JP2005288441A - Heat exchange type reactor - Google Patents

Heat exchange type reactor Download PDF

Info

Publication number
JP2005288441A
JP2005288441A JP2005151996A JP2005151996A JP2005288441A JP 2005288441 A JP2005288441 A JP 2005288441A JP 2005151996 A JP2005151996 A JP 2005151996A JP 2005151996 A JP2005151996 A JP 2005151996A JP 2005288441 A JP2005288441 A JP 2005288441A
Authority
JP
Japan
Prior art keywords
reactor
heat
heat exchange
reaction
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005151996A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mori
康彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005151996A priority Critical patent/JP2005288441A/en
Publication of JP2005288441A publication Critical patent/JP2005288441A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchange type reactor (1) the most upstream zone (31)of which can be kept at the predetermined reaction temperature even when the supply amount of a raw material compound (A) is small. <P>SOLUTION: This heat exchange type reactor (1) is provided with: a reaction pipe (2) through which the raw material compound (A) is made to pass to obtain a product (B) by an exothermic reaction; and a reactor shell (3) which covers the periphery of the reaction pipe (2) and the inside of which is divided into a plurality of zones (31, 32) along the passing direction of the raw material compound (A) and heating media (C1, C2) are packed respectively. Heat is exchanged between the corresponding heating medium (C1 or C2) and the inside of the reaction pipe (2) in each of the divided zones (31, 32). A heater (41) is arranged for heating the heating medium (C1) packed in the most upstream zone (31) independently of the heating media (C2) packed in other zones. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱交換型反応器に関する。 The present invention relates to a heat exchange reactor.

原料化合物(A)から発熱反応により生成物(B)を得る反応は、一般に、所定の反応温度を超える温度で反応させると急激に発熱し易いことから、効率よく除熱しながら反応させることが求められている。このような反応を行うための反応器として、図3に示すように、反応管(2)と、この反応管(2)の周囲を覆う反応器シェル(3)とを備えた熱交換型反応器(1')が広く用いられている。この反応器(1')では、反応管(2)に、原料化合物(A)を通過させながら発熱反応により生成物(B)を得る。反応器シェル(3)は、原料化合物(A)の通過方向に沿って複数の領域(31〜34)に分割されていて、この分割された各領域(31〜34)ごとに熱媒体(C1〜C4)が充填されており、それぞれ反応管(2)内と熱媒体(C1〜C4)との間で熱交換させる〔特許文献1:特開2001−129384号公報〕。かかる熱交換型反応器(1')によれば、各領域(31〜34)ごとに発熱量に応じて熱媒体(C1〜C4)の温度を変えるなどすることにより、効率よく除熱して、反応管(2)内を所定の反応温度に維持することができる。 The reaction for obtaining the product (B) from the raw material compound (A) by an exothermic reaction generally tends to generate heat rapidly when reacted at a temperature exceeding a predetermined reaction temperature, so it is required to react while efficiently removing heat. It has been. As a reactor for carrying out such a reaction, as shown in FIG. 3, a heat exchange reaction comprising a reaction tube (2) and a reactor shell (3) covering the periphery of the reaction tube (2). The vessel (1 ') is widely used. In the reactor (1 ′), the product (B) is obtained by an exothermic reaction while the raw material compound (A) is passed through the reaction tube (2). The reactor shell (3) is divided into a plurality of regions (31 to 34) along the passage direction of the raw material compound (A), and each of the divided regions (31 to 34) has a heat medium (C1 To C4), and heat exchange is performed between the inside of the reaction tube (2) and the heat medium (C1 to C4) [Patent Document 1: Japanese Patent Application Laid-Open No. 2001-129384]. According to such a heat exchange reactor (1 ′), heat is efficiently removed by changing the temperature of the heat medium (C1 to C4) according to the calorific value for each region (31 to 34), The inside of the reaction tube (2) can be maintained at a predetermined reaction temperature.

特開2001−129384号公報JP 2001-129384 A

しかし、かかる従来の熱交換型反応器(1')では、各領域(31〜34)における反応量が全体の反応量に対して少ないため、原料化合物(A)の供給量が少ない場合や触媒活性が低下した場合などには、各領域(31〜34)における顕熱持ち出し量と放熱量の合計が反応熱を上回り、所定の反応温度を維持できなくなることがあるという問題があり、特に最上流の領域(31)において顕著な問題となりやすかった。またそのようなときには反応収率が低下するという問題があった。さらに、反応ガス導入前に各領域(31〜34)を異なる温度に設定する必要がある場合には、冷却手段しか設置されていない図3の方法では対応しにくい問題があった。 However, in such a conventional heat exchange reactor (1 ′), since the reaction amount in each region (31 to 34) is small relative to the total reaction amount, the supply amount of the raw material compound (A) is small or the catalyst When the activity decreases, there is a problem that the sum of the sensible heat carry-out amount and the heat release amount in each region (31 to 34) exceeds the reaction heat, and the predetermined reaction temperature may not be maintained. It was likely to become a significant problem in the upstream region (31). In such a case, there is a problem that the reaction yield decreases. Further, when it is necessary to set each region (31 to 34) to a different temperature before introducing the reaction gas, there is a problem that it is difficult to cope with the method of FIG. 3 in which only the cooling means is installed.

そこで本発明者は、原料化合物(A)の供給量が少なくても、最上流の領域(31)を所定の反応温度に維持しうる熱交換型反応器(1)を提供するべく鋭意検討した結果、本発明に至った。 Therefore, the present inventor has intensively studied to provide a heat exchange reactor (1) capable of maintaining the most upstream region (31) at a predetermined reaction temperature even when the amount of the raw material compound (A) supplied is small. As a result, the present invention has been achieved.

すなわち本発明は、原料化合物(A)を通過させながら発熱反応により生成物(B)を得るための反応管(2)と、該反応管(2)の周囲を覆い、内部が前記原料化合物(A)の通過方向に沿って複数の領域(31、32、…)に分割され、分割された領域(31、32、…)ごとに熱媒体(C1、C2、…)が充填された反応器シェル(3)とを備え、
前記分割された領域(31、32、…)ごとに前記反応管(2)内部と前記熱媒体(C1、C2、…)との間で熱交換する反応器(1)であり、
前記分割された領域(31、32、…)のうちの最上流の領域(31)に充填された熱媒体(C1)を他の領域に充填された熱媒体(C2、…)から独立して加熱する加熱器(41)を備えてなることを特徴とする熱交換型反応器(1)を提供するものである。図1および図2には、それぞれ本発明の熱交換型反応器(1)の一例を模式的に示す。この熱交換型反応器(1)の反応管(2)に原料化合物(A)を供給し、通過させながら発熱反応させる。
That is, the present invention covers the periphery of the reaction tube (2) for obtaining the product (B) by exothermic reaction while passing the raw material compound (A), and the inside covers the raw material compound ( A) The reactor is divided into a plurality of regions (31, 32,...) Along the passing direction of A), and a heating medium (C1, C2,...) Is filled in each of the divided regions (31, 32,...). With a shell (3),
Reactor (1) for exchanging heat between the inside of the reaction tube (2) and the heat medium (C1, C2, ...) for each of the divided regions (31, 32, ...),
Of the divided regions (31, 32,...), The heat medium (C1) filled in the uppermost region (31) is independent of the heat medium (C2,...) Filled in other regions. Provided is a heat exchange reactor (1) comprising a heater (41) for heating. 1 and 2 schematically show an example of the heat exchange reactor (1) of the present invention. The raw material compound (A) is supplied to the reaction tube (2) of the heat exchange reactor (1) and allowed to undergo an exothermic reaction while passing through.

本発明によれば、原料化合物(A)の供給量が少なくても、最上流の領域(31)を所定の反応温度に維持しうる熱交換型反応器(1)が提供される。 According to the present invention, there is provided a heat exchange reactor (1) capable of maintaining the uppermost stream region (31) at a predetermined reaction temperature even when the amount of the raw material compound (A) supplied is small.

本発明の熱交換型反応器(1)に適用される原料化合物(A)は、発熱反応を経て生成物(B)となる化合物であり、通常はガス状のものが用いられる。具体的には、例えば気相酸化法により塩素(Cl2)を得るための塩化水素(HCl)および酸素(O2)、気相酸化法により生成物(B)としてアクロレイン、更にアクリル酸を得るためのプロピレンおよび酸素(O2)、気相酸化法によりメタクロレイン、更にはメタクリル酸を得るためのイソブチレンおよび酸素(O2)などが挙げられる。 The raw material compound (A) applied to the heat exchange reactor (1) of the present invention is a compound that becomes a product (B) through an exothermic reaction, and is usually in a gaseous form. Specifically, for example, hydrogen chloride (HCl) and oxygen (O 2 ) for obtaining chlorine (Cl 2 ) by a gas phase oxidation method, and acrolein and further acrylic acid are obtained as a product (B) by a gas phase oxidation method. Propylene and oxygen (O 2 ) for the purpose, methacrolein by vapor phase oxidation, and isobutylene and oxygen (O 2 ) for obtaining methacrylic acid.

原料化合物(A)は希釈されることなく無希釈で用いられてもよいし、反応に対して不活性な不活性物質で希釈されて用いられてもよい。原料化合物(A)を無希釈で用いると、生成物(B)から希釈に用いた不活性ガスを分離する必要がないことから好ましい。また、無希釈で用いる場合には、一般に、発熱量の多い領域では所定の反応温度を上回り易く、発熱量の少ない領域では所定の反応温度を下回り易くなる傾向にあるが、本発明の熱交換型反応器(1)では、各領域の温度を緻密に調整できるため、好ましく用いられる。 The raw material compound (A) may be used undiluted without being diluted, or may be used after being diluted with an inert substance that is inert to the reaction. It is preferable to use the raw material compound (A) without dilution because it is not necessary to separate the inert gas used for dilution from the product (B). In addition, when used undiluted, in general, it tends to be higher than a predetermined reaction temperature in a region with a large calorific value, and tends to be lower than a predetermined reaction temperature in a region with a small calorific value. The type reactor (1) is preferably used because the temperature in each region can be precisely adjusted.

本発明の熱交換型反応器(1)は、原料化合物(A)を上流から下流へと一方向に通過させながら発熱反応により生成物(B)を得るための反応管(2)を備えており、反応管(2)が1本の単管式であってもよいが、通常は2本以上100000本以下の複数の反応管(2)が用いられた多管式熱交換型反応器である。反応管(2)はコイル状であってもよいが、通常は直線状の直管が用いられる。反応管(2)として直管を用いる場合、本発明の熱交換型反応器(1)は、反応管(2)を水平方向に配置した横型であってもよいが、通常は図1に示すように、反応管(2)を垂直方向に配置して、原料化合物(A)を垂直方向に通過させる縦型である。 The heat exchange reactor (1) of the present invention includes a reaction tube (2) for obtaining a product (B) by an exothermic reaction while passing the raw material compound (A) in one direction from upstream to downstream. The reaction tube (2) may be of a single tube type, but it is usually a multi-tube heat exchange reactor using a plurality of reaction tubes (2) of 2 to 100,000. is there. The reaction tube (2) may be coiled, but a straight straight tube is usually used. When a straight pipe is used as the reaction tube (2), the heat exchange reactor (1) of the present invention may be a horizontal type in which the reaction tubes (2) are arranged in the horizontal direction, but usually shown in FIG. As described above, the reaction tube (2) is arranged in the vertical direction so that the raw material compound (A) passes through in the vertical direction.

反応管(2)内は無触媒であってもよいが、通常は触媒が充填されて用いられる。触媒としては通常、粒子状の固形触媒が用いられ、具体的には、例えば気相酸化法により塩化水素および酸素から塩素を得るための、酸化ルテニウムを主成分とし、酸化チタン(好ましくはルチル型酸化チタン)に担持させた酸化触媒、気相酸化法によりプロピレンおよび酸素(O2)からアクロレイン、更にアクリル酸を得るための酸化触媒、気相酸化法によりイソブチレンおよび酸素からメタクロレイン、更にメタクリル酸を得るための酸化触媒などが挙げられる。触媒は、反応に対して不活性な不活性充填材で希釈されていてもよい。また、触媒を複数の触媒層に分けて反応管(2)内に充填する場合には、触媒層同士の間に不活性充填材からなる不活性層を設けてもよい。複数の触媒層に分けて充填する場合、通常は下流側の活性が高くなるように触媒を配置する。活性の調整には、異なる種類の触媒を用いる方法、触媒成分の担持量を変える方法、1種類の触媒を不活性充填材で希釈する方法がよく用いられる。また、触媒の粒子形状や粒子径を異ならせることによって活性を調整することも可能である。 The reaction tube (2) may be non-catalyzed, but is usually filled with a catalyst. As the catalyst, a particulate solid catalyst is usually used. Specifically, for example, for obtaining chlorine from hydrogen chloride and oxygen by a gas phase oxidation method, the main component is ruthenium oxide, and titanium oxide (preferably rutile type). Oxidation catalyst supported on titanium oxide), acrolein from propylene and oxygen (O 2 ) by vapor phase oxidation method, oxidation catalyst for obtaining acrylic acid, methacrolein from isobutylene and oxygen by vapor phase oxidation method, and further methacrylic acid And an oxidation catalyst for obtaining the above. The catalyst may be diluted with an inert filler that is inert to the reaction. When the catalyst is divided into a plurality of catalyst layers and filled in the reaction tube (2), an inert layer made of an inert filler may be provided between the catalyst layers. When packing in a plurality of catalyst layers, the catalyst is usually arranged so that the downstream activity is high. For adjusting the activity, a method of using different types of catalysts, a method of changing the amount of catalyst components supported, and a method of diluting one type of catalyst with an inert filler are often used. Further, the activity can be adjusted by changing the particle shape and particle diameter of the catalyst.

反応器シェル(3)は、反応管(2)の周囲を覆うものである。反応管(2)は、例えば図1に示すように、上管板(10)および下管板(12)によって、反応器シェル(3)に対して固定される。 The reactor shell (3) covers the periphery of the reaction tube (2). The reaction tube (2) is fixed to the reactor shell (3) by an upper tube plate (10) and a lower tube plate (12), for example, as shown in FIG.

反応器シェル(3)は、原料化合物(A)の通過方向に沿って複数の領域(3)に分割されている。反応器シェル(3)は、2段以上に分割されていればよく、通常は10段以下であるが、3段以上、さらには4段以上に分割されているときには、各領域あたりの発熱量が比較的少なくなって、本発明の熱交換型反応器(1)の効果を発揮し易いため、好ましく適用される。 The reactor shell (3) is divided into a plurality of regions (3) along the passage direction of the raw material compound (A). The reactor shell (3) only needs to be divided into two or more stages, and is usually 10 stages or less, but when divided into three or more stages, or even four stages or more, the calorific value per region. Therefore, it is preferable to apply the heat exchange reactor (1) of the present invention.

反応器シェル(3)を複数(n)の領域(31、32、…)に分割するには通常、中間管板または遮断板などの仕切板(11)が用いられる。中間管板は、互いに隣接する領域(31と32等)間で熱媒体(C1とC2等)が相互に移動しないように、反応管(2)と密着して反応器シェル(3)内に設けられる仕切板である。遮断板は、反応管(2)との間に隙間を空けて反応器シェル(3)内に設けられ、隣接する領域(31と32等)間で熱媒体(C1とC2等)が僅かに移動することを許容する仕切板(11)である。なお、nは領域の数を表す2以上の整数である。 In order to divide the reactor shell (3) into a plurality (n) of regions (31, 32,...), A partition plate (11) such as an intermediate tube plate or a blocking plate is usually used. The intermediate tube plate is in close contact with the reaction tube (2) in the reactor shell (3) so that the heat medium (C1 and C2 etc.) does not move between adjacent regions (31 and 32, etc.). It is a partition plate provided. The blocking plate is provided in the reactor shell (3) with a gap between the reaction tube (2) and a slight amount of heat medium (C1 and C2 etc.) between adjacent regions (31 and 32 etc.). A partition plate (11) that is allowed to move. Note that n is an integer of 2 or more representing the number of regions.

反応管(2)に触媒を充填して用いる場合に、仕切板(11)の付近の反応管(2)内では熱媒体との熱交換が不十分となり、ホットスポットと呼ばれる局所的な高温部分となり易い傾向にあるため、この付近での発熱が抑えられるよう、この付近には触媒と共に不活性充填材を充填して触媒を希釈したり、触媒に代えて不活性充填材だけを充填して不活性充填材層としておくことが好ましい。 When the reaction tube (2) is filled with a catalyst, heat exchange with the heat medium is insufficient in the reaction tube (2) near the partition plate (11), and a local high-temperature part called a hot spot is used. In order to suppress heat generation near this area, an inert filler is filled with the catalyst in this vicinity to dilute the catalyst, or only the inert filler is filled instead of the catalyst. It is preferable to use an inert filler layer.

各領域(31、32、…)を循環する熱媒体(C)としては、目的とする反応温度、熱媒体の取扱いの容易さなどに応じて適宜選択され、例えば亜硝酸ナトリウム40質量%、硝酸ナトリウム質量7%、硝酸カリウム53質量%の混合物や、亜硝酸ナトリウム50質量%、硝酸カリウム50質量%の混合物などの溶融塩(HTS:Heat Transfer Salt)、金属ナトリウムなどの溶融金属などの無機物からなる無機熱媒体、アルキルビフェニル類、ビフェニル類とジフェニルオキサイド類との混合物、ビフェニル類とジフェニルエーテル類との混合物、トリフェニル類、ジベンジルトルエン類、アルキルベンゼン類、アルキルナフタリン類、アリールアルキル類などの有機物からなる有機熱媒体、イオン性液体、水などが挙げられる。   The heat medium (C) circulating through each region (31, 32,...) Is appropriately selected according to the target reaction temperature, ease of handling of the heat medium, and the like. For example, sodium nitrite 40% by mass, nitric acid An inorganic substance such as a mixture of 7% sodium by mass and 53% by mass potassium nitrate, a molten salt (HTS: Heat Transfer Salt) such as a mixture of 50% by mass sodium nitrite and 50% by mass potassium nitrate, or an inorganic substance such as molten metal such as metallic sodium. Heat medium, alkylbiphenyls, mixtures of biphenyls and diphenyl oxides, mixtures of biphenyls and diphenyl ethers, organic substances such as triphenyls, dibenzyltoluenes, alkylbenzenes, alkylnaphthalenes, arylalkyls An organic heat medium, an ionic liquid, water, etc. are mentioned.

反応器シェル(3)内の各領域(31、32、…)には、熱媒体(C1、C2、…)の流動方向を整えるために邪魔板(13)を設けてもよい。邪魔板の形状としては、例えば円板状、穴開円板状、欠円形などが挙げられる。邪魔板(13)は通常、熱媒体の流れ方向が反応管(2)に対して概ね直角になるように設けられる。邪魔板(13)は、全ての領域(31、32、…)に設けてもよいし、図1に示すように特によく反応温度を制御したい領域(31)だけに設けてもよい。一つの領域に設けられる邪魔板の数は通常、1〜3枚程度である。 In each region (31, 32,...) In the reactor shell (3), a baffle plate (13) may be provided in order to adjust the flow direction of the heat medium (C1, C2,...). Examples of the shape of the baffle plate include a disc shape, a perforated disc shape, and a missing circle shape. The baffle plate (13) is usually provided so that the flow direction of the heat medium is substantially perpendicular to the reaction tube (2). The baffle plate (13) may be provided in all the regions (31, 32,...), Or may be provided only in the region (31) where the reaction temperature is desired to be controlled as shown in FIG. The number of baffle plates provided in one area is usually about 1 to 3.

各領域(31、32、…)の熱媒体(C1、C2、…)は、通常、反応管(2)内との熱交換により反応熱を吸収して昇温するので、通常は各領域に充填された熱媒体(C1、C2、…)を冷却しながら熱交換させる。例えば図1に示す熱交換型反応器(1)では、各領域ごとに循環ポンプ(61〜64)および冷却器(81〜84)を設け、循環ポンプ(61〜64)により各領域(31〜34)と冷却器(81〜84)との間で熱媒体(C1〜C4)をそれぞれ循環させることにより、熱媒体(C1〜C4)を冷却している。各領域における熱媒体(C1〜C4)の温度は、各冷却器(81〜84)と各領域(31〜34)との間に設けられた循環流量調整弁(U1〜U4)によって熱媒体(C1〜C4)の循環流量を調整する方法、各冷却器(81〜84)における熱媒体(C1〜C4)の冷却温度を調整する方法などにより、各領域(31〜34)ごとに調整することができる。 The heat medium (C1, C2,...) Of each region (31, 32,...) Normally absorbs reaction heat by heat exchange with the inside of the reaction tube (2). The filled heat medium (C1, C2,...) Is subjected to heat exchange while being cooled. For example, in the heat exchange reactor (1) shown in FIG. 1, a circulation pump (61 to 64) and a cooler (81 to 84) are provided for each region, and each region (31 to 64) is provided by the circulation pump (61 to 64). The heat medium (C1 to C4) is cooled by circulating the heat medium (C1 to C4) between 34) and the coolers (81 to 84), respectively. The temperature of the heat medium (C1 to C4) in each region is determined by a circulation flow rate adjusting valve (U1 to U4) provided between each cooler (81 to 84) and each region (31 to 34). Adjust each area (31-34) by adjusting the circulation flow rate of C1-C4), adjusting the cooling temperature of the heat medium (C1-C4) in each cooler (81-84), etc. Can do.

図2に示す熱交換型反応器(1)では、各領域(31〜34)に予め冷却された熱媒体(C0)を加えることにより、各領域の熱媒体(C1〜C4)を冷却している。すなわち、この熱交換型反応器(1)では、各領域(31〜34)ごとに循環ポンプ(61〜64)および循環タンク(51〜54)を設け、循環ポンプ(61〜64)により、各領域(31〜34)と循環タンク(51〜54)との間で熱媒体(C1〜C4)をそれぞれ循環させている。これと共に、各循環タンク(51〜54)には、熱媒体タンク(7)から予め冷却された熱媒体(C0)を分配して加えており、これにより、各領域(31〜34)の熱媒体(C1〜C4)を冷却している。各領域における熱媒体(C1〜C4)の温度は、熱媒体タンク(7)と各循環タンク(51〜54)との間に設けられた供給流量調整弁(V1〜V4)により熱媒体(C0)の供給量を調整する方法などにより、各領域(31〜34)ごとに調整することができる。 In the heat exchange type reactor (1) shown in FIG. 2, the heat medium (C1 to C4) in each region is cooled by adding a precooled heat medium (C0) to each region (31 to 34). Yes. That is, in this heat exchange reactor (1), a circulation pump (61-64) and a circulation tank (51-54) are provided for each region (31-34), and each circulation pump (61-64) The heat medium (C1 to C4) is circulated between the region (31 to 34) and the circulation tank (51 to 54), respectively. At the same time, a heat medium (C0) cooled in advance from the heat medium tank (7) is distributed and added to each circulation tank (51 to 54). The medium (C1 to C4) is being cooled. The temperature of the heat medium (C1 to C4) in each region is controlled by a supply flow rate adjusting valve (V1 to V4) provided between the heat medium tank (7) and each circulation tank (51 to 54). ) Can be adjusted for each region (31 to 34), for example, by a method of adjusting the supply amount.

なお、図2に示す熱交換型反応器(1)において、熱媒体タンク(7)には冷却器(8)が設けられており、熱媒体(C0)は、この冷却器(8)により冷却される。各循環タンク(51〜54)からは、余剰となった熱媒体(C1〜C4)がオーバーフローして熱媒体タンク(7)に送られる。また、各循環タンク(51〜54)は、それぞれの領域(31〜34)にできるだけ接近して設けられることが、各領域と循環タンクとの間の配管を少なくし得て好ましい。熱媒体タンク(7)には予熱器(9)が設けられており、運転開始時などには、この予熱器(9)により、予め熱媒体(C0)を所定の温度に加熱しておき、これを各循環タンク(51〜54)に供給することも可能である。 In the heat exchange reactor (1) shown in FIG. 2, the heat medium tank (7) is provided with a cooler (8), and the heat medium (C0) is cooled by the cooler (8). Is done. From each circulation tank (51-54), the excess heat medium (C1-C4) overflows and is sent to the heat medium tank (7). In addition, it is preferable that the circulation tanks (51 to 54) are provided as close as possible to the respective regions (31 to 34) because the number of pipes between the regions and the circulation tank can be reduced. The heat medium tank (7) is provided with a preheater (9) .At the start of operation, the heat medium (C0) is preheated to a predetermined temperature by the preheater (9), It is also possible to supply this to each circulation tank (51 to 54).

図2に示す熱交換型反応器(1)において、反応器シェル(3)が遮断板により分割されている場合には、各領域(31〜34)の間の熱媒体(C1〜C4)の移動を少なくできる点で、各循環タンク(51〜54)における熱媒体の液面の高さを一致させることが好ましく、さらに各領域(31〜34)間で熱媒体(C1〜C4)の移動を最小限にするよう、循環流量調整弁(U1〜U4)により、各領域(31〜34)と循環タンク(51〜54)との間の循環流量を調節することも好ましい。各循環タンク(51〜54)における熱媒体の液面は、通常の液面計(図示せず)により測定することができる。 In the heat exchange type reactor (1) shown in FIG. 2, when the reactor shell (3) is divided by the shielding plate, the heat medium (C1 to C4) between the regions (31 to 34) It is preferable to match the height of the liquid level of the heat medium in each circulation tank (51 to 54) in that the movement can be reduced, and the movement of the heat medium (C1 to C4) between the regions (31 to 34). It is also preferable to adjust the circulation flow rate between each region (31 to 34) and the circulation tank (51 to 54) by the circulation flow rate adjustment valve (U1 to U4) so as to minimize the flow rate. The liquid level of the heat medium in each circulation tank (51 to 54) can be measured by a normal liquid level gauge (not shown).

図1および図2で用いられる循環ポンプ(61〜64)としては、軸流ポンプ、遠心渦巻ポンプなどが用いられ、中でも縦型の遠心渦巻ポンプが好ましく用いられる。 As the circulation pump (61 to 64) used in FIGS. 1 and 2, an axial flow pump, a centrifugal vortex pump, or the like is used, and among them, a vertical centrifugal vortex pump is preferably used.

本発明の熱交換型反応器(1)は、分割された領域のうちの最上流の領域(31)に充填された熱媒体(C1)を他の領域(32、…)の熱媒体(C2、…)から独立して加熱する加熱器(41)を備える。加熱器(41)としては、例えば電気ヒーター、熱交換式の加熱器などが挙げられるが、電気ヒーターが好ましく用いられる。 The heat exchange reactor (1) of the present invention is configured so that the heat medium (C1) filled in the most upstream area (31) of the divided areas is replaced with the heat medium (C2) of the other areas (32,. ,...)) Is provided. Examples of the heater (41) include an electric heater and a heat exchange type heater, and an electric heater is preferably used.

例えば図1に示す熱交換型反応器(1)では、分割された各領域(31〜34)と、冷却器(81〜84)との間の配管の途中に、これらの間を循環する熱媒体(C1〜C4)を加熱するための加熱器(41〜44)がそれぞれ設けられている。これにより、全ての領域の熱媒体(C1〜C4)について、それぞれ他の領域の熱媒体から独立して加熱することができる。 For example, in the heat exchange type reactor (1) shown in FIG. 1, the heat circulated between the divided regions (31 to 34) and the pipes between the coolers (81 to 84). Heaters (41 to 44) for heating the media (C1 to C4) are provided, respectively. Thereby, it can heat independently about the heat medium (C1-C4) of all the area | regions from the heat medium of another area | region, respectively.

図2に示す熱交換型反応器(1)は、各領域(31〜34)ごとに設けられた循環タンク(51〜54)のうちの一つ(51)に、この循環タンク(51)内の熱媒体(C1)を加熱する加熱器(41)が設けられている。これにより、この循環タンク(51)が設けられた領域(31)の熱媒体(C1)を他の領域(32〜34)の熱媒体(C2〜C4)から独立して加熱することができる。 The heat exchange reactor (1) shown in FIG. 2 is arranged in one of the circulation tanks (51 to 54) provided for each region (31 to 34) (51) in the circulation tank (51). A heater (41) for heating the heat medium (C1) is provided. Thereby, the heat medium (C1) in the region (31) provided with the circulation tank (51) can be heated independently from the heat medium (C2 to C4) in the other regions (32 to 34).

加熱器は、図1に示すように、分割された領域の全て(31〜34)に備えられていることが、各領域(31〜34)の温度をより緻密に調整することができて好ましいが、場合によっては、例えば図2に示すように、一部の領域(31)にだけ加熱器(41)を備えていてもよい。 As shown in FIG. 1, it is preferable that the heater is provided in all of the divided regions (31 to 34) because the temperature of each region (31 to 34) can be adjusted more precisely. However, in some cases, for example, as shown in FIG. 2, a heater (41) may be provided only in a part of the region (31).

本発明の熱交換型反応器(1)によれば、加熱器(41)により、分割された領域のうちの最上流の領域(31)の熱媒体(C1)を他の領域(32、…)の熱媒体(C2、…)から独立して加熱することができるので、反応管(2)の全域に亙って、各領域の温度を緻密に調整することが容易となり、例えば原料化合物(A)の供給量が少なくて、発熱反応による発熱量が少ない場合にも、容易に、反応管(2)の全域に亙って所定の反応温度に維持することができる。 According to the heat exchange reactor (1) of the present invention, the heating medium (C1) in the most upstream area (31) of the divided areas is transferred to the other areas (32,...) By the heater (41). )) Can be heated independently from the heating medium (C2, ...), it becomes easy to finely adjust the temperature of each region over the entire reaction tube (2). Even when the supply amount of A) is small and the exothermic amount due to the exothermic reaction is small, it can be easily maintained at a predetermined reaction temperature over the entire reaction tube (2).

また、例えば原料化合物(A)を十分に予熱しないまま反応管(2)に供給した場合には、最上流の分割領域では顕熱持出し量が発熱量を上回り、反応管(2)の入口付近では反応温度を維持できないことがあるが、図1および図2に示すように、反応管(2)の入口付近の領域(31)の熱媒体(C1)を加熱する加熱器(41)を備える場合には、他の領域(32〜34)の熱媒体(C2〜C4)を加熱することなく、この領域(31)の熱媒体(C1)だけを加熱することができるので、他の領域(32〜34)を所定の反応温度に維持したまま、この領域(31)を所定の反応温度に維持することが容易である。 Also, for example, when the raw material compound (A) is supplied to the reaction tube (2) without being sufficiently preheated, the sensible heat take-out amount exceeds the calorific value in the uppermost divided region, and the vicinity of the inlet of the reaction tube (2) In some cases, the reaction temperature cannot be maintained, but as shown in FIGS. 1 and 2, a heater (41) for heating the heat medium (C1) in the region (31) near the inlet of the reaction tube (2) is provided. In this case, it is possible to heat only the heat medium (C1) of this region (31) without heating the heat medium (C2 to C4) of the other region (32 to 34). It is easy to maintain this region (31) at the predetermined reaction temperature while maintaining 32 to 34) at the predetermined reaction temperature.

反応管(2)に触媒を充填して用いる場合には、入口付近(31)の触媒は比較的早く劣化し易いのに対して、出口付近(34)の触媒は劣化が比較的遅い傾向にあるので、入口付近に相当する領域(31)の触媒が劣化して、この領域(31)における収率が低下したときには、出口付近に相当する領域(34)の熱媒体(C4)を加熱することにより反応温度を上げ、この領域(34)における収率を上げることができる。 When the reaction tube (2) is filled with a catalyst, the catalyst near the inlet (31) tends to deteriorate relatively quickly, whereas the catalyst near the outlet (34) tends to deteriorate relatively slowly. Therefore, when the catalyst in the region (31) corresponding to the vicinity of the inlet deteriorates and the yield in this region (31) decreases, the heating medium (C4) in the region (34) corresponding to the vicinity of the outlet is heated. As a result, the reaction temperature can be increased, and the yield in this region (34) can be increased.

また、反応ガス導入前に、各領域(31、32、…)を予め異なる温度に設定する必要がある場合は、図1に示すように各領域の加熱器(41、42、…)をそれぞれ単独に用いて温度設定することができる。もちろん図2の最上流領域の循環タンク(51)に設置している加熱器(41)と同様の加熱器を、全領域に設置してもよい。 In addition, when it is necessary to set each region (31, 32,...) At a different temperature in advance before introducing the reaction gas, the heaters (41, 42,. It can be used alone to set the temperature. Of course, a heater similar to the heater (41) installed in the circulation tank (51) in the uppermost stream region of FIG. 2 may be installed in the entire region.

本発明によれば、原料化合物(A)の供給量が少なくても、最上流の領域を所定の反応温度に維持しうる熱交換型反応器が提供され、さらには、全ての領域に亙り所定の反応温度に維持することが容易な熱交換型反応器が提供される。また、反応収率の低下を抑制しうる原料化合物(A)の反応方法および生成物(B)の製造方法が提供される。本発明によれば、反応ガス導入前に各領域(31〜34)を異なる温度に設定する必要がある場合にも、対応可能である。 According to the present invention, there is provided a heat exchange reactor capable of maintaining the most upstream region at a predetermined reaction temperature even when the amount of the raw material compound (A) supplied is small. A heat exchange reactor that can be easily maintained at the reaction temperature of is provided. Also provided are a method for reacting the raw material compound (A) and a method for producing the product (B) that can suppress a decrease in reaction yield. According to the present invention, it is possible to cope with a case where each region (31 to 34) needs to be set to a different temperature before the reaction gas is introduced.

本発明の熱交換型反応器の一例を示す模式図である。It is a schematic diagram which shows an example of the heat exchange type | mold reactor of this invention. 本発明の熱交換型反応器の他の一例を示す模式図である。It is a schematic diagram which shows another example of the heat exchange type | mold reactor of this invention. 従来の熱交換型反応器を示す模式図である。It is a schematic diagram which shows the conventional heat exchange type | mold reactor.

符号の説明Explanation of symbols

1:本発明の熱交換型反応器 1':従来の熱交換型反応器
2:反応管
3:反応器シェル 31〜34:分割された領域
41〜44:加熱器
51〜54:循環タンク
61〜64:循環ポンプ
8、81〜84:冷却器
9:予熱器
10:上管板 11:仕切板(遮蔽板、中間管板)
12:下管板 13:邪魔板
U1〜U4:循環流量調整弁 V1〜V4:供給流量調整弁
A:原料化合物 B:生成物
C0〜C4:熱媒体
1: Heat exchange reactor of the present invention 1 ': Conventional heat exchange reactor 2: Reaction tube 3: Reactor shell 31-34: Divided region
41-44: Heater
51-54: Circulation tank
61-64: Circulation pump 8, 81-84: Cooler 9: Preheater
10: Upper tube plate 11: Partition plate (shield plate, intermediate tube plate)
12: Lower tube plate 13: Baffle plate
U1 to U4: Circulating flow rate adjusting valve V1 to V4: Supply flow rate adjusting valve A: Raw material compound B: Product
C0 to C4: Heat medium

Claims (7)

原料化合物(A)を通過させながら発熱反応により生成物(B)を得るための反応管と、
該反応管の周囲を覆い、内部が前記原料化合物(A)の通過方向に沿って複数の領域に分割され、分割された領域ごとに熱媒体が充填された反応器シェルとを備え、
前記分割された領域ごとに、前記反応管内部と前記熱媒体との間で熱交換させる反応器であり、
前記分割された領域のうちの最上流の領域に充填された熱媒体を他の領域に充填された熱媒体から独立して加熱する加熱器を備えてなることを特徴とする熱交換型反応器。
A reaction tube for obtaining the product (B) by exothermic reaction while passing the raw material compound (A),
Covering the periphery of the reaction tube, the interior is divided into a plurality of regions along the direction of passage of the raw material compound (A), and a reactor shell filled with a heat medium for each of the divided regions,
A reactor for exchanging heat between the inside of the reaction tube and the heat medium for each of the divided regions;
A heat exchange type reactor comprising a heater that heats the heat medium filled in the most upstream area of the divided areas independently from the heat medium filled in other areas. .
前記分割された各領域に予め冷却された熱媒体を加えることにより前記各領域に充填された熱媒体を冷却しながら、熱交換させるものである請求項1及び請求項2に記載の熱交換型反応器。 The heat exchange mold according to claim 1 or 2, wherein a heat medium preliminarily cooled in each of the divided areas is used to exchange heat while cooling the heat medium filled in the areas. Reactor. 分割された領域の全てが、それぞれに充填された熱媒体を他の領域に充填された熱媒体から独立して加熱する加熱器をそれぞれ備える請求項1に記載の熱交換型反応器(1)。 The heat exchange type reactor (1) according to claim 1, wherein all of the divided regions are each provided with a heater for heating the heating medium filled in each of the divided regions independently from the heating medium charged in the other regions. . 請求項1〜請求項3のいずれかに記載の熱交換型反応器の反応管に原料化合物(A)を供給し、通過させながら発熱反応させることを特徴とする前記原料化合物(A)の反応方法。 The reaction of the raw material compound (A), wherein the raw material compound (A) is supplied to the reaction tube of the heat exchange reactor according to any one of claims 1 to 3 and allowed to undergo an exothermic reaction while passing through the reaction tube. Method. 請求項1〜請求項3のいずれかに記載の熱交換型反応器の反応管に塩化水素および酸素を供給し、通過させながら発熱反応させることを特徴とする塩素の製造方法。 A method for producing chlorine, characterized in that hydrogen chloride and oxygen are supplied to the reaction tube of the heat exchange reactor according to any one of claims 1 to 3 and subjected to an exothermic reaction while passing through. 塩化水素および酸素を無希釈で供給する請求項5に記載の製造方法。 The production method according to claim 5, wherein hydrogen chloride and oxygen are supplied undiluted. 酸化ルテニウムを主成分とし、酸化チタンに担持させた酸化触媒を用いる請求項5または請求項6に記載の塩素の製造方法。 The method for producing chlorine according to claim 5 or 6, wherein an oxidation catalyst comprising ruthenium oxide as a main component and supported on titanium oxide is used.
JP2005151996A 2004-05-28 2005-05-25 Heat exchange type reactor Withdrawn JP2005288441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151996A JP2005288441A (en) 2004-05-28 2005-05-25 Heat exchange type reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004158829 2004-05-28
JP2005151996A JP2005288441A (en) 2004-05-28 2005-05-25 Heat exchange type reactor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009241742A Division JP5149883B2 (en) 2004-05-28 2009-10-20 Heat exchange reactor

Publications (1)

Publication Number Publication Date
JP2005288441A true JP2005288441A (en) 2005-10-20

Family

ID=35321989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151996A Withdrawn JP2005288441A (en) 2004-05-28 2005-05-25 Heat exchange type reactor

Country Status (1)

Country Link
JP (1) JP2005288441A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262138A (en) * 2008-03-31 2009-11-12 Mitsubishi Chemicals Corp Method for controlling temperature of plate reactor and method for manufacturing reaction product
WO2011030919A1 (en) * 2009-09-10 2011-03-17 Sumitomo Chemical Company, Limited Process for repairing pit and process for repairing metal member
JP2015074645A (en) * 2013-10-11 2015-04-20 東ソー・ファインケム株式会社 Method for producing methylaluminoxane composition by using flow type reaction tube
JP2016511781A (en) * 2013-02-08 2016-04-21 ウーデ・インヴェンタ−フィッシャー・ゲーエムベーハー Reactor with vertical condensing tube and process for polymerizing polyamide in such reactor
JP2019509292A (en) * 2016-11-01 2019-04-04 エルジー・ケム・リミテッド Process for producing unsaturated aldehyde and unsaturated carboxylic acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262138A (en) * 2008-03-31 2009-11-12 Mitsubishi Chemicals Corp Method for controlling temperature of plate reactor and method for manufacturing reaction product
WO2011030919A1 (en) * 2009-09-10 2011-03-17 Sumitomo Chemical Company, Limited Process for repairing pit and process for repairing metal member
JP2016511781A (en) * 2013-02-08 2016-04-21 ウーデ・インヴェンタ−フィッシャー・ゲーエムベーハー Reactor with vertical condensing tube and process for polymerizing polyamide in such reactor
JP2015074645A (en) * 2013-10-11 2015-04-20 東ソー・ファインケム株式会社 Method for producing methylaluminoxane composition by using flow type reaction tube
JP2019509292A (en) * 2016-11-01 2019-04-04 エルジー・ケム・リミテッド Process for producing unsaturated aldehyde and unsaturated carboxylic acid

Similar Documents

Publication Publication Date Title
JP5149883B2 (en) Heat exchange reactor
KR101184235B1 (en) Multitubular reaction apparatus for contact gas-phase reaction
JP5667624B2 (en) Multi-stage, multi-tube shell-and-tube reactor
JP6009732B2 (en) Process that performs endothermic reaction
JP4401644B2 (en) Plate type catalytic reactor and method for producing (meth) acrylic acid, etc.
JP2005288441A (en) Heat exchange type reactor
JP2007521126A (en) Oxidation process and reactor using improved feed system
JP2010532707A5 (en)
CN109476564A (en) The oxidative dehydrogenation (ODH) of ethane
JP2004083430A (en) Method for gas phase catalytic oxidation using multitubular reactor
US9675950B2 (en) Combination reactor system
JPS60106527A (en) Double pipe reactor for exothermic reaction
EP1492617B1 (en) Reaction apparatus with a heat-exchanger
RU2346929C2 (en) Method of (meth)acroleine or (meth)acrylic acid production
JP4163021B2 (en) Vapor phase catalytic oxidation method using multi-tube heat exchanger type reactor
JPS60225632A (en) Reactor
JP2006150357A (en) Multitubular reaction apparatus
RU2554008C1 (en) Reactor for partial oxidation of hydrocarbon gases
EP0130807B1 (en) Process for production of ethylene oxide and reactor suitable therefor
JP2020044485A (en) Reaction method and reactor
JPS61118132A (en) Catalytic reactor
JP2017520397A (en) Apparatus and method for conducting heterogeneous catalytic gas phase reactions
JP2006212629A (en) Multi-tube type fixed bed reaction device
KR20240014072A (en) How to make phosgene
JP5239997B2 (en) Temperature control method in plate reactor and method for producing reaction product

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20071116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A02 Decision of refusal

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A02

A761 Written withdrawal of application

Effective date: 20091023

Free format text: JAPANESE INTERMEDIATE CODE: A761