大温度の平均値は各々、反応管1aでは330℃、反応管1bでは300℃及び反応管1cでは300℃であった。そしてこの場合、反応の転化率は99%で、収率はプロピレンを基準で計算して90.5%であった。
【0043】
実施例3
実施例1と同じ反応器を用い、反応管の入口から1,500mm迄の位置には、触媒(A)と不活性物質(アルミナ)を成型したリング状イナートを1:1で混合して充填し、残り1,800mmの反応管内には触媒(A)のみを、また残余の200mmには本反応には活性を有しないアルミボールを充填した。
また、熱媒Hmの温度を335℃に調節した以外は実施例1と同じ条件で反応を実施した。
【0044】
反応管内の触媒層の測定に使用した温度計の測定点は15点のものを用い、200mmの問隔で測を行った。
それぞれの触媒層の温度分布を測定したところ、当該触媒層には2つの極大温度を有していた。
反応管の入口から第1極大温度、第2極大温度として示すと、反応管1aにおいてはそれぞれ平均値で第1極大温度が393℃及び第2極大温度が345℃であり、反応管1bにおいてはそれぞれ平均値で第1極大温度が370℃及び第2極大温度が350℃であった。また反応管1cにおいてはそれぞれ平均値で第1極大温度が365℃及び第2極大温度が380℃であった。
触媒を希釈しない時と比べると、熱媒Hmの温度は4℃高くなったが、触媒層のそれぞれの極大温度は高い方で比べても、10〜20℃低くなり、触媒寿命の延長と安定運転が期待出来る結果となった。
また、プロピレンから得られたアクロレインとアクリル酸の合計収率は92.5%であった。
【0045】
比較例1
反応管1a及び1cには温度計を挿入せず、全ての邪魔板に接続していて除熱効率の良好な反応管1bだけに、実施例1と同様の温度計を挿入した以外は実施例2と同じようにして反応を実施した。
アクロレインの転化率を99%から99.5%とするため、熱媒Hmの入口温度を275℃から280℃に変えたところ、反応管1b内の触媒層の温度分布の極大値が310℃となった。
反応生成ガスを分析して、アクロレインの転化率を測定したところ転換率は97.9%に低下していた。その後も、運転を継続したところ徐々に転換率が低下したため、熱媒Hmの入口温度を更に2℃上げて282℃としたところ、アクロレインの転化率は更に低下してしまった。
アクロレインの転化率が95%まで低下したところで反応を停止して反応管内の触媒を点検したところ、反応管1b、1c内の触媒には異状は見られなかった。 しかし、反応管1aの中でも特に反応器の中心近傍に配置された約350本の反応管1a内の触媒が著しく劣化・変形し、触媒活性能力が無くなっていた。当該触媒は400℃以上の高温に曝されたものと思われる。
【0046】
【発明の効果】
本発明は、多管式反応器を用いた接触気相酸酸化法において、本発明では、当該反応器のシェル内に内装されている触媒が充填された反応管の内部温度を測定し、この温度に基づいてシェル内に導入される熱媒温度及び流速を制御することにより、プロピレンまたはイソブチレンから(メタ)アクリル酸等を製造する際、暴走反応または触媒の早期劣化を防止して、長期間にわたって安定的に高収率に製造することが可能となる。
【図面の簡単な説明】
【図1】接触気相酸化方法に使用する多管式反応器の一実施例の断面図。
【図2】多管式反応器に内装される邪魔板の一実施例の斜視図。
【図3】多管式反応器に内装される邪魔板の他の実施例の斜視図。
【図4】図1の多管式反応器を上方より見た図。
【図5】接触気相酸化方法に使用する多管式反応器の他の実施例の断面図。
【図6】図5の多管式反応器に内装された中間管板と熱遮蔽板の部分断面図。
【符号の説明】
1a,1b、1c…反応管、
2…多管式反応器のシェル、
5a、5b…管板、
6a、6b…邪魔板、
9…中間管板、
11…触媒の温度計、
14、15…熱媒の温度計、
Hm…熱媒、
Rg…原料ガス、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention prevents a runaway reaction or early deterioration of a catalyst when producing (meth) acrylic acid or the like from propylene or isobutylene by a catalytic gas-phase acid oxidation method using a multitubular reactor, and is stable over a long period of time. The present invention relates to a catalytic gas-phase acid oxidation method capable of producing a high yield with high efficiency.
[0002]
[Prior art and its problems]
An ordinary multitubular reactor has a plurality of reaction tubes filled with a catalyst and a plurality of obstructions having openings for distributing a heat medium introduced into the shell throughout the shell in a shell of the reactor. It has a structure in which a board and a board are installed.
In general, the temperature of the heat medium flowing in the shell is detected, and the operation control of the multitubular reactor is generally performed based on the detection result while uniformly controlling the temperature of the heat medium in the cell. Was.
[0003]
Most of the reaction tubes contained in the shell are connected to the baffle plate, however, some reaction tubes passing through the openings provided in the baffle plate are not connected to the baffle plate.
In the catalyst layer inside the reaction tube that is not connected to the baffle plate, local heat accumulation points (hot spots) due to reaction heat of the catalyst are likely to occur.
When a hot spot occurs, a part of the catalyst is deteriorated due to excessive heat generation and the life is shortened.
Also, in order to prevent the generation of hot spots and optimize the life performance of the catalyst, the concentration of the raw material gas introduced into the reaction tube must be reduced, or the supply amount must be limited, and stable over a long period of time. In some cases, (meth) acrylic acid or the like cannot be produced with high yield.
[0004]
[Means to solve the problem]
The present invention provides a catalytic gas-phase acid oxidation method using a multitubular reactor which has solved the above-mentioned problems, and the gist thereof is as follows.
(1) A multi-tube reactor in which a plurality of reaction tubes filled with a catalyst and a plurality of baffles for changing a flow direction of a heat medium introduced into the shell are provided inside a shell of the multi-tube reactor. In a catalytic gas phase oxidation method in which a raw material gas is introduced into a reaction tube of a reactor and oxidized, a temperature of a catalyst filled in a reaction tube not connected to at least one baffle plate is measured. Is a catalytic gas phase oxidation method.
(2) A multi-tube reactor in which a shell of a multi-tube reactor is provided with a plurality of reaction tubes filled with a catalyst and a plurality of baffles for changing a flow direction of a heat medium introduced into the shell. In a catalytic gas phase oxidation method in which a raw material gas is introduced into a reaction tube of a reactor and oxidized, the temperature of a catalyst filled in a reaction tube not connected to at least one baffle plate and the temperature of a catalyst filled in the reaction tube are connected to all baffle plates. And measuring the temperature of the catalyst filled in the reaction tube.
(3) The method of any of the above (1) and (2), wherein the temperature or the flow rate of the heat medium introduced into the shell is controlled based on the measured temperature of the catalyst. .
(4) The method according to any one of the above (1) to (3), wherein the temperature of the catalyst is measured at 2 to 20 points in the axial direction of the reaction tube.
(5) The method of any of the above (1) to (4), wherein the catalyst temperature is measured using a multipoint thermocouple.
(6) The method according to any one of the above (1) to (5), wherein the flow direction of the raw material gas flowing in the reaction tube and the macroscopic flow direction of the heat medium flowing in the shell are the same. .
(7) The method of any one of the above (1) to (6), wherein the reaction tube is filled with a plurality of catalyst layers having different activities.
(8) The method according to any one of the above (1) to (7), wherein the raw material gas contains propylene, isobutylene, or (meth) acrolein as a substance to be oxidized.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The catalytic vapor phase oxidation method of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a sectional view of one embodiment of a multitubular reactor used in a catalytic gas phase oxidation method.
FIG. 2 is a perspective view of one embodiment of the baffle plate provided in the multitubular reactor.
FIG. 3 is a perspective view of another embodiment of the baffle plate provided in the multitubular reactor.
FIG. 4 is a view of the multitubular reactor of FIG. 1 as viewed from above.
FIG. 5 is a sectional view of another embodiment of the multitubular reactor used in the catalytic gas phase oxidation method.
FIG. 6 is a partial cross-sectional view of the intermediate tube plate and the heat shield plate provided in the multi-tube reactor of FIG.
[0006]
The outline of the catalytic gas phase oxidation method of the present invention and the multitubular reactor used in the catalytic gas phase oxidation method will be described with reference to FIG.
Reference numeral 2 denotes a shell of a multitubular reactor in which reaction tubes 1a, 1b, and 1c filled with a catalyst are fixed and installed by both a lower tube sheet 5b and an upper tube sheet 5a. I have.
The upper and lower ends of the shell 2 are provided with inlets / outlets 4a and 4b for a source gas Rg for reaction, and the source gas Rg flows through the reaction tubes 1a, 1b, and 1c in the upward or downward flow direction. The flow direction is not particularly limited, but an upward flow is more preferable.
[0007]
An annular conduit 3a for introducing the heat medium Hm is provided on the outer periphery of the shell 2, and the heat medium Hm pressurized by the circulation pump 7 is introduced into the shell 2 from the annular conduit 3a.
The heat medium Hm introduced into the shell 2 rises while changing the flow direction as indicated by arrows by the baffle plates 6a, 6b, 6a provided inside the shell 2, and during this time, the heat medium Hm is After contacting the outer surfaces of the shells 1b and 1c to remove the reaction heat, the shell 2 returns to the circulation pump 7 through an annular conduit 3b provided on the outer periphery of the shell 2.
A part of the heat medium Hm that has absorbed the reaction heat is cooled by a heat exchanger (not shown) from a discharge pipe 8b provided at the upper part of the circulation pump 7, and then returned to the circulation pump 7 from the heat medium supply pipe 8a. It is sucked and introduced into the shell 2.
The temperature of the heat medium Hm introduced into the shell 2 is adjusted by adjusting the temperature or the flow rate of the heat medium flowing from the heat medium supply pipe 8a. The temperature of the heat medium Hm is measured by a thermometer 14 inserted on the inlet side of the annular conduit 3a.
[0008]
A rectifying plate (not shown) is provided on the body plate portion inside the annular conduits 3a and 3b to minimize the circumferential distribution of the heat medium flow velocity. As the rectifying plate, a perforated plate or a plate having a slit is used, and the opening area of the perforated plate or the slit interval is changed so that the heat medium Hm having the same flow rate and the same flow rate from the entire circumference is introduced into the shell 2. It is rectified.
The temperature inside the annular conduit (3a, preferably 3b) can be monitored by arranging a plurality of thermometers 15 at equal intervals around the circumference as shown in FIG.
[0009]
Generally, at least three baffles (6a, 6b, 6a) are provided inside the shell 2. Due to the presence of the baffle plate, the flow of the heat medium Hm in the shell 2 first gathers from the outer peripheral portion of the shell 2 to the central portion. Then, the direction is changed while moving up the opening of the baffle plate 6a, and reaches the inner wall of the shell 2 toward the outer peripheral portion.
Next, the heating medium Hm changes its direction again while rising along the gap between the inner wall of the shell 2 and the outer periphery of the baffle plate 6b, and gathers at the center. Finally, the baffle plate 6a rises up the opening and is introduced into the annular conduit 3b toward the outer periphery along the lower surface of the upper tube plate 5a of the shell 2 and then sucked by the circulation pump 7 and circulated again in the shell 2. You.
[0010]
The specific structure of the baffle plate used in the present invention may be either a segmented baffle plate of the segment type shown in FIG. 2 or a disc-shaped baffle plate shown in FIG.
In both types of baffle plates, the relationship between the flow direction of the heat medium and the axis of the reaction tube does not change.
The baffle plate 6a has an outer periphery coinciding with the inner wall of the shell 2 and has an opening near the center thereof. Further, since the outer periphery of the baffle plate 6b has a smaller diameter than the inner wall of the shell 2, a gap is formed between the outer periphery of the baffle plate 6b and the inner wall of the shell 2.
At each of the openings and gaps, the heat medium rises, changes the direction of the flow, and changes the flow velocity.
[0011]
A thermometer 11 is inserted into the reaction tubes 1a, 1b, and 1c provided inside the shell 2, and a signal is transmitted to the outside of the shell 2 so that the axis of the reaction tube of the catalyst layer filled in the reaction tube is formed. The temperature distribution in the direction is measured.
A multipoint thermometer or a thermometer 11 that moves in a sheath and can measure a plurality of points is inserted into the reaction tubes 1a, 1b, and 1c to measure temperatures at 2 to 20 points in the tube axis direction.
[0012]
The reaction tubes 1a, 1b, 1c provided inside the shell 2 are divided and arranged by three baffles 6a, 6b, 6a, and are divided into three types in relation to the flow direction of the heating medium Hm.
That is, since the reaction tube 1a is connected to the baffle plate 6b, the flow direction of the heat medium Hm is restricted only by the baffle plate 6b and penetrates through the openings of the other two baffle plates 6a. It is not restricted by the baffle plate 6a.
The heat medium Hm introduced into the shell 2 from the annular conduit 3a is changed in direction at the center of the shell 2 as indicated by an arrow in FIG. Since the reaction tube 1a is located at the position where the direction is changed, the heat medium Hm flowing on the outer periphery of the reaction tube 1a mainly flows parallel to the tube axis of the reaction tube 1a.
[0013]
Since the reaction tube 1b is connected to the three baffles 6a, 6b, 6a, the flow direction of the heat medium Hm is restricted by each of the baffles. Then, the flow of the heat medium Hm flowing around the outer periphery of the reaction tube 1b flows at right angles to the tube axis of the reaction tube 1b at almost all positions of the reaction tube 1b. Most of the reaction tubes provided inside the shell 2 are arranged at the positions of the reaction tubes 1b.
Further, since the reaction tube 1c is not connected to the baffle plate 6b but penetrates the gap between the outer periphery of the baffle plate 6b and the inner wall of the shell 2, the flow of the heat medium Hm at this position is restricted by the baffle plate 6b. But flows parallel to the tube axis of the reaction tube 1c.
[0014]
FIG. 4 shows the positional relationship between the reaction tubes 1a, 1b, 1c and the baffles 6a, 6b, 6a and the mutual relationship between the flows of the heat medium Hm.
At the opening of the baffle plate 6a (the innermost dotted circle), the flow of the heat medium Hm is not only parallel to the reaction tube 1a at the gathering position of the heat medium Hm, that is, at the center of the shell 2, but especially at the baffle plate 6a. At the midpoint of the opening, the heat medium Hm hardly flows and the flow velocity is close to zero, so that the heat transfer efficiency is very poor. Therefore, the reaction tube 1a may not be disposed at this position.
[0015]
FIG. 5 shows another embodiment of the present invention in which the inside of the shell 2 of the reactor is divided by the intermediate tube sheet 9.
Separate heat medium Hm is provided in the space in the divided shell 2. 1 And Hm 2 Are circulated and separately temperature controlled.
The upper part and the lower part in the reaction tubes 1a, 1b and 1c are separated by an inert material layer not involved in the reaction, and each is filled with a different catalyst, and each is controlled to an optimum temperature for the catalyst. The reaction takes place. The position where the inert substance is interposed is a portion corresponding to the position where the outer circumferences of the reaction tubes 1a, 1b and 1c are connected to the intermediate tube plate 9.
The raw material gas Rg is introduced into the shell 2 from the raw material gas inlet 4a, and sequentially reacts as it passes through the reaction tubes 1a, 1b, and 1c to form a product.
For example, propylene or isobutylene is introduced as a mixed gas with a molecular oxygen-containing gas, and becomes (meth) acrolein in the lower part, and then oxidized to (meth) acrylic acid in the upper part.
[0016]
In FIG. 6, reference numeral 9 denotes an intermediate tube sheet, and three heat shield plates 10 are fixed to the lower surface of the intermediate tube sheet 9 by spacer rods 13.
As shown in this figure, by attaching two or three heat shield plates 10 at a position below or above 100 mm below or above the intermediate tube sheet 9, the heat medium Hm 1 Or Hm 2 However, it is preferable to form a stagnation space 12 with no flow, thereby providing a heat insulating effect.
The reason for attaching the heat shield plate 10 to the intermediate tube sheet 9 is as follows. That is, in FIG. 5, the heat medium Hm introduced into the lower portion of the shell 2 1 And Hm introduced in the upper part 2 When the control temperature difference from the temperature exceeds 100 ° C., the heat transfer from the high-temperature medium to the low-temperature medium cannot be ignored, and the accuracy of controlling the reaction temperature of the low-temperature catalyst deteriorates. In such a case, heat insulation that hinders heat transfer above and / or below the intermediate tube sheet 9 is required.
[0017]
A gas in which propylene or isobutylene and / or (meth) acrolein is mixed with a molecular oxygen-containing gas or water vapor is introduced into the multitubular reactor used for the catalytic gas phase oxidation as a raw material gas Rg for the reaction.
The concentration of propylene or isobutylene is 3 to 10% by volume, oxygen is 1.5 to 2.5 (molar ratio) to propylene or isobutylene, and steam is 0.8 to 2 (molar ratio).
The introduced source gas Rg is divided into reaction tubes 1a, 1b, 1c, etc., passes through the reaction tubes and is reacted by the contained oxidation catalyst, and the distribution of the source gas Rg to each reaction tube is determined by the reaction tubes. It is affected by the amount of catalyst filled into the catalyst, the packing density, and the like. Since the amount of the catalyst and the density of the cascade are determined at the time of the operation of charging the catalyst into the reaction tubes, it is very important to uniformly fill the reaction tubes with the catalyst.
To achieve this uniform filling, a method is used in which the weight of the catalyst to be filled in each reaction tube is made uniform and the catalyst filling time is adjusted to make the packing density constant.
[0018]
The raw material gas Rg passing through each of the reaction tubes 1a, 1b, and 1c is initially heated while passing through the inert agent layer filled in the inlet portion, and reaches the reaction start temperature.
The raw material (propylene or isobutylene) is oxidized by the catalyst contained as the next layer in the reaction tube, and the temperature is further increased by the heat of reaction.
The amount of reaction is the largest at the inlet of the catalyst layer, and if it is larger than the amount of heat removed by the heating medium Hm, the generated reaction heat acts as a rise in the temperature of the raw material gas Rg, and hot spots may be formed. The hot spot is often formed at a position of 300 to 1,000 mm at the entrance of the reaction tubes 1a, 1b, 1c.
[0019]
Therefore, the heat removal effect by the flow of the heating medium Hm is most important within 1,000 mm of the inlet of the reaction tubes 1a, 1b, 1c. When the amount of reaction heat generated here exceeds the heat removal capability of the heat medium Hm from the outer periphery of the reaction tube, the temperature of the raw material gas Rg further increases, and the amount of reaction heat generated further increases. A runaway reaction may occur, exceeding the allowable maximum temperature of the catalyst, causing a qualitative change in the catalyst and causing deterioration or destruction.
Taking as an example a pre-stage reactor for producing acrolein by an oxidation reaction of propylene with a molecular oxygen-containing gas, the temperature of the heating medium Hm is 250 to 350 ° C, and the maximum allowable temperature of the hot spot is 400 to 500 ° C. It is.
Further, the temperature of the heat medium Hm in the latter reactor for oxidizing acrolein with a molecular oxygen-containing gas to obtain acrylic acid is 200 to 300 ° C, and the allowable maximum temperature of the hot spot is 300 to 400 ° C.
[0020]
As the heat medium Hm flowing in the shell 2 which is the outer periphery of the reaction tubes 1a, 1b and 1c, a nitrate, which is a mixture of nitrates, is often used, but an organic liquid-based phenyl ether-based heat medium may also be used.
Heat is removed from the outer periphery of the reaction tubes 1a, 1b, and 1c by the flow of the heat medium Hm. The heat medium Hm introduced into the shell 2 from the annular conduit 3a for introducing the heat medium is more centrally located than the outer periphery of the shell 2. There was a position where the flow direction was reversed, and a position where the flow direction was reversed at the center, and it was found that the heat removal effect was extremely different at each position.
When the flow direction of the heat medium Hm is perpendicular to the tube axis of the reaction tube, the heat transfer coefficient is 1,000 to 2,000 W / m. 2 ° C, but at a non-perpendicular flow, it depends on the flow velocity, upward flow, or downward flow, but 100 to 300 W / m when a night game is used as a heating medium. 2 In most cases, it can only be in ° C.
[0021]
On the other hand, the heat transfer coefficient of the catalyst layer in the reaction tubes 1a, 1b, and 1c depends on the flow rate of the raw material gas Rg. 2 Since the temperature is on the order of degrees Celsius, it is natural that the rate of heat transfer is determined by the gas phase in the tube.
Specifically, when the flow of the heat medium Hm is perpendicular to the tube axes of the reaction tubes 1a, 1b, and 1c, the heat transfer resistance of the outer periphery of the tube is 1/10 to 1/20 of the gas Rg in the tube. Even if the flow velocity on the side changes, the effect on the overall heat transfer resistance is small.
However, since the heat transfer coefficient inside and outside the reaction tubes 1a, 1b, and 1c is almost the same when the night flow is parallel to the tube axis, the heat removal efficiency is greatly affected by the flow state around the tube. That is, the heat transfer resistance of the outer periphery of the tube is 100 W / m. 2 At ° C., the overall heat transfer coefficient is half that, and half of the change in the heat transfer resistance on the outer periphery of the tube affects the overall heat transfer coefficient.
[0022]
When actually performing the reaction, it is necessary to sufficiently monitor the difference in the heat transfer coefficient.
The reaction tube 1b, which has a large overall heat transfer coefficient and a low maximum temperature due to the temperature distribution in the tube axis direction of the catalyst layer in the reaction tube, and is considered to be an average as a whole in the shell 2, has all the baffles (usually three plates). ).
The reaction tubes arranged at positions where the heat medium Hm changes direction are a reaction tube 1c that is not restricted by one baffle plate and a reaction tube 1a that is not restricted by two baffle plates.
[0023]
When the supply amount of the raw material gas Rg to the reaction tubes 1a, 1b, and 1c is increased, or when it is desired to maintain a high reaction temperature and obtain a high conversion, the maximum temperature of the reaction tubes rises to form a hot spot, thereby deteriorating the catalyst. And the likelihood of runaway reactions increases.
In such a case, it is necessary to strictly control the temperature of the heating medium Hm. A plurality of thermometers 11 are inserted into the plurality of reaction tubes 1a or 1c, and the temperature of the heat medium Hm is controlled while monitoring the hot spot temperature of each reaction tube, and the temperature of the heat medium Hm is strictly controlled to an appropriate temperature. Thereby, a desired reaction result can be obtained, and deterioration of the catalyst can be prevented, so that long-term continuous operation can be performed.
[0024]
When the maximum temperature of the reaction tube 1a is close to the limit temperature, the temperature of the heat medium Hm is lowered, but the temperature of the reaction tube 1c downstream of the position showing the maximum temperature may increase, so that monitoring cannot be neglected. .
When the reaction conversion is lower than an appropriate value, the temperature of the heating medium Hm needs to be increased. In this case, too, the maximum temperature of the reaction tube is monitored so as not to exceed the limit temperature. The maximum temperature of the reaction tube or the position indicating the maximum temperature of the reaction tube also changes when the supply amount of the raw material gas, which is a mixed gas of propylene or isobutylene and a molecular oxygen-containing gas, into the shell 2 is increased or decreased. Sometimes.
[0025]
Further, it is more preferable to insert the thermometer 11 also into the plurality of reaction tubes 1b and adjust the temperature of the heating medium Hm while monitoring the catalyst layer temperature of the reaction tubes.
By measuring the maximum temperature of the reaction tube 1b occupying the majority and comparing it with the maximum temperature of the reaction tube 1a or 1c in another region, it is possible to further optimize the reaction results. It is preferable that the difference between the maximum average temperatures of the reaction tubes (average values of the maximum values of the temperatures of the reaction tubes) in the respective regions be within 30 ° C., particularly 20 ° C., more preferably 15 ° C. If this difference is too large, the reaction yield tends to decrease, which is not preferable.
[0026]
The number of the reaction tubes 1a, 1b, and 1c in each region where the thermometer 11 is inserted is one or more, and preferably three to five. When the number of insertions is small, even when the temperature of the heat medium Hm introduced into the annular conduit 3a of the shell 2 is uneven, an abnormality in the maximum temperature of the reaction tube may not be detected.
Note that the above-mentioned region refers to an aggregate of reaction tubes that are connected to and supported by the same baffle plate via openings or gaps of the same baffle plate.
[0027]
There is no limitation on the type of baffle for the purpose of changing the flow direction of the heat medium Hm flowing in the shell 2 or preventing the bypass flow of the heat medium Hm, but the segment baffle and the disc-shaped baffle shown in FIGS. It seems that a disk-shaped baffle is used in particular.
The area of the central opening of the baffle plate 6a is 5 to 50%, preferably 10 to 30%, of the inner cross-sectional area of the shell 2.
The gap area formed by the outer periphery of the baffle plate 6b and the inner wall of the shell 2 is 5 to 50% of the inner cross-sectional area of the shell 2, and preferably 10 to 30%.
If the opening ratio and gap ratio of the baffles 6a and 6b are too small, the flow path of the heat medium Hm becomes long, the pressure loss between the annular conduits 3a and 3b increases, and the power of the circulation pump 7 increases. If it is too large, the number of the reaction tubes 1a and 1c will increase.
[0028]
The installation gap between the baffle plates (the space between the baffle plates 6a and 6b and the space between the baffle plate 6a and the upper tube plate 5a, the lower portion 5b) is often equal, but is determined by the heat of oxidation reaction generated in the reaction tube. If the required flow rate of the heating medium Hm is ensured and the pressure loss of the heating medium is set to be low, the intervals need not necessarily be equal.
It is necessary to avoid that the highest temperature position of the temperature distribution in the reaction tubes 1a, 1b, 1c and the position of the baffle plates 6a, 6b, 6a are the same. Since the flow rate of the heat medium near the surface of each baffle plate is reduced, the heat transfer coefficient is low, and the possibility of forming hot spots increases when the highest temperature positions of the reaction tubes overlap.
[0029]
Since the inside of the reaction tubes 1a, 1b and 1c containing the oxidation catalyst in the shell 2 is in the gas phase, and the maximum linear velocity of the raw material gas is limited by the catalyst, the heat transfer coefficient in the tube of each reaction tube is It is a small, heat transfer rate-limiting process. Therefore, the inner diameter of the reaction tube is very important.
The inner diameter of the reaction tubes 1a, 1b, 1c is affected by the amount of reaction heat in the tubes and the particle size of the catalyst. Preferably, the diameter is 20 to 30 mm. If the inner diameter of each reaction tube is too small, the weight of the catalyst to be filled decreases, and the number of reaction tubes increases with respect to the required amount of catalyst, and the shell 2 becomes large.
On the other hand, if the inside diameter of the reaction tube is too large, the contact between the catalyst and the surface of the reaction tube becomes small with respect to the required heat removal amount, and the heat transfer efficiency for heat removal of the reaction heat decreases.
[0030]
The thermometer 11 inserted into the reaction tube is usually a column having a plurality of thermocouples, resistance temperature detectors and the like covered with an outer tube (thermowell) as an outer wall, or one thermometer. Use a thermocouple that can move inside the sheath.
The thermometer 11 needs to be installed at the tube axis position at the center of the reaction tube, and by providing a projection or the like on the outer tube surface, the distance between the thermometer 11 and the inner wall of the reaction tube is limited so as to overlap the tube axis position. You.
The tube axis of the reaction tube and the central axis of the thermometer 11 preferably coincide with each other, and the protrusions provided on the thermometer 11 are preferably disposed before and after the position where the catalyst layer has the highest temperature.
The diameter of the outer tube (thermowell) of the thermometer 11 is 15 mmφ or less. Due to the relationship with the inner diameter of the reaction tube, the distance from the inner wall of the reaction tube needs to be at least twice the particle diameter of the catalyst particles. If the catalyst particle diameter is 5 mm and the inner diameter of the reaction tube is 30 mmφ, the outer tube diameter of the thermometer 11 needs to be 10 mmφ or less.
If the packing density of the catalyst is different between the reaction tube in which the thermometer 11 is inserted and the other reaction tube, the accurate temperature cannot be measured. Therefore, the outer diameter of the thermometer 11 is preferably 6 mmφ or less, more preferably 2 to 4 mmφ. .
[0031]
In each part of the cross section of the shell 2, the flow rate and the heat transfer coefficient of the heat medium Hm are analyzed, and attention is paid to the fact that there is a part where the heat transfer coefficient is low. Regarding the reaction tube, particularly the reaction tube 1a and its vicinity, disposed in the portion having a low heat transfer coefficient, the baffle plate opening near the center of the cross section of the shell 2 (the central circular portion in the case of a disk-shaped baffle) is extremely small. There is a part with a low heat transfer coefficient.
This portion is near the center of the opening of the baffle plate 6a, and it is recommended not to install a reaction tube in a portion having a shell cross-sectional area ratio of 0.5 to 5% of this portion. If this portion is smaller than 0.5%, it is required to set the flow rate of the heat medium Hm to be twice or more in order to make the heat transfer coefficient equal to or more than the minimum limit of the required value, thereby increasing the power of the circulation pump 7. .
However, if the portion where the reaction tube is not provided exceeds 5%, the body diameter of the shell 2 becomes large in order to install the required number of reaction tubes.
The reaction tube 1a that is not supported by the baffle plate 6a has an opening width of the baffle plate 6a (in the case of the segment baffle plate in FIG. 2) or 30 to 80% of the opening diameter (in the case of the disk-shaped baffle plate in FIG. 3). It is preferable not to install.
[0032]
1 to 5, the flow direction of the heat medium Hm in the shell 2 is indicated by an arrow as an ascending flow, but the present invention is also applicable to a flow in the opposite direction.
In determining the direction of the circulating flow of the heating medium Hm, it is necessary to avoid a phenomenon in which a gas that may be present at the upper end of the shell 2 and the circulating pump 7, particularly an inert gas such as nitrogen, is entrained in the heating medium flow. .
In the case where the heat medium Hm has an upward flow as shown in FIG. 1, if gas is entrained in the upper part of the circulation pump 7, a cavitation phenomenon is observed in the circulation pump and the pump may be damaged in the worst case.
[0033]
In the opposite case, a gas entrainment phenomenon also occurs in the upper part of the shell 2, and a gaseous stagnation part is formed in the upper part of the shell 2, and the upper part of the reaction tube corresponding to the gas stagnation part is not cooled by the heating medium Hm.
In order to prevent gas accumulation, it is essential to install a gas vent line and replace the gas in the gas layer with the heating medium Hm. For this purpose, the heating medium pressure of the heating medium supply pipe 8a is increased, and the heating medium discharge pipe is used. The pressure rise in the shell 2 is measured by placing 8b as high as possible. The heat medium discharge pipe 8b is provided at least above the upper tube sheet 5a.
[0034]
The flow direction of the raw material gas Rg can be either upward flow or downward flow in the reaction tubes 1a, 1b, and 1c. However, in terms of the relative relationship with the heating medium flow, a parallel flow is preferable.
The amount of heat generated in the reaction tubes 1a, 1b, and 1c is the largest at the entrance, and the hot spot is often located at a position on the axis of the reaction tube 300 to 1,000 mm from the entrance.
The position of the hot spot in relation to the baffle plate is often in the range between the upper tube plate 5a or the lower tube plate 5b and the baffle plate 6a, and the heating medium Hm at a controlled temperature is directly supplied to the reaction tube. By supplying to the tube axis position of the reaction tubes 1a, 1b, 1c corresponding to the highest temperature, it becomes easy to control the generation of hot spots. Therefore, it is preferable that the macroscopic direction of the heating medium Hm and the flow direction of the raw material gas Rg be the same direction, that is, the cocurrent.
[0035]
The amount of heat transfer, that is, the amount of reaction heat, is calculated by heat transfer coefficient × heat transfer area × (catalyst layer temperature−heat medium temperature). To lower the maximum temperature of the reaction tube, the surface area of the reaction tube (heat transfer area) A method of reducing the reaction heat per unit is effective.
In order to equalize the calorific value of the reaction heat, two or more catalyst layers having different activities are filled in the same reaction tube. It is preferable to fill a plurality of catalyst layers into the reaction tube so that the catalyst layer having lower activity is on the inlet side and the catalyst layer is switched to the catalyst layer having higher activity after the peak of the temperature distribution.
[0036]
As a method for adjusting the activity of the catalyst layer, for example, a method of using a catalyst having a different activity by adjusting the composition of the catalyst, or adjusting the activity by mixing the catalyst particles with the inert particles and diluting the catalyst. There is a method of doing.
A catalyst layer having a high ratio of inert particles (the ratio of catalyst particles in the mixed particles: dilution ratio) is provided at the inlet of the reaction tubes 1a, 1b, and 1c, and the dilution ratio is low or not diluted downstream of the reaction tubes. Fill the catalyst layer. Although the dilution ratio varies depending on the catalyst, a dilution ratio of 0.3 to 0.7 in the former stage is often used.
The latter stage dilution ratio is suitably used in the range of 0.5 to 1.0. For the change or dilution of the activity of the catalyst, two to three stages are usually employed.
[0037]
The dilution ratio of the catalyst charged in the reaction tubes 1a, 1b, 1c does not need to be the same for all. For example, since the reaction tube 1a has a high maximum temperature in the reaction tube, the possibility of catalyst deterioration is high. To avoid this, it is possible to decrease the dilution ratio of the former stage and increase the dilution ratio of the latter stage.
If the reaction conversion rate of each reaction tube is different, the average conversion rate and yield in the entire reactor are affected. Therefore, it is preferable to set so that the same conversion rate is obtained in each reaction tube even if the dilution rate is changed. .
The present invention is suitable for a multitubular reactor for oxidizing propylene or isobutylene with a molecular oxygen-containing gas or a multitubular reactor for oxidizing (meth) acrolein with a molecular oxygen-containing gas to obtain (meth) acrylic acid. Applied. The catalyst used for the oxidation of propylene is preferably a Mo-Bi-based multi-component composite metal oxide, and the catalyst for oxidizing acrolein to produce acrylic acid is preferably a Mo-V-based composite oxide. .
Since propylene or isobutylene is oxidized in two stages, it is possible to use two multitubular reactors, each of which can be filled with a different catalyst for the reaction. However, as shown in FIG. The present invention can also be applied to a case where the shell side is divided into two or more chambers by a middle tube plate, each is filled with another catalyst, and (meth) acrylic acid is obtained in one reactor.
[0038]
【Example】
Example 1
In carrying out the oxidation reaction of propylene, as the catalyst (A), Mo = 12, Bi = 5, Ni = 3, Co = 2, Fe = 0.4, Na = 0.2, B = 0.4, K = 0.1, Si = 24, O = x (atomic ratio) (oxygen composition x is a value determined by the oxidation state of each metal, the same applies hereinafter) as catalyst (B) A catalyst having a composition (atomic ratio) of Mo = 35, V = 7, Sb = 100, Ni = 43, Nb = 3, Cu = 9, Si = 20, and O = x was produced according to a conventional method to obtain a catalyst powder. Was.
Each of the catalyst powders was molded to produce and use a ring-shaped catalyst having an outer diameter of 5 mmφ, an inner diameter of 2 mmφ, and a height of 4 mm.
The reactor shown in FIG. 1 has a shell length of 3,500 mm, an inner diameter of 24 mmφ, and an outer diameter of 28 mmφ. Using. The reaction tube is not arranged in a circular part having a diameter of 500 mm at the center of the shell.
[0039]
The baffles are arranged at equal intervals in the order of 6a-6b-6a in the order of 6a-6b-6a, and the aperture ratio of each baffle is 18%. The diameter of the opening of the baffle plate 6a is 1,480 mmφ, and the outer diameter of the baffle plate 6b is 3,170 mmφ.
In FIG. 1, 1,534 reaction tubes 1a, 1,740 reaction tubes 1c, and a reaction tube 1b are provided inside the shell.
[0040]
A molten salt nitrate of a nitrate mixture was used as the heating medium Hm, and supplied from the lower side surface of the shell 2.
As the reaction temperature, the temperature of the night game supplied to the shell 2 measured by the thermometer 14 in FIG. 1 is used. The flow rate of the night game was adjusted so that the temperature difference between the outlet and the inlet of the shell 2 was 4 ° C.
Each reaction tube was charged with 1.5 L of the catalyst (A), and a raw material gas Rg having a propylene concentration of 9% by volume at a gauge pressure of 75 kPa was supplied from a lower portion of the reactor.
A thermometer 11 having 10 measurement points in the tube axis direction was inserted into the reaction tubes 1a, 1b, and 1c to measure the temperature distribution. Six thermometers were inserted in each of the two regions in the region of the reaction tube 1a, the region of 1b, and the region of 1c.
In order to accurately detect the maximum temperature of each reaction tube, the measurement points of the thermometer 11 were arranged at intervals of 250 mm from the inlet of the reaction tube to 1,500 mm, and at intervals of 400 mm thereafter. Using the thermometer 11, the maximum temperature of the reaction tube was recorded.
[0041]
When the temperature of the heating medium Hm was set to 331 ° C., the average value of the maximum temperature of each reaction tube was 410 ° C. for the reaction tube 1a, 390 ° C. for the reaction tube 1b, and 390 ° C. for the reaction tube 1c. And in this case, the propylene conversion was 97% and the yield was 92%.
[0042]
Example 2
Using the same reactor as in Example 1, acrylic acid was produced by supplying a molecular oxygen-containing gas (oxygen concentration: 15% by volume) to the outlet gas of the reactor of Example 1 at a rate of 35% by volume to cause a reaction. .
Each reaction tube was filled with 1.2 L of the catalyst (B). The reaction was performed under the same conditions as in Example 1 except that the temperature of the heating medium Hm was adjusted to 275 ° C.
The average value of the maximum temperature of each reaction tube was 330 ° C. for the reaction tube 1a, 300 ° C. for the reaction tube 1b, and 300 ° C. for the reaction tube 1c. And in this case, the conversion of the reaction was 99%, and the yield was 90.5% calculated on the basis of propylene.
[0043]
Example 3
Using the same reactor as in Example 1, the catalyst (A) and a ring-shaped inert molded with an inert substance (alumina) were mixed at a ratio of 1: 1 and filled at a position of 1,500 mm from the inlet of the reaction tube. The remaining 1,800 mm reaction tube was filled with only the catalyst (A), and the remaining 200 mm was filled with aluminum balls having no activity in the reaction.
The reaction was carried out under the same conditions as in Example 1 except that the temperature of the heating medium Hm was adjusted to 335 ° C.
[0044]
The measurement point of the thermometer used for the measurement of the catalyst layer in the reaction tube was 15 points, and the measurement was performed at an interval of 200 mm.
When the temperature distribution of each catalyst layer was measured, the catalyst layer had two maximum temperatures.
When the first maximum temperature and the second maximum temperature are shown from the inlet of the reaction tube, the average value of the first maximum temperature is 393 ° C. and the second maximum temperature is 345 ° C. in the reaction tube 1a, respectively. The first maximum temperature was 370 ° C. and the second maximum temperature was 350 ° C. on average. Further, in the reaction tube 1c, the first maximum temperature was 365 ° C. and the second maximum temperature was 380 ° C. on average.
The temperature of the heating medium Hm was 4 ° C higher than when the catalyst was not diluted, but the maximum temperature of each of the catalyst layers was 10-20 ° C lower than that of the higher one, prolonging the catalyst life and stabilizing it. Driving was expected.
The total yield of acrolein and acrylic acid obtained from propylene was 92.5%.
[0045]
Comparative Example 1
Example 2 except that no thermometer was inserted into the reaction tubes 1a and 1c, and the same thermometer as that of Example 1 was inserted only into the reaction tube 1b connected to all the baffles and having good heat removal efficiency. The reaction was performed in the same manner as described above.
When the inlet temperature of the heating medium Hm was changed from 275 ° C. to 280 ° C. in order to make the conversion of acrolein from 99% to 99.5%, the maximum value of the temperature distribution of the catalyst layer in the reaction tube 1b was 310 ° C. became.
The reaction product gas was analyzed and the conversion of acrolein was measured. The conversion was found to be 97.9%. After that, when the operation was continued, the conversion rate gradually decreased. Therefore, when the inlet temperature of the heating medium Hm was further increased by 2 ° C. to 282 ° C., the conversion rate of acrolein was further decreased.
When the conversion of acrolein dropped to 95%, the reaction was stopped and the catalyst in the reaction tubes was inspected. No abnormality was found in the catalysts in the reaction tubes 1b and 1c. However, among the reaction tubes 1a, particularly, the catalyst in about 350 reaction tubes 1a disposed near the center of the reactor was remarkably deteriorated and deformed, and the catalytic activity was lost. It is believed that the catalyst was exposed to high temperatures of 400 ° C. or higher.
[0046]
【The invention's effect】
The present invention relates to a catalytic gas-phase acid oxidation method using a multitubular reactor.In the present invention, the internal temperature of a reaction tube filled with a catalyst contained in a shell of the reactor is measured. By controlling the temperature and flow rate of the heat medium introduced into the shell based on the temperature, when producing (meth) acrylic acid or the like from propylene or isobutylene, it is possible to prevent runaway reaction or early deterioration of the catalyst, For a high yield.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of one embodiment of a multitubular reactor used in a catalytic gas phase oxidation method.
FIG. 2 is a perspective view of one embodiment of a baffle provided inside a multitubular reactor.
FIG. 3 is a perspective view of another embodiment of a baffle plate provided in a multitubular reactor.
FIG. 4 is a view of the multitubular reactor of FIG. 1 as viewed from above.
FIG. 5 is a cross-sectional view of another embodiment of the multitubular reactor used in the catalytic gas phase oxidation method.
FIG. 6 is a partial cross-sectional view of an intermediate tube plate and a heat shield plate provided in the multi-tube reactor of FIG.
[Explanation of symbols]
1a, 1b, 1c ... reaction tubes,
2. Shell of multitubular reactor
5a, 5b ... tube sheet,
6a, 6b ... baffles,
9 ... intermediate tube sheet,
11: catalyst thermometer,
14, 15 ... thermometer of heat medium,
Hm: heat medium,
Rg: raw material gas,

Claims (8)

多管式反応器のシェル内に、触媒が充填された複数の反応管と、当該シェル内に導入された熱媒の流れ方向を転換させる複数の邪魔板とを内装した多管式反応器の反応管内に原料ガスを導入して酸化させる接触気相酸化方法において、少なくとも一枚の邪魔板に接続していない反応管に充填されている触媒の温度を、計測することを特徴とする接触気相酸化方法。In a shell of a multitubular reactor, a multitubular reactor having a plurality of reaction tubes filled with a catalyst and a plurality of baffles for changing the flow direction of the heat medium introduced into the shell is provided. In a catalytic gas phase oxidation method in which a raw material gas is introduced into a reaction tube and oxidized, the temperature of a catalyst filled in a reaction tube not connected to at least one baffle plate is measured. Phase oxidation method. 多管式反応器のシェル内に、触媒が充填された複数の反応管と、当該シェル内に導入された熱媒の流れ方向を転換させる複数の邪魔板とを内装した多管式反応器の反応管内に原料ガスを導入して酸化させる接触気相酸化方法において、少なくとも一枚の邪魔板に接続していない反応管に充填されている触媒の温度と全ての邪魔板に接続されている反応管に充填されている触媒の温度とを、計測することを特徴とする接触気相酸化方法。In a shell of a multitubular reactor, a multitubular reactor having a plurality of reaction tubes filled with a catalyst and a plurality of baffles for changing the flow direction of the heat medium introduced into the shell is provided. In a catalytic gas phase oxidation method in which a raw material gas is introduced into a reaction tube and oxidized, the temperature of a catalyst filled in a reaction tube not connected to at least one baffle plate and the reaction connected to all baffle plates A catalytic gas phase oxidation method comprising measuring a temperature of a catalyst filled in a tube. 測定された触媒の温度に基づいて、シェル内に導入する熱媒の温度または流速を制御することを特徴とする請求項1〜2の何れかに記載の接触気相酸化方法。The catalytic vapor phase oxidation method according to any one of claims 1 to 2, wherein the temperature or the flow rate of the heating medium introduced into the shell is controlled based on the measured temperature of the catalyst. 触媒の温度を、反応管軸方向に2〜20点計測することを特徴とする請求項1〜3の何れかに記載の接触気相酸化方法。The catalytic gas phase oxidation method according to any one of claims 1 to 3, wherein the temperature of the catalyst is measured at 2 to 20 points in the axial direction of the reaction tube. 多点式熱電対を用いて、触媒の温度を計測することを特徴とする請求項1〜4の何れかに記載の接触気相酸化方法。The catalytic vapor phase oxidation method according to any one of claims 1 to 4, wherein the temperature of the catalyst is measured using a multipoint thermocouple. 反応管内を流れる原料ガスの流れ方向と、シェル内を流れる熱媒の巨視的流れ方向とが、同方向である請求項1〜5の何れかに記載の接触気相酸化方法。The catalytic vapor phase oxidation method according to any one of claims 1 to 5, wherein a flow direction of the raw material gas flowing in the reaction tube and a macroscopic flow direction of the heat medium flowing in the shell are the same. 反応管に、活性の異なる複数の触媒層が充填されていることを特徴とする請求項1〜6の何れかに記載の接触気相酸化方法。The catalytic vapor phase oxidation method according to any one of claims 1 to 6, wherein a plurality of catalyst layers having different activities are filled in the reaction tube. 原料ガスが、被酸化物質として、プロピレン、イソブチレン、または(メタ)アクロレインを含有することを特徴とする請求項1〜7の何れかに記載の接触気相酸化方法。8. The catalytic gas phase oxidation method according to claim 1, wherein the raw material gas contains propylene, isobutylene, or (meth) acrolein as a substance to be oxidized.
JP2003060793A 2002-03-11 2003-03-07 Catalytic gas phase oxidation method Expired - Fee Related JP4024699B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003060793A JP4024699B2 (en) 2002-03-11 2003-03-07 Catalytic gas phase oxidation method
BRPI0308336A BRPI0308336B1 (en) 2002-03-11 2003-03-11 process for catalytic oxidation in vapor phase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002064620 2002-03-11
JP2003060793A JP4024699B2 (en) 2002-03-11 2003-03-07 Catalytic gas phase oxidation method

Publications (2)

Publication Number Publication Date
JP2004026799A true JP2004026799A (en) 2004-01-29
JP4024699B2 JP4024699B2 (en) 2007-12-19

Family

ID=31189903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060793A Expired - Fee Related JP4024699B2 (en) 2002-03-11 2003-03-07 Catalytic gas phase oxidation method

Country Status (2)

Country Link
JP (1) JP4024699B2 (en)
BR (1) BRPI0308336B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110959A1 (en) * 2004-05-14 2005-11-24 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acid or (meth)acrolein
JP2006212629A (en) * 2006-02-21 2006-08-17 Sumitomo Chemical Co Ltd Multi-tube type fixed bed reaction device
KR100942648B1 (en) 2007-04-03 2010-02-17 주식회사 엘지화학 Method for preparing unsaturated aldehyde and/or unsaturated fatty acid using fixed-bed catalytic partial oxidation reactor
US7811524B2 (en) 2004-05-27 2010-10-12 Mitsubishi Chemical Corporation Reactor, reactor control system, and catalytic gas phase oxidation reaction method
JP2013212479A (en) * 2012-04-04 2013-10-17 Sumitomo Chemical Co Ltd Multi-tubular reactor and method for designing the same
JP2017042761A (en) * 2011-10-13 2017-03-02 マン・ディーゼル・アンド・ターボ・エスイー Tube nest reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110959A1 (en) * 2004-05-14 2005-11-24 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acid or (meth)acrolein
US7811524B2 (en) 2004-05-27 2010-10-12 Mitsubishi Chemical Corporation Reactor, reactor control system, and catalytic gas phase oxidation reaction method
JP2006212629A (en) * 2006-02-21 2006-08-17 Sumitomo Chemical Co Ltd Multi-tube type fixed bed reaction device
KR100942648B1 (en) 2007-04-03 2010-02-17 주식회사 엘지화학 Method for preparing unsaturated aldehyde and/or unsaturated fatty acid using fixed-bed catalytic partial oxidation reactor
JP2017042761A (en) * 2011-10-13 2017-03-02 マン・ディーゼル・アンド・ターボ・エスイー Tube nest reactor
JP2013212479A (en) * 2012-04-04 2013-10-17 Sumitomo Chemical Co Ltd Multi-tubular reactor and method for designing the same
US9713800B2 (en) 2012-04-04 2017-07-25 Sumitomo Chemical Company, Limited Multi-tubular reactor and multi-tubular reactor design and fabrication method

Also Published As

Publication number Publication date
BR0308336A (en) 2005-02-01
JP4024699B2 (en) 2007-12-19
BRPI0308336B1 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
KR101184235B1 (en) Multitubular reaction apparatus for contact gas-phase reaction
WO2003076373A1 (en) Process for catalytic vapor phase oxidation
JP4145607B2 (en) Vapor phase catalytic oxidation method using multitubular reactor
JP5163357B2 (en) Plate-type catalytic reaction method and apparatus
KR100623638B1 (en) Gas-phase catalytic oxidation reactor and gas-phase catalytic oxidation with the reactor
EP0987057B1 (en) Catalytic vapor-phase oxidation method and shell-and-tube reactor
JP4838585B2 (en) Fixed-bed multitubular reactor
EP2361899B1 (en) Vapor phase catalytic oxidation method using a multitube reactor of the heat-exchange type
US5821390A (en) Catalytic gas-phase oxidation of propene to acrolein
CA2157632A1 (en) Catalytic gas-phase oxidation of acrolein to acrylic acid
JP2003106780A (en) Multitube heat exchanger, and manufacturing method of (metha)acrylic acid using same heat exchanger
JP2004026799A (en) Method for catalytic gas phase oxidation
JP4108521B2 (en) Multi-tube reactor
JP4163021B2 (en) Vapor phase catalytic oxidation method using multi-tube heat exchanger type reactor
JP4295462B2 (en) Gas phase catalytic oxidation method
JP2005330205A (en) Method for producing (meth)acrolein or (meth)acrylic acid
JP2006212629A (en) Multi-tube type fixed bed reaction device
JP4028392B2 (en) Gas phase catalytic oxidation method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Ref document number: 4024699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees